Report Number: F690501/RF-RTL009701-1 Page: 95 ## **TEST REPORT** of FCC Part 15 Subpart C §15.247 FCC ID: YZP-RNTDST01A Equipment Under Test : IP Camera Model Name : RNTD-ST01A : LG INNOTEK CO., LTD. **Applicant** Manufacturer : LG INNOTEK CO., LTD. Date of Test(s) : 2016.03.18 ~ 2016.04.29 Hyunchae You Date of Issue : 2016.05.12 In the configuration tested, the EUT complied with the standards specified above. Tested By: Date: 2016.05.12 Approved By: Date: 2016.05.12 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 2 of 95 ## **INDEX** ## Table of contents | 1. General information | 3 | |--|----| | 2. Transmitter Radiated Spurious Emissions Conducted Spurious Emission | 25 | | 3. 6 dB Bandwidth | 69 | | 4. Maximum Peak Conducted Output Power | 76 | | 5. Power Spectral Density | 80 | | 6. AC Power Line Conducted Emission | 90 | | 7. Antenna Requirement | 95 | Report Number: F690501/RF-RTL009701-1 Page: 3 of 95 ## 1. General Information ## 1.1. Testing Laboratory SGS Korea Co., Ltd. (Gunpo Laboratory) - Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. request and accessible at http://www.sgs.com/en/lerms-and-Condition Telephone : +82 31 688 0901 FAX : +82 31 688 0921 ## 1.2. Details of Applicant Applicant : LG INNOTEK CO., LTD. Address : 26, Hanamsandan 5beon-ro, Gwangsan-gu, Gwangju, 62229, Korea Contact Person : Jeong, In-Chang Phone No. : +82 10 2326 9972 ## 1.3. Description of EUT | Kind of Produc | t | IP Camera | | | | |----------------|---------|------------------------------------|--|--|--| | Model Name | | RNTD-ST01A | | | | | Power Supply | | DC 5 V | | | | | Frequency Ran | ige | 2 412 Mb ~ 2 462 Mb (11b/g/n_HT20) | | | | | Modulation Ted | chnique | DSSS, OFDM | | | | | Number of Cha | nnels | 11 channels (11b/g/n_HT20) | | | | | Antenna Type | | PCB Antenna (MIMO) | | | | | Antenna Gain | Port#1 | 1.81 dBi | | | | | Antenna Gain | Port#2 | 1.76 dB i | | | | ## 1.4. Declaration by the manufacturer - The device supports 11b mode with single transmission at only Antenna 1 port and 11g,11n_HT20 mode with multi transmission at the same time. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 4 of 95 ## 1.5. Test Equipment List | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal.
Interval | Cal. Due | |------------------------------|--------------------------------|--|----------------|---------------|------------------|---------------| | Signal Generator | Agilent | E8257D | MY51501169 | Jul. 13, 2015 | Annual | Jul. 13, 2016 | | Spectrum Analyzer | R&S | FSV30 | 103100 | Jun. 22, 2015 | Annual | Jun. 22, 2016 | | Spectrum Analyzer | Agilent | N9020A | MY53421758 | Sep. 24, 2015 | Annual | Sep. 24, 2016 | | Attenuator | MCLI | FAS-12-10 | 3 | Jun. 09, 2015 | Annual | Jun. 09, 2016 | | High Pass Filter | Wainwright Instrument
GmbH | WHK3.0/18G-6SS | 4 | Jun. 23, 2015 | Annual | Jun. 23, 2016 | | High Pass Filter | Wainwright Instrument
GmbH | WHNX7.5/26.5G-6SS | 15 | Jun. 23, 2015 | Annual | Jun. 23, 2016 | | Low Pass Filter | Mini-Circuits | NLP-1200+ | V 8979400903-2 | Feb. 29, 2016 | Annual | Feb. 29, 2017 | | Power Sensor | R&S | NRP-Z81 | 100669 | Feb. 29, 2016 | Annual | Feb. 29, 2017 | | DC Power Supply | Agilent | U8002A | MY53150029 | Jun. 22, 2015 | Annual | Jun. 22, 2016 | | Preamplifier | H.P. | 8447F | 2944A03909 | Aug. 27, 2015 | Annual | Aug. 27, 2016 | | Preamplifier | R&S | SCU-18 | 10117 | Apr. 07, 2016 | Annual | Apr. 07, 2017 | | Preamplifier | MITEQ Inc. | JS44-18004000-35-8P | 1546891 | May 07, 2015 | Annual | May 07, 2016 | | Loop Antenna | R&S | HFH2-Z2 | 100118 | Jun. 04, 2015 | Biennial | Jun. 04, 2017 | | Bilog Antenna | Schwarzbeck
Mess-Elektronik | VULB9163 | 396 | Jun. 18, 2015 | Biennial | Jun. 18, 2017 | | Horn Antenna | R&S | HF906 | 100326 | Feb. 01, 2016 | Biennial | Feb. 01, 2018 | | Horn Antenna | Schwarzbeck
Mess-Elektronik | BBHA 9170 | BBHA9170431 | May 15, 2014 | Biennial | May 15, 2016 | | Antenna Master | INN-CO | MM4000 | N/A | N.C.R. | N/A | N.C.R. | | Turn Table | INN-CO | DS 1200 S | N/A | N.C.R. | N/A | N.C.R. | | Test Receiver | R&S | ESU26 | 100109 | Mar. 07, 2016 | Annual | Mar. 07, 2017 | | Anechoic Chamber | SY Corporation | L × W × H
(9.6 m × 6.4 m × 6.6 m) | N/A | N.C.R. | N/A | N.C.R. | | Test Receiver | R&S | ESCI 7 | 100911 | Dec. 22, 2015 | Annual | Dec. 22, 2016 | | Artificial Mains
Networks | R&S | ESH2-Z5 | 100280 | Mar. 25, 2016 | Annual | Mar. 25, 2017 | | Shield Room | SY Corporation | $L \times W \times H$
(6.5 m × 3.5 m × 3.5 m) | N/A | N.C.R. | N/A | N.C.R. | Report Number: F690501/RF-RTL009701-1 Page: 5 of 95 ## 1.6. Summary of Test Results The EUT has been tested according to the following specifications: | APP | APPLIED STANDARD: FCC Part15 Subpart C | | | | | | | | | | |----------------------------------|--|----------|--|--|--|--|--|--|--|--| | Standard section | Test Item(s) | Result | | | | | | | | | | 15.205(a)
15.209
15.247(d) | Transmitter Radiated Spurious Emissions
Conducted Spurious Emission | Complied | | | | | | | | | | 15.247(a)(2) | 6 dB Bandwidth | Complied | | | | | | | | | | 15.247(b)(3) | Maximum Peak Conducted Output Power | Complied | | | | | | | | | | 15.247(e) | Power Spectral Density | Complied | | | | | | | | | | 15.207 | AC Power Line Conducted Emission | Complied | | | | | | | | | ## 1.7. Test Procedure(s) The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009) and the guidance provided in KDB 558074 D01_v03r05 were used in the measurement of the DUT. ## 1.8. Sample calculation Where relevant, the following sample calculation is provided: #### 1.8.1. Conducted test Offset value (dB) = Attenuator (dB) + Cable loss (dB) ## 1.8.2. Radiation test Field strength level ($dB\mu V/m$) = Measured level ($dB\mu V$) + Antenna factor (dB) + Cable loss (dB) - amplifier gain(dB) ### 1.9. Test report revision | Revision | Report number | Date of Issue | Description | | |----------|------------------------|---------------|--|--| | 0 | F690501/RF-RTL009701 | 2016.05.02 | Initial | | | 1 | F690501/RF-RTL009701-1 | 2016.05.12 | - Added duty cycle plots and correlated gain for calculation | | The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-20(2015.10.01)(3) Tel. +82 31 428 5700 / Fax. +82 31 427 2370 A4(210mm x 297mm) Report Number: F690501/RF-RTL009701-1 Page: 6 of 95 ## 1.10. Duty Cycle of EUT Regarding to KDB 558074 D01_v03r05, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. | Mode | | Data Rate (Mbps) | | | | | | | | | | |------------------------|------|------------------|-------|-------|-------|-------|-------|-------|--|--|--| | 11b | 1 | 2 | 5.5 | 11 | | | | | | | | | Duty Cycle (%) | 100 | 100 | 100 | 100 | - | - | - | - | | | | | Correction factor (dB) | 0 | 0 | 0 | 0 | - | - | - | - | | | | | 11g | 6 | 9 | 12 | 18 | 24 | 36 | 48 | 54 | | | | | Duty Cycle (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | Correction factor (dB) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 11n_HT20 | MCS8 | MCS9 | MCS10 | MCS11 | MCS12 | MCS13 | MCS14 | MCS15 | | | | | Duty Cycle (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | Correction factor (dB) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | #### Remark: - 1. As measured duty cycles of EUT, all of mode and data rate keep constant period and are converted to log scale (power averaging) to compensate correction factor to result of average test items. - 2. Duty cycle (%) = $(Tx \text{ on time } / Tx \text{ on } + \text{ off time}) \times 100$ - 3. Correction factor (dB) = $10 \log (1 / \text{Duty cycle})$ Report Number: F690501/RF-RTL009701-1 Page: 7 of 95 #### DSSS: 802.11b (Ant.1) #### 1 Mbps #### 2 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 8 of 95 #### 5.5Mbps #### 11 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 9 of 95 #### OFDM: 802.11g (Ant.1) #### 6 Mbps #### 9 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test
report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 10 of 95 #### 12 Mbps #### 18 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 11 of 95 #### 24 Mbps #### 36 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 12 of 95 #### 48 Mbps #### 54 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 13 of 95 #### OFDM: 802.11g (Ant.2) #### 6 Mbps #### 9 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 14 of 95 #### 12 Mbps #### 18 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 15 of 95 #### 24 Mbps #### 36 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 16 of 95 #### 48 Mbps #### 54 Mbps The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 17 of 95 #### OFDM: 802.11n_HT20 (Ant.1) MCS8 MCS9 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 18 of 95 #### MCS₁₀ #### MCS11 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 19 of 95 #### MCS12 #### MCS13 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 20 of 95 #### MCS14 #### MCS15 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 21 of 95 #### OFDM: 802.11_HT20 (Ant.2) #### MCS8 MCS9 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 22 of 95 #### MCS₁₀ #### MCS11 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 23 of 95 #### MCS12 #### MCS13 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 24 of 95 #### MCS14 #### MCS15 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 25 of 95 # 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission ## 2.1. Test Setup ### 2.1.1. Transmitter Radiated Spurious Emissions The diagram below shows the test setup that is utilized to make the measurements for emission from 24 Mb to 30 Mb Emissions. The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\text{Mz}$ to 1 $\,\text{GHz}$ Emissions. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr RTT5041-20(2015.10.01)(3) Tel. +82 31 428 5700 / Fax. +82 31 427 2370 A4(210mm x 297mm) Report Number: F690501/RF-RTL009701-1 Page: 95 26 of The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 \times to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. Report Number: F690501/RF-RTL009701-1 Page: 27 of 95 ## 2.1.2. Conducted Spurious Emission #### 2.2. Limit According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c)) According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency
(雕) | Distance
(Meters) | Field Strength (dBμV/m) | Field Strength $(\mu N/m)$ | |------------------|----------------------|-------------------------|----------------------------| | 0.009 - 0.490 | 300 | 20 log (2 400/F(kllz)) | 2 400/F(klz) | | 0.490 - 1.705 | 30 | 20 log (24 000/F(kHz)) | 24 000/F(kHz) | | 1.705 – 30.0 | 30 | 29.54 | 30 | | 30 - 88 | 3 | 40.0 | 100** | | 88 – 216 | 3 | 43.5 | 150** | | 216 – 960 | 3 | 46.0 | 200** | | Above 960 | 3 | 54.0 | 500 | Report Number: F690501/RF-RTL009701-1 Page: 28 of 95 #### 2.3. Test Procedures Radiated emissions from the EUT were measured according to the dictates in section 11.0 & 12.0 of KDB 558074 D01 v03r05 and ANSI C63.10-2009. #### Remark: Testing for radiated emissions above 1 6Hz was performed with the EUT elevated at 1.5m instead of 0.8m. 1.5m is the required height in ANSI C63.10:2013 as referenced by RSS-Gen issue 4. This test height has been permitted by FCC as discussed in FCC-TCB conference call in December 2014. #### 2.3.1. Test Procedures for emission below 30 Mb - 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation. - 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. - 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading. - 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode. #### 2.3.2. Test Procedures for emission from above 30 Mb - 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 % and 1.5 meters above the ground at a 3 meter anechoic chamber test site above 1 %. The table was rotated 360 degrees to determine the position of the highest radiation. - 2. During performing radiated emission below 1 % the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 % the EUT was set 3 meter away from the interference-receiving antenna. - 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. - 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit
specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Report Number: F690501/RF-RTL009701-1 Page: 29 of 95 #### NOTE; All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section. In case of 11g which supports legacy g mode and 2 Tx mode as CDD(Cyclic Delay Diversity). Both mode were also investigated then the test results of 2 Tx mode were much higher than legacy g mode and results of 2 Tx mode were reported in this section. - 1. Unwanted Emissions into Non-Restricted Frequency Bands - The Reference Level Measurement refer to section 11.2 Set analyzer center frequency to DTS channel center frequency, SPAN \geq 1.5 times the DTS bandwidth, the RBW = 100 kHz and VBW \geq 3 \times RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold. - Unwanted Emissions Level Measurement refer to section 11.3 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 $\,\mathrm{kHz}$ and $\,\mathrm{VBW} \ge 3 \times \mathrm{RBW}$, Detector = Peak, Sweep time = Auto couple, Trace = Max hold. - 2. Unwanted Emissions into Restricted Frequency Bands - Peak Power measurement procedure refer to section 12.2.4 Set RBW = as specified in Table 1, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = auto, Trace = Max hold. Table 1- RBW as a function of frequency | Frequency | RBW | |----------------|---------------------| | 9 – 150 kHz | 200 – 300 Hz | | 0.15 − 30 MHz | 9 – 10 kHz | | 30 − 1 000 MHz | 100 – 120 kHz | | >1 000 MHz | 1 MHz | -Average Power measurements procedure refer to section 12.2.5.2 The EUT shall be configured to operate at the maximum achievable duty cycle. Measure the duty cycle, x, of the transmitter output signal as described in section 6.0. Set RBW = 1 Mb, VBW \geq 3 x RBW, Detector = RMS, if span / (# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied then the detector mode shall be set to peak. Averaging type = power (i.e., RMS). As an alternative the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used. Sweep time = auto. Perform a trace average of at least 100 traces. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows: - 1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is 10 log (1/x), where x is the duty cycle. - 3. To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes (X, Y, Z). Worst orthogonal plan of EUT is Z axis during radiation test. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 30 of 95 #### 2.3.3. Test Procedures for Conducted Spurious Emissions All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section. Per the guidance of KDB 558074 D01_v03r05, section 11.1 & 11.2 & 11.3, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 $\,\mathrm{kHz}$. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 2.4.3. The limit for out of band spurious emission at the band edge is 20 $\,\mathrm{dB}$ or 30 $\,\mathrm{dB}$ below the fundamental emission level measured in a 100 $\,\mathrm{kHz}$ bandwidth. #### 1. Conducted Emissions at Band Edge - The Measurement refer to section 11.2 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 № and VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, Ensure that the number of measurement points ≥ span/RBW, The trace was allowed to stabilize. #### 2. Conducted Spurious Emissions - The Measurement refer to section 11.3 Start frequency was set to 24 Mb and stop frequency was set to 25 Gb (separated into two plots per channel), RBW = 100 kb, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, The trace was allowed to stabilize. #### 3. Correction function - For plots showing conducted spurious emissions from 24 Mb to 25 GHz, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as Correction function. So, the reading values shown in plots were final result. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 31 of 95 ### 2.4. Test Results Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H. ## 2.4.1. Radiated Spurious Emission below 1 000 Mb The frequency spectrum from 24 Mb to 1 000 Mb was investigated. All reading values are peak values. | Radiated Emissions | | Ant | Correction Factors | | Total | Limit | | | |--------------------|-------------------|----------------|--------------------|------------------------------|------------------|-----------------|-------------------|----------------| | Frequency
(雕) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/ m) | AMP + CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | 50.98 | 34.00 | Peak | Н | 15.66 | -27.02 | 22.64 | 40.00 | 17.36 | | 53.52 | 33.30 | Peak | ٧ | 13.94 | -26.99 | 20.25 | 40.00 | 19.75 | | 480.00 | 40.40 | Peak | ٧ | 18.14 | -25.94 | 32.60 | 46.00 | 13.40 | | 579.47 | 34.10 | Peak | Н | 19.43 | -25.88 | 27.65 | 46.00 | 18.35 | | Above
600.00 | Not
detected | - | - | - | - | - | - | - | #### Remark: - 1. Spurious emissions for all channels were investigated and almost the same below 1 @. - 2. Reported spurious emissions are in 11b / 1Mbps / high channel as worst case among other modes. - 3. Radiated spurious emission measurement as below. (Actual = Reading + AF + AMP + CL) - 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB. - 5. The device has a reference clock operating at 24 Mb. Report Number: F690501/RF-RTL009701-1 Page: 32 of 95 ## 2.4.2. Radiated Spurious Emission above 1 000 Mb The frequency spectrum above 1 000 Mb was investigated. All reading values are peak and average values. DSSS: 802.11b(1 Mbps) - ANT1 Low Channel (2 412 Mb) | Radiated Emissions | | Ant. | Correction Factors | | Total | Limit | | | |--------------------|-------------------|----------------|--------------------|--------------|------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 310.00 | 24.81 | Peak | ٧ | 28.07 | 5.35 | 58.23 | 74.00 | 15.77 | | *2 310.00 | 14.49 | Average | ٧ | 28.07 | 5.35 | 47.91 | 54.00 | 6.09 | | *2 387.84 | 26.10 | Peak | ٧ | 28.15 | 5.38 | 59.63 | 74.00 | 14.37 | | *2 385.44 | 16.09 | Average | ٧ | 28.14 | 5.37 | 49.60 | 54.00 | 4.40 | | *2 390.00 | 25.64 | Peak | ٧ | 28.15 | 5.38 | 59.17 | 74.00 | 14.83 | | *2 390.00 | 15.44 | Average | ٧ | 28.15 | 5.38 | 48.97 | 54.00 | 5.03 | | Radiated Emissions | | Ant. | Correction Factors | | Total | Total Limit | | | |--------------------|-------------------|----------------|--------------------|---------------------------|----------------|-----------------|-------------------|----------------| | Frequency
(Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF (dB/ m) | AMP+CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 823.85 | 50.81 | Peak | ٧ | 32.71 | -29.81 | 53.71 | 74.00 | 20.29 | | *4 824.04 | 47.33 | Average | ٧ | 32.71 | -29.81 | 50.23 | 54.00 | 3.77 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | Report Number: F690501/RF-RTL009701-1 Page: 33 of 95 ## Middle Channel (2 437 Mb) | Radiated Emissions | | Ant. | Correction Factors | | Total | Limit | | | |--------------------|-------------------|----------------|--------------------|--------------|----------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 874.02 | 50.00 | Peak | ٧ | 32.84 | -29.50 | 53.34 | 74.00 | 20.66 | | *4 873.97 | 47.08 | Average | V | 32.84 | -29.50 | 50.42 | 54.00 | 3.58 | | *7 309.04 | 40.67 | Peak | V | 35.73 | -27.31 | 49.09 | 74.00 | 24.91 | | *7 309.40 | 32.27 | Average | ٧ | 35.73 | -27.31 | 40.69 | 54.00 | 13.31 | | Above
7 400.00 | Not
detected | - | - | - | - | - | - | - | High Channel (2 462 Mb) | Radi | ated Emissio | ons | Ant. | Correctio | n Factors | Total | Limi | it | |-------------------|-------------------|----------------|------|---------------------------|------------|-----------------|-------------------|----------------| | Frequency
(M版) | Reading
(dBµV) | Detect
Mode | Pol. | AF (dB/ m) | CL
(dB) | Actual
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 483.50 | 26.16 | Peak | ٧ | 28.24 | 5.44 | 59.84 | 74.00 | 14.16 | | *2 483.50 | 15.78 | Average | ٧ | 28.24 | 5.44 | 49.46 | 54.00 | 4.54 | | *2 484.55 | 27.22 | Peak | ٧ | 28.24 | 5.45 | 60.91 | 74.00 | 13.09 | | *2 484.05 | 16.36 | Average | ٧ | 28.24 | 5.45 | 50.05 | 54.00 | 3.95 | | *2 500.00 | 24.77 | Peak | ٧ | 28.26 | 5.49 | 58.52 | 74.00 | 15.48 | | *2 500.00 | 15.30 | Average | ٧ | 28.26 | 5.49 | 49.05 | 54.00 | 4.95 | | Radi | ated Emissio | ns | Ant. | Correctio | n Factors | Total | Lim | it | |-------------------|-------------------|----------------|------|--------------|----------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 924.01 | 48.71 | Peak | ٧ | 32.98 | -29.67 | 52.02 | 74.00 | 21.98 | | *4 924.00 | 44.69 | Average | ٧ | 32.98 | -29.67 | 48.00 | 54.00 | 6.00 | | *7 385.14 | 41.31 | Peak | ٧ | 35.83 | -27.67 | 49.47 | 74.00 | 24.53 | | *7 385.22 | 31.79 | Average | ٧ | 35.83 | -27.67 | 39.95 | 54.00 | 14.05 | | Above
7 400.00 | Not
detected | - | - | - | - | - | - | - | The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 34 of 95 OFDM: 802.11g(6 Mbps) - ANT1+2 Low Channel (2 412 Mb) | Fu | ındamental Lev | vel . | Ant. | Correctio | n Factors | Total | |----------------|-------------------|-------|------|---------------------------|--------------------|-------| | Frequency (Mb) | Reading
(dBµV) | • | | AF (dB/ m) | Actual
(dBμV/m) | | | 2 413.68 | 60.71 | Peak | V | 28.17 | 5.44 | 94.32 | | Radi | ated Emissio | ns | Ant. | Correctio | n Factors | Total | Limi | it | |----------------|-------------------|----------------|------|--------------|------------|-----------------|-------------------|----------------| | Frequency (Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual (dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | | *2 310.00 | 24.75 | Peak | ٧ | 28.07 | 5.35 | 58.17 | 74.00 | 15.83 | | *2 310.00 | 14.60 | Average | ٧ | 28.07 | 5.35 | 48.02 | 54.00 | 5.98 | | *2 389.83 | 29.75 | Peak | ٧ | 28.15 | 5.38 | 63.28 | 74.00 | 10.72 | | *2 389.83 | 17.38 | Average | ٧ | 28.15 | 5.38 | 50.91 | 54.00 | 3.09 | | *2 390.00 | 30.12 | Peak | ٧ | 28.15 | 5.38 | 63.65 | 74.00 | 10.35 | | *2 390.00 | 16.63 | Average | ٧ | 28.15 | 5.38 | 50.16 | 54.00 | 3.84 | | Radia | ated Emissio | ons | Ant. | Correctio | n Factors | Total | Limit | | |-------------------|-------------------|----------------|------|-----------------------|----------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/ m) | AMP+CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 824.84 | 48.75 | Peak | ٧ | 32.71 | -29.81 | 51.65 | 74.00 | 22.35 | | *4 823.98 | 37.55 | Average | ٧ | 32.71 | -29.81 | 40.45 | 54.00 | 13.55 | | 9 648.06 | 44.84 | Peak | ٧ | 37.50 | -25.04 | 57.30 | 74.32 | 17.02 | | Above
9 700.00 | Not
detected | - | - | - | - | - | - | - | Report Number: F690501/RF-RTL009701-1 Page: 35 of 95 #### Middle Channel (2 437 眦) | Fu | Fundamental Level | | | Correctio | n Factors | Total | |------------------|-------------------|----------------|------|------------------------|-----------|-----------------| | Frequency
(脈) | Reading
(dBμV) | Detect
Mode | Pol. | Pol. AF CL (dB/m) (dB) | | Actual (dBμV/m) | | 2 438.68 | 60.57 | Peak | V | 28.20 | 5.45 | 94.22 | | Radia | Radiated Emissions | | | Correctio | n Factors | Total | Lim | it | |-------------------|--------------------|----------------|------|--------------|----------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | Actual (dBμV/m) | Limit
(dΒμV/m) | Margin
(dB) | | *4 875.12 | 47.75 | Peak | ٧ | 32.85 | -29.49 | 51.11 | 74.00 | 22.89 | | *4 872.58 | 36.62 | Average | ٧ | 32.84 | -29.52 | 39.94 | 54.00 | 14.06 | | 9 748.07 | 43.67 | Peak | ٧ | 37.50 | -24.76 | 56.41 | 74.22 | 17.81 | | Above
9 800.00 | Not
detected | - | - | - | - | - | - | - | ## High Channel (2 462 Mb) | Fu | Fundamental Level | | | Correctio | n Factors | Total | |----------------|-------------------|------|------|------------------------------|------------|-----------------| | Frequency (Mb) | 1 , 3 20,000 | | Pol. | AF
