

iWEM-1000

Ultra Low Power Consumption WiFi Module

User Manual

Copyright Notice

Copyright © 2009 Atech Technology Co., Ltd. All Rights Reserved. Reproduction without permission is prohibited.

Trademarks

Atech is a registered trademark of Atech Technology Co., Ltd.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of Atech. Atech provides this document "as is," without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Atech reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time. Information provided in this manual is intended to be accurate and reliable. However, Atech assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

If you encounter any technical issues while using iWEM-1000, do not hesitate to contact us @Atech. Our technical staff will help you resolve the technical issues. You can contact us by email or phone. The following is our technical contact:

- Hours: 9:30AM to 5:30PM (GMT+08:00)
- Email: <u>wifi.support@atechtpe.com.tw</u>
- Phone: +886.2.6629.6667

Table of Contents

1.	Overview4
2.	Hardware4
2.1.	iWEM-1000 Quick Connection Guide5
2.2.	Pin description7
2.3.	Power
2.3.1	2.0-3.3VDC Input Circuit 10
2.3.2	2. 3.0-3.7VDC input Circuit 10
2.4.	Reset 11
2.5.	UART 11
2.6.	Chip Antenna/Antenna Connectors11
2.7.	Dimensions12
3.	Operation Modes 12
3.1.	Data Mode 12
3.2.	Command Mode 13
3.3.	Save Updated Configuration13
4.	Command Interface 13
4.1.	Escape Characters to Enter Command Mode 13
4.2.	Command Type 13
4.3.	Action Commands14
4.4.	Config Commands 15
4.4.1	l. WLAN
4.4.2	2. Network
4.4.3	B. UART
4.5.	Status Commands 17
5.	Default Setting
5.1.	WLAN
5.2.	Network
5.3.	UART

1. Overview

iWEM-1000 is a complete 802.11b/g Wi-Fi and networking solution and includes an antenna, a 32-bit CPU, operating system, network stack, crypto accelerator, power management subsystem, real-time clock and a versatile sensor interface, allowing it to serve as a WiFi client data communication module or, with custom software, as a standalone host.

For typical WiFi data communication applications, iWEM-1000 has TCP/IP stack and applications running on the module. It does not require the host system to run any TCP/IP stack. iWEM-1000 requires only 4 pins (POWER, TX, RX, GND) to connect to the host system. The iWEM-1000 is configured by simple ASCii configuration commands through the UART port in command mode. Once network configuration is set, the radio can automatically connect to the WiFi network upon reset and send/receive serial data over UART.

Since all networking functions are managed by the iWEM-1000, internet connectivity can be added to devices with 8- or 16-bit processors, eliminating the need to port existing applications and resulting in fastest time to market and reduced development costs.

This user manual focuses on how to use iWEM-1000 module with Atech firmware. This manual shows how to connect the hardware, how to configure through serial interface and how to use iWEM-1000. The custom software development with iWEM-1000 is not covered in this manual.

2. Hardware

iWEM-1000 is a surface-mount module designed to be integrated to a system board as a wireless subsystem or standalone system. The hardware interface is grouped into the following functional blocks:

- Power supplies: 2.0 to 3.3VDC and 3.0 to 3.7VDC power input blocks. The user picks one of the power supply circuits to use. Only one power supply circuit needs to be connected.
- GPIOs: The GPIO interface includes UART TX, UART RX, 8mA drive GPIOs and 24mA drive GPIOs. The 24mA GPIOs can be use to drive LEDs. See more information about GPIOs in the pin description section.
- Debug: Reset, DMA-TX and DMA-RX pins for software programming and debugging
- SPI Master: This interface to for the user to connect to external SPI devices. Special software support is required.
- Sensors: This interface is to connect to external sensors. It can be configured to support few different sensors types. Special software support is required.
- RF: There are two RF interfaces on the module. One is the WLAN interface and the other one is RFID interface. The WLAN interface has a choice of three antenna types: chip antenna, UFL and

reverse SMA connector. The selection of the antenna path is user configurable through command line interface. The second RF interface is the RF ID interface. To use the RFID interface, special software support is required.

The following picture shows how the interfaces are grouped.

