

Product Service

**Choose certainty.
Add value.**

Report On

Limited FCC Testing of the
Frontier Silicon Ltd Venice 6.5
In accordance with FCC CFR 47 Part 15E

COMMERCIAL-IN-CONFIDENCE

FCC ID: YYX-HA-FS2026-F5

Document 75917143 Report 09 Issue 1

June 2012

Product Service

TÜV SÜD Product Service Ltd, Octagon House, Concorde Way, Segensworth North,
Fareham, Hampshire, United Kingdom, PO15 5RL
Tel: +44 (0) 1489 558100. Website: www.tuvps.co.uk

COMMERCIAL-IN-CONFIDENCE

REPORT ON

Limited FCC Testing of the
Frontier Silicon Ltd Venice 6.5
In accordance with FCC CFR 47 Part 15E

Document 75917143 Report 09 Issue 1

June 2012

PREPARED FOR

Frontier Silicon Ltd
Dales Manor Business Park
Babraham Road
Sawston
Cambridge
CB22 3LJ
United Kingdom

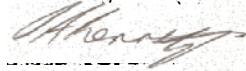
PREPARED BY

Natalie Bennett
Senior Administrator (Technical)

APPROVED BY

Ryan Henley
Authorised Signatory

DATED


22 June 2012

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 15E. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s):

S Bennett

CONTENTS

Section	Page No
1 REPORT SUMMARY	3
1.1 Introduction	4
1.2 Test Requirements	5
1.3 Brief Summary of Results	6
1.4 Application Form	7
1.5 Product Information	10
1.6 Test Conditions	10
1.7 Deviations from the Standard	10
1.8 Modification Record	10
1.9 DFS Test System	11
2 TEST DETAILS	13
2.1 Calibration of Test Setup	14
2.2 In-Service Monitoring	18
3 TEST EQUIPMENT USED	23
3.1 Test Equipment Used	24
3.2 Support Test Equipment	25
3.3 Measurement Uncertainty	26
4 PHOTOGRAPHS.....	27
4.1 Photographs of Equipment Under Test (EUT)	28
4.2 Test Set-Up Photographs	29
4.3 DFS Test Equipment	30
5 ACCREDITATION, DISCLAIMERS AND COPYRIGHT.....	31
5.1 Accreditation, Disclaimers and Copyright.....	32

Product Service

SECTION 1

REPORT SUMMARY

Limited FCC Testing of the
Frontier Silicon Ltd Venice 6.5
In accordance with FCC CFR 47 Part 15E

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Limited FCC Testing of the Frontier Silicon Ltd Venice 6.5 to the requirements of FCC CFR 47 Part 15E.

Objective	To perform Limited FCC Testing to determine the Equipment Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out.
Manufacturer	Frontier Silicon Ltd
Model Number(s)	Venice 6.5
Serial Number(s)	RAD103022
Hardware Version	PCB Rev5 (FS00152-5) PP Build
Software Version	V1.0.16
Number of Samples Tested	1
Test Specification/Issue/Date	FCC CFR 47 Part 15E (2011)
Incoming Release Date	Application Form 29 May 2012
Disposal	Held Pending Disposal
Reference Number	Not Applicable
Date	Not Applicable
Order Number	FS021247
Date	17 February 2012
Start of Test	25 April 2012
Finish of Test	25 April 2012
Name of Engineer(s)	S Bennett
Related Document(s)	FCC 06-96: 2006; FCC Public Notice DA 02-2138: 2002; UKAS M3003: Edition 2: 2007; ETSI TR 100 028: 2001

1.2 TEST REQUIREMENTS

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode		
	Master	Client Without DFS	Client With DFS
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
Uniform Spreading	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master	Client Without DFS	Client With DFS
DFS Detection Threshold	Yes	Not required	Yes
Channel Closing Transmission Time	Yes	Yes	Yes
Channel Move Time	Yes	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required	Yes

1.3 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC CFR 47 Part 15E is shown below.

Section	Spec Clause	Test Description	Result	Comments/Base Standard
DFS				
2.1	NA	Calibration of Test Setup	-	
2.2	15.407 (h)(2)(iii)	In-Service Monitoring	Pass	

1.4 APPLICATION FORM

EQUIPMENT DESCRIPTION	
Model Name/Number	Venice 6.5
Part Number	HA-FS2026-F5xxxx ('FCC variant , 'x' depends on customer variant e.g.HA-FS2026-F50008) and HA-FS2026-05xxxx ('ETSI variant , 'x' depends on customer variant e.g.HA-FS2026-050008)
Hardware Version	PCB Rev5 (FS0152-5) PP Build
Software Version	V1.0.16
FCC ID	YYX-HA-FS2026-F5
Technical Description (Please provide a brief description of the intended use of the equipment)	The Venice 6.5 is a radio module supporting Internet Radio (WiFi or Ethernet), Networked Audio Streaming (WiFi or Ethernet), iPod/iPhone/iPad control and DAB/DAB+/FM-RDS reception when installed in a consumer audio product.

