FCC and ISEDC Test Report

SRT Marine Systems AIS Class B Transceiver, Model: VMS-100s

In accordance with FCC 47 CFR Part 15B and ISEDC RSS-GEN

Prepared for: SRT Marine Systems plc Wireless House Westfield Industrial Estate Midsomer Norton Bath BA3 4BS United Kingdom SUD

Add value. Inspire trust.

FCC ID: UYW-4290002 IC: 7075A-4290002A

COMMERCIAL-IN-CONFIDENCE

Document Number: 75946230-06 | Issue: 01

SIGNATURE			
KARCES			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Kim Archer	Sales Manager	Authorised Signatory	14 October 2019

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B and ISEDC RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

SIGNATURE		
Gt.Manutar.		
NAME	RESPONSIBLE FOR	DATE
Graeme Lawler	Testing	14 October 2019
FCC Accreditation		Industry Canada Accreditation
90987 Octagon House, Fareham Test Laboratory IC2932B-1 Octagon House, Fareham Test Laboratory		
EXECUTIVE SUMMA	ARY	

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2018 and ISEDC RSS-GEN: Issue 04 (2014-11) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2019 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1		
1.2	Report Modification Record	
1.3	Brief Summary of Results Declaration of Build Status	
1.4	Declaration of Build Status	4
1.5	Product Information	6
1.6	Deviations from the Standard	
1.7	EUT Modification Record	
1.8	Test Location	8
2	Test Details	9
2.1	Radiated Disturbance	9
3	Incident Reports	
4	Measurement Uncertainty	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	14 October 2019

Table 1

1.2 Introduction

Applicant	SRT Marine Systems plc
Manufacturer	SRT Marine Systems plc
Model Number(s)	VMS-100s
Serial Number(s)	EP2-15
Hardware Version(s)	V3
Software Version(s)	150201.01.xx.xx
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15B: 2018 ISEDC RSS-GEN: Issue 04 (2014-11)
Order Number Date	POR007580 06-June-2019
Date of Receipt of EUT	25-July-2019
Start of Test	04-September-2019
Finish of Test	24-September-2019
Name of Engineer(s)	Graeme Lawler

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ISEDC RSS-GEN is shown below.

Section	Specification Clause		Test Description	Result	Comments/Base Standard
	Part 15B	RSS-GEN			
Configuration	Configuration and Mode: DC Powered - AIS Transmitter off, 2.4 GHz (WiFi/BT) On, 5 GHz WiFi On				
2.1	15.109	7.1	Radiated Disturbance	Pass	Class A Limits Applied

Table 2

1.4 Declaration of Build Status

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment)	Class B SOTDMA AIS Transceiver
Manufacturer:	SRT Marine Systems plc
Model:	VMS-100s
Part Number:	429-0002
Hardware Version:	V3
Software Version:	150201.01.xx.xx
FCC ID (if applicable)	UYW-4290002
IC ID (if applicable)	7075A-4290002A

Intentional Radiators

Technology	AIS	WiFi / Bluetooth	WiFi
Frequency Band (MHz)	156 - 162	2400 - 2500	5180 - 5825
Conducted Declared Output Power (dBm)	37	15	15
Antenna Gain (dBi)	3	0.5	0.5
Supported Bandwidth(s) (MHz)	0.015	20	20
Modulation Scheme(s)	GMSK	CCK/DSSS	OFDM
ITU Emission Designator	25K0G1B	12M2GXW	17M9GXW
Bottom Frequency (MHz)	156.025	2400	5180
Middle Frequency (MHz)	159.025	2450	5502.5
Top Frequency (MHz)	162.025	2500	5825

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	5825 MHz	
Lowest frequency generated or used in the device or on which the device operates or tunes	136.37 MHz	
Class A Digital Device (Use in commercial, industrial or business environment)		
Class B Digital Device (Use in residential environment only)		

AC Power Source

AC supply frequency:	N/A	Hz
Voltage		V
Max current:		A
Single Phase □ Three Phase □		

DC Power Source

Nominal voltage:	12 – 24	V
Extreme upper voltage:	31.2	V
Extreme lower voltage:	9.6	V
Max current:	6	А

