

Page: 1 56 of

TEST REPORT

of

FCC Part 22 Subpart H and Part 24 Subpart E FCC ID: YZP-D660V

Equipment Under Test	:	Telematics Module
Model Name	:	LTD-VH1000
Serial No.	:	N/A
Applicant	:	LG Innotek
Manufacturer	:	LG Innotek
Date of Test(s)	:	2012. 04. 17 ~ 2012. 04. 25
Date of Issue	:	2012.06.04

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	An.	Date	2012. 06. 04
Approved By	Alvin Kim	Date	2012. 06. 04
	Feel Jeong		x

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

INDEX

TABLE OF CONTENTS

Page

1. General Information	3
2. RF radiated output power & spurious radiated emission	8
3. Conducted Output Power	17
4. Occupied Bandwidth 99 %	25
5. Spurious Emissions At Antenna Terminal	35
6. Band Edge	44
7. Frequency Stability	49
8. RF Exposure Evaluation	54

1. General information

1.1. Testing laboratory

SGS Korea Co., Ltd. (Gunpo laboratory) -705, Dongchun-Dong Sooji-Gu, Yongin-Si, Kyungki-Do, South Korea. -Wireless Div. 3FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040 www.ee.sgs.com/korea Telephone : +82 31 428 5700 FAX : +82 31 427 2371

1.2. Details of applicant

Applicant	:	LG Innotek
Address	:	Square 19, 20F, Hangang-daero, Jung-Gu, Seoul, 100-714, Korea
Contact Person	:	Lee, Duk-Gi
Phone No.	:	+82 2 3777 0322

1.3. Description of EUT

Kind of Product	Telematics Module
Model Name	LTD-VH1000
Serial Number	N/A
Power Supply	DC 12 V * power source used on vehicle (module voltage: DC 3.8 V)
Rated Power	CDMA800: 24 dB m CDMA1900: 24 dB m
Frequency Range	CDMA800: 824.70 M拉 ~ 848.31 M拉 CDMA1900: 1 851.25 M拉 ~ 1 908.75 M拉
Antenna Gain	CDMA800: 3.204 dB i CDMA1900: 1.399 dB i
Support Mode	CDMA1900 1xRTT, EV DO Release 0, EV DO Revision A
Emission Designator	CDMA800 (1xRTT):1M27F9W CDMA800 (EV DO Revision A):1M28F9W CDMA1900(1xRTT): 1M27F9W CDMA1900 (EV DO Revision A):1M27F9W
H/W Version	EAGLE D660V-C10
S/W Version	LTD-VH1000_0.2.0

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

1.4. Maximum output power

The transmitter has a maximum ERP & EIRP and Average output power as follows:

-Cellular Band

Frequency Range	Modulation	Modulation Channel		Average Output Power		E.R.P.	
(MHz)	Modulation	Channel	dB m	mW	dB m	mW	
824.70	1xRTT RC1 55 (Loopback)	1013	24.42	276.69	27.99	629.51	
836.52		384	24.31	269.77	25.46	351.56	
848.31		777	24.18	261.82	27.89	615.18	
824.70	EV DO Revision A FETAP 307.2 k (2 slot)	1013	24.48	280.54	28.05	638.26	
836.52		384	24.25	266.07	26.22	418.79	
848.31		777	24.11	257.63	28.46	701.46	

-PCS Band

Frequency Range	Modulation Channel		Average Output Power		E.I.R.P.	
(MHz)	woodation	Channer	dB m	mW	dB m	mW
1 851.25	1xRTT RC1 2 (Loopback)	25	24.27	267.30	29.83	961.61
1 880.00		600	24.21	263.63	28.28	672.98
1 908.75		1175	24.04	253.51	28.52	711.21
1 851.25	EV DO Revision A RETAP 128 rate	25	24.12	258.23	30.61	1 150.80
1 880.00		600	24.08	255.86	28.88	772.68
1 908.75		1175	23.90	245.47	29.35	860.99

1.5. Worst case configuration

-Test mode

CDMA (800 / 1900)

We found out the test mode with the highest power level in the section of output power after we investigated average output power of all the modulations and (or) data rates for each mode. So we chose below test mode as a representative of worst case.

- CDMA 1xRTT

- CDMA EVDO Revision A (Rev A)

-EUT position during the radiation test.

The EUT was investigated for three types of positions "X, Y and Z" under the radiation test. In case of CDMA800, "Z" position of fundamental is bigger than other positions. So we confirm that worst position is "Z" position as a representative.

In case of CDMA1900, "Z" position of fundamental is bigger than other positions. So we confirm that worst position is "Z" position as a representative.

Page: 5 of 56

1.6. Test equipment list

Equipment	Manufacturer	Model	S/N	Cal Due.
Signal Generator	Agilent	E4440A	MY43362142	Mar. 29, 2013
Signal Generator	Agilent	8648D	3847M00534	Mar. 29, 2013
Signal Generator	R & S	SMR40	100272	Jul. 15, 2012
Mobile Test Unit	Agilent	E5515C	GB43345198	Mar. 29, 2013
Directional Coupler	KRYTAR	152613	122661	Apr. 04, 2013
Attenuator	AEROFLEX/INMET	26A-10dB	1	Jul. 02. 2013
High Pass Filter	Wainwright	WHK1.5/15G-6SS	4	Mar. 30, 2013
High Pass Filter	Wainwright	WHK3.0/18G-10SS	344	Jul. 07, 2012
DC power Supply	Agilent	U8002A	MY49030063	Jan. 03, 2013
Preamplifier	H.P.	8447F	2944A03909	Jul. 04, 2012
Preamplifier	R & S	SCU 18	10117	Jan. 02, 2013
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	Jul. 04, 2012
Test Receiver	R & S	ESU26	100109	Feb. 21, 2013
Bilog Antenna	SCHWARZBECK	VULB9163	396	Apr. 27, 2013
Horn Antenna	R & S	HF 906	100326	Nov. 23, 2013
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170223	Jun. 30, 2012
Dipole Antenna	SCHWARZBECK	VHA/UHA	9103/9105	May. 24, 2012
Antenna Master	INN-CO	MM4000	N.C.R.	N.C.R.
Turn Table	INN-CO	DS 1200 S	N.C.R.	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m×6.4 m×6.6 m)	N.C.R.	N.C.R.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