TYPE OF EQUIPMENT	
<input type="checkbox"/> Master	
<input type="checkbox"/> Client with Radar Detection	
<input checked="" type="checkbox"/> Client without Radar Detection	

TRANSMITTER TECHNICAL CHARACTERISTICS	
FREQUENCY CHARACTERISTICS	
<input type="checkbox"/> 5.150 GHz to 5.250 GHz	
<input checked="" type="checkbox"/> 5.250 GHz to 5.350 GHz	
<input checked="" type="checkbox"/> 5.470 GHz to 5.725 GHz	
<input type="checkbox"/> 5.725 GHz to 5.825 GHz	
Note: DFS is not required in the ranges 5.15 – 5.25 GHz and 5.725 – 5.825 GHz	

TRANSMITTER RF POWER CHARACTERISTICS	
Maximum rated transmitter output power as stated by manufacturer (if applicable)	
Conducted Power	11 dBm
Maximum Antenna Gain	5.5 dBi
EIRP	dBm
Minimum rated transmitter output power as stated by manufacturer (if applicable)	
Conducted Power	5 dBm
Maximum Antenna Gain	5.5 dBi
EIRP	dBm
Is TPC supported?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
If Yes, provide a description of operation.	
Implemented as per all TPC features mandated by 802.11-2007 for operation in the 5GHz DFS bands	

Product Service

POWER SOURCE	
<input type="checkbox"/> AC mains supply	State voltage
AC supply frequency	(Hz) VAC
<input checked="" type="checkbox"/> DC supply	
Nominal voltage	4V, 3.3V, 1.2V +/-5%

SYSTEM ARCHITECTURE		
<input type="checkbox"/>	Frame Based	
<input type="checkbox"/>	IP Based	
<input type="checkbox"/>	Other	If other please state
<input checked="" type="checkbox"/>	802.11(a)	Receiver Bandwidth: 20 MHz
<input checked="" type="checkbox"/>	802.11(n) – 20 MHz	Receiver Bandwidth: 20 MHz
<input checked="" type="checkbox"/>	802.11(n) – 40 MHz	Receiver Bandwidth: 40 MHz

DECLARATION		
No parameter or information relating to the detected radar waveforms is available or accessible to the end user.		
<input checked="" type="checkbox"/> True	<input type="checkbox"/>	False

MISCELLANEOUS		
Power-on cycle time*		
* Time from switching on the UUT to the point at which Channel Availability Check (CAC) commences		

Product Service

ANTENNA OPTIONS	
Antenna 1	
Antenna Description:	Onboard PIFA (part of PCB)
Antenna Model:	PIFA
Antenna Maximum Gain:	5.5 dBi
Antenna Frequency Range:	
Antenna 2	
Antenna Description:	Integral External Antenna
Antenna Model:	Kinsun, 6604313035-200
Antenna Maximum Gain:	2.5
Antenna Frequency Range:	
Antenna 3	
Antenna Description:	
Antenna Model:	
Antenna Maximum Gain:	
Antenna Frequency Range:	
Antenna 4	
Antenna Description:	
Antenna Model:	
Antenna Maximum Gain:	
Antenna Frequency Range:	
Antenna 5	
Antenna Description:	
Antenna Model:	
Antenna Maximum Gain:	
Antenna Frequency Range:	

I hereby declare that I am entitled to sign on behalf of the applicant and that the information supplied is correct and complete.

Signature: Name: Abdul Wahed Dewan
 Position held: Principal RF Engineer Date: 29 May 2012

1.5 PRODUCT INFORMATION

1.5.1 Technical Description

The Equipment Under Test (EUT) was a Frontier Silicon Ltd Venice 6.5. A full technical description can be found in the manufacturer's documentation.

1.6 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from a 12V DC supply.

FCC Accreditation
90987 Octagon House, Fareham Test Laboratory

1.7 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard or test plan were made during testing.

1.8 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.

1.9 DFS TEST SYSTEM

The DFS system consists of hardware and software. The Hardware uses a PXI chassis with PXI instruments populating the chassis. The instruments used are a Vector Signal Generator, a Digitiser, Frequency References and a Dual Core PC. The measurement and analysis software runs on the PC and controls the instruments within the mainframe via commands on the PXI bus. Various markers are contained within the generated waveforms. The markers are used to trigger the measurement system at the appropriate points. An external trigger is also provided at the SMB output on the Vector Signal Generator which is employed where a Spectrum Analyser is used in place of the Aeroflex Digitiser. These are described within the test procedure for the applicable test.

The Aeroflex DFS software generates the pulses in accordance with FCC 06-96.

Short Pulse Radar Test Waveform (Types 1-4)

The short pulse radar simulation is a conventional amplitude pulse with varying pulse widths, pulse rate intervals (PRI) and number of pulses. General characteristics for these types and number of repetitions required by the standard are as follows:

Radar Type	Pulse Width (μsec)	PRI (μsec)	Number of Pulses
1	1	1428	18
2	1-5	150-230	23-29
3	6-10	200-500	16-18
4	11-20	200-500	12-16

FCC 06-96 - Table 5 – Short Pulse Radar Test Waveforms

Long Pulse Radar Test Waveform (Type 5)

The long pulse radar simulation is a 12 second concatenated series of chirps, chosen randomly. The general characteristics for type 5 and number of repetitions required by the standard are as follows:

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts
5	50-100	5-20	1000-2000	1-3	8-20

FCC 06-96 - Table 6 – Long Pulse Radar Test Waveform

A Type 5 Radar sequence is constructed in the following way:

