DNETECH

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LOW-POWER, NON-LICENSED TRANSMITTER

Test Report No.	: W165R-D043
AGR No.	: A164A-242
Applicant	: LG Innotek Co., Ltd.
Address	: 26, Hanamsandan 5beon-ro Gwangsan-gu, 506-731, Gwangju, Korea
Manufacturer	: SUZHOU NIHONE Electronics Technology Co., LTD.
Address	: No.185 XiaoXiang Road Suzhou High tech Zone
Type of Equipment	: Electronic Shelf Label
FCC ID.	: YZP-REPETZ15A
Model Name	: REPE-TZ15A
Multiple Model Name	: REPE-TZ15B, REPE-MZ15A, REPE-MZ15B
Serial number	: N/A
Total page of Report	: 32 pages (including this page)
Date of Incoming	: May 03, 2016
Date of issue	: May 18, 2016

SUMMARY

The equipment complies with the regulation; *FCC PART 15 SUBPART C Section 15.247* This test report only contains the result of a single test of the sample supplied for the examination. It is not a generally valid assessment of the features of the respective products of the mass-production.

Reviewed by: Approved by: Ki-Hong, Nam / Asst, Chief Engineer ONETECH Corp.

Sung-Ik, Han/ Managing Director ONETECH Corp.

CONTENTS

PAGE

1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	6
2.1 TEST ITEMS AND RESULTS	6
2.2 Additions, deviations, exclusions from standards	6
2.3 RELATED SUBMITTAL(S) / GRANT(S)	6
2.4 PURPOSE OF THE TEST	6
2.5 Test Methodology	6
2.6 TEST FACILITY	6
3. GENERAL INFORMATION	7
3.1 PRODUCT DESCRIPTION	7
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	7
4. EUT MODIFICATIONS	7
5. SYSTEM TEST CONFIGURATION	8
5.1 JUSTIFICATION	8
5.2 Peripheral equipment	8
5.3 MODE OF OPERATION DURING THE TEST	8
5.4 CONFIGURATION OF TEST SYSTEM	9
5.5 ANTENNA REQUIREMENT	9
6. PRELIMINARY TEST	10
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	
6.2 GENERAL RADIATED EMISSIONS TESTS	
7. MIMIMUM 6 DB BANDWIDTH	
7.1 OPERATING ENVIRONMENT	
7.2 TEST SET-UP	11
7.3 TEST EQUIPMENT USED	11
7.4 TEST DATA	
8. MAXIMUM PEAK OUTPUT POWER	14
8.1 OPERATING ENVIRONMENT	14
8.2 TEST SET-UP	14
8.3 TEST EQUIPMENT USED	14
8.4 TEST DATA	15
9. 100 KHZ BANDWIDTH OUTSIDE THE FREQUENCY BAND	17
It should not be reproduced except in full, without the written approval of ONETECH Corp.	EMC-003 (Rev.2)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

ONETECH

9.1 OPERATING ENVIRONMENT	17
9.2 TEST SET-UP FOR CONDUCTED MEASUREMENT	17
9.3 TEST SET-UP FOR RADIATED MEASUREMENT	17
9.4 TEST EQUIPMENT USED	17
9.5 TEST DATA FOR CONDUCTED EMISSION	
9.6 Test data for radiated emission	
9.6.1 Radiated Emission which fall in the Restricted Band	
9.6.2 Spurious & Harmonic Radiated Emission	24
10. PEAK POWER SPECTRAL DENSITY	25
10.1 Operating environment	25
10.2 TEST SET-UP	
10.3 TEST EQUIPMENT USED	25
10.4 TEST DATA	
11. RADIATED EMISSION TEST	28
11.1 Operating environment	
11.2 TEST SET-UP	
11.3 TEST EQUIPMENT USED	
11.4 TEST DATA	
11.4.1 Test data for Below 30 MHz	
11.4.2 Test data for above 1 GHz	

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
W165R-D043	May 18, 2016	Initial Issue	All

1. VERIFICATION OF COMPLIANCE

Applicant	: LG Innotek Co., Ltd.
Address	: 26, Hanamsandan 5beon-ro Gwangsan-gu, 506-731, Gwangju, Korea
Contact Person	: Jeong, Inchang / Director
Telephone No.	: +86-62-950-0332
FCC ID	: YZP-REPETZ15A
Model Name	: REPE-TZ15A
Serial Number	: N/A
Date	: May 18, 2016

EQUIPMENT CLASS	DTS – DIGITAL TRNSMISSION SYSTEM
E.U.T. DESCRIPTION	Electronic Shelf Label
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2013
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT	
AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED	ECC DADT 15 SUDDADT C Service 15 247
UNDER FCC RULES PART(S)	FCC PART 15 SUBPART C Section 15.247
Modifications on the Equipment to Achieve	None
Compliance	None
Final Test was Conducted On	3 m, Semi Anechoic Chamber

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.247 (a) (2)	Minimum 6 dB Bandwidth	Met the Limit / PASS
15.247 (b) (3)	Maximum Peak Conducted Output Power	Met the Limit / PASS
15.247 (d)	100 kHz Bandwidth Outside the Frequency Band	Met the Limit / PASS
15.247 (d)	Radiated Emission which fall in the Restricted Band	Met the Limit / PASS
15.247 (e)	Peak Power Spectral Density	Met the Limit / PASS
15.209	Radiated Emission Limits	Met the Limit / PASS
15.207	Conducted Limits	N/A (See Note)
15.203	Antenna Requirement	Met requirement / PASS

Note: This test is not performed because the EUT is operated by DC battery.