Battery Power Source

Voltage:			V	
End-point voltage:			V (Point at which the battery will terminate)	
Alkaline Leclanche Lithium Nickel Cadmium Lead Acid* *(Vehicle regulated)				
Other	Please detail:			

Charging

Can the EUT transmit whilst being charged	Yes 🗆 No 🗆
---	------------

Temperature

Minimum temperature:	-15	°C
Maximum temperature:	55	٦°

Antenna Characteristics

Antenna connector		State impedance	50	Ohm	
Temporary antenna connector		State impedance		Ohm	
Integral antenna \Box	Type:		State impedance		dBI
External antenna 🖂	Type:	Marine VHF vertical	State impedance	3	dBI

Ancillaries (if applicable)

Manufacturer:	Part Number:	
Model:	Country of Origin:	

I hereby declare that the information supplied is correct and complete.

Name: Abdul Mohammed Position held: Compliance Engineer Date: 09/10/2019

1.5 Product Information

1.5.1 Technical Description

The Equipment Under Test (EUT) was an SRT Marine Systems plc, AIS Class B Transceiver, Model: VMS-100s

A full description and detailed product specification details are available from the manufacturer.

Figure 1 - General View

Figure 2 - Rear View

1.5.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Туре	Screened
Configuration and Mode	e: DC Powered - AIS Tra	nsmitter off, WiFi on		
VHF Antenna Port	Unlimited	To connect VHF Antenna to AIS Transceiver	PL-259	Yes
GNSS Antenna	Unlimited	Receive of GNSS Data	TNC Coaxial	No
DC Power Lead	Unlimited	Supply of Power to EUT	2-pin Circular Connector	No
Serial Cable (NMEA)	Unlimited	Transmission of Serial Data	12-pin Circular Connector	No

Table 3

1.5.3 Test Configuration

Configuration	Description
DC Powered	The EUT was powered from a 12 V DC external supply (The device can operate at 24 V DC but 12 V DC was considered worst case as this results in the highest current draw). The VHF Antenna Port was connected to a 50 ohm Load. The GNSS Antenna port was connected to a suitable GNSS Antenna. The serial cable was connected to a laptop.

Table 4

1.5.4 Modes of Operation

Mode	Description
AIS Transmitter off, 2.4 GHz (WiFi/BT) On, 5 GHz WiFi On	The AIS Transmitter was disabled using test commands. The 2.4 GHz WiFi/BT and 5 GHz WiFi was enabled on the EUT but not connected to an access point or paired to another device Transmissions from the 2.4 GHz transmitters were intermittent, this band was notched out during the test. The GNSS receiver was in a state of trying to acquire a position. NMEA data from the EUT was logging on a laptop running Tera-Term.

Table 5

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State Description of Modification still fitted to EUT		Modification Fitted By	Date Modification Fitted	
Model: VMS-100S: Serial Number: EP2-15				
0	As supplied by the customer	Not Applicable	Not Applicable	

Table 6

1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name Name of Engineer(s) Accreditation					
Configuration and Mode: DC Powered - AIS Transmitter off, 2.4 GHz (WiFi/BT) On, 5 GHz WiFi On					
Radiated Disturbance Graeme Lawler UKAS					

Table 7

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Radiated Disturbance

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109 ISEDC RSS-GEN, Clause 7.1

2.1.2 Equipment Under Test and Modification State

VMS-100S, S/N: EP2-15 - Modification State 0

2.1.3 Date of Test

04-September-2019 to 10-September-2019

2.1.4 Test Method

The EUT was set up in a semi-anechoic chamber on a remotely controlled turntable and placed on a non-conductive table 0.8m above a reference ground plane.