- 1) The user provides the required level based on the calibration and the test frequency.
- 2) The Burst_Count, (a number between 8 and 20 inclusive), is chosen representing the number of "bursts" (or waveform segments). Type 5 waveform length is 12 seconds, thus each "burst" length will be $BL = 12 / \text{Burst_Count}$.
- 3) Pulse_Count, a number between 1 and 3 inclusive is chosen for each burst segment (1 through Burst_Count) representing the number of chirped pulses for each burst segment.
- 4) For each burst segment, the following chirp parameters are randomly chosen (all chirped pulses within a given burst segment are the same, whether 1, 2, or 3 chirped pulses are chosen):
 - a) Frequency width (5 MHz to 20 MHz, a linear and symmetrical ramp)
 - b) Pulse period (50 μ s to 100 μ s)
 - c) Pulse Rate Interval (1 ms to 2 ms, in 1 μ s increments)
 - d) The start of the first pulse in a given burst segment is randomly chosen (in 1 μ s increments) between 1 μ s and [(the total burst length - (total of all pulse periods within a burst) + (the total space between pulses within a burst)]. Or stated otherwise, 1 μ s to [(BL - (Pulse_Count * pulse period) + (Pulse_Count - 1) * randomly chosen PRI Interval)].

Frequency Hopping Test Waveform (Type 6)

The frequency hopping radar simulation emits 9 1 μ s wide amplitude pulses with a 333 μ s PRI spacing on a randomly chosen frequency, hops to another randomly chosen frequency, emits another 9 pulses and then continues this sequence for 100 different frequencies chosen using a pseudo random sequence. General characteristics for type 6 and number of repetitions required by the standard are as follows:

Radar Type	Pulse Width (μ sec)	PRI (μ sec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)
6	1	333	9	0.333	300

FCC 06-96 - Table 7 – Frequency Hopping Radar Test Waveform

The frequency hopping Radar is generated in the following way:

- a) The user inputs the required level based on the calibration and a frequency within the EUT detection bandwidth.
- b) A sequence of 100 numbers, ($n = 1$ to 100), are randomly chosen from between 1 to 475 and then removed from the sequence producing 100 unique random numbers.
- c) Frequency assignments are 5250 MHz + n .
- d) If the list generated from steps (b) and (c) does not include at least one frequency which is between 5250 to 5350 MHz or 5470 to 5725 MHz, the list is regenerated.
- e) Secondly, in order to verify that at least one frequency in the list is at the EUT frequency plus or minus $\frac{1}{2}$ the EUT detection bandwidth (i.e. at least one of the frequencies in the list must conflict with the EUT's operation such that the EUT will attempt to relocate when the sequence is played), the frequency supplied by the user is inserted into the list, replacing one selection.

Using the supplied Aeroflex software, the pulses are automatically generated and the required numbers of trials are created for each Radar Type – except in the case of Radar Type 1 which has no changeable attributes. The pulses are saved as Arbitrary Waveform files which are then selected by the user for use in the scenario being tested.

Product Service

SECTION 2

TEST DETAILS

Limited FCC Testing of the
Frontier Silicon Ltd Venice 6.5
In accordance with FCC CFR 47 Part 15E

Product Service

2.1 CALIBRATION OF TEST SETUP**2.1.1 Specification Reference**

FCC CFR 47 Part 15E

2.1.2 Equipment Under Test and Modification State

Venice 6.5 S/N: RAD103022 - Modification State 0

2.1.3 Date of Test

25 April 2012

2.1.4 Test Equipment Used

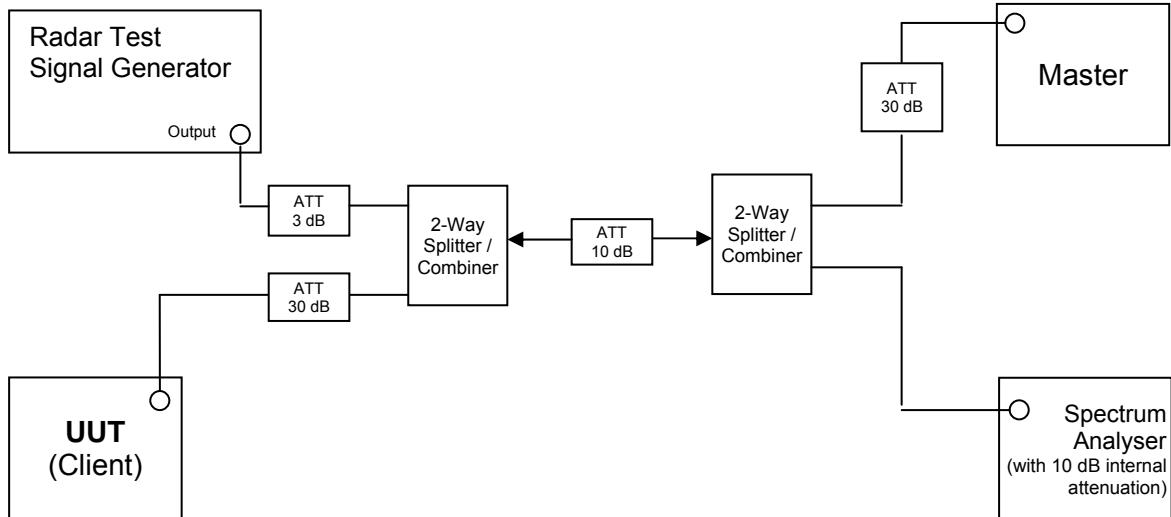
The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Environmental Conditions