(dB/ m) | CL
(dB) | Actual (dBμV/m) | | 2 463.68 | 60.64 | Peak | V | 28.22 | 5.42 | 94.28 | | Radi | ated Emissio | ns | Ant. | Correctio | n Factors | Total | Limi | it | |-------------------|-------------------|----------------|------|--------------|------------|-----------------|-------------------|----------------| | Frequency
(Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual (dBμV/m) | Limit
(dBμV/m) | Margin
(dB) | | *2 483.50 | 29.92 | Peak | ٧ | 28.24 | 5.44 | 63.60 | 74.00 | 10.40 | | *2 483.50 | 18.59 | Average | ٧ | 28.24 | 5.44 | 52.27 | 54.00 | 1.73 | | *2 484.40 | 31.50 | Peak | ٧ | 28.24 | 5.45 | 65.19 | 74.00 | 8.81 | | *2 483.85 | 18.37 | Average | ٧ | 28.24 | 5.44 | 52.05 | 54.00 | 1.95 | | *2 500.00 | 25.37 | Peak | ٧ | 28.26 | 5.49 | 59.12 | 74.00 | 14.88 | | *2 500.00 | 15.71 | Average | ٧ | 28.26 | 5.49 | 49.46 | 54.00 | 4.54 | Report Number: F690501/RF-RTL009701-1 Page: 36 of 95 | Radia | Radiated Emissions | | Ant. | Correction Factors | | Total Lii | | it | |-------------------|--------------------|----------------|------|-----------------------|----------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/ m) | AMP+CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 924.44 | 46.52 | Peak | ٧ | 32.98 | -29.68 | 49.82 | 74.00 | 24.18 | | *4 924.18 | 35.71 | Average | ٧ | 32.98 | -29.67 | 39.02 | 54.00 | 14.98 | | 9 848.08 | 42.84 | Peak | ٧ | 37.50 | -24.81 | 55.53 | 74.28 | 18.75 | | Above
9 900.00 | Not
detected | - | - | - | - | - | - | - | OFDM: 802.11n_HT20 (MCS8) - ANT1+2 Low Channel (2 412 Mb) | Fu | Fundamental Level | | | Correctio | n Factors | Total | |------------------|----------------------------|------|------|------------------------------|--------------------|-------| | Frequency
(脈) | Reading Detect (dBμV) Mode | | Pol. | AF
(dB/ m) | Actual
(dΒμV/m) | | | 2 415.12 | 58.81 | Peak | V | 28.17 | 5.45 | 92.43 | | Radi | ated Emissio | ns | Ant. | Correctio | n Factors | Total | Limi | t | |------------------|-------------------|----------------|------|--------------|------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 310.00 | 24.68 | Peak | ٧ | 28.07 | 5.35 | 58.10 | 74.00 | 15.90 | | *2 310.00 | 14.81 | Average | ٧ | 28.07 | 5.35 | 48.23 | 54.00 | 5.77 | | *2 388.77 | 29.37 | Peak | ٧ | 28.15 | 5.38 | 62.90 | 74.00 | 11.10 | | *2 389.78 | 16.54 | Average | ٧ | 28.15 | 5.38 | 50.07 | 54.00 | 3.93 | | *2 390.00 | 28.68 | Peak | ٧ | 28.15 | 5.38 | 62.21 | 74.00 | 11.79 | | *2 390.00 | 16.76 | Average | ٧ | 28.15 | 5.38 | 50.29 | 54.00 | 3.71 | Report Number: F690501/RF-RTL009701-1 Page: 37 of 95 | Radiated Emissions | | Ant. | Correction Factors | | Total | Lim | it | | |--------------------|-------------------|----------------|--------------------|--------------|----------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 830.72 | 42.62 | Peak | V | 32.73 | -29.82 | 45.53 | 74.00 | 28.47 | | *4 824.10 | 32.17 | Average | ٧ | 32.71 | -29.81 | 35.07 | 54.00 | 18.93 | | 9 648.08 | 44.75 | Peak | ٧ | 37.50 | -25.04 | 57.21 | 72.43 | 15.22 | | Above
9 700.00 | Not
detected | - | - | - | - | - | - | - | Middle Channel (2 437 眦) | Fundamental Level | | | Ant. | Correctio | n Factors | Total | |-------------------|-------------------|----------------|------|------------------------------|------------|-----------------| | Frequency (Mb) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/ m) | CL
(dB) | Actual (dBμV/m) | | 2 442.64 | 59.44 | Peak | V | 28.20 | 5.43 | 93.07 | | Radiated Emissions | | Ant. | Correction Factors | | Total | otal Limit | | | |--------------------|-------------------|----------------|--------------------|------------------------------|----------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/ m) | AMP+CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 873.62 | 41.26 | Peak | V | 32.84 | -29.51 | 44.59 | 74.00 | 29.41 | | *4 875.94 | 30.83 | Average | V | 32.85 | -29.49 | 34.19 | 54.00 | 19.81 | | 9 748.06 | 44.18 | Peak | V | 37.50 | -24.76 | 56.92 | 73.07 | 16.15 | | Above
9 800.00 | Not
detected | - | - | - | - | - | - | - | Report Number: F690501/RF-RTL009701-1 Page: 38 of 95 ## High Channel (2 462 眦) | Fundamental Level | | | Ant. | Correctio | n Factors | Total | |-------------------|-------------------|----------------|------|---------------------------|------------|-----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF (dB/ m) | CL
(dB) | Actual (dBμV/m) | | 2 647.64 | 60.90 | Peak | V | 28.23 | 5.42 | 94.55 | | Radiated Emissions | | Ant. |
Correctio | n Factors | Total | Lim | it | | |--------------------|-------------------|----------------|-----------|--------------|------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual (dBμV/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 483.50 | 28.54 | Peak | V | 28.24 | 5.44 | 62.22 | 74.00 | 11.78 | | *2 483.50 | 18.88 | Average | V | 28.24 | 5.44 | 52.56 | 54.00 | 1.44 | | *2 484.55 | 31.11 | Peak | V | 28.24 | 5.45 | 64.80 | 74.00 | 9.20 | | *2 483.55 | 18.89 | Average | V | 28.24 | 5.44 | 52.57 | 54.00 | 1.43 | | *2 500.00 | 25.44 | Peak | V | 28.26 | 5.49 | 59.19 | 74.00 | 14.81 | | *2 500.00 | 15.54 | Average | V | 28.26 | 5.49 | 49.29 | 54.00 | 4.71 | | Radiated Emissions | | Ant. | Correction Factors | | Total | Lim | it | | |--------------------|-------------------|----------------|--------------------|--------------|----------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBµV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | Actual (dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | | 9 848.05 | 42.85 | Peak | ٧ | 37.50 | -24.81 | 55.54 | 74.55 | 19.01 | | Above
9 900.00 | Not
