

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LOW-POWER, NON-LICENSED TRANSMITTER

Test Report No. : OT-18N-RWD-031

AGR No. : A18OA-448

Applicant : LG Innotek Co., Ltd.

Address : 26, Hanamsandan 5beon-ro Gwangsan-gu, Gwangju, 506-731, South Korea

Manufacturer : LG Innotek Co., Ltd.

Address : 26, Hanamsandan 5beon-ro Gwangsan-gu, Gwangju, 506-731, South Korea

Type of Equipment: RF Module

FCC ID. : YZP-TWFMK305D

Model Name : TWFM-K305D

Serial number : N/A

Total page of Report : 7 pages (including this page)

Date of Incoming : October 15, 2018

Date of issue : November 20, 2018

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART C Section 15.247

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Reviewed by:

Ki-Hong, Nam / Chief Engineer ONETECH Corp. Approved by:

Keun-Young, Choi / Vice President

ONETECH Corp.

CONTENTS

	PAGE		
1. VERIFICATION OF COMPLIANCE	4		
2. GENERAL INFORMATION	5		
2.1 PRODUCT DESCRIPTION	5		
2.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT.	5		
3. EUT MODIFICATIONS	5		
4. MAXIMUM PERMISSIBLE EXPOSURE	6		
4.1 RF Exposure Calculation			
4.2 EUT DESCRIPTION	6		
4.3 CALCULATED MPE SAFE DISTANCE FOR WLAN	7		

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-18N-RWD-031	2018.11.20	Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant : LG Innotek Co., Ltd.

Address : 26, Hanamsandan 5beon-ro Gwangsan-gu, Gwangju, 506-731, South Korea

Contact Person: Jeong, Inchang / Senior Research Engineer

Telephone No. : +82-62-950-0332 FCC ID : YZP-TWFMK305D Model Name : TWFM-K305D

Brand Name : Serial Number : N/A

Date: November 20, 2018

<u> </u>	
EQUIPMENT CLASS	DTS – DIGITAL TRNSMISSION SYSTEM
E.U.T. DESCRIPTION	Modular Transmitter, RF Module
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2013
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT	
AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED	FCC PART 15 SUBPART C Section 15.247
UNDER FCC RULES PART(S)	KDB 558074 D01 DTS Meas Guidance v05
Modifications on the Equipment to	
Achieve Compliance	None
Final Test was Conducted On	3 m, Semi Anechoic Chamber

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. GENERAL INFORMATION

2.1 Product Description

The LG Innotek Co., Ltd., Model TWFM-K305D (referred to as the EUT in this report) is a RF Module. The product specification described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	RF Module					
Temperature Range	-20 °C ~ 80 °C					
	2 412 MHz ~ 2 462 MHz (802.11b/g/n(HT20))					
OPERATING FREQUENCY	2 422 MHz ~ 2 452 MHz (802.11n(HT40))					
	802.11b:					
MODUL ATION TUDE	DSSS Modulation(DBPSK/DQPSK/CCK)					
MODULATION TYPE	802.11g/n(HT20)/n(HT40):					
	OFDM Modulation(BPSK/QPSK/16QAM/64QAM)					
	17.14 dBm(802.11b)					
	13.31 dBm(802.11g)					
RF OUTPUT POWER'	15.74 dBm(802.11n_HT20)					
	15.91 dBm(802.11n_HT40)					
MODUL ATION TYPE	DSSS Modulation(DBPSK/DQPSK/CCK)					
MODULATION TYPE	OFDM Modulation(BPSK/QPSK/16QAM/64QAM)					
ANTENNA TYPE	PCB Antenna					
ANTENNA GAIN	1.50 dBi					
List of each Osc. or crystal	40.147					
Freq.(Freq. >= 1 MHz)	40 MHz					

2.2 Alternative type(s)/model(s); also covered by this test report.

-. None

3. EUT MODIFICATIONS

-. None

4. MAXIMUM PERMISSIBLE EXPOSURE

4.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment are f/1500 mW/cm² for the frequency range between 300 MHz and 1.500 MHz and 1.0 mW/cm² for the frequency range between 1 500 MHz and 100 000 MHz.

The electric field generated for a 1 mW/cm² exposure is calculated as follows:

$$E = \sqrt{(30 * P * G)} / d$$
, and $S = E^2 / Z = E^2 / 377$, because 1 mW/cm² = 10 W/m²

Where

S = Power density in mW/cm², Z = Impedance of free space, 377 Ω

E = Electric filed strength in V/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30 * P * G) / (377 * 10 S)}$$

Changing to units of mW and cm, using P(mW) = P(W) / 1000, d(cm) = 0.01 * d(m)

$$d = 0.282 * \sqrt{(P * G) / S}$$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

4.2 EUT Description

Kind of EUT	RF Module			
	□ Portable (< 20 cm separation)			
Device Category	☐ Mobile (> 20 cm separation)			
	■ Others			
_	■ MPE			
Exposure Evaluation Applied	□ SAR			
	□ N/A			

4.3 Calculated MPE Safe Distance for WLAN

According to above equation, the following result was obtained.

Operating Freq. Band (MHz)	Operating Mode	Target Power W/tolerance	Max tune up power		Antenna Gain		Safe Distance	Power Density (mW/cm²)	Limit (mW/		
		(dBm)	(dBm)	(mW)	Log	Linear	(cm)	@ 20 cm Separation	cm²)		
	802.11b	17.0 ± 0.5	17.50	56.23			2.51	0.015 8	1.00		
2 400	802.11g	13.5 ± 0.5	14.00	25.12	1.50	1.50			1.68	0.007 1	1.00
~ 2 483.5	802.11n_ HT20	16.0 ± 0.5	16.50	44.67			1.41	2.24	0.012 6	1.00	
	802.11n_ HT40	16.0 ± 0.5	16.50	44.67			2.24	0.012 6	1.00		

According to above table, for 2 400 ~ 2483.5 MHz Band, safe distance,

$$D = 0.282 * \sqrt{(56.23 * 1.41)/1.00} = 2.51 \text{ cm}.$$

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 56.23 * 1.41 / (4 * 3.14 * 20^2) = 0.015 8$$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) – cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna

Tested by: Tae-Ho, Kim / Senior Manager