Ambient Temperature	24.3°C
Relative Humidity	27.4%

2.1.6 Test Results

In this test equipment configuration, Radar signals are injected at the Master. The configuration ensures that the Radar pulses are received only by the Master device and not the Client. To calibrate the Radar pulses, the UUT was replaced by a Spectrum Analyser. The required Radar Waveform, (Type 1), was loaded into the Arbitrary Waveform Generator. The Spectrum Analyser was set to zero Span and the RBW and VBW set to 3MHz. The sweep time was set to display the entire burst and triggered on the Radar Burst. The output level of the Radar Signal Generator was adjusted to give the correct level as defined in the table below with the 1dB correction accounted for. Trace data showing the used Radar Pulses was recorded.

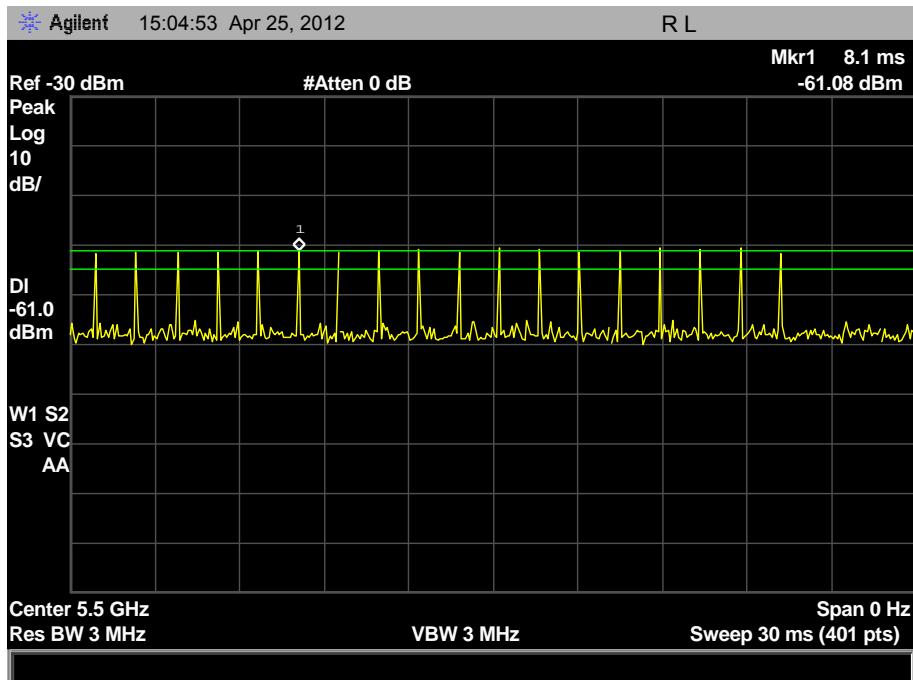

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

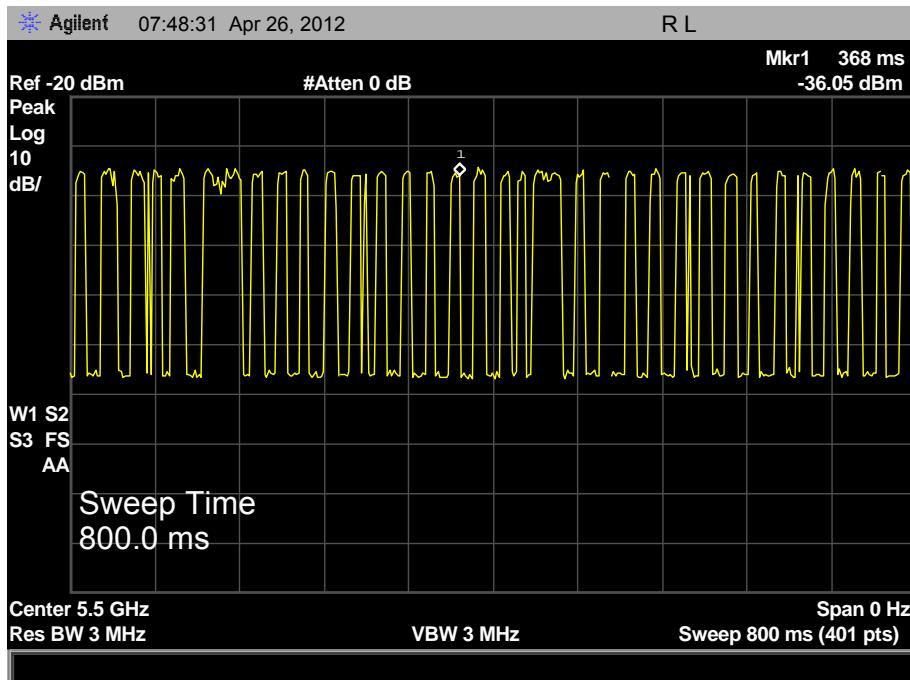
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
 Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Test Equipment Setup