2.1. iWEM-1000 Quick Connection Guide

In the simplest configuration the hardware only requires a few connections (PWR, UART-TX, UART-RX, GND) to create a wireless data connection. The user selects a power supply voltage (2.0-3.0V or 3.3-3.7V) to use and configure the external power supply circuits according to the power supply section in this manual. The user connects UART-TX, UART-RX and ground pins to the host controller. The host controller can control the iWEM-1000 module and transmit data through the WLAN network.

The user can also use other functional blocks like SPI, GPIO, and sensor interfaces. Special software support is required to use these interfaces. The Atech default software does not support those function blocks. The following picture shows the simplest way to hook up iWEM-1000.

Connection	Direction
Ground	Connect pin 25 to ground
3.3 to 3.7VDC Short pin 26 VDD_BATT and pin 27 VDD_3V3 together. Conr	
	3.3 to 3.7 VDC regulated power source.
REG_IN	Short pin 28 REG_IN to ground.
UART_TX Connect pin 30 UART_TX to host UART receive pin	
UART_RX Connect pin 31 UART_RX to host UART transmit pin	

2.2. Pin description

The following picture and table show how the I/O pins are arranged for iWEM-1000.

Din	Nomo	Description	Din Tuno	Default
FIN	Name	Description	РШ туре	Configuration
1		Ground. Must be connected for proper antenna		
	GND2	performance		
2	SENSOR-3	Sensor interface, Analog input to module	Analog, 1.2V tolerant	
3	SENSOR-2	Sensor interface, Analog input to module	Analog, 1.2V tolerant	
4	SENSOR-1	Sensor interface, Analog input to module	Analog, 1.2V tolerant	
5	SENSOR-0	Wakeup from external condition		
6	SENSE-PWR	Voltage output from module to power external		
		sensors, 3.3V	Analog 3.3V	
7	GPIO-7	GPIO	24mA drive, 3.3V tolerant	
8	GPIO-8	GPIO	24mA drive, 3.3V tolerant	
9	GPIO-2	GPIO	24mA drive, 3.3V tolerant	
10	GPIO-3	GPIO	24mA drive, 3.3V tolerant	
11	GPIO-4	GPIO	24mA drive, 3.3V tolerant	
12	GPIO-5	GPIO	24mA drive, 3.3V tolerant	
13	GPIO-9	GPIO	8mA drive, 3.3V tolerant	

Atech Technology Co., Ltd.

		Reen reennology col, Etal	iWEM-1000UM, Dec 30	, 2010		
14	SPI-CS	SPI Chip Select		No connect		
15	SPI-MOSI	SPI master data out		No connect		
16	SPI-MISO	SPI master data in		No connect		
17	SPI-CLK	SPI clock		No connect		
18	GND1	Ground				
19	GPIO-6	GPIO	24mA drive, 3.3V tolerant			
20	GPIO-14	WLAN traffic indicator	8mA drive, 3.3V tolerant			
21	DMA-RX	Debug port		No connect		
22	DMA-TX	Debug port *(apply 100K pull-down if ultra low sleep power required)		HIGH Z		
23	FORCE_AWAKE	Force the module to wakeup, input to module,				
24	SUPERCAP	Balance center pin voltage on stacked super capacitors	Analog 3.3V	No connect		
25	GND	Ground				
26	VDD-BATT	Battery input, 2.0-3.3V with boost regulator in use, 3.0-3.7V otherwise				
27	VDD-IN	3.3 to 3.7 voltage, do not connect when boost regulator is in use				
28	3.3V-REG-IN	Boost regulator control input, connect to 3.3V-REG-OUT to enable		GND to disable		
29	3.3V-REG-OUT	Boost regulator control output, connect to 3.3V-REG-IN to enable		No connect		
30	UART-TX	TX from the module 8mA drive, 3.3V tolerant				
31	UART-RX	RX to the module	8mA drive, 3.3V tolerant			
32	GPIO-12	TCP connection indicator	8mA drive, 3.3V tolerant			
33	GPIO-13	WLAN connection indicator	WLAN connection indicator 8mA drive, 3.3V tolerant			
34	EPC-ANT-B	EPC port, RFID antenna B		No connect		
35	EPC-ANT-A	EPC port, RFID antenna A		No connect		
36	RESET	Module reset, Active Low, reference to VDD-BATT, 160 usec pulse		Pull up		
37	SENSOR-7	Sensor interface, Analog input to module Analog, 1.2V tolerant		No connect		
38	SENSOR-6	Sensor interface, Analog input to module	Analog, 1.2V tolerant	No connect		
39	SENSOR-5	Sensor interface, Analog input to module	Analog, 1.2V tolerant	No connect		
40	SENSOR-4	Sensor interface, Analog input to module	Analog, 1.2V tolerant	No connect		
41	GND	Ground. Must be connected for proper antenna				