detected | - | - | - | - | - | - | - | #### Remarks: - 1. "*" means the restricted band. - 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode If the frequency was in restricted band. Otherwise the frequency was out of restricted band, only peak detector should be used. - 4. Actual = Reading + AF + AMP + CL or Reading + AF + CL - 5. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB. - 6. Emissions out of restricted band are limited below 20 ${ m dB}$ of the fundamental level in 100 ${ m kHz}$ resolution bandwidth. Report Number: F690501/RF-RTL009701-1 Page: 39 of 95 ## 2.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission # DSSS: 802.11b(1 Mbps) - ANT1 Low Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr Report Number: F690501/RF-RTL009701-1 Page: 40 95 of Report Number: F690501/RF-RTL009701-1 Page: 41 of 95 ### Middle Channel Report Number: F690501/RF-RTL009701-1 Page: 42 95 of Report Number: F690501/RF-RTL009701-1 Page: 43 of 95 ### High Channel Report Number: F690501/RF-RTL009701-1 Page: 44 95 of Report Number: F690501/RF-RTL009701-1 Page: 45 of 95 ## OFDM: 802.11g(6 Mbps) - ANT1 #### Low Channel Report Number: F690501/RF-RTL009701-1 Page: 46 95 of Report Number: F690501/RF-RTL009701-1 Page: 47 of 95 ### Middle Channel Report Number: F690501/RF-RTL009701-1 Page: 48 95 of Report Number: F690501/RF-RTL009701-1 Page: 49 of 95 ### High Channel Report Number: F690501/RF-RTL009701-1 Page: 50 95 of Report Number: F690501/RF-RTL009701-1 Page: 51 of 95 ## OFDM: 802.11g(6 Mbps) - ANT2 #### Low Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr Report Number: F690501/RF-RTL009701-1 Page: 52 95 of Report Number: F690501/RF-RTL009701-1 Page: 53 of 95 #### Middle Channel Report Number: F690501/RF-RTL009701-1 Page: 54 95 of Report Number: F690501/RF-RTL009701-1 Page: 55 of 95 ### High Channel Report Number: F690501/RF-RTL009701-1 Page: 56 95 of Report Number: F690501/RF-RTL009701-1 Page: 57 of 95 ## OFDM: 802.11n_HT20(MCS8) - ANT1 #### Low Channel Report Number: F690501/RF-RTL009701-1 Page: 58 95 of Report Number: F690501/RF-RTL009701-1 Page: 59 of 95 ### Middle Channel Report Number: F690501/RF-RTL009701-1 Page: 60 95 of Report Number: F690501/RF-RTL009701-1 Page: 61 of 95 ### High Channel Report Number: F690501/RF-RTL009701-1 Page: 62 95 of Report Number: F690501/RF-RTL009701-1 Page: 63 of 95 ## OFDM: 802.11n_HT20(MCS8) - ANT2 Low Channel Report Number: F690501/RF-RTL009701-1 Page: 64 95 of Report Number: F690501/RF-RTL009701-1 Page: 65 of 95 #### Middle Channel Report Number: F690501/RF-RTL009701-1 Page: 66 95 of Report Number: F690501/RF-RTL009701-1 Page: 67 of 95 ### High Channel Report Number: F690501/RF-RTL009701-1 Page: 68 95 of Report Number: F690501/RF-RTL009701-1 Page: 69 of 95 ## 3. 6 dB Bandwidth ## 3.1. Test Setup ## 3.2. Limit According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 ~928 Mb, $2400 \sim 2483.5 \text{ Mz}$, and $5725 \sim 5825 \text{ Mz}$ bands. The minimum of 6 dB Bandwidth shall be at least 500 kHz. ### 3.3. Test Procedure #### 3.3.1. 6 dB Bandwidth All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows section 8.0 DTS bandwidth of FCC KDB 558074 D01_v03r05. Tests performed using section 8.1 Option 1 - Option 1: - 1. Set RBW = 100 kHz. - 2. Set the video bandwidth (VBW) \geq 3 x RBW. - 3. Detector = Peak. - 4. Trace mode = max hold. - 5. Sweep = auto couple. - 6. Allow the trace to stabilize. - 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Report Number: F690501/RF-RTL009701-1 Page: 70 of 95 # 3.4. Test Results Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H. | Operation
Mode | Data Rate
(Mbps) | Channel | Channel
Frequency
(쌘) | 6 dB Bandwidth
(Mb) | Minimum
Bandwidth
(朏) | |------------------------|---------------------|---------|-----------------------------|------------------------|-----------------------------| | | | Low | 2 412 | 10.11 | 500 | | DSSS
(802.11b) | 1 | Middle | 2 437 | 10.15 | 500 | | (00=1110) | | High | 2 462 | 10.11 | 500 | | | 6 | Low | 2 412 | 16.58 | 500 | | OFDM
(802.11g) | | Middle | 2 437 | 16.62 | 500 | | (332.119) | | High | 2 462 | 16.62 | 500 | | OFDM
(802.11n_HT20) | | Low | 2 412 | 17.86 | 500 | | | MCS8 | Middle | 2 437 | 17.86 | 500 | | | | High | 2 462 | 17.86 | 500 | Page: 71 Report Number: F690501/RF-RTL009701-1 of 95 #### DSSS: 802.11b #### Low Channel # Middle Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr Report Number: F690501/RF-RTL009701-1 Page: 72 of 95 ### High Channel ## OFDM: 802.11g # Low Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr Report Number: F690501/RF-RTL009701-1 Page: 73 of 95 #### Middle Channel #### High Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 74 of 95 ## OFDM: 802.11n_HT20 #### Low Channel ## Middle Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr Report Number: F690501/RF-RTL009701-1 Page: 95 75 of #### High Channel Report Number: F690501/RF-RTL009701-1 Page: 76 of 95 # 4. Maximum Peak Conducted Output Power ## 4.1. Test Setup #### 4.2. Limit According to \$15.247(b)(3), for systems using digital modulation in the $902 \sim 928$ MHz, $2400 \sim 2483.5$ MHz, and $5725 \sim 5850$ MHz band: 1 Watt. As an alternative to a peak power measurement, compliance with the one watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antenna elements. The average must not include any intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. According to §15.247(b)(4), the conducted output power limit specified in paragraph(b) of this section is based on the use of antenna with directional gains that do not exceed 6 dBi. Except as shown in paragraph(c) of this section, if transmitting antenna of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### 4.3. Test Procedure The test follows section 9.1.2 of FCC KDB 558074 D01_v03r05. ### - Peak power meter method -The maximum peak conducted output power can be measured
using a broad band peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector. Test program: (S/W name: R&S Power Viewer, Version: 3.2.0) - 1. Initially overall offset for attenuator and cable loss is measured per frequency. - 2. Measured offset is inserted in test program in advance of measurement for output power. - 3. Power for each frequency (channel) and data rate of device is investigated as final result. - 4. Final result reported on this section from R&S power viewer program includes with several factors and test program shows only final result. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 77 of 95 ## 4.4. Test Results Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H. ## Ant1 | Mode | Channel | Channel