1.7. Summary of test results

The EUT has been tested according to the following specifications:

APPLIED STANDARD : FCC Part 22, 24					
Section in FCC part	Test Item	Result			
§2.1046 §22.913(a) §24.232(b)	RF Radiated Output Power	Complied			
§2.1053 §22.917(e) §24.238(a)	Spurious Radiated Emission	Complied			
§2.1046(a)	Conducted Output Power	Complied			
§2.1049(h) (i)	Occupied Bandwidth	Complied			
§2.1051 §22.917(e) §24.238(a)	Spurious Emission at Antenna Terminal	Complied			
§2.1055 §22.355 §24.235	Frequency Stability	Complied			
§22.917(e) §24.238(a)	Band Edge	Complied			
§1.1307 §2.1091	RF Exposure Evaluation	Complied			

1.8. Test report revision

Revision	Report number	Description
0	F690501/RF-RTL005496	Initial
1	F690501/RF-RTL005496-1	Modify RF exposure evaluation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

1.9. Sample calculation for offset

Where relevant, the following sample calculation is provided:

-CDMA800

Frequency (Mb)	Reference Cable (dB)	Directional Coupler (dB)	Attenuator (dB)	Cable Loss (dB)	Result (dB)
836.52	0.50	13.00	10.00	0.80	23.80
-CDMA1900					
Frequency (Mz)	Reference Cable (dB)	Directional Coupler (dB)	Attenuator (dB)	Cable Loss (dB)	Result (dB)
1 880.0	1.00	13.00	10.00	1.40	24.40

-Worst case is band edge of spurious emission and band edge for CDMA800 (1xRTT)

Frequency (Mb)	Reference	Directional	Attenuator	Cable Loss	Result
	Cable (dB)	Coupler (dB)	(dB)	(dB)	(dB)
849.00	0.50	13.00	10.00	1.12	24.12

Remark:

Spurious reading value at high channel: -16.85 dB m

24.12 dB - 23.80 dB = 0.32 dB, So final reading value = -16.85 + 0.32 = -16.53 dB m

-Worst case of band edge of spurious emission and band edge for CDMA1900 (1xRTT)

Frequency (Mz)	Reference	Directional	Attenuator	Cable Loss	Result
	Cable (dB)	Coupler (dB)	(dB)	(dB)	(dB)
1910.06	1.00	13.00	10.00	1.82	24.82

Remark:

Spurious reading value at high channel: -19.03 dB m

24.82 dB - 24.40 dB = 0.82 dB, So final reading value = -19.03 + 0.82 = -18.21 dB m

-Worst case is band edge of spurious emission and band edge for CDMA800 (EV DO Rev A)

Frequency (Mb)	Reference	Directional	Attenuator	Cable Loss	Result
	Cable (dB)	Coupler (dB)	(dB)	(dB)	(dB)
849.00	0.50	13.00	10.00	1.12	24.12

Remark:

Spurious reading value at high channel: -15.86 dB m

24.12 dB - 23.80 dB = 0.32 dB, So final reading value = -15.86 + 0.32 = -15.54 dB m

-Worst case of band edge of spurious emission and band edge for CDMA1900 (EV DO Rev A)

Frequency (Mb)	Reference	Directional	Attenuator	Cable Loss	Result
	Cable (dB)	Coupler (dB)	(dB)	(dB)	(dB)
1910.15	1.00	13.00	10.00	1.82	24.82

Remark:

Spurious reading value at high channel: -19.36 dB m

24.82 dB - 24.40 dB = 0.82 dB, So final reading value = -19.36 + 0.82 = -18.54 dB m

Calculation of offset value:

Result = Directional Coupler + Attenuator + Cable loss

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co, Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

2. RF radiated output power & spurious radiated emission

2.1. Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\rm Mz$ to 1 G $\rm Hz\,$ Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 G $\rm Hz$ to 20 $\rm Ghz$ Emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

The diagram below shows the test setup for substituted method

2.2. Limit

FCC §22.913(a), the ERP of mobile transmitters must not exceed 7 watts. FCC §24.232(b) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

2.3. Test procedure : Based on ANSI/TIA 603C: 2004

- 1. On a test site, the EUT shall be placed at 80cm height on a turn table, and in the position close to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to the fundamental frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. During the measurement of the EUT, the resolution bandwidth was to 1 Mb and the average bandwidth was set to 1 Mb.
- 5. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 6. The test antenna shall be raised and lowered through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 7. The transmitter shall be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 8. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 9. The maximum signal level detected by the measuring receiver shall be noted.
- 10. The EUT was replaced by half-wave dipole (824 ~ 849 №) or horn antenna (1 850 ~ 1 910 №) connected to a signal generator.
- 11. In necessary, the input attenuator setting on the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 14. The input level to the substitution antenna shall be recorded as power level in dB m, corrected for any change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

2.4. Test result for RF radiated output power

Ambient temperature	:	(24	± 2) ℃
Relative humidity	:	47	% R.H.