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.247.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si,

Gyeonggi-do, 12735, Korea

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-4112/ C-4617/ G-666/ T-1842

IC (Industry Canada) - Registration No. Site# 3736-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-003 (Rev.2)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

3. GENERAL INFORMATION

3.1 Product Description

The LG Innotek Co., Ltd., Model REPE-TZ15A (referred to as the EUT in this report) is a Electronic Shelf Label. The product specification described herein was obtained from product data sheet or user's manual.

Device Type	Electronic Shelf Label
Temperature Range	0 °C ~ +40 °C
Operating Frequency	2 405 MHz ~ 2 480 MHz
RF Output Power	5.44 dBm
Number of Channel	16 Channel
Modulation Type	O-QPSK
Antenna Type	PCB Pattern Antenna
USED RF CHIP	Marker: TEXAS INSRUMENTS
USED KF CHIP	Model Name: CC2530
Antenna Gain	1.32 dBi
List of each Osc. or crystal	
Freq.(Freq. >= 1 MHz)	16 MHz
RATED SUPPLY VOLTAGE	3.0 V Battery

3.2 Alternative type(s)/model(s); also covered by this test report.

-. The following lists consist of the added model and their differences.

Model Name	Differences	
REPE-TZ15A	Basic Model. (DISPLAY: COLOR, CASE COLOR: WHITE)	Ŋ
REPE-TZ15B	These models are identical to basic model except for the case color. (DISPLAY: COLOR, CASE COLOR: BLACK)	
REPE-MZ15A	These models are identical to basic model except for the DISPLAY and case color. (DISPLAY: MONO, CASE COLOR: WHITE)	
REPE-MZ15B	These models are identical to basic model except for the DISPLAY and case color. (DISPLAY: MONO, CASE COLOR: BLACK)	

Note: 1. Applicant consigns only basic model to test. Therefore this test report just guarantees the units, which have been tested.

2. The Applicant/manufacturer is responsible for the compliance of all variants.

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
MAIN BOARD	SUZHOU NIHONE Electronics	PI TAG 1.54" Rev0.2	N/A
MAIN BOARD	Technology Co., LTD.	111A01.54 Kev0.2	N/A
DISPLAY	WUXI VISION PEAK	N/A	N/A
DISPLAI	TECHNOLOGY	IN/A	IN/A

5.2 Peripheral equipment

Model	Manufacturer	Description	Connected to
REPE-TZ15A	SUZHOU NIHONE Electronics Technology Co., LTD.	Electronic Shelf Label (EUT)	PSU
PSU	LG Innotek Co., Ltd.	PSU	EUT
N/A	N/A	Alkaline Battery(LR14)	PSU

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting is programmed.

For final testing, the EUT was set at 2 405 MHz, 2 440 MHz, and 2 480 MHz to get a maximum emission levels from the EUT. The EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XZ" axis, but the worst data was recorded in this report.

5.4 Configuration of Test System

Line Conducted Test: It is not need to test this requirement, because the EUT shall be operated by DC battery.

Radiated Emission Test:Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:
2013 to determine the worse operating conditions. Final radiated emission tests were
conducted at 3 meter Semi Anechoic Chamber.
The turntable was rotated through 360 degrees and the EUT was tested by positioned
three orthogonal planes to obtain the highest reading on the field strength meter. Once
maximum reading was determined, the search antenna was raised and lowered in both
vertical and horizontal polarization.

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is a PCB pattern antenna on the main board in the EUT, so no consideration of replacement by the user.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

During Preliminary Tests, the following operating mode was investigated

Operation Mode	The Worse operating condition (Please check one only)
It is not need to test this requirement, because the power of the EUT is supplied by battery.	

6.2 General Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
TX mode	Х

7. MIMIMUM 6 dB BANDWIDTH

7.1 Operating environment

Temperature	:	23.2 °C
Relative humidity	:	42.5 % R.H.

7.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, and peak detection was used. The 6 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 6 dB.

7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)

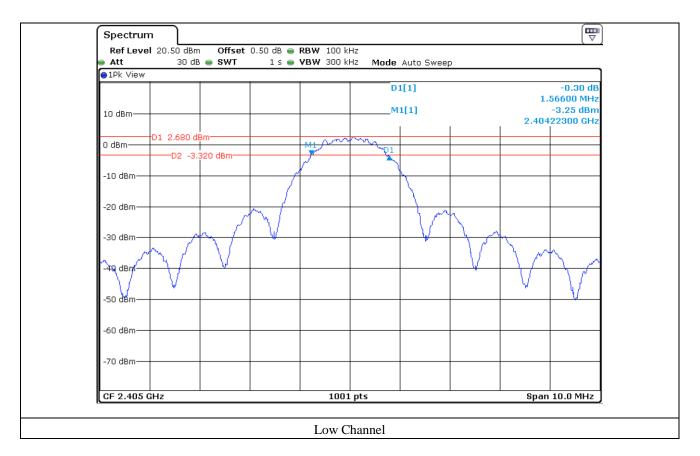
All test equipment used is calibrated on a regular basis.