For an EUT which could reasonably be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

A pre-scan of the EUT emissions profile was made at a 3m distance while varying the antenna-to-EUT azimuth and polarisation using a peak detector.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.1.5 Example Calculation

Below 1 GHz:

Quasi-Peak level (dB μ V/m) at 3m = Receiver level (dB μ V) + 3m Correction Factor (dB) Margin (dB) = Limit (dB μ V/m) – Quasi-Peak level (dB μ V/m)

Above 1 GHz:

CISPR Average level (dB μ V/m) at 3m = Receiver level (dB μ V) + 3m Correction Factor (dB) Margin (dB) = Limit (dB μ V/m) – CISPR Average level (dB μ V/m)

Peak level (dB μ V/m) at 3m = Receiver level (dB μ V) + 3m Correction Factor (dB) Margin (dB) = Limit (dB μ V/m) – Peak level (dB μ V/m)

2.1.6 Example Test Setup Diagram

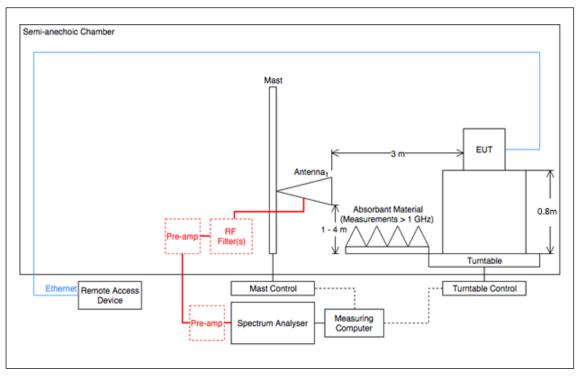


Figure 3 - Example Test Setup

2.1.7 Environmental Conditions

Ambient Temperature	16.2 °C
Relative Humidity	80.0 %

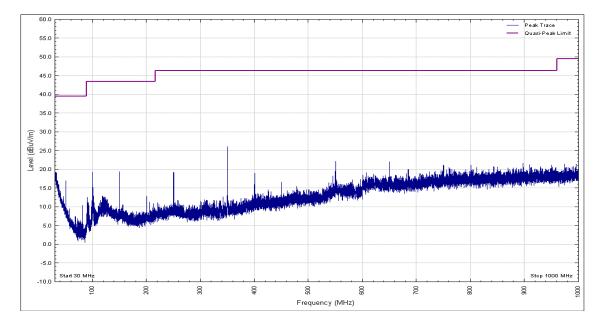
2.1.8 Specification Limits

Required Specification Limits, Field Strength (Class A @ 10m)					
Frequency Range (MHz)(μV/m)(dBμV/m)					
30 to 88	90	39.1			
88 to 216	150	43.5			
216 to 960	210	46.4			
Above 960	300	49.5			
Supplementary information: Quasi-peak detector to be used for measurements below 1 GHz CISPR Average detector to be used for measurements above 1 GHz					

Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 8

2.1.9 Test Results


Results for Configuration and Mode: DC Powered - AIS Transmitter off, 2.4 GHz (WiFi/BT) On, 5 GHz WiFi On.

Performance assessment of the EUT made during this test: Pass.

Tested to Class A Test Limits.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 5825 MHz Which necessitates an upper frequency test limit of: 30 GHz