CDMA800 1xRTT mode

Frequency	Ant. Pol.	S.G level + Amp	Cable loss	Ant. gain	E.R.P.		
(MHz)	(H/V)	(dB m) (dB)		(dB d)	(dB m)	(mW)	
824.70	V	29.37	3.42	-3.44	22.51	178.24	
824.70	Н	34.85	3.42	-3.44	27.99	629.51	
836.52	V	29.30	3.38	-3.45	22.47	176.60	
836.52	Н	32.29	3.38	-3.45	25.46	351.56	
848.31	V	31.00	3.34	-3.42	24.24	265.46	
848.31	Н	34.65	3.34	-3.42	27.89	615.18	

CDMA800 EV DO Revision A

Frequency	Ant. Pol.	S.G level Cable loss		Ant. gain	E.R.P.		
(MHz)	(H/V)	(dB m)	(dB)	(dB d)	(dB m)	(mW)	
824.70	V	29.18	3.42	-3.44	22.32	170.61	
824.70	Н	34.91	3.42	-3.44	28.05	638.26	
836.52	V	29.53	3.38	-3.45	22.70	186.21	
836.52	Н	33.05	3.38	-3.45	26.22	418.79	
848.31	V	31.87	3.34	-3.42	25.11	324.34	
848.31	Н	35.22	3.34	-3.42	28.46	701.46	

CDMA1900 1xRTT

Frequency	Ant. Pol.	S.G level	Cable loss	Ant. gain	E.I.R.P.		
(MHz)	(H/V)	(dB m)	(dB)	(dB i)	(dB m)	(mW)	
1 851.25	V	27.14	4.87	7.56	29.83	961.61	
1 851.25	Н	25.75	4.87	7.56	28.44	698.23	
1 880.00	V	23.82	4.91	7.63	26.54	450.82	
1 880.00	Н	25.56	4.91	7.63	28.28	672.98	
1 908.75	V	25.76	4.94	7.70	28.52	711.21	
1 908.75	Н	24.30	4.94	7.70	27.06	508.16	

CDMA1900 EV DO Revision A

Frequency	Ant. Pol.	S.G level + Amp	Cable loss	Ant. gain	E.I.R.P.		
(MHz)	(H/V)	(dB m)	(dB)	(dB i)	(dB m)	(mW)	
1 851.25	V	27.92	4.87	7.56	30.61	1 150.80	
1 851.25	Н	26.91	4.87	7.56	29.60	912.01	
1 880.00	V	24.78	4.91	7.63	27.50	562.34	
1 880.00	Н	26.16	4.91	7.63	28.88	772.68	
1 908.75	V	26.59	4.94	7.70	29.35	860.99	
1 908.75	Н	24.99	4.94	7.70	27.75	595.66	

Remark:

1. E.R.P. & E.I.R.P = [S.G level + Amp.](dBm) - Cable loss(dB) + Ant. gain (dBd/dBi)

2. The E.I.R.P was measured in three orthogonal EUT position (x-axis, y-axis and z-axis). Worst cases are *z*-axis.

2.5. Spurious radiated emission

- Measured output Power: 27.99 $\,\mathrm{dB}\,m$ = 0.630 W
- Modulation Signal: CDMA800 1xRTT
- Distance: 3 meters
- Limit: -(43 + 10log₁₀ (W)) = -40.99 dB c

Frequency (쌘)	Ant. Pol. (H/V)	S.G level + Amp. (dB m)	Cable loss (dB)	Ant. gain (dB d)	E.R.P. (dB m)	dB c	Margin (dB)		
Low Channe	Low Channel (824.70 Mb)								
1 649.45	V	-43.62	4.54	6.44	-41.72	-69.71	28.72		
1 649.45	н	-48.09	4.54	6.44	-46.19	-74.18	33.19		
2 474.79	V	-42.25	5.68	7.98	-39.95	-67.94	26.95		
2 474.79	Н	-38.48	5.68	7.98	-36.18	-64.17	23.18		
Middle Chan	Middle Channel (836.52 Mb)								
1 672.95	V	-39.07	4.58	6.50	-37.15	-65.14	24.15		
1 672.95	Н	-42.99	4.58	6.50	-41.07	-69.06	28.07		
2 508.93	V	-40.92	5.72	8.02	-38.62	-66.61	25.62		
2 508.93	Н	-40.79	5.72	8.02	-38.49	-66.48	25.49		
High Channe	el (848.31 M批)								
1 697.13	V	-32.49	4.62	6.57	-30.54	-58.53	17.54		
1 697.13	Н	-39.52	4.62	6.57	-37.57	-65.56	24.57		
2 544.02	V	-38.44	5.75	8.07	-36.12	-64.11	23.12		
2 544.02	Н	-37.44	5.75	8.07	-35.12	-63.11	22.12		