Page 12 of 32

Report No.: W165R-D043

7.4 Test data

-. Test Date : May 13, 2016


: Pass

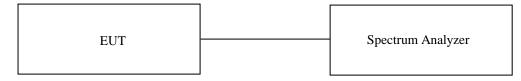
-. Test Result

CHANNEL FREQUENCY(MHz) MEASURED VALUE (MHz) LIMIT (MHz) MARGIN (MHz) Low 2 4 0 5 1.57 0.5 1.07 1.01 Middle 2 4 4 0 1.51 0.5 2 4 8 0 1.64 0.5 1.14 High

Remark. Margin = Measured Value - Limit

Tested by: Tae-Ho, Kim / Senior Engineer

8. MAXIMUM PEAK OUTPUT POWER


8.1 Operating environment

Temperature	:	23.2 °C
Relative humidity	:	42.5 % R.H.

8.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to \geq DTS Bandwidth, the video bandwidth is set to 3 times the resolution bandwidth.

8.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
-	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)

All test equipment used is calibrated on a regular basis.

Page 15 of 32

8.4 Test data

-. Test Date : May 13, 2016

-. Test Result

: Pass

CHANNEL	FREQUENCY (MHz)	DTS (MHz)	MEASURED VALUE (dBm)	LIMIT (dBm)	MARGIN (dB)
LOW	2405	1.57	5.44	30	24.56
MIDDLE	2440	1.51	4.87	30	25.13
HIGH	2480	1.64	4.74	30	25.26

Remark. Margin = Limit – Measured Value (=Receiver Reading + Cable Loss)

1

Tested by: Tae-Ho, Kim / Senior Engineer

) dB 😑 SWT	1 S 👄 VB	W 10 MHz	Mode Auto	Sweep		
●1Pk View				M1[1]			5.44 dBn
10 dBm						2.404	149550 GH:
10 dBill		M1					
U dBm							
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.405 GHz			1001 pt	s		Spa	n 5.0 MHz

Spectrum								
Ref Level Att	20.50 dBm	Offset (SWT		BW 3 MHz	Mode Auto Si			
● 1Pk View	30 GD	- 3WI	15 🖉	10 W 10 W//2	HOUE AUTO ST	меер		
					M1[1]		2.439	4.87 dBm 947050 GHz
10 dBm			Mi					
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.44 GH				1001 p	ots		Spa	n 5.0 MHz
Spectrum				Middle C				
Spectrum Ref Level	20.50 dBm	Offset ∣ ● SWT	0.50 dB 🖷 F 1 s 🖷 V	RBW 3 MHz		weep		
Spectrum Ref Level	20.50 dBm		0.50 dB ● F 1 s ● Y	RBW 3 MHz	Mode Auto St	меер		
Spectrum Ref Level	20.50 dBm		0.50 dB 🖷 🖡 1 s 🖷 V	RBW 3 MHz		weep	2.480	4.74 dBm 52950 GHz
Spectrum Ref Level	20.50 dBm		0.50 dB 🖷 🖡 1 s 🖷 ۱	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm
Spectrum Ref Level Att 1Pk View	20.50 dBm		0.50 dB • F 1 s • V	RBW 3 MHz	Mode Auto St	weep	2.480	4.74 dBm
Spectrum Ref Level Att 1Pk View	20.50 dBm		0.50 dB 👄 F 1 s 👄 V	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm
Spectrum Ref Level • Att • 1Pk View 10 dBm • dBm -10 dBm	20.50 dBm		0.50 dB	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm
Spectrum Ref Level • Att • 1Pk View 10 dBm • dBm -10 dBm -20 dBm	20.50 dBm		0.50 dB	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm
Spectrum Ref Level Att 1Pk View 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm	20.50 dBm		0.50 dB	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm
Spectrum Ref Level Att 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.50 dBm		0.50 dB	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm
Spectrum Ref Level • Att • 1Pk View 10 dBm • dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.50 dBm		0.50 dB • F	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm
Spectrum Ref Level Att ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.50 dBm		0.50 dB • 1 1 s • 1	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm
Spectrum Ref Level • Att • 1Pk View 10 dBm • dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.50 dBm		0.50 dB • 1 1 s • 1	RBW 3 MHz	Mode Auto Sv	weep	2.480	4.74 dBm

9. 100 kHz BANDWIDTH OUTSIDE THE FREQUENCY BAND

9.1 Operating environment

Temperature	:	23.2 °C
Relative humidity	:	42.5 % R.H.