Setup for Client with injection at the Master



Product Service


Radar Pulse Type 1Short Radar Pulse Characteristics

Radar Type	Pulse Width (μs)	PRI (μs)	Number Of Pulses
1	1	1428	18

Client without DFSRadar Type 1 Plot

Product Service

Channel Loading Plot

2.2 IN-SERVICE MONITORING

2.2.1 Specification Reference

FCC CFR 47 Part 15E, Clause 15.407 (h)(2)(iii)

2.2.2 Equipment Under Test and Modification State

Venice 6.5 S/N: RAD103022 - Modification State 0

2.2.3 Date of Test

25 April 2012

2.2.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Procedure

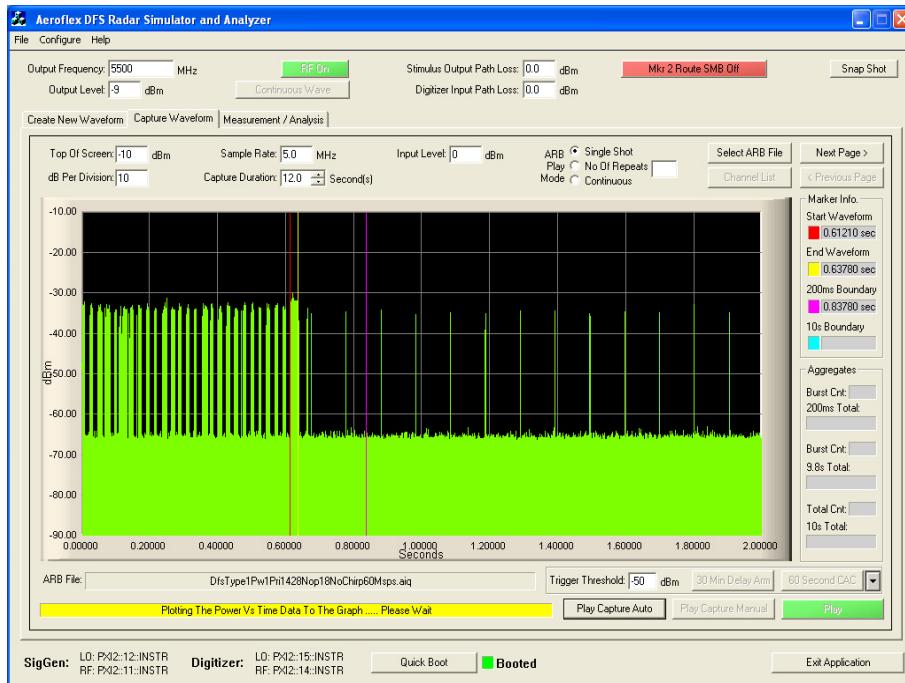
Client Without DFS

The EUT was associated with the FCC Approved Master device FCC ID: H9PAP5131D. A laptop was connected via an Ethernet cable to the Master device and the FCC defined audio/video file was streamed to the Client device using Windows Media Player.

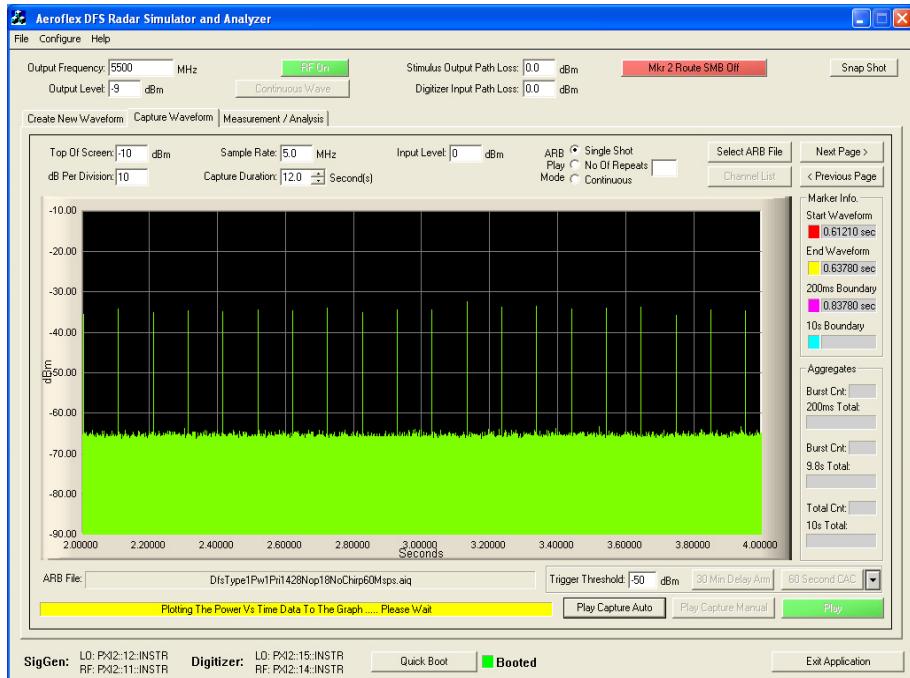
Radar Pulse Type 1 was then transmitted and the Spectrum monitored. The transmissions from the UUT were observed for a period of 12 seconds after the final injected Radar Pulse. The Channel Move Time and the Channel Closing Time were measured and recorded.

The plot also shows 0.6 seconds prior to the radar pulses being applied to the UUT.