- Measured output Power: 28.46 dB m =0.701 W

- Modulation Signal: CDMA800 EV DO Revision A

- Distance: 3 meters

- Limit: -(43 + 10log₁₀ (W)) = -41.46 dB c

Frequency (쌘)	Ant. Pol. (H/V)	S.G level + Amp. (dB m)	Cable loss (dB)	Ant. gain (dB d)	E.R.P. (dB m)	dB c	Margin (dB)		
Low Channe	Low Channel (824.70 Mt)								
1 649.43	V	-39.56	4.54	6.44	-37.66	-66.12	24.66		
1 649.43	Н	-45.73	4.54	6.44	-43.83	-72.29	30.83		
2 473.93	V	-41.16	5.68	7.97	-38.87	-67.33	25.87		
2 473.93	Н	-41.06	5.68	7.97	-38.77	-67.23	25.77		
Middle Chan	nel (836.52 M	±)							
1 672.38	V	-39.59	4.58	6.50	-37.67	-66.13	24.67		
1 672.38	Н	-41.78	4.58	6.50	-39.86	-68.32	26.86		
2 508.93	V	-37.37	5.72	8.02	-35.07	-63.53	22.07		
2 508.93	Н	-40.37	5.72	8.02	-38.07	-66.53	25.07		
High Channe	el (848.31 Mb)								
1 697.12	V	-30.50	4.62	6.57	-28.55	-57.01	15.55		
1 697.12	Н	-39.22	4.62	6.57	-37.27	-65.73	24.27		
2 545.09	V	-36.87	5.75	8.07	-34.55	-63.01	21.55		
2 545.09	Н	-32.55	5.75	8.07	-30.23	-58.69	17.23		

- Measured output Power : 29.83 $\,\mathrm{dB}\,m$ = 0.962 W

- Modulation Signal : CDMA1900 1xRTT

- Distance : 3 meters

- Limit : -(43 + 10log₁₀ (W)) = -42.83 dB c

Frequency (쌘)	Ant. Pol. (H/V)	S.G level + Amp. (dB m)	Cable loss (dB)	Ant. gain (dB i)	E.I.R.P. (dB m)	dB c	Margin (dB)		
Low Channe	Low Channel(1 851.25 Mb)								
3 703.30	V	-43.36	7.14	11.85	-38.65	-68.48	25.65		
3 703.30	Н	-42.28	7.14	11.85	-37.57	-67.40	24.57		
5 553.49	V	-31.80	9.24	12.12	-28.92	-58.75	15.92		
5 553.49	Н	-25.77	9.24	12.12	-22.89	-52.72	9.89		
Middle Chan	nel(1 880.00	MHz)							
3 760.91	V	-34.10	7.23	11.85	-29.48	-59.31	16.48		
3 760.91	Н	-35.46	7.23	11.85	-30.84	-60.67	17.84		
5 640.72	V	-29.56	9.36	12.08	-26.84	-56.67	13.84		
5 640.72	Н	-24.72	9.36	12.08	-22.00	-51.83	9.00		
High Channe	el(1 908.75 Mt	z)							
3 817.22	V	-38.30	7.33	11.84	-33.79	-63.62	20.79		
3 817.22	Н	-35.37	7.33	11.84	-30.86	-60.69	17.86		
5 725.15	V	-26.01	9.46	12.04	-23.43	-53.26	10.43		
5 725.15	Н	-21.05	9.46	12.04	-18.47	-48.30	5.47		

- Measured output Power : 30.61 dB m = 1.151 W

- Modulation Signal : CDMA1900 EV DO Revision A

- Distance : 3 meters

- Limit : -(43 + 10log₁₀ (W)) = -43.61 dB c

Frequency (쌘)	Ant. Pol. (H/V)	S.G level + Amp. (dB m)	Cable loss (dB)	Ant. gain (dB i)	E.I.R.P. (dB m)	dB c	Margin (dB)		
Low Channe	Low Channel(1 851.25 Mz)								
3 702.88	V	-43.09	7.13	11.85	-38.37	-68.98	25.37		
3 702.88	Н	-41.63	7.13	11.85	-36.91	-67.52	23.91		
5 553.75	V	-31.39	9.24	12.12	-28.51	-59.12	15.51		
5 553.75	Н	-24.68	9.24	12.12	-21.80	-52.41	8.80		
Middle Chan	inel(1 880.00	MHz)							
3 760.67	V	-33.02	7.23	11.85	-28.40	-59.01	15.40		
3 760.67	Н	-34.64	7.23	11.85	-30.02	-60.63	17.02		
5 641.04	V	-29.28	9.36	12.08	-26.56	-57.17	13.56		
5 641.04	Н	-23.22	9.36	12.08	-20.50	-51.11	7.50		
High Channe	el(1 908.75 MHz	z)							
3 816.83	V	-37.90	7.33	11.84	-33.39	-64.00	20.39		
3 816.83	Н	-31.78	7.33	11.84	-27.27	-57.88	14.27		
5 726.66	V	-27.45	9.46	12.04	-24.87	-55.48	11.87		
5 726.66	Н	-19.38	9.46	12.04	-16.80	-47.41	3.80		

Remark:

1. E.R.P. & E.I.R.P = S.G level (dBm) - Cable loss (dB) + Ant. gain (dBd/dBi)

2. No more harmonic above 3rd harmonic for all channel.

3. Conducted Output Power

3.1. Limit

Requirements: CFR 47, Section §2.1046

3.2. Test Procedure

- 1. The RF output of the transmitter was connected to the input of the Mobile Communication Test Unit through sufficient attenuation.
- 2. The mobile was set up for the max. output power with pseudo random data modulation.
- 3. The power was measured with Mobile Communication Test unit.