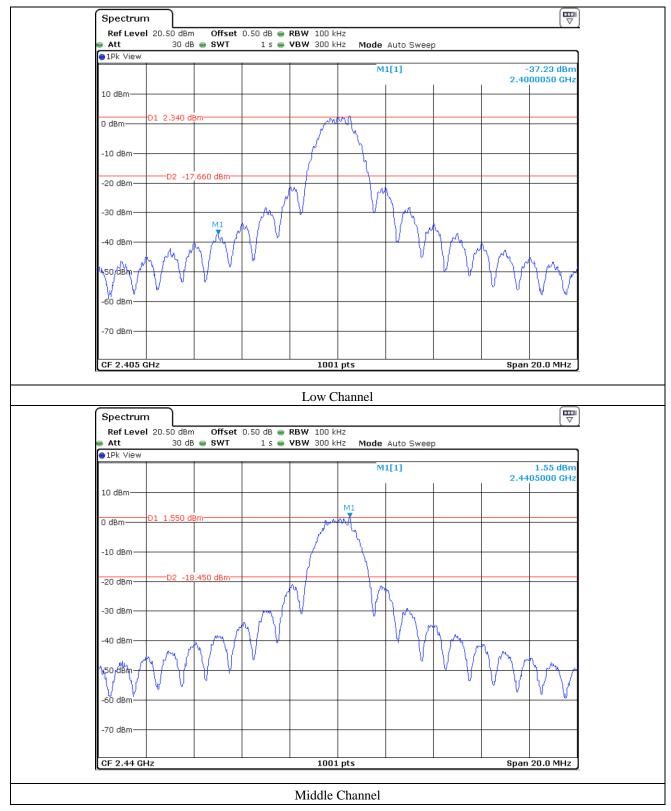
9.2 Test set-up for conducted measurement

The antenna output of the EUT was connected to the spectrum analyzer. The resolution and video bandwidth is set to 100 kHz, and peak detection was used.

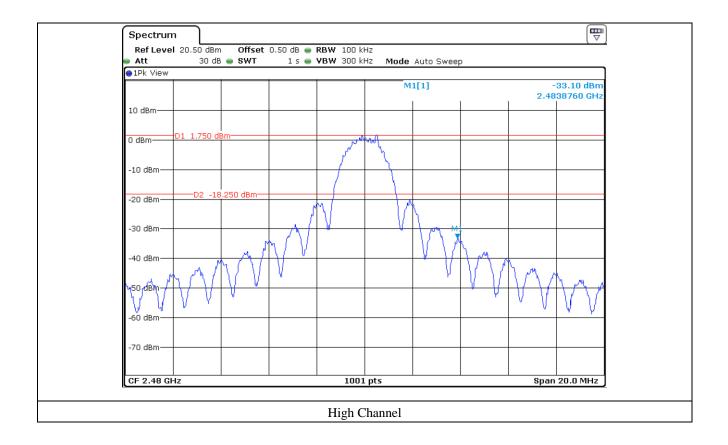
9.3 Test set-up for radiated measurement

The radiated emissions measurements were performed on the 3 m semi anechoic chamber. The EUT was placed on turntable approximately 1.5 m above the ground plane.

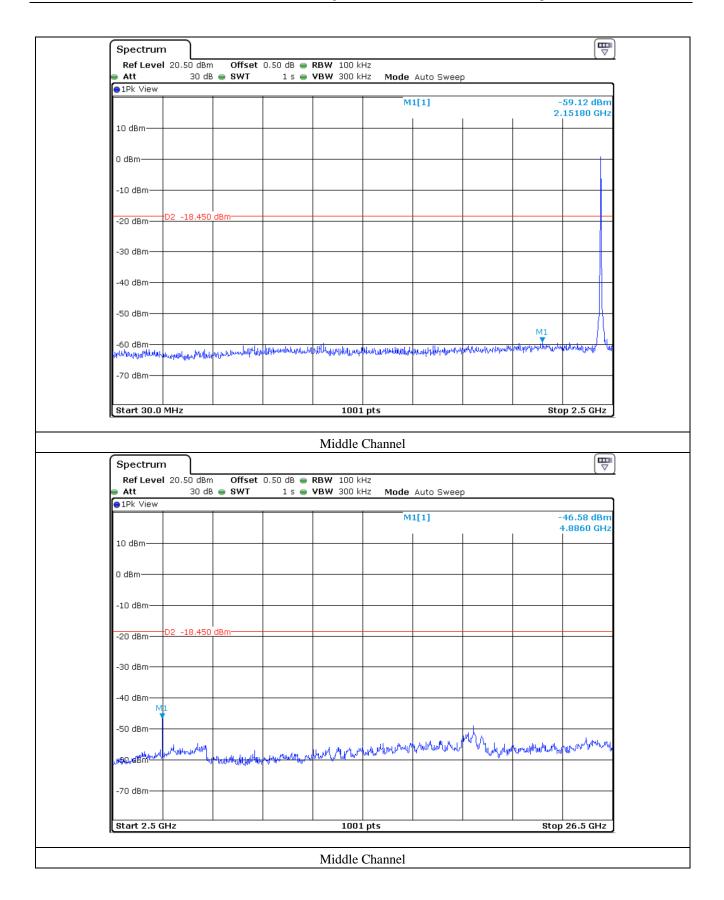
The frequency spectrum from 30 MHz to 26.5 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