亞元科技股份有限公司

Atech Technology Co., Ltd.

iWEM-1000UM, Dec 30, 2010

performance

2.3. Power

There are 2 ways to power iWEM-1000 up. One is to use the 2.0V to 3.3VDC input circuit. The other one is to use 3.0 to 3.7VDC input circuit. Only one power input circuit needs to be connected.

2.3.1. 2.0-3.3VDC Input Circuit

2.0 to 3.3VDC power supply circuits are designed to power iWEM-1000 with 2 standard Ni-Cd or Ni-MH batteries. To use this configuration, apply battery = 2.0 to 3.3VDC to VBATT (pin 20). Let V3.3IN (pin 21) floating. Tie pin 17 to pin 18. (This enables the on board battery boost 3.3V switcher). There is a built in voltage brownout monitor which will shut down the chip when the voltage drops below 2.0 VDC. The following picture shows the application circuits to use the 2.0 to 3.3VDC power supply.

2.3.2. 3.0-3.7VDC input Circuit

3.0 to 3.7VDC power supply circuits are designed to power iWEM-1000 with standard 3.3VDC power or a rechargeable Lithium battery. To use this configuration, apply 3.3 VDC power to VBATT (pin 20), and V3.3IN (pin 21). Tie 3.3VREG-IN (pin 18) to GROUND. Let 3.3V-REG-OUT (Pin 17) floating. Do NOT exceed the voltage ratings on the 3.3V pins, damage to the module will result. The following picture shows the application circuits to use the 3.0 to 3.7VDC power supply.

2.4. Reset

The Reset pin is required to be used only when the programming the flash memory on the module. Reset is active LOW and is optional/does not need to be connected. The Reset pin is 3.3V tolerant and has an internal pull up of 100K to the VDD_BATT. Leave the reset pin floating for typical applications.

2.5. UART

iWEM-1000 supports 3-wire and 5-wire UART configuration. The 3-wire configuration is standard TX, RX, and ground connection. The 5-wire configuration is with CTS/RTS flow control. When the 3-wire interface is used, connect only UART-TX, UART-RX and ground to external UART port. When the 5-wire UART configuration is used, connect 2 extra CTS/RTS lines.

The UART configuration is set in command interface. The user can set baud rate, flow control and other UART parameters in the command interface. The default UART setting is 9600bps, 8 data bits, 1 start/stop bit, and no flow control.

2.6. Embedded Chip Antenna/Antenna Connectors

iWEM-1000 can be built with the choice of embedded chip antenna or UFL/SMA antenna connector. The user specifies the choice of antenna the user orders iWEM-100x series module. The embedded chip antenna is the most convenient selection. The UFL/SMA antenna connector version provides more flexibility and

better performance if the proper antennas are matched.

2.7. Layout Dimensions

Use the dimensions shown in the picture below to do the PCB layout for the host system or carrier board that will use iWEM-1000.

3. Operation Modes

iWEM-1000 has two operations modes: data mode and command mode. The data mode is for the user to transmit and receive data in user specified modes. The command mode is for the user to set or check configuration of the module.

3.1. Data Mode

When iWEM-1000 is powered up, the default operation mode is data mode. The module is ready to transmit and receive data as soon as the module boots up and associates to a WLAN network.

3.2. Command Mode

When iWEM-1000 is powered up, the default operation mode is data mode. To enter command mode, send escape characters "+++" to iWEM-1000 through the UART port. iWEM-1000 will respond with the command prompt characters ">". The user sets and checks the configuration of iWEM-1000 in command mode. The user can use a host controller or a terminal emulator to send ascii commands to iWEM-1000 UART port to set communication parameters or view them. The response is also in readable ascii format.

When iWEM-1000 in command mode, iWEM-1000 takes defined ascii command sets. To exit command mode, send "exit<cr>" to the UART port. iWEM-1000 will respond with "DATA<cr>" and ">" to the terminal and switch to data mode.