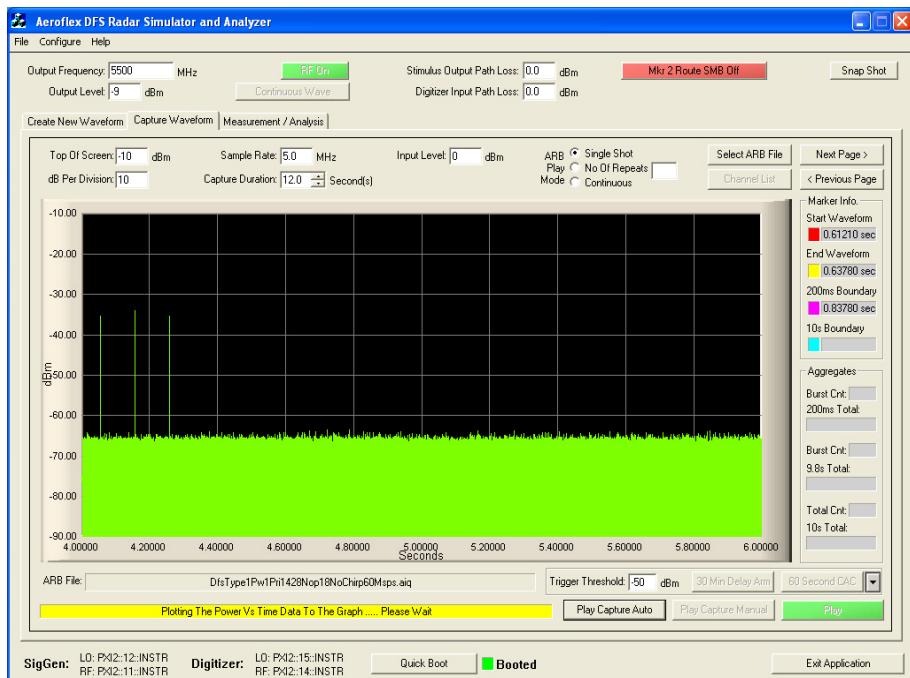
2.2.6 Environmental Conditions


Ambient Temperature	24.3°C
Relative Humidity	27.4%

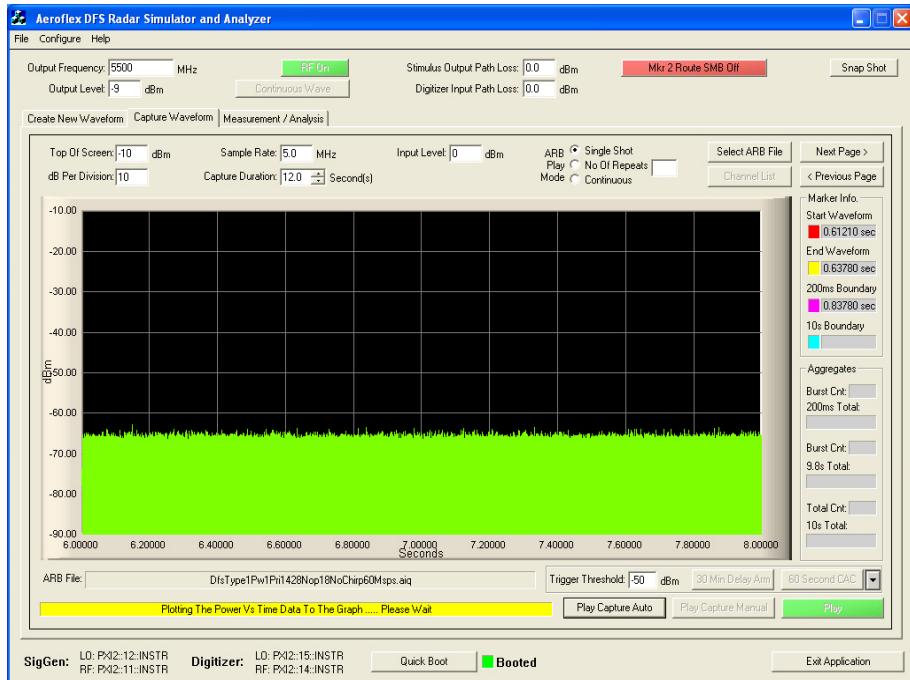
2.2.7 Test Results


Channel Move Time	3.62 seconds
Channel Closing Time (Aggregate Time During 200ms)	1.212 ms
Channel Closing Time (Aggregate Time During +200ms to 10s)	3.197 ms
Channel Closing Time (Aggregate Time During 10s)	4.409 ms