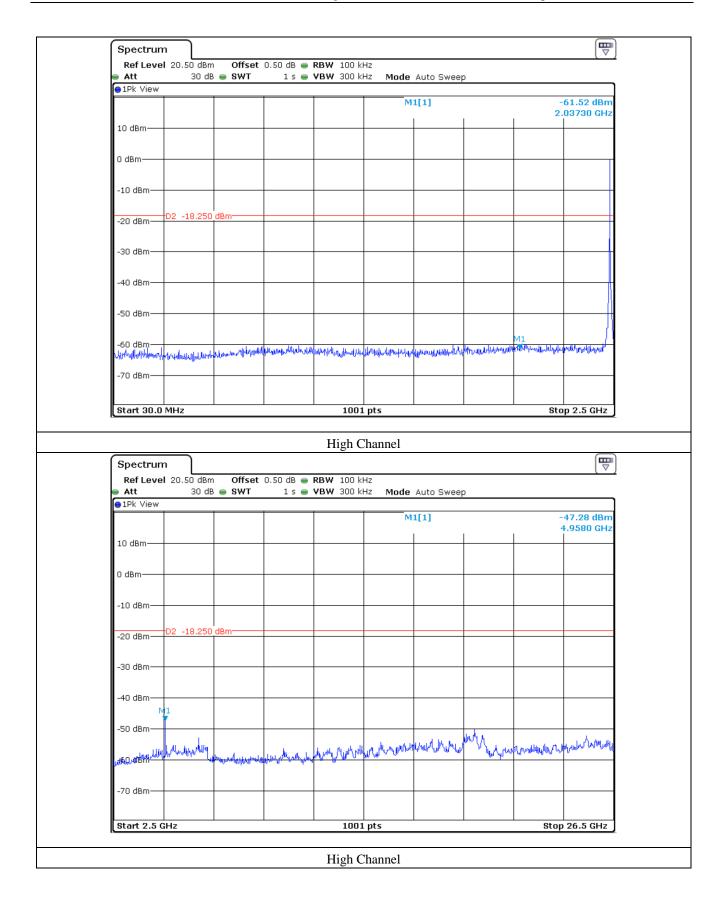

9.4 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)
■ -	ESU	Rohde & Schwarz	EMI Test Receiver	100261	Apr. 29, 2016 (1Y)
■ -	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 05, 2016 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	10041	Nov. 23, 2015 (1Y)
■ -	DT3000	Innco System	Turn Table	930611	N/A
■ -	MA4000-EP	Innco System	Antenna Master	3320611	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Jul. 10, 2014 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 31, 2015 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Apr. 31, 2015 (2Y)


All test equipment used is calibrated on a regular basis.

9.5 Test data for conducted emission





	1 20.50 dBm			RBW 100 ki					
Att	30 dB	e swt	1 s 👄	VBW 300 ki	Hz Mode	Auto Sweep)		
●1Pk Max					м	1[1]			57.22 dBn
						1[1]			14820 GH
10 dBm									
0 -10									
0 dBm									
-10 dBm—									
-20 dBm	D2 -17.660	dBm-							
-30 dBm									
00 000									
10 -10									
-40 dBm—									
-50 dBm—									\vdash
								M1	
-60 dBm		a hara sa ku	na Malankon da Jani vili Mala a In	day In declaration	a and a state of the	distance In webster.	and plant and the stand	with we have been	Hoperson Law
hor hore like holy	hollondon-aldorith	www.www.mwww	and and and an industry	an	Anthe - An	ala an an an an an an an	and the first of the		
-70 dBm									
-/o ubiii									
Start 30.0	MHz			1001	pts			Sto	p 2.5 GHz
Spectrur				Low C					
	20.50 dBm	Offset SWT		Low C RBW 100 ki VBW 300 ki	Hz	Auto Sweej)		⊞ ⊽
Ref Leve	20.50 dBm			RBW 100 ki	Hz	Auto Sweep	0		
Ref Leve Att	20.50 dBm			RBW 100 ki	Hz Hz Mode	Auto Swee)		58.44 dBn
Ref Leve Att 1Pk View	20.50 dBm			RBW 100 ki	Hz Hz Mode) 		
Ref Leve Att 1Pk View	20.50 dBm			RBW 100 ki	Hz Hz Mode) 		58.44 dBn
Ref Leve Att 1Pk View	20.50 dBm			RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Leve Att 1Pk View	20.50 dBm			RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Leve Att 1Pk View	20.50 dBm			RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Leve Att 1Pk View 10 dBm	20.50 dBm			RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Leve Att 1Pk View 10 dBm	20.50 dBm			RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	20.50 dBm	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	I 20.50 dBm 30 dB	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	I 20.50 dBm 30 dB	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	I 20.50 dBm 30 dB	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	I 20.50 dBm 30 dB	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	I 20.50 dBm 30 dB	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	I 20.50 dBm 30 dB	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	I 20.50 dBm 30 dB	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	I 20.50 dBm 30 dB	• SWT		RBW 100 ki	Hz Hz Mode				58.44 dBn
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.50 dBm 30 dB	e SWT	15	RBW 100 ki	Hz Mode	1[1]		2.56	58.44 dBn 45900 GH
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	I 20.50 dBm 30 dB	e SWT	15	RBW 100 ki	Hz Mode	1[1]		2.56	58.44 dBn 45900 GH
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.50 dBm 30 dB	e SWT	15	RBW 100 ki	Hz Mode	1[1]		2.56	58.44 dBn 45900 GH
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.50 dBm 30 dB	e SWT	15	RBW 100 ki	Hz Mode	1[1]		2.56	58.44 dBn 45900 GH
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.50 dBm 30 dB	e SWT	15	RBW 100 ki	Hz Mode	1[1]		2.56	58.44 dBn 45900 GH
Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 20.50 dBm 30 dB 30 dB	e SWT	15	RBW 100 ki	Hz Hz Mode M	1[1]		2.56	58.44 dBn 45900 GH