3.3.Test Settings

3.3.1. CDMA2000 1xRTT

- Protocol Rev > 6 (IS-2000-0)
- System ID: 8; NID:65535; Reg. Ch. #. 384(Cell) & 600(PCS)
- Radio Config (RC) > Please see following table for details
- FCH Service Option (SO) Setup > Please see following table for details
- Traffic Data Rate > Full
- TDSO SCH info > F-SCH parameters > F-SCH Data Rate > 153.6kbps
 - >R-SCH Parameters > R-SCH Data Rate > 153.6kbps
- RVS Power Ctrl > All Up bits (Maximum TxPout)

3.3.2. CDMA2000 Ev-Do

EVDO Release 0 - RTAP

- Call Setup > Shift & Preset
- Call Control

Access Network Info > Cell Parameters > Sector ID > 00000000 : 00000000 : 000000000 > Subnet Mask > 0

- Generator Info > Termination Parameters > Max Forward Packet Duration > 16 Slots
- Call Parms:
- Cell Power > -105.5 dB m/1.23 Mz
- Cell Band > (Select US Cellular or US PCS)
- Channel > (Enter channel number)
- Application Config > Enhanced Test Application Protocol > RTAP

RTAP Rate > 153.6kbps

Rvs Power Ctrl > Active bits

Protocol Rel > 0 (1xEV-DO)

- Press "Start Data Connection" when "Session Open" appear in "Active Cell"
- Rvs Power Ctrl > All Up bits (Maximum TxPout)

EVDO Release 0 – FTAP

- Call Setup > Shift & Preset
- Call Control:

Access Network Info > Cell Parameters > Sector ID > 0000000 : 00000000 : 00000000 > Subnet Mask > 0

- Generator Info > Termination Parameters > Max Forward Packet Duration > 16 Slots
- Call Parms

Cell Power > -105.5 dB m/1.23 Mb Cell Band > (Select US Cellular or US PCS) Channel > (Enter channel number) Application Config > Enhanced Test Application Protocol > FTAP (default) FTAP Rate > 307.2kbps (2 Slot, QPSK) Rvs Power Ctrl > Active bits Protocol Rel > 0 (1xEV-DO)

- Press " Start Data Connection" when "Session Open" appear in "Active Cell"
- Rvs Power Ctrl > All Up bits (Maximum TxPout)

3.3.2. CDMA2000 Ev-Do Rev.A

EVDO Rev.A – RETAP

- Call Setup > Shift & Preset
- Cell Power > -60 dB m/1.23 Mz
- Protocol Rev > A (1xEV-DO-A)
- Application Config > Enhanced Test Application Protocol > RETAP
- R-Data Pkt Size > 4096
- Protocol Subtype Config > Release A Physical Layer Subtype > Subtype 2 > PL Subtype 2 Access Channel MAC Subtype > Default (Subtype 0)
- Generator > Termination Parameters > Max Forward Packet Duration > 16 Slots > ACK R-Data After > Subpacket 0 (All ACK)
- Rvs Power Ctrl > All Up bits (to get the maximum power)

EVDO Rev.A – FETAP

- Call Setup > Shift & Preset
- Cell Power > -60 dB m/1.23 $\ensuremath{\mathbb{M}}\xspace_2$
- Protocol Rev > A (1xEV-DO-A)
- Application Config > Enhanced Test Application Protocol > FETAP
- F-Traffic Format > 4 (1024,2,128) Canonical (307.2K, QPSK)
- Protocol Subtype Config > Release A Physical Layer Subtype > Subtype > PL Subtype 2 Access Channel MAC Subtype > Default (Subtype 0)
- Access Network Info > Termination Parameters > Max Forward Packet Duration > 16 Slots > ACK R-Data After > Subpacket0 (All ACK)
- Rvs Power Ctrl > All Up bits (to get the maximum power)

3.4. Test Result

Ambient temperature		(24	± 2) ℃
Relative humidity	:	47	% R.H.

3.4.1. CDMA2000 1xRTT

-Cellular Band

Radio	Sevice Option	Average Output Power (dB m)						
(RC)	(SO)	Ch. 1013 / 824.70 Mz	Ch. 384 / 836.52 Mb	Ch. 777 / 848.31 Mz				
504	2 (Loopback)	24.36	24.15	24.10				
RUI	55 (Loopback)	24.42	24.31	24.18				
DC2	9 (Loopback)	24.38	24.16	24.13				
RG2	55 (Loopback)	24.37	24.10	24.16				
	2 (Loopback)	24.28	24.06	24.03				
DC2	55 (Loopback)	24.31	24.07	24.05				
KC3	32 (+F-SCH)	24.26	24.08	24.01				
	32 (+SCH)	24.29	24.11	24.03				
	2 (Loopback)	24.28	24.05	24.03				
DC4	55 (Loopback)	24.27	24.07	24.01				
K04	32 (+F-SCH)	24.29	24.08	24.02				
	32 (+SCH)	24.27	24.05	24.03				
DC5	9 (Loopback)	24.31	24.09	24.04				
KC9	55 (Loopback)	24.34	24.07	24.06				

- The measurement is average output power for Low, Middle and High channel.

- The service option 55 of RC1 of worst case is bigger than other power compared with each service option.

-PCS Band								
Radio	Sevice Option	Average Output Power (dB m)						
(RC)	(SO)	Ch. 25 / 1 851.25 Mb Ch. 600 / 1 880.00 M		Ch. 1175 / 1 908.75 Mz				
DC1	2 (Loopback)	24.27	24.21	24.04				
RC1	55 (Loopback)	24.24	24.24	24.04				
DC2	9 (Loopback)	24.23	24.22	24.02				
RC2	55 (Loopback)	24.25	24.23	24.01				
	2 (Loopback)	24.17	24.14	23.98				
DC2	55 (Loopback)	24.20	24.17	23.98				
RUJ	32 (+F-SCH)	24.18	24.15	24.02				
	32 (+SCH)	24.20	24.18	24.02				
	2 (Loopback)	24.16	24.15	23.97				
DC4	55 (Loopback)	24.17	24.17	24.00				
KC4	32 (+F-SCH)	24.18	24.15	23.98				
	32 (+SCH)	24.18	24.15	24.00				
PC5	9 (Loopback)	24.16	24.19	24.02				
RC5	55 (Loopback)	24.15	24.16	24.00				

- The measurement is average output power for Low, Middle and High channel.