Frequency
(쌘) | Data Rate
(Mbps) | Attenuator +
Cable offset (dB) | Peak Power
Result (dB m) | Peak Power
Limit (dB m) | | |-----------|--------------------------|-----------------------------|---------------------|-----------------------------------|-----------------------------|----------------------------|--| | | | | 1 | | 17.61 | | | | | | 0.410 | 2 | 10.93 | 17.54 | 30 | | | | Low | 2 412 | 5.5 | 10.93 | 17.60 | 30 | | | | | | 11 | | <u>18.05</u> | | | | | DSSS
(802.11b) Middle | 2 437 | 1 | 10.94 | 17.83 | | | | DSSS | | | 2 | | 17.66 | 20 | | | (802.11b) | | | 5.5 | | 17.74 | 30 | | | | | | 11 | | <u>18.30</u> | | | | | | | 1 | 10.05 | 17.64 | | | | Hig | Lliab | 0.460 | 2 | | 17.56 | 20 | | | | nigii | 2 462 | 5.5 | 10.95 | 17.63 | 30 | | | | | | 11 | | <u>18.36</u> | | | Report Number: F690501/RF-RTL009701-1 Page: 78 of 95 Ant1 + Ant2 | AIII + AIII2 | | Channel | Data | Attenuator | Ant1 | Ant2 | Ant1+2 | Peak | |--------------|---------|----------------|------------------------|---------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------| | Mode | Channel | Frequency (Mb) | Data
rate
(Mbps) | + Cable offset (dB) | Peak
Power
Result
(dB m) | Peak
Power
Result
(dB m) | Peak
Power
Result
(dB m) | Power
Limit
(dB m) | | | | | 6 | | 23.55 | 23.23 | 26.40 | | | | | | 9 | | 23.16 | 22.88 | 26.03 | | | | | | 12 | | 23.88 | 23.51 | 26.71 | | | | Low | 2 412 | 18 | 10.93 | 22.58 | 22.34 | 25.47 | 30 | | | LOW | 2412 | 24 | 10.93 | 23.69 | 23.64 | 26.68 | 30 | | | | | 36 | | 24.15 | 23.72 | <u> 26.95</u> | | | | | | 48 | | 22.70 | 22.08 | 25.41 | | | | | | 54 | | 23.10 | 22.62 | 25.88 | | | | | 2 437 | 6 | 10.94 | 25.00 | 25.20 | 28.11 | 30 | | | | | 9 | | 24.95 | 24.94 | 27.96 | | | | Middle | | 12 | | 25.23 | 25.29 | <u>28.27</u> | | | OFDM | | | 18 | | 24.20 | 24.40 | 27.31 | | | (802.11g) | | | 24 | | 25.14 | 25.30 | 28.23 | | | | | | 36 | | 24.55 | 24.80 | 27.69 | | | | | | 48 | | 22.19 | 22.52 | 25.37 | | | | | | 54 | | 22.71 | 23.07 | 25.90 | | | | | | 6 | | 23.16 | 24.23 | 26.74 | | | | | | 9 | | 22.80 | 24.09 | 26.50 | | | | | | 12 | | 23.41 | 24.50 | 27.00 | | | | High | 2 462 | 18 | 10.05 | 22.09 | 23.35 | 25.78 | 30 | | | nign | 2 402 | 24 | 10.95 | 23.24 | 24.62 | 26.99 | 30 | | | | | 36 | | 23.40 | 24.68 | <u>27.10</u> | | | | | | 48 | | 21.97 | 23.01 | 25.53 | | | | | | 54 | 54 | 22.42 | 23.54 | 26.03 | | Report Number: F690501/RF-RTL009701-1 Page: 79 of 95 #### Ant1 + Ant2 | AIII TAIIL | | Channel | | Attenuator + | Ant1 | Ant2 | Ant1+2 | Peak | |----------------|---------|----------------|---------------------|-------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------| | Mode | Channel | Frequency (Mb) | Data rate
(Mbps) | Cable offset (dB) | Peak
Power
Result
(dB m) | Peak
Power
Result
(dB m) | Peak
Power
Result
(dB m) | Power
Limit
(dB m) | | | | | MCS8 | 21.69 | 20.97 | 24.36 | | | | | | | MCS9 | | 21.06 | 21.41 | 24.25 | | | | | | MCS10 | | 20.72 | 21.11 | 23.93 | | | | Low | 2 412 | MCS11 | 10.93 | 21.22 | 21.34 | 24.29 | 30 | | | LOW | 2412 | MCS12 | 10.93 | 21.28 | 21.74 | <u>24.53</u> | 30 | | | | | MCS13 | | 21.37 | 21.06 | 24.23 | | | | | | MCS14 | | 21.12 | 20.37 | 23.77 | | | | | | MCS15 | | 19.48 | 19.01 | 22.26 | | | | Middle | 2 437 | MCS8 | 10.94 | 23.75 | 24.57 | <u>27.19</u> | 30 | | | | | MCS9 | | 23.29 | 24.17 | 26.76 | | | | | | MCS10 | | 23.01 | 23.84 | 26.46 | | | OFDM | | | MCS11 | | 23.23 | 24.00 | 26.64 | | | (802.11n_HT20) | | | MCS12 | | 22.75 | 23.58 | 26.20 | | | | | | MCS13 | | 20.42 | 21.38 | 23.94 | | | | | | MCS14 | | 20.68 | 20.74 | 23.72 | | | | | | MCS15 | | 19.91 | 19.39 | 22.67 | | | | | | MCS8 | | 20.12 | 20.70 | 23.43 | 30 | | | | | MCS9 | | 19.72 | 21.14 | 23.50 | | | | | | MCS10 | | 19.61 | 21.00 | 23.37 | | | | High | 2 462 | MCS11 | 10.95 | 20.38 | 21.41 | 23.94 | | | | riigii | 2 402 | MCS12 | 10.33 | 20.22 | 21.71 | <u>24.04</u> | 30 | | | | | MCS13 | | 20.11 | 21.21 | 23.71 | | | | | | MCS14 | | 20.38 | 21.55 | 24.01 | | | | | | MCS15 | | 19.84 | 19.84 | 22.85 | | #### Remark: Attenuator and cable offset were compensated in test program (R&S Power Viewer) before measuring. According to KDB 662911 D01 v02r01, peak power of each port (Ant1 + Ant2) was combined by using below calculation. Power: 10log{10^(Ant1 power/10)+10^(Ant2 power/10)} Report Number: F690501/RF-RTL009701-1 Page: 80 95 # 5. Power Spectral Density ## 5.1. Test Setup #### 5.2. Limit §15.247(e) For digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dB m in any 3 kHz band any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. #### 5.3. Test Procedure All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The measurements are recorded using the PKPSD measurement procedure in section 10.2 of KDB 558074 D01 v03r05. - This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance. - 1. Set analyzer center frequency to DTS channel center frequency. - 2. Set the span to at least 1.5 times the DTS channel bandwidth. - 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz. - 4. Set the VBW \geq 3 x RBW. - 5. Detector = Peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the maximum amplitude level within the RBW. - 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. Report Number: F690501/RF-RTL009701-1 Page: 81 of 95 ## 5.4. Test Results Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H. | Operation Mode | Data Rate
(Mbps) | Channel | Frequency
(Mb) | Measured PSD
(dB m) | Maximum Limit
(dB m) | |--------------------------|---------------------|---------|-------------------|------------------------|-------------------------| | | | Low | 2 412 | -14.07 | 8 | | DSSS