9.6 Test data for radiated emission

9.6.1 Radiated Emission which fall in the Restricted Band

- -. Test Date : May 09, 2016
- -. Resolution bandwidth : 1 MHz for Peak and Average Mode
- -. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode
- -. Measurement distance : 3 m
- -. Result : <u>PASSED</u>

Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	Amp	Total	Limits	Margin			
(GHz)	(dBµV)	Mode	(H/V)	Factor	Loss	Gain	$(dB\mu V/m)$	(dBµV/m)	(dB)			
Test Data for Low Channel												
	49.00	Peak	Н				40.20	74.00	33.80			
	38.86	Average	Н				30.06	54.00	23.94			
2.390 000	49.24	Peak	V	27.20	7.10	43.10	40.44	74.00	33.56			
	38.74	Average	V				29.94	54.00	24.06			
			Test l	Data for Lo	ow Channe	el						
	60.56	Peak	Н				51.76	74.00	22.24			
	54.21	Average	Н				45.41	54.00	8.59			
2.400 000	51.76	Peak	V	27.20	7.10	43.10	42.96	74.00	31.04			
	40.98	Average	V				32.18	54.00	21.82			
			Test I	Data for Hi	gh Channe	el						
	66.42	Peak	Н				57.82	74.00	16.18			
	58.02	Average	Н				49.42	54.00	4.58			
2.483 500	54.57	Peak	V	27.40	7.10	43.10	45.97	74.00	28.03			
	46.12	Average	V				37.52	54.00	16.48			

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Pre-Amplifier Gain

Tested by: Tae-Ho, Kim / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-003 (Rev.2)

9.6.2 Spurious & Harmonic Radiated Emission

Test Date	: May 09, 2016
Resolution bandwidth	: 1 MHz for Peak and Average Mode for the emissions fall in restricted band,
	100 kHz for Peak Mode for the emissions outside restricted band
Video bandwidth	: 1 MHz for Peak Mode, 10 Hz for Average Mode
Frequency range	: 1 GHz ~ 26.5 GHz

- -. Measurement distance : 3 m
- -. Result

: PASSED

Frequency (GHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
				Data for I					
	56.83	Peak	Н				55.13	73.98	18.85
	48.69	Average	Н			12 40	46.99	53.98	6.99
4 810.00	48.98	Peak	V	31.10	9.60	42.40	47.28	73.98	26.70
	39.12	Average	V				37.42	53.98	16.56
	Test Data for Middle Channel								
	56.77	Peak	Н				55.47	73.98	18.51
	48.76	Average	Н				47.46	53.98	6.52
4 880.00	49.51	Peak	V	31.30	9.80	42.40	48.21	73.98	25.77
	40.10	Average	V				38.80	53.98	15.18
		· · · · ·	Test	Data for H	ligh Chan	nel	•	·	
	56.51	Peak	Н				55.41	73.98	18.57
	48.37	Average	Н				47.27	53.98	6.71
4 960.00	48.74	Peak	v	31.30	9.90	42.30	47.64	73.98	26.34
	39.76	Average	v				38.66	53.98	15.32

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

 $Total \ Level = Reading + Antenna \ Factor + Cable \ Loss - Pre-Amplifier \ Gain$

Tested by: Tae-Ho, Kim / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH Corp.

EMC-003 (Rev.2)

10. PEAK POWER SPECTRAL DENSITY

10.1 Operating environment

Temperature	:	23.2 °C
Relative humidity	:	42.5 % R.H.

10.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to 3 kHz \leq RBW \leq 100 kHz, the video bandwidth is set to 3 times the resolution bandwidth.