- The service option 2 of RC1 of worst case is bigger than other power compared with each service option.

3.4.2. CDMA2000 1xEV DO Release 0

-Cellular Band

Frequency		R	TAP	FTAP		
Channel	(MEz)	RTAP Rate	Average Output Power(dB m)	FTAP Rate	Average Output Power(dB m)	
		9.6	24.42			
		19.2	24.40	307.2		
1013	824.70	38.4	24.38	Kbps	24.47	
		76.8	24.36	(2slot, QPSK)		
		153.6	24.34			
		9.6	24.21			
		19.2	24.15	307.2 Kbps	24.19	
384	836.52	38.4	24.12			
		76.8	24.09	(2slot, QPSK)		
		153.6	24.16			
		9.6	24.11			
		19.2	24.10	307.2		
777	848.31	38.4	24.09	Kbps	24.07	
		76.8	23.96	(2slot, QPSK)		
	-	153.6	24.03			

- The measurement is average output power for Low, Middle and High channel.

- The **FTAP** of worst case is bigger than other power compared with each service option.

-PCS Band

Frequency		RT	AP	FTAP		
Channel	(Mb)	RTAP Average Output Rate Power(dB m)		FTAP Rate	Average Output Power(dB m)	
		9.6	24.11			
		19.2	24.10	307.2		
25	1 851.25	38.4	24.09	Kbps	24.08	
		76.8	24.08	(2slot, QPSK)		
		153.6	24.08			
		9.6	24.01			
	1 880.00	19.2	24.00	307.2 Kbps (2slot, QPSK)	24.10	
600		38.4	24.00			
		76.8	24.01			
		153.6	24.01			
		9.6	23.88			
		19.2	23.88	307.2		
1175	1 908.75	38.4	23.86	Kbps	23.91	
		76.8	23.87	(2slot, QPSK)		
		153.6	23.85			

- The measurement is average output power for Low, Middle and High channel.

- The 9.6 rate of RTAP of worst case is bigger than other power compared with each service option.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

3.4.3. CDMA2000 1xEV DO Revision A

-Cellular Band

	Fraguanay	R	ETAP	FETAP			
Channel	(Mb)	RETAP Rate	Average Output Power(dB m)	FETAP Rate	Average Output Power(dB m)		
		128	24.40				
		256	24.42				
	-	512	24.42	307.2 k	24.49		
	-	768	24.42	(2 slot)	24.40		
		1024	24.41				
1012	924 70	1536	24.40				
1013	824.70	2048	24.41				
	-	3072	24.39				
	-	4096	24.40	307.2 k	04.47		
	-	6144	24.46	(4 slot)	24.47		
	-	8192	24.38				
	-	12288	24.41				
		128	24.20				
		256	24.22				
		512	24.22	307.2 k (2 slot)	24.25		
	-	768	24.21		24.25		
	-	1024	24.21				
204	836.52	1536	24.19				
384		2048	24.19				
	-	3072	24.19				
	-	4096	24.17	307.2 k	24.02		
		6144	24.17	(4 slot)	24.23		
	-	8192	24.18				
	-	12288	24.18				
		128	24.08				
		256	24.10				
		512	24.11	307.2 k	24 11		
		768	24.10	(2 slot)	24.11		
		1024	24.10				
777	010 21	1536	24.08				
	040.31	2048	24.08				
		3072	24.06				
		4096	24.05	307.2 k	24.40		
		6144	24.04	(4 slot)	24.10		
		8192	24.04				
	-	12288	24.05				

- The measurement is average output power for Low, Middle and High channel.

- The FETAP of worst case is bigger than other power compared with each service option.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

-PCS Band

	Frequency	RETAP		FETAP		
Channel	(MHz)	RETAP Rate	Average Output Power(dB m)	FETAP Rate	Average Output Power(dB m)	
		128	24.12			
		256	24.11	-		
		512	24.11	307.2 k	24.06	
		768	24.10	(2 slot)	24.00	
		1024	24.10	-		
25	4 054 05	1536	24.09	-		
25	1 851.25	2048	24.09			
		3072	24.08	-		
		4096	24.09	307.2 k	04.07	
		6144	24.08	(4 slot)	24.07	
		8192	24.07			
		12288	24.06	-		
		128	24.08			
		256	24.09			
		512	24.02	307.2 k	04.07	
		768	24.01	(2 slot)	24.07	
	1 880.00	1024	24.02			
<u> </u>		1536	24.01	-		
600		2048	24.03			
		3072	24.07	-	24.07	
		4096	24.08	307.2 k		
		6144	24.01	(4 slot)	24.07	
		8192	24.03	-		
		12288	24.04	-		
		128	23.90			
		256	23.91	-		
		512	23.82	307.2 k	22.00	
		768	23.91	(2 slot)	23.89	
		1024	23.91	-		
4475	4 000 75	1536	23.90	-		
1175	1 908.75	2048	23.89			
		3072	23.86]		
		4096	23.86	307.2 k	00.00	
		6144	23.86	(4 slot)	23.88	
		8192	23.91	1		
	-	12288	23.92	1		

The measurement is average output power for Low, Middle and High channel.
The **128 rate of RETAP** of worst case is bigger than other power compared with each service option.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

4. Occupied Bandwidth 99 %

4.1. Limit

Requirements: CFR 47, Section §2.1049.

4.2. Test Procedure

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set. Occupied Bandwidth 99 % was tested under

4.3 Test Results

Ambient temperature	:	(24	± 2) ℃
Relative humidity	:	47	% R.H.