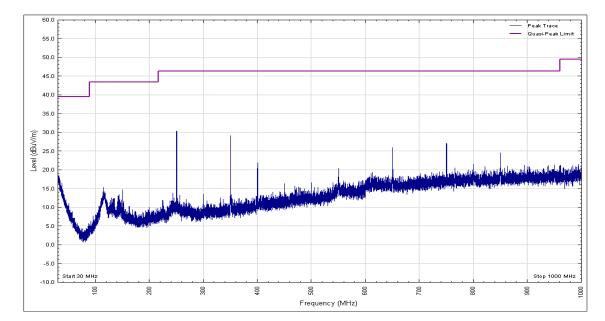

Frequency Range of Test: 30 MHz to 1 GHz - X Orientation

Figure 4 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 9

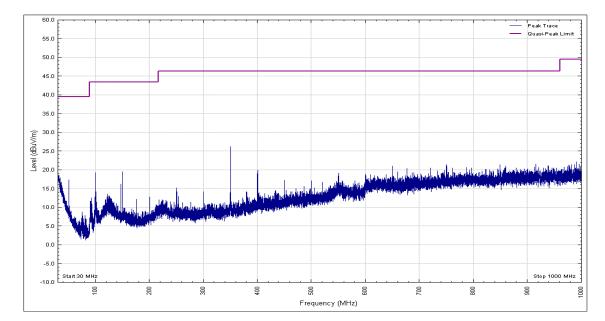

Frequency Range of Test: 30 MHz to 1 GHz - X Orientation

Figure 5 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 10

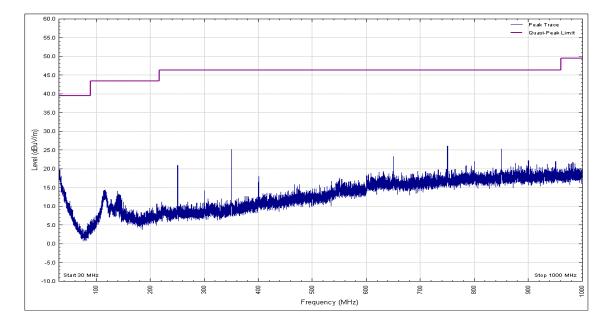

Frequency Range of Test: 30 MHz to 1 GHz - Y Orientation

Figure 6 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 11

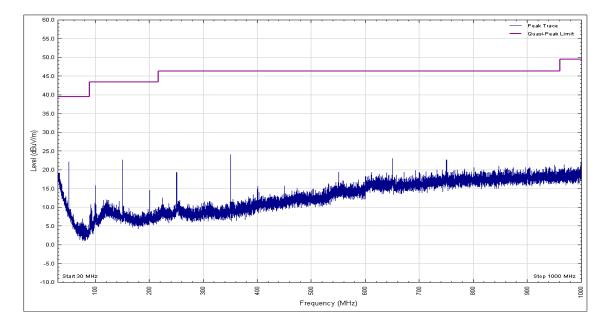

Frequency Range of Test: 30 MHz to 1 GHz - Y Orientation

Figure 7 - Graphical Results - Horizontal Polarity

Fr	 Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 12

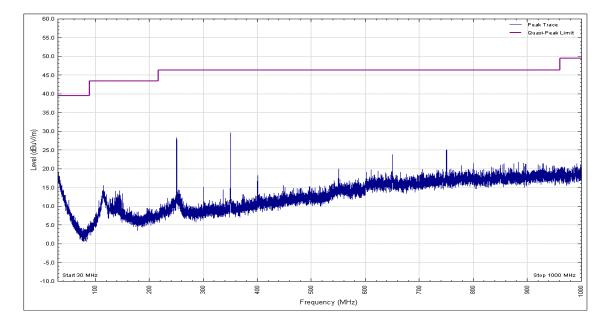

Frequency Range of Test: 30 MHz to 1 GHz - Z Orientation

Figure 8 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 13

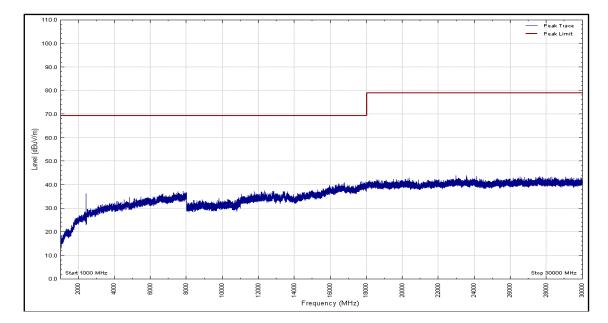

Frequency Range of Test: 30 MHz to 1 GHz - Z Orientation

Figure 9 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 14

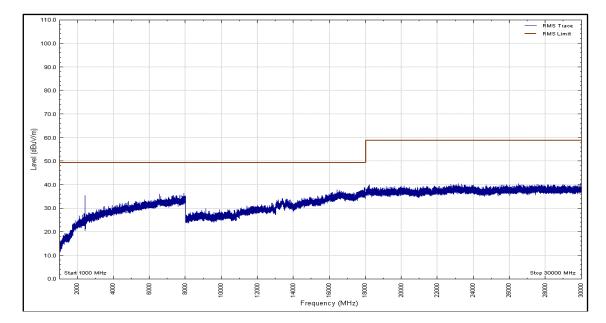

Frequency Range of Test: 1 GHz to 30 GHz - X Orientation Peak

Figure 10 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 15

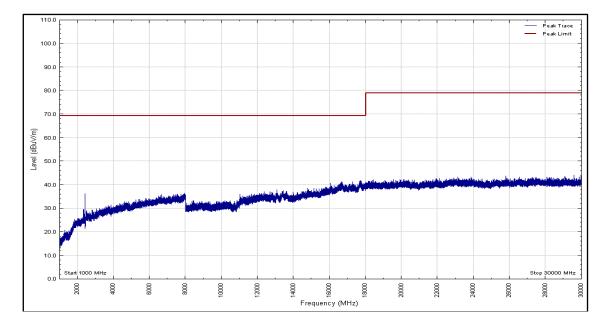

Frequency Range of Test: 1 GHz to 30 GHz - X Orientation Average

Figure 11 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 16