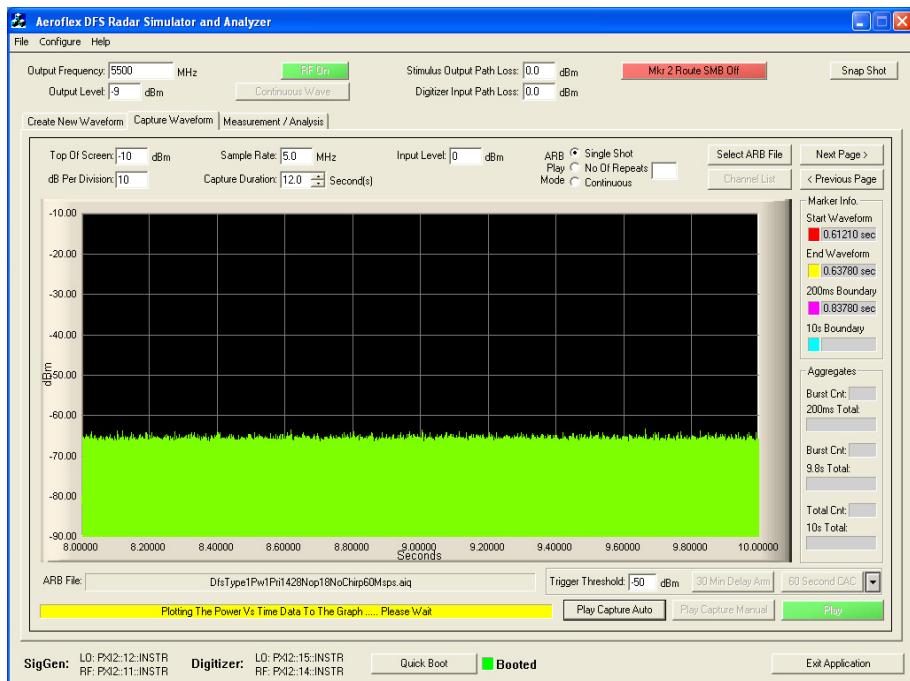
0 – 2 seconds



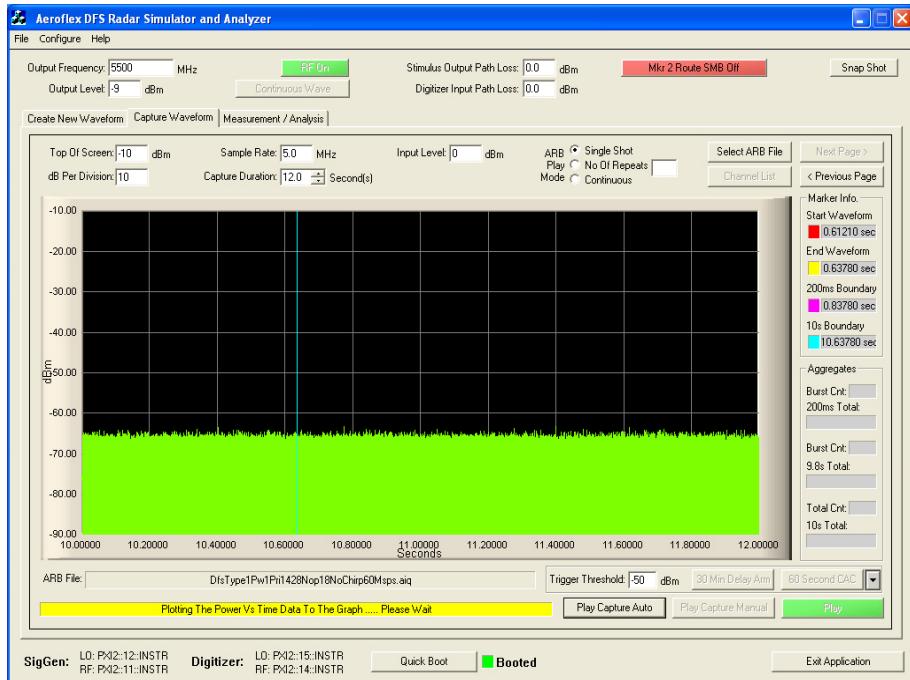
2 – 4 seconds



4 – 6 seconds



6 – 8 seconds



8 – 10 seconds

Product Service

10 – 12 secondsLimit Clause 4.07 (h)(2)(iii)

Channel Move Time	<10s
Channel Closing Time (Aggregate Time During 200ms)	<200ms
Channel Closing Time (Aggregate Time During +200ms to 10s)	<60ms

Product Service

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Type No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.1 - In-Service Monitoring					
30dB/2W Attenuator	Narda	4772-30	460	-	TU
30dB Attenuator	Narda	4772-30	463	-	TU
Multimeter	Iso-tech	IDM-101	466	12	5-Mar-2013
3dB/10W Attenuator	Texscan	HFP-50N	475	12	27-Mar-2013
Spectrum Analyser	Hewlett Packard	E4407B	1154	12	28-Jun-2012
Power Supply	Iso-tech	IPS 2010	2439	-	O/P Mon
Attenuator (10dB, 50W)	Aeroflex / Weinschel	47-10-34	3166	12	10-Jun-2012
Hygrometer	Rotronic	I-1000	3220	12	3-May-2012
PXI RF Digitizer	Aeroflex	3025	4012	24	6-Dec-2013
PXI RF Synthesizer	Aeroflex	3010	4013	24	6-Dec-2013
PXI RF Synthesizer	Aeroflex	3010	4014	24	6-Dec-2013
PXI Digital RF Signal Generator	Aeroflex	3025	4015	24	6-Dec-2013
1800-6000 MHz Power Splitter	Mini-Circuits	ZN2PD-63-S+	4055	12	6-Mar-2013
1800-6000 MHz Power Splitter	Mini-Circuits	ZN2PD-63-S+	4056	12	6-Mar-2013