(802.11b) - Ant1 | 1 | Middle | 2 437 | -14.01 | 8 | | | | High | 2 462 | -14.29 | 8 | | Operation Mode | Data
Rate
(Mbps) | Channel | Frequency
(Mb) | Ant1 Measured PSD (dB m) | Ant2 Measured PSD (dB m) | Ant1+2 PSD Result (dB m) | Maximum
Limit
(dB m) | |-------------------|------------------------|---------|-------------------|---------------------------|---------------------------|--------------------------|----------------------------| | | 6 | Low | 2 412 | -15.78 | -16.17 | -12.96 | 8 | | OFDM
(802.11g) | | Middle | 2 437 | -15.41 | -15.70 | -12.54 | 8 | | , , | | High | 2 462 | -16.21 | -15.19 | -12.66 | 8 | | Operation Mode | Data
Rate
(Mbps) | Channel | Frequency
(Mb) | Ant1 Measured PSD (dB m) | Ant2 Measured PSD (dB m) | Ant1+2 PSD Result (dB m) | Maximum Limit (dB m) | |------------------------|------------------------|---------|-------------------|--------------------------|--------------------------|--------------------------|----------------------| | OFDM
(802.11n HT20) | MCS8 | Low | 2 412 | -17.78 | -18.18 | -14.97 | 8 | | | | Middle | 2 437 | -17.83 | -17.75 | -14.78 | 8 | | / | | High | 2 462 | -18.25 | -17.56 | -14.88 | 8 | #### Note; According to KDB 662911 v02r01, power spectral density of each port (Ant1 + Ant2) was combined by using below calculation. PSD: 10log{10^(Ant1 psd/10)+10^(Ant2 psd/10)} Report Number: F690501/RF-RTL009701-1 Page: 82 of 95 #### DSSS: 802.11b - ANT1 #### Low Channel ## Middle Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 83 of 95 #### High Channel ## OFDM: 802.11g - ANT1 ## Low Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 84 of 95 #### Middle Channel ## High Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 85 of 95 ## OFDM:
802.11g - ANT2 #### Low Channel ## Middle Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 86 95 of ## High Channel Report Number: F690501/RF-RTL009701-1 Page: 87 of 95 ## OFDM: 802.11n_HT20 - Ant1 #### Low Channel ## Middle Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 88 of 95 #### High Channel ## OFDM: 802.11n_HT20 - Ant2 ## Low Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 89 of 95 #### Middle Channel ## High Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL009701-1 Page: 90 of 95 ## 6. AC Power Line Conducted Emission ## 6.1. Test Setup #### 6.2. Limit According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H /50 ohm line impedance stabilization network(LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges. | Everyoney of Emission (IIII-) | Conducted limit (dBµV) | | | | | |-------------------------------|------------------------|----------|--|--|--| | Frequency of Emission (쌘) | Quasi-peak | Average | | | | | 0.15 - 0.50 | 66 - 56* | 56 - 46* | | | | | 0.50 - 5.00 | 56 | 46 | | | | | 5.00 – 30.0 | 60 | 50 | | | | ^{*} Decreases with the logarithm of the frequency. Report Number: F690501/RF-RTL009701-1 Page: 91 of 95 #### 6.3. Test Procedures All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. AC line conducted emissions from the EUT were measured according to the dictates of ANSI C63.10-2009 - 1. The test procedure is performed in a 6.5 m × 3.6 m × 3.6 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. - 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. - 3. The excess power cable between the EUT and the LISN was bundled. All connecting cables of EUT were moved to find the maximum emission. Report Number: F690501/RF-RTL009701-1 Page: 92 of 95 ## 6.4. Test Results The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H. Frequency range : 0.15 MHz - 30 MHz Measured Bandwidth : 9 kHz | FREQ. | LEVEL | .(dB #V) | LINE | LIMIT(| (dBμV) | MARG | i IN (dB) | |-------|--------|----------|------|--------|---------|--------|------------------| | (MHz) | Q-Peak | Average | LINE | Q-Peak | Average | Q-Peak | Average | | 0.50 | 28.40 | 21.60 | N | 56.00 | 46.00 | 27.60 | 24.40 | | 2.99 | 28.50 | 21.60 | N | 56.00 | 46.00 | 27.50 | 24.40 | | 3.48 | 25.70 | 21.00 | N | 56.00 | 46.00 | 30.30 | 25.00 | | 3.99 | 26.70 | 21.00 | N | 56.00 | 46.00 | 29.30 | 25.00 | | 9.03 | 23.00 | 14.70 | N | 60.00 | 50.00 | 37.00 | 35.30 | | 21.67 | 23.10 | 14.80 | N | 60.00 | 50.00 | 36.90 | 35.20 | | 0.51 | 33.60 | 27.90 | Н | 56.00 | 46.00 | 22.40 | 18.10 | | 3.48 | 33.50 | 28.10 | Н | 56.00 | 46.00 | 22.50 | 17.90 | | 3.91 | 33.30 | 27.00 | Н | 56.00 | 46.00 | 22.70 | 19.00 | | 4.45 | 30.60 | 23.00 | Н | 56.00 | 46.00 | 25.40 | 23.00 | | 8.91 | 29.10 | 18.80 | Н | 60.00 | 50.00 | 30.90 | 31.20 | | 13.56 | 29.00 | 18.40 | Н | 60.00 | 50.00 | 31.00 | 31.60 | ## Remark; - 1. Line (H): Hot, Line (N): Neutral - 2. All modes of operation were investigated and the worst-case emissions were reported using 11b Mode, 1Mbps, high channel. - 3. Traces shown in plot mad using a peak detector and average detector - 4. The limit for Class B device(s) from 150 km to 30 Mm are specified in Section of the Title 47 CFR. - 5. Deviations to the Specifications: None. Report Number: F690501/RF-RTL009701-1 Page: 93 95 of #### **Plots of Conducted Power line** Test mode: (Neutral) Tel. +82 31 428 5700 / Fax. +82 31 427 2370 A4(210mm × 297mm) Report Number: F690501/RF-RTL009701-1 Page: 94 95 of Test mode: (Hot) Report Number: F690501/RF-RTL009701-1 Page: 95 of 95 # 7. Antenna Requirement ## 7.1. Standard Applicable For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i. # 7.2. Antenna Connected Construction Antenna used in this product is PCB Antenna type and peak max gain of antenna as below. | Band | 2 412 № - 2 462 № | |-----------|-------------------| | Mode | 11b/g/n_HT20 | | Ant1 Gain | 1.81 dBi | | Ant2 Gain | 1.76 dBi | Unequal antenna gains, with equal transmit powers. For antenna gains given by $G_1,\,G_2,\,...,\,G_N\,\,\mathrm{d}\mathbb{B}\,i$ (i) If transmit signals are correlated, then Directional gain = $10 \log[(10^{G 1/20} + 10^{G 2/20} + ... + 10^{G N/20})^2/N_{ANT}]$ dB i [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.] Directional Gain = 4.80 dB i