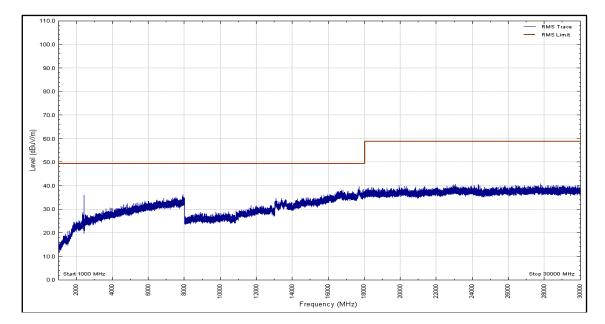

Frequency Range of Test: 1 GHz to 30 GHz - X Orientation Peak

Figure 12 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 17

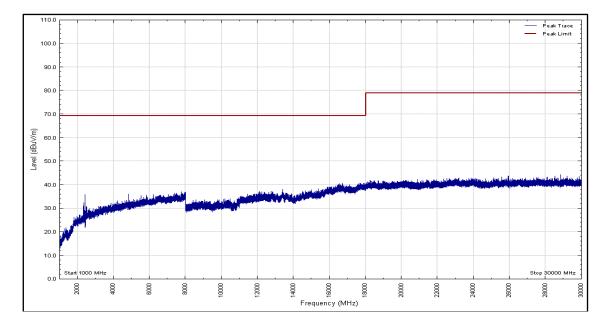

Frequency Range of Test: 1 GHz to 30 GHz - X Orientation Average

Figure 13 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 18

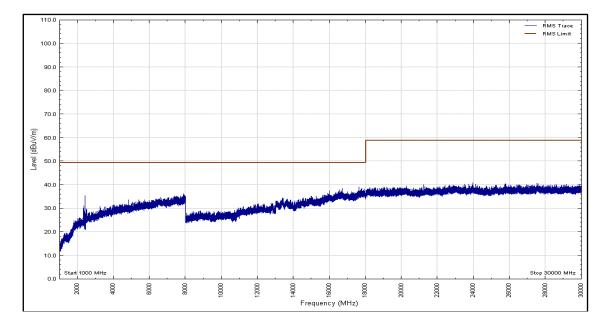

Frequency Range of Test: 1 GHz to 30 GHz - Y Orientation Peak

Figure 14 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 19

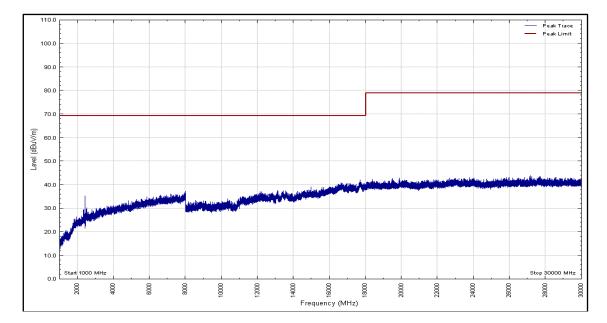

Frequency Range of Test: 1 GHz to 30 GHz - Y Orientation Average

Figure 15 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 20

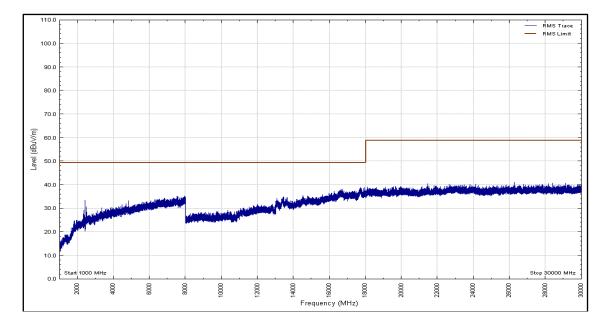

Frequency Range of Test: 1 GHz to 30 GHz - Y Orientation Peak

Figure 16 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 21

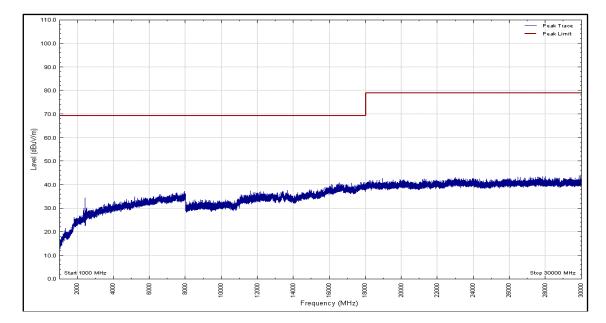

Frequency Range of Test: 1 GHz to 30 GHz - Y Orientation Average

Figure 17 - Graphical Results - Horizontal Polarity

Fre	equency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*								

Table 22

Frequency Range of Test: 1 GHz to 30 GHz - Z Orientation Peak

Figure 18 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 23

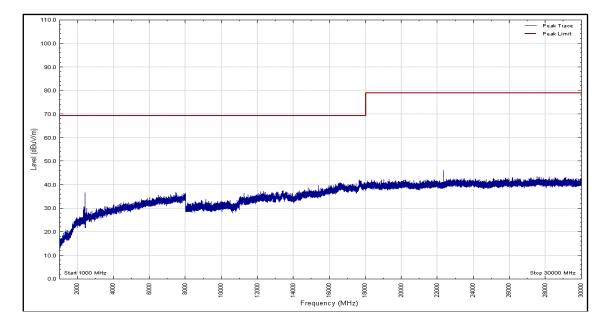

Frequency Range of Test: 1 GHz to 30 GHz - Z Orientation Average

Figure 19 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 24