The UART setting of the host controller or data terminal must match the iWEM-1000 UART setting in order to communicate. iWEM-1000 default UART setting is 9600bps, 8 data bits, 1 start/stop bit, and no flow control.

The user can use any preferred terminal program like Teraterm, or Hyperterm to connect to the iWEM-1000 through COM port. Teraterm is recommended because of its popularity and user friendliness. You can go to the official Teraterm site to download the latest Teraterm application: http://en.sourceforge.jp/projects/ttssh2/releases/.

3.3. Save Updated Configuration

After the user updates the configuration in command mode, the user must save the new configuration into the flash memory. Send "save" command to iWEM-1000 after the new configuration is set. The new configuration will be saved into the flash memory. The new setting will take effect after the user reboots iWEM-1000.

4. Command Interface

This section describes syntax and commands used in command interface for the user to set and check the iWEM-1000 configuration.

4.1. Escape Characters to Enter Command Mode

In order to get into command from default data mode, the user must send time-guarded escape characters to the UART port. The format is: **<500ms guard time>+++<500ms guard time>**. If the guard time is less than 500ms, the escape characters will be discarded and iWEM-1000 will not get into command mode.

4.2. Command Type

There are three types of commands:

- Action Commands Perform action such as scan, connect, disconnect, etc.
- Config Commands Set the iWEM-1000 configuration. The user needs to issue a save command to save the updated configuration to the flash memory. The new configuration will take effect after reboot.
- Status Commands See what is going on with the interface, IP status, etc.

The user can issue **?** command to list all available commands. All available commands will be printed to the terminal emulator in ascii format.

All commands issued to iWEM-1000 must be followed by **<CR>** character as a command terminator.

4.3. Action Commands

The action commands are the commands to have the iWEM-1000 doing various actions other than changing the configuration of the module.

Command	Response	Action and Notes
exit	Data mode <cr></cr>	Exit command mode
ls	<list files="" of=""><cr></cr></list>	List all files in flash
scan [<ssid>]</ssid>	<list aps="" of=""><cr></cr></list>	Scan for infrastructure BSSs to join
ping	<ping from<="" response="" th=""><th>Send an ICMP echo request to the specified IP address.</th></ping>	Send an ICMP echo request to the specified IP address.
<ping_ip_addr></ping_ip_addr>	the pinged	Ping the default gateway if no IP_address is specified
	host> <cr></cr>	
set_factory_defaults	OK <cr></cr>	Restore the configuration to factory default settings. The
		settings take effect after the module is restarted.
tcp_connect	TCP Connecting	Create a connection to the TCP server
	<cr></cr>	
tcp_disconnect	ТСР	Drop the TCP connection. If the setting is TCP server,
	Disconnected <cr></cr>	disconnect the TCP client connected to iWEM-1000. If the
		setting is TCP client, disconnect from the TCP server.
restart	OK: Restarting	Restart the current application
	application	
	now <cr></cr>	
save	OK <cr></cr>	Save the configuration to the EEPROM memory. The
		settings take effect after the module is restarted.
sleep	Power down <cr></cr>	Put iWEM-1000 module into sleep mode. Ground pin 5 to
		wake up module.
tftp_get	OK <cr></cr>	Get a image from the TFTP server to upgrade firmware.
<tftp_server></tftp_server>		

。 亞元科技股份有限公司 Atech Technology Co., Ltd.

<file_name></file_name>		
boot_image	OK <cr></cr>	Set the boot image. The settings take effect after the
<handle></handle>		module is restarted.
<file_name></file_name>		

4.4. Config Commands

Config commands are to set different types of parameters in iWEM-1000. The typical response of a Config command is **OK<CR>**. The user must issue **save<CR>** to store the updated configurations into the flash memory. The new configuration will take effect after reboot.

4.4.1. WLAN

WLAN commands are for the users to configure the WLAN interface. The WLAN parameters can be set with the WLAN commands.