TU – Traceability Unscheduled

O/P MON – Output Monitored with Calibrated Equipment

Product Service

3.2 SUPPORT TEST EQUIPMENT

Instrument	Manufacturer	Type No.	Serial No.
Power Injector	Symbol	AP-PSBIAS-T-1P-AF	105496049056326
Laptop	Dell	Latitude D630	CN-OKU184-12961-79B-B 0FC
Ethernet Cable	Net M	Cat 5E 1m	N/S
Ethernet Cable	Net M	Cat 5E 1m	N/S
Access Point	Symbol	AP-5131	05357520500184

3.3 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	MU
In-Service Monitoring	Time: $\pm 4\%$ Power: ± 1.5 dB

Product Service

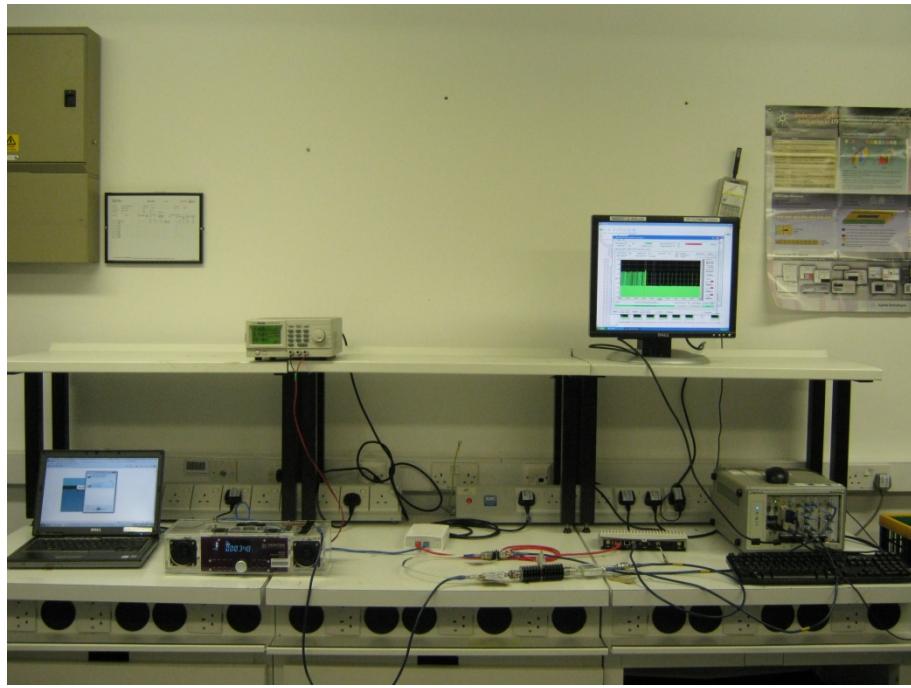
SECTION 4

PHOTOGRAPHS

Product Service

4.1 PHOTOGRAPHS OF EQUIPMENT UNDER TEST (EUT)

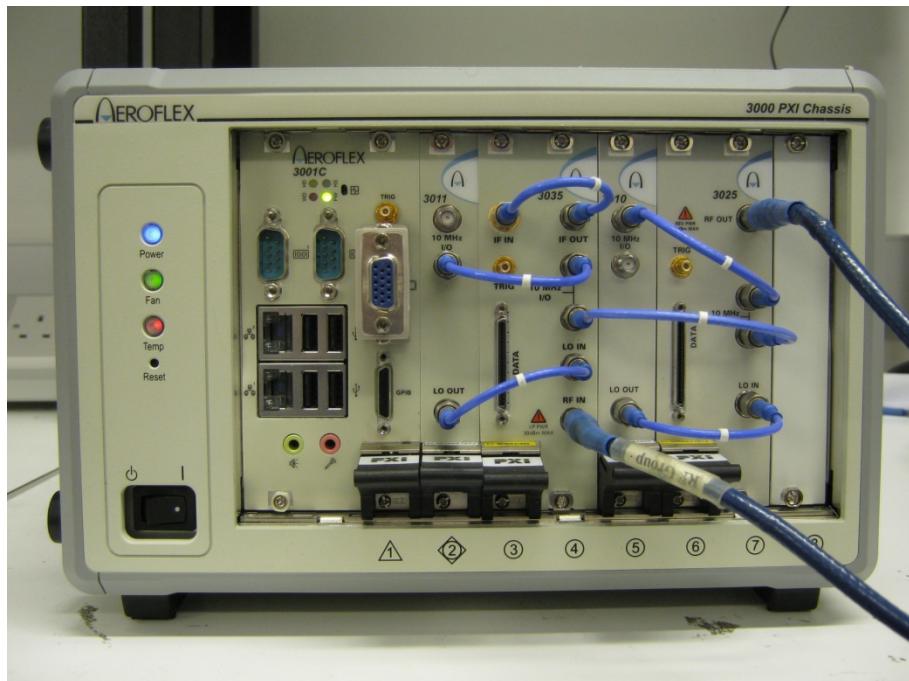
Top View



Bottom View

Product Service

4.2 TEST SET-UP PHOTOGRAPHS



View 1

Product Service

4.3 DFS TEST EQUIPMENT

Test Set Up

Product Service

SECTION 5

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

Product Service

5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA
(Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of
TÜV SÜD Product Service Limited

© 2012 TÜV SÜD Product Service Limited