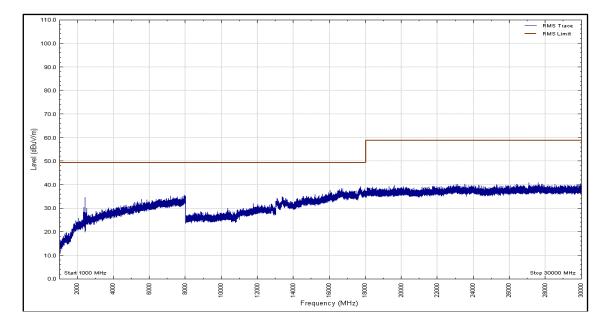

Frequency Range of Test: 1 GHz to 30 GHz - Z Orientation Peak

Figure 20 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 25

Frequency Range of Test: 1 GHz to 30 GHz - Z Orientation Average

Figure 21 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 26

Figure 22 - Test Setup 30 MHz to 1 GHz - X Orientation

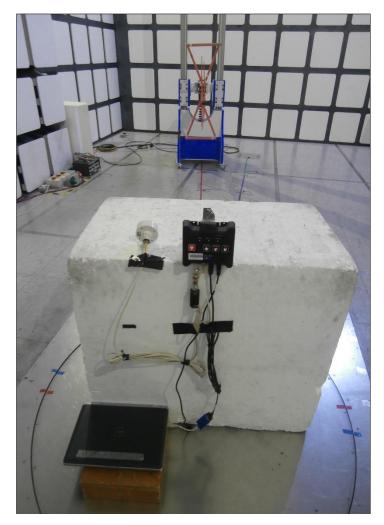


Figure 23 - Test Setup 30 MHz to 1 GHz - Y Orientation

Figure 24 - Test Setup 30 MHz to 1 GHz - Z Orientation

Figure 25 - Test Setup 1 GHz to 18 GHz - X Orientation

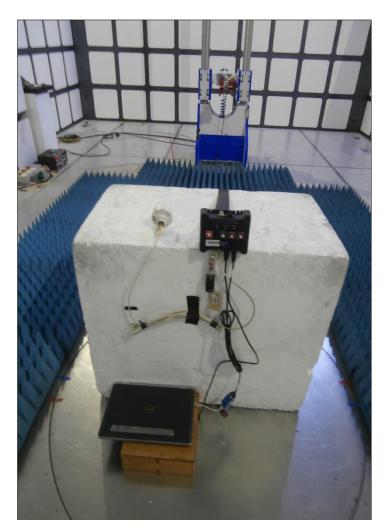


Figure 26 - Test Setup 1 GHz to 18 GHz - Y Orientation

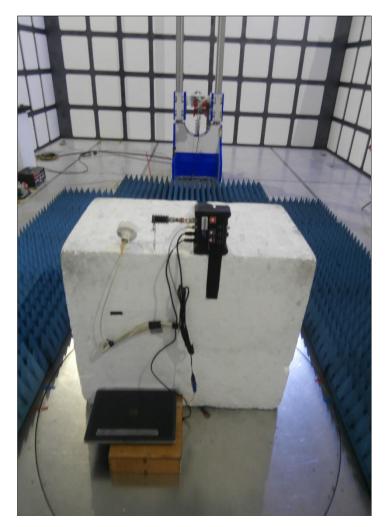


Figure 27 – Test Setup 1 GHz to 18 GHz - Z Orientation

Figure 6 – Test Setup 18 GHz to 30 GHz - X Orientation

Figure 7 – Test Setup 18 GHz to 30 GHz - Y Orientation

Figure 8 – Test Setup 18 GHz to 30 GHz - Z Orientation

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
Power Supply Unit	Hewlett Packard	6282A	132	-	TU
Termination (50ohm)	Diamond Antenna	DL-30N	226	12	14-Dec-2019
Antenna 18-40GHz (Double Ridge Guide)	Link Microtek Ltd	AM180HA-K-TU2	230	24	02-May-2020
Antenna with permanent attenuator (Bilog)	Schaffner	CBL6143	287	24	15-May-2020
Pre-Amplifier	Phase One	PS04-0086	1533	12	08-Feb-2020
18GHz - 40GHz Pre- Amplifier	Phase One	PSO4-0087	1534	12	05-Feb-2020