10.3 Test equipment used

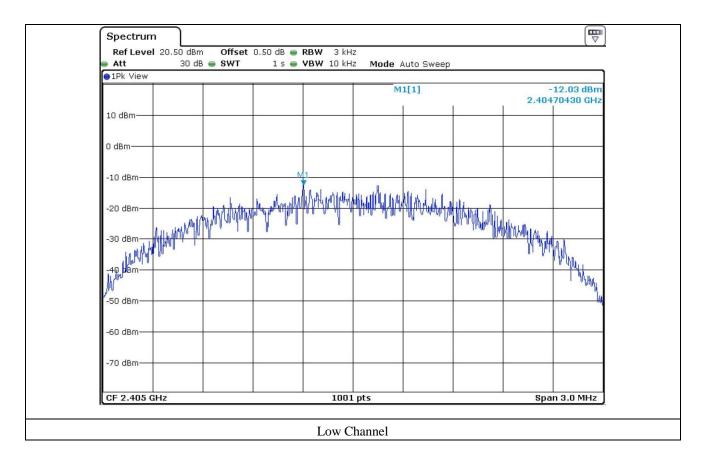
	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)

All test equipment used is calibrated on a regular basis.

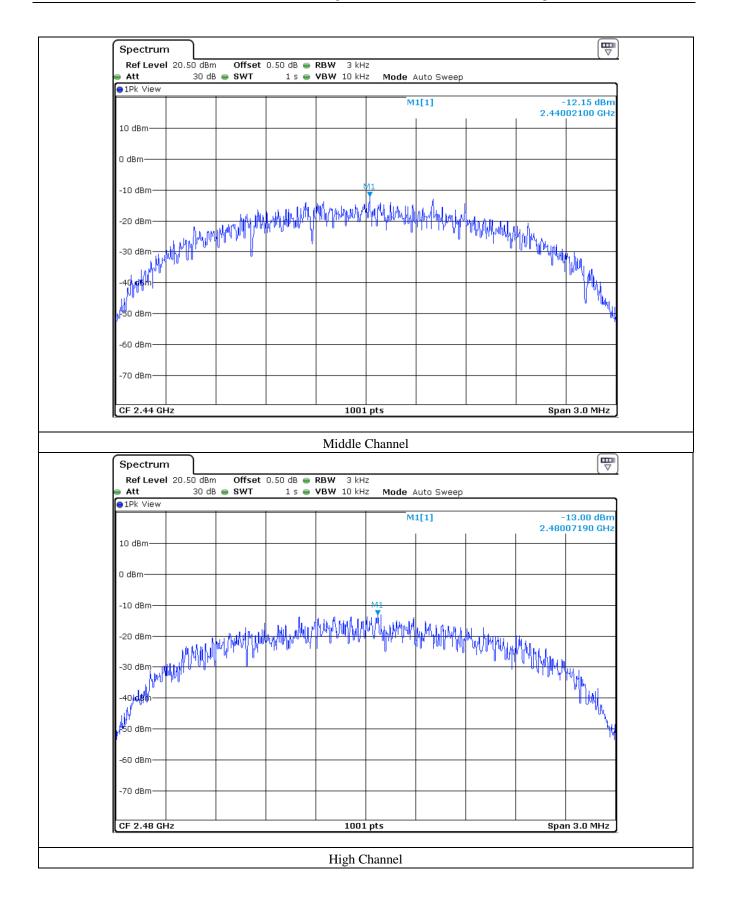
Page 26 of 32

10.4 Test data

-. Test Date : May 13, 2016


-. Test Result

: Pass -. Operating Condition : Continuous transmitting mode


CHANNEL	FREQUENCY(MHz)	MEASURED VALUE (dBm)	LIMIT (dBm)	MARGIN (dB)
Low	2 405	-12.03	8.00	20.03
Middle	2 440	-12.15	8.00	20.15
High	2 480	-13.00	8.00	21.00

Remark. Margin = Limit – Measured value

Tested by: Tae-Ho, Kim / Senior Engineer

11. RADIATED EMISSION TEST

11.1 Operating environment

Temperature	:	23.2 °C
Relative humidity	:	42.5 % R.H.

11.2 Test set-up

The radiated emissions measurements were on the 3 m semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

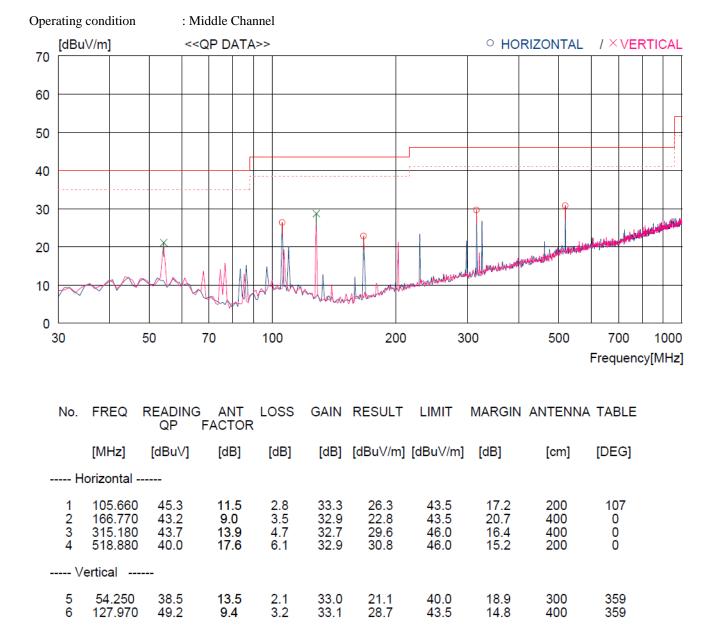
The frequency spectrum from 30 MHz to 26.5 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