Band	Mode	Frequency (Mb)	Occupied Bandwidth (Mz)
	4DTT	824.70	1.274
	1XRTT RC1 55 (Loopback)	836.52	1.267
CDM4800		848.31	1.270
CDIVIAOUU	EV DO	824.70	1.276
	Revision A FETAP	836.52	1.276
	307.2 k (2 slot)	848.31	1.273
	4DTT	1 851.25	1.269
	1xRTT RC1	1 880.00	1.264
CDMA1900	2 (LOOPDACK)	1 908.75	1.272
	EV DO	1 851.25	1.269
	Revision A RETAP	1 880.00	1.268
	128 rate	1 908.75	1.268

Please refer to the following plots.

CDMA800

1xRTT

Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

High Channel

EV DO Revision A

Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

High Channel

1xRTT

Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

High Channel

EV DO Revision A

Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

High Channel

5. Spurious Emissions at Antenna Terminal

5.1. Limit

22.917(e) and 24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency must be attenuated below the transmitting (P) by a factor of at least 43 + 10log(P)dB.

5.2. Test Procedure

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1 Mb. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

5.3. Test Results

Ambient temperature	:	(24	± 2) ℃
Relative humidity	:	47	% R.H.

Please refer to the following plots.

CDMA800

1xRTT

Low Channel

Middle Channel

													_	
🔆 Aç	jilen	t 14	14:58	Apr 24,	2012						L	1 [Mark	er
Ref 33. #Peak	.82	dBm Ior	/or	#Atten	20 dB				M	lkr1 1.6 -36.02	6 GHz dBm	Sele 1	ect M 2	arker <u>3</u> 4
Log 10 dB/ Offst	1 -3	.66 36.0	0000 02 d	0000 Bm _	GHz								1	Norma
23.8 dB DI														Delta
-13.0 dBm LgAv	╞											(Tr Ref	Delt ackin	a Pair g Ref) ≜
V1 S2 S3 FC	nhr		werth a marker	-	m	****	مە-ئەر باردېد.	and the state of t	www.m/m	uh den en e	mmm	Span	Spa	n Pair <u>Center</u>
¤(f): FTun Swp														Off
Start 3 #Res B	0 M	Hz MH	z		v	BW 1 M	IHz	Swee	St p 49.96	op 20.0 ms (601	0 GHz pts)			More 1 of 2
Copyrig	jht 2	000-	2004 A	gilent Te	chnologi	es								

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

High Channel

EV DO Revision A

Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

High Channel

CDMA1900

1xRTT

Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

High Channel

EV DO Revision A

Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

High Channel

6. Band Edge

6.1. Limit

22.917(e) and 24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency must be attenuated below the transmitting (P) by a factor of at least 43+10log(P)dB.

6.2. Test Procedure

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The center of the spectrum analyzer was set to block edge frequency.

6.3. Test Results

Ambient temperature	:	(24	± 2) ℃
Relative humidity	:	47	% R.H.

Please refer to the following plots.

CDMA800

1xRTT

Low Channel

High Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

EV DO Revision A

Low Channel

High Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

#VBW 15 kHz

SGS Korea Co., Ltd. (Gunpo Laboratory)

S3 FS

¤(f): f>50k

Swp

Center 849.000 MHz

04 Agilent Techr

#Res BW 15 kHz

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

Span

Span 5 MHz

Sweep 84.76 ms (601 pts)

<u>Center</u>

Of

Mor

1 of 2

1xRTT

Low Channel

High Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

#VBW 30 kHz

SGS Korea Co., Ltd. (Gunpo Laboratory)

f>50k

Swp

Center 1.910 000 GHz

Copyright 2000-2004 Agilent Technologies

#Res BW 30 kHz

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371 Off

More

1 of 2

Span 5 MHz

Sweep 21.2 ms (601 pts)

EV DO Revision A

Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

7. Frequency Stability

7.1. Limit

Requirements: FCC § 2.1055 (a), § 2.1055 (d) & following:

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table of this section.

For Mobile devices operating in the 824 to 849 Mb band at a power level less than or equal to 3 Watts, the limit specified in Table C-1 is +/- 2.5 ppm.

§24.235 The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

7.2. Test Procedure

- 1. Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators.
- 2. The EUT was placed inside the temperature chamber.
- 3. After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Temperature Chamber

7.3. Test Results

Ambient temperature	:	(24	± 2) ℃
Relative humidity	:	47	% R.H.

CDMA800 1xRTT mode at middle channel

Reference Frequency: 836.52 Mz, Limit: 2.5 ppm					
Frequency Stability versus Temperature					
Environment	Power Supplied (Vdc)	Frequency Measure with Time Elapse			
Temperature (°C)		Frequency Error (Hz)	ppm		
50		10	0.012 0		
40		-10	-0.012 0		
30		-3	-0.003 6		
24		2	0.002 4		
10	12.0	-3	-0.003 6		
0		-4	-0.004 8		
-10		-3	-0.003 6		
-20		-4	-0.004 8		
-30		5	0.006 0		
	Frequency Stability ve	rsus power Supply			
Environment	Power	Frequency Measure with Time Elapse			
Temperature (℃)	Supplied (Vdc)	Frequency Error (Hz)	ppm		
24	13.8 (+15 %)	3	0.003 6		
24	10.2 (-15 %)	1	0.001 2		