Screened Room (5)	Rainford	Rainford	1545	36	23-Jan-2021
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Hygromer	Rotronic	A1	2677	12	20-Feb-2020
Cable 1503 2M 2.92(P)m 2.92(P)m	Rhophase	KPS-1503A-2000- KPS	4293	12	26-Oct-2019
1GHz to 8GHz Low Noise Amplifier	Wright Technologies	APS04-0085	4365	12	25-Oct-2019
Cable (Rx, Km-Km 2m)	Scott Cables	KPS-1501-2000- KPS	4526	6	11-Dec-2019
Double Ridged Waveguide Horn Antenna	ETS-Lindgren	3117	4722	12	05-Mar-2020
Mast Controller	Maturo Gmbh	NCD	4810	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	4811	-	TU
Double Ridge Broadband Horn Antenna	Schwarzbeck	BBHA 9120 B	4848	12	11-Mar-2020
Band Reject Filter - 2.425 GHz	Wainwright	WRCGV14-2390- 2400-2450-2460- 50SS	5067	12	02-Oct-2019
8m N-Type RF Cable	Teledyne	PR90-088-8MTR	5093	12	04-Oct-2019
EmX Software	TUV SUD	EmX	5125	-	Software
1.5m 40GHz RF Cable	Scott Cables	KPS-1501-2000- KPS	5127	6	11-Dec-2019
3 GHz High pass filter	Wainwright	WHKX12-2580- 3000-18000-80SS	5219	12	15-Feb-2020
Test Receiver (ESW)	Rohde & Schwarz	ESW44	5351	12	31-Jul-2020

Table 27

TU - Traceability Unscheduled

3 Incident Reports

No incidents reports were raised.

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ±5.2 dB 1 GHz to 40 GHz, Horn Antenna, ±6.3 dB

Table 28

Worst case error for both Time and Frequency measurement 12 parts in 10⁶. All measurement uncertainties have been calculated using CISPR guidelines.