11.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)
■ -	ESU	Rohde & Schwarz	EMI Test Receiver	100261	Apr. 29, 2016 (1Y)
-	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 05, 2016 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	10041	Nov. 23, 2015 (1Y)
■ -	DT3000	Innco System	Turn Table	930611	N/A
-	MA4000-EP	Innco System	Antenna Master	3320611	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Jul. 10, 2014 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 31, 2015 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Apr. 31, 2015 (2Y)

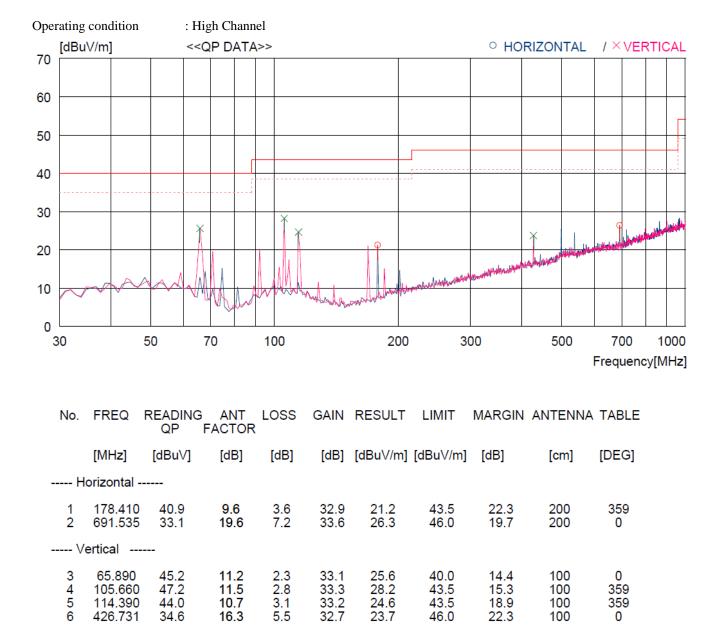
All test equipment used is calibrated on a regular basis.

Page 29 of 32


Report No.: W165R-D043

11.4 Test data

Humidity Level	: 42.5 % R.H.	Temperature: 23	.2 °C
Limits apply to	: FCC CFR 47, PART 15, SUBPART C, SECTION 1	5.247	
Result	: PASSED		
EUT	: Electronic Shelf Label	Date: May 09,	2016
Detector	: CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)		
Operating condition	: Low Channel		
[dBuV/m]	< <qp data="">></qp>	○ HORIZONTAL / × VERTICA	AL
60			_
50			
			_
40	· · · · · · · · · · · · · · · · · · ·	φ	
30		φ	
20			
20		al and the marked with a second and the second second	
10	Profile and marked with the and		_
0			
30 50	70 100 200 300		
		Frequency[MH	IZJ
No. FREQ READ		MARGIN ANTENNA TABLE	
QF			
[MHz] [dBu	V] [dB] [dB] [dB] [dBuV/m] [dBuV/m]	[dB] [cm] [DEG]	
Horizontal	7 44 9 9 7 99 9 99 9 49 5	20.0 400 0	
1 101.780 41. 2 330.700 47.	0 14.3 4.9 32.6 33.6 46.0	20.6 400 0 12.4 200 321	
3 446.131 39. 4 586.778 39.		17.4 100 87 14.6 100 70	
Vertical			
5 54.250 37. 6 154.160 39.	1 13.5 2.1 33.0 19.7 40.0 4 8.5 3.3 33.0 18.2 43.5	20.3 100 0 25.3 100 359	



Tested by: Tae-Ho, Kim / Senior Engineer

EMC-003 (Rev.2)

Page 32 of 32

11.4.1 Test data for Below 30 MHz

- -. Test Date : May 09, 2016
- -. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)
- -. Frequency range : 9 kHz ~ 30 MHz
- -. Measurement distance : 3 m
- -.Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	0	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)		(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
			It was not o	observed a	ny emissions	from the I	EUT.		

11.4.2 Test data for above 1 GHz

- -. Test Date : May 09, 2016
- -. Resolution bandwidth 21 MHz for Peak and Average Mode
- -. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode
- -. Frequency range : 1 GHz ~ 26.5 GHz
- -. Measurement distance : 3 m
- -.Operating mode : Transmitting mode

Frequency Reading (MHz) (dBµV)	Ant. Pol. (H/V)	Ant. Height (m)	0	Ant. Factor (dB/m)	Cable Loss	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)
It was not observed any emissions from the EUT.								

Tested by: Tae-Ho, Kim / Senior Engineer