CDMA800 EV DO Revision A mode at middle channel

Reference Frequency: 836.52 Mz, Limit: 2.5 ppm							
	Frequency Stability versus Temperature						
Environment	Power Supplied (Vdc)	Frequency Measure with Time Elapse					
Temperature (℃)		Frequency Error (Hz)	ppm				
50		7	0.008 4				
40		3	0.003 6				
30		7	0.008 4				
24	12.0	7	0.008 4				
10		6	0.007 2				
0		6	0.007 2				
-10		-5	-0.006 0				
-20		-6	-0.007 2				
-30		4	0.004 8				
	Frequency Stability ve	rsus power Supply					
Environment	Power	Frequency Measure with Time Elapse					
Temperature (℃)	Supplied (Vdc)	Frequency Error (Hz)	ppm				
24	13.8 (+15 %)	6	0.007 2				
24	10.2 (-15 %)	5	0.006 0				

CDMA1900 1xRTT mode at middle channel

Reference Frequency: 1 880.0 Mb, Limit: 2.5 ppm							
	Frequency Stability versus Temperature						
Environment	Power	Frequency Measure with Time Elapse					
Temperature (℃)	Supplied (Vdc)	Frequency Error (Hz)	ppm				
50		-9	-0.004 8				
40		-19	-0.010 1				
30		-19	-0.010 1				
24		-13	-0.006 9				
10	12.0	7	0.003 7				
0		8	0.004 3				
-10		5	0.002 7				
-20		-4	-0.002 1				
-30		-4	-0.002 1				
	Frequency Stability ve	rsus power Supply					
Environment	Power	Frequency Measure with Time Elapse					
Temperature (℃)	Supplied (Vdc)	Frequency Error (Hz)	ppm				
24	13.8 (+15 %)	-11	-0.005 9				
24	10.2 (-15 %)	-13	-0.006 9				

CDMA1900 EV DO Revision A mode at middle channel

Reference Frequency: 1 880.0 Mb, Limit: 2.5 ppm						
Frequency Stability versus Temperature						
Environment	ronment Power erature (℃) Supplied (Vdc)	Frequency Measure with Time Elapse				
Temperature (℃)		Frequency Error (Hz)	ppm			
50		13	0.006 9			
40		12	0.006 4			
30		13	0.006 9			
24	12.0	13	0.006 9			
10		12	0.006 4			
0		13	0.006 9			
-10		12	0.006 4			
-20		10	0.005 3			
-30		6	0.003 2			
	Frequency Stability ve	rsus power Supply				
Environment	Power	Frequency Measure with Time Elapse				
Temperature (℃)	Supplied (Vdc)	Frequency Error (Hz)	ppm			
24	13.8 (+15 %)	12	0.006 4			
24	10.2 (-15 %)	13	0.006 9			

8. RF Exposure Evaluation

8.1 Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in §1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (Mb)	Electric Field Strength(V/m)	Magnetic Field Strength (A/m)		Average Time	
	(A) Limits for	r Occupational /Contro	ol Exposures		
300 – 1 500			F/300	6	
1 500 – 100 000			5		
(B) Limits for General Population/Uncontrol Exposures					
<u> 300 – 1 500</u>			<u>F/1500</u>	<u>30</u>	
<u>1 500 – 100 000</u>		1		<u>30</u>	

8.1.1. Friis transmission formula: Pd = (Pout*G)/(4*pi*R²)

Where Pd = power density in mW/cm²

Pout = output power to antenna in \mathbb{N}

- G = gain of antenna in linear scale
- Pi = 3.1416
- R = distance between observation point and center of the radiator in \mbox{cm}

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

8.1.2. Test Result of RF Exposure Evaluation

Test Item : RF Exposure Evaluation Data Test Mode : Normal Operation

8.1.3. Output Power into Antenna & RF Exposure Evaluation Distance

Mode: CDMA800 1xRTT

Channel	Channel Frequency (쌘)	Measured E.R.P. (dB m)	Duty Cycle (%)	Power Density at 20 cm (nW/cm)	LIMITS (ங/ின்)
Low	824.70	27.99	100	0.125 236	0.549 80
Middle	836.52	25.46	100	0.069 941	0.557 68
High	848.31	27.89	100	0.122 385	0.565 54

Note :

1. The power density Pd (5th column) at a distance of 20 $_{\rm CIII}\,$ calculated from the friis transmission formula is far below the limit .

Mode: CDMA800 EV DO Revision A

Channel	Channel Frequency (쌘)	Measured E.R.P. (dB m)	Duty Cycle (%)	Power Density at 20 cm (nW/cm²)	LIMITS (ங/ிcாீ)
Low	824.70	28.05	100	0.126 978	0.549 80
Middle	836.52	26.22	100	0.083 316	0.557 68
High	848.31	28.46	100	0.139 550	0.565 54

Note :

1. The power density Pd (5th column) at a distance of 20 $_{\rm CM}$ calculated from the friis transmission formula is far below the limit .

Mode: CDMA1900 1xRTT

Channel	Channel Frequency (쌘)	Measured E.I.R.P. (dB m)	Duty Cycle (%)	Power Density at 20 cm (nW/crf)	LIMITS (㎡/c㎡)
Low	1 851.25	29.83	100	0.191 306	1
Middle	1 880.00	28.28	100	0.133 884	1
High	1 908.75	28.52	100	0.141 491	1

Note :

1. The power density Pd (5th column) at a distance of 20 ${
m cm}$ calculated from the friis transmission formula is far below the limit .

Mode: CDMA1900 EV DO Revision A

Channel	Channel Frequency (咃)	Measured E.I.R.P. (dB m)	Duty Cycle (%)	Power Density at 20 cm (nW/crr)	LIMITS (n₩/c㎡)
Low	1 851.25	30.61	100	0.228 944	1
Middle	1 880.00	28.88	100	0.153 720	1
High	1 908.75	29.35	100	0.171 289	1

Note :

1. The power density Pd (5th column) at a distance of 20 cm calculated from the friis transmission formula is far below the limit .