Command	Response	Action and Notes
set_antenna <ant#></ant#>	OK <cr></cr>	Select antenna configuration:
		Ant# = 0, antenna used = UFL or SMA connector.
		Ant# = 1, antenna used = chip antenna.
		Default = 0
set_ssid	OK <cr></cr>	Set the SSID of the BSSID with which we'll associate
<ssid_string></ssid_string>		Default = Atech
set_channel	OK <cr></cr>	Set the 802.11b/g channel to use.
<channel></channel>		channel = 1 to 13.
		Default = 1
set_wlan_mode	OK <cr></cr>	Set WLAN mode, 0:Infrastructure, 1:Ad-Hoc
<wlan_mode></wlan_mode>		wlan_mode = 0:Infrastructure, 1:Ad-Hoc
		Default = 0
set_preferred_rates	OK <cr></cr>	Set the 802.11b/g channel to use.
<r1> <r2> <r3> <r4></r4></r3></r2></r1>		r1, r2, r3, r4 = {54, 48, 36, 24, 12, 6, 11, 5, 2, 1}
		Default = 24 12 5 1
		The four data rate set should be a descendant series or
		equal numbers. The rates must be selected from the
		defined set shown above.
set_passwd wep40	set_passwd wep40	Select WEP40 key number, and set WEP keys.
<key#> <password></password></key#>	<key#> <password></password></key#>	key# = 1 to 4.
		password = xx xx xx xx xx; x=0 to f.

TECT科技股份有限公司 Atech Technology Co., Ltd.

	ech rechnology co	iWEM-1000UM, Dec 30, 2010
set_passwd wep104	set_passwd	Select WEP40 key number, and set WEP keys.
<key#> <password></password></key#>	wep104 <key#></key#>	key# = 1 to 4.
	<password></password>	password = xx x
set_passwd wpa	WPAv1 & WPAv2	Set the WPA passwords. The length of the WPA password
<password></password>	Key: <password></password>	must be shorter than 64.
	<cr></cr>	
set_passwd key	WEP40 key <key#></key#>	Set key number used for WEP40 or WEP104. The
<key#></key#>	active <cr></cr>	response depends on the selected WEP mode.
	or	key# = 1 to 4.
	WEP104 key <key#></key#>	Default = 1
	active <cr></cr>	

4.4.2. Network

Network commands are for the users to set the DHCP mode, IP address and all essential IP network parameters. The Network commands also cover serial port device server settings.

Command	Response	Action and Notes
set_dhcp <state></state>	OK <cr></cr>	Enable/Disable DHCP
		state = 0, disable
		state = 1, enable
		Default = 1
set_host	OK <cr></cr>	Set remote TCP server host IP address
<host_ip_addr></host_ip_addr>		Default = 192.168.0.100
set_remote_port	OK <cr></cr>	Set remote TCP server listening port
<remote_port></remote_port>		remote_port = 0 to 65535
		Default = 2000
set_local_port	OK <cr></cr>	Set local TCP server listening port. This setting
<local_port></local_port>		local_port = 0 to 65535
		Default = 1000
set_ip	OK <cr></cr>	Set local IP address
<local_ip_addr></local_ip_addr>		Default = 0.0.0.0
set_netmask	OK <cr></cr>	Set local netmask
<netmask></netmask>		Default = 255.255.255.0
set_gateway	OK <cr></cr>	Set Gateway IP address
<gw_ip_addr></gw_ip_addr>		Default = 0.0.0.0

[®] 亞元科技股份有限公司 Atech Technology Co., Ltd.

set_dns	OK <cr></cr>	Set DNS address
<dns_ip_addr></dns_ip_addr>		Default = 0.0.0.0
set_protocol	OK <cr></cr>	Set the protocol to use
<protocol></protocol>		protocol = 0, UDP
		protocol = 1, TCP client
		protocol = 2, TCP server
		Default = 1

WEM 4000UM Dec 20 2040

4.4.3. UART

The UART commands are for the user to set the UART parameters like baudrate and flow control. The UART commands set the UART to WiFi forward packet size and flush timeout.

Command	Response	Action and Notes
set_baud_rate	OK <cr></cr>	Set UART port baudrate
<baud_rate></baud_rate>		baudrate = {2400, 4800, 9600, 19200, 38400, 57600,
		115200}
		Default = 9600
		Please do not use undefined baudrate. The baudrate will
		not be set if undefined a baudrate are selected.
set_mtu <mtu></mtu>	OK <cr></cr>	Set forward packet sizein bytes.
		mtu = 1 to 1400
		Default = 1400
set_flush_timeout	OK <cr></cr>	Set UART buffer flush timeout in mS.
<flush_timeout></flush_timeout>		flush_timeout = 0 to 50
		Default = 10

4.5. Status Commands

Status commands are for the users to get current device state and settings. The get_state command gets the current status of the module. The rest of commands get the setting stored in the flash memory. The setting stored in the flash memory will take effect after a system restart. The setting may not reflect the current setting. It reflects the setting after system reboot.

Command	Response	Action and Notes
get_state	<current_state><cr></cr></current_state>	Get current device state. The output reflects the current
		device setting.
		Example output:

TECT科技股份有限公司 Atech Technology Co., Ltd.

fec	Atech lechhology C	iWEM-1000UM, Dec 30, 2010
		Baud rate: 115200 MTU: 1400 Flush Timeout: 10
		MAC Address: 00:12:34:56:78:9a
		WLAN mode: 0 (Join an existing network)
		SSID: Atech525A3 Channel:6 - Auth'ed, Assoc'ed
		12 transmits 0 retries
		Tx rate is 24Mbit/s. Autorate 1
		Retries per rate: 4 Retry limit 12
		802.11 interface is UP
		IP: 192.168.0.103 NM: 255.255.255.0 GW: 192.168.0.1
		Local Port: 1000
		Host IP: 192.168.0.100 Remote port: 2000 Protocol: 1
		(TCP client / Connected)
get_uart	<uart_setting><cr></cr></uart_setting>	Get UART port setting. The output reflects the setting stored
		in the flash memory, The setting will take effect after reboot.
		Example:
		Baud rate: 9600
		MTU: 1400
		Flush Timeout: 10
get_wlan	<wlan_setting><cr></cr></wlan_setting>	Get WLAN setting. The output reflects the setting stored in
		the flash memory, The setting will take effect after reboot.
		Example:
		ANT: 0
		WLAN Mode: 0 (Infrastructure)
		SSID: Atech
		Channel: 1
		Preferred Rates: 24M 12M 5M 1M
get_ip	<network_setting><cr></cr></network_setting>	Get Network setting. The output reflects the setting stored in
		the flash memory, The setting will take effect after reboot.
		IP: 192.168.2.138
		INVI. 200.43.200.U
		GVV. 192.100.2.200
		UNO. 100.90.192.1
		Local Port: 1000

亞元科技股份有限公司

Atech Technology Co., Ltd.

iWEM-1000UM, Dec 30, 2010

	Host IP: 192.168.2.254
	Remote port: 2000
	Protocol: 1 (TCP client)

5. Default Setting

The following sections describe the default settings when iWEM-1000 is out of Atech factory. The user can issue set_factory_defaults to put the module back to factory default settings. The user can also toggle the factory default pin in specified sequence to put iWEM-1000 into factory default settings.

5.1. WLAN SSID: atech 802.11 Channel: 1 Mode: Infrastructure Antenna: 0 Security: WPA-PSK WPA Password: 12345678 Preferred Data Rates: 24M, 12M, 5M, 1Mbps 5.2. Network DHCP: ON Remote TCP server: 192.168.0.100 Remote TCP server port to connect: 2000 Local IP address: 0.0.0.0 Local port: 1000 Netmask: 255.255.255.0 Gateway: 0.0.0.0 Protocol: TCP client **5.3. UART** Baudrate: 9600 Flow control: No flow control MTU: 1400 bytes Flush Timeout: 10 ms

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

. Reorient or relocate the receiving antenna.

- . Increase the separation between the equipment and receiver.
- . Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- . Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: To assure continued compliance, any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. (Example - use only shielded interface cables when connecting to computer or peripheral devices).

End Product Labeling

This transmitter module is authorized only for use in devices where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in visible area with the following: "Contains FCC ID: YX6WM100X

End Product Manual Information

The user manual for end users must include the following information in a prominent location "IMPORTANT NOTE: To comply with FCC RF exposure compliance requirements, the antenna used for this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be colocated or operating in conjunction with any other antenna or transmitter." This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions (1) This device may not cause harmful interference and (2) This device must accept any interference received, including interference that may cause undesired operation.

IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or colocation with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for reevaluating the end product (including the transmitter) and obtaining a separate FCC authorization. This device is intended only for OEM integrators under the following conditions: The antenna must be installed such that 20 cm is maintained between the antenna and users. As long as a condition above is met, further transmitter test will not be required. However, the OEM integrator is still

responsible for testing their end product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).