FCC PART 15 SUBPART C TEST REPORT

for

Bluetooth 4.0 USB Dongle

Model No.: BU-4086

FCC ID: YX6BU4086

of

Applicant: Atech OEM Inc. Address: 7F, AAEON Building, No.43, Sec. 4, Keelung Rd., Taipei City 10607, Taiwan R.O.C.

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

A2LA Accredited No.: 2732.01

Report No.: W6M21202-12247-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: <u>wts@wts-lab.com</u>

TABLE OF CONTENTS

Notes Testing laboratory	
	3
2.1 Location	3
DETAILS OF APPROVAL HOLDER	
APPLICATION DETAILS	4
GENERAL INFORMATION OF TEST ITEM	4
TEST STANDARDS	5
ECHNICAL TEST	6
SUMMARY OF TEST RESULTS	6
TEST ENVIRONMENT	6
TEST EQUIPMENT LIST	7
GENERAL TEST PROCEDURE	11
EST RESULTS (ENCLOSURE)	13
PEAK OUTPUT POWER (TRANSMITTER)	14
EQUIVALENT ISOTROPIC RADIATED POWER	21
RF Exposure Compliance Requirements	21
TRANSMITTER RADIATED EMISSIONS IN RESTRICTED BANDS	22
Spurious Emissions (tx)	23
CARRIER FREQUENCY SEPARATION	29
NUMBER OF HOPPING FREQUENCIES	
7.1 Pseudorandom Frequency Hopping Sequence	34
7.2 Coordination of hopping sequences to other transmitters	34
7.3 System Receiver Hopping Capability	34
TIME OF OCCUPANCY (DWELL TIME)	35
20dB Bandwidth	41
9.1 System Receiver Input Bandwidth	44
MINIMUM 6 DB BANDWIDTH	45
RADIATED EMISSION ON THE BAND EDGE	48
PEAK POWER SPECTRAL DENSITY	54
RADIATED EMISSION FROM DIGITAL PART	57
Power Line Conducted Emission	58
ENDIX	61
	2.2 Details of accreditation status DETAILS OF APPROVAL HOLDER APPLICATION DETAILS GENERAL INFORMATION OF TEST ITEM TEST STANDARDS ECHNICAL TEST SUMMARY OF TEST RESULTS TEST ENVIRONMENT TEST EQUIPMENT LIST GENERAL TEST PROCEDURE EST RESULTS (ENCLOSURE) PEAK OUTPUT POWER (TRANSMITTER) EQUIVALENT ISOTROPIC RADIATED POWER RF EXPOSURE COMPLIANCE REQUIREMENTS TRANSMITTER RADIATED EMISSIONS IN RESTRICTED BANDS SPURIOUS EMISSIONS (TX) CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES 7.1 Pseudorandom Frequency Hopping Sequence 7.2 Coordination of hopping sequences to other transmitters 7.3 System Receiver Hopping Capability TIME OF OCCUPANCY (DWELL TIME) 200B BANDWIDTH 9.1 System Receiver Input Bandwidth MINIMUM 6 DB BANDWIDTH RADIATED EMISSION ON THE BAND EDGE PEAK POWER SPECTRAL DENSITY RADIATED EMISSION FROM DIGITAL PART POWER LINE CONDUCTED EMISSION PART

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems. The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

Specific Conditions:

Usage of the hereunder tested device in combination with other integrated or external antennas requires at least additional output power measurements, spurious emission measurements, conducted emission measurements (AC supply lines) and radio frequency exposure evaluations for each individual configuration performed, for certification by FCC.

Tester:

12

Leon Chueh

leon Chuch

Date

Date

WTS-Lab. Name

Signature

Technical responsibility for area of testing:

WTS

March 1, 2012

Danny Sung

Name

Danny Sung

Signature

1.2 Testing laboratory

1.2.1 Location

OATS No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207, Taiwan (R.O.C.) 3 meter semi-anechoic chamber No.35, Aly. 21, Ln. 228, Ankang Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.) TEL:886-2-6613-0228 FAX:886-2-2791-5046

Company

Worldwide Testing Services(Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C. Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory A2LA accredited number: 2732.01 FCC filed test laboratory Reg. No. 930600 Industry Canada filed test laboratory Reg. No. IC 5679A-1

Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd. :

./.
./.
./.
./.
./.
./.
./.

1.3 Details of approval holder

Name:	Atech OEM Inc.
Street:	7F, AAEON Building, No.43, Sec. 4, Keelung Rd.,
Town:	Taipei City 10607,
Country:	Taiwan R.O.C.
Telephone:	+886-2-23770282
Fax:	+886-2-23770283

1.4 Application details

Date of receipt of test item:	February 16, 2012
Date of test:	from February 17, 2012 to March 1, 2012

1.5 General information of Test item

Type of test item:	Bluetooth 4.0 USB Dongle
Model Number:	BU-4086
Brand Name:	ATECH
Multi-listing model number:	./.
Photos:	see Appendix

Technical data

Frequency band:	2.4 GHz – 2.4835 GHz
Number of Channels:	Bluetooth 2.0 78 channels
	Bluetooth 4.0 40 channels
Operation modes:	duplex
Modulation Type:	GFSK $\cdot \pi/4DQPSK \cdot 8DPSK$
Fixed point-to-point operation:	\Box Yes / \boxtimes No
Type of Antenna:	PCB Antenna
Antenna gain:	0.73 dBi
Power supply:	USB 5VDC (power on PC)
Emission designator:	Bluetooth 2.0: 1M31F1D
	Bluetooth 4.0: 1M20G1D
Host device:	none

Classification

Fixed Device	
Mobile Device (Human Body distance > 20 cm)	
Portable Device (Human Body distance < 20cm)	
Modular Radio Device	

Registration number: W6M21202-12247-C-1 FCC ID: YX6BU4086

Transmitter

<u>Unom</u>

Mode A (Bluetooth 2.0 Normal mode)

Power (ch 0 or A):	Conducted: 1.71 dBm
Power (ch 39 or B):	Conducted: 1.01 dBm
Power (ch 78 or C):	Conducted: 2.28 dBm

Mode B (Bluetooth 2.0 EDR mode)

Power (ch 0 or A):	Conducted: 5.33 dBm
Power (ch 39 or B):	Conducted: 4.60 dBm
Power (ch 78 or C):	Conducted: 5.78 dBm

Mode C (Bluetooth 4.0)

Power (ch 0):	Conducted: 2.72 dBm
Power (ch 19):	Conducted: 1.21 dBm
Power (ch 39):	Conducted: 3.21 dBm

Manufacturer: (if applicable)

Name:	./.
Street:	./.
Town:	./.
Country:	./.

1.6 Test standards

Technical standard : FCC RULES PART 15 SUBPART C § 15.247 (2010-10)

2 **Technical test**

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	×
or	
The deviations as specified in 2.5 were ascertained in the course of the tests performed.	

2.2 **Test environment**

Temperature:	23 °C
Relative humidity content:	20 75 %
Air pressure:	86 103 kPa
Power supply:	USB 5 VDC (power on PC)
Extreme conditions parameters:	./.

Registration number: W6M21202-12247-C-1 FCC ID: YX6BU4086

2.3 Test Equipment List

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2011/9/2	2012/9/1
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function Test	
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO-LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2011/12/28	2012/12/27
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2011/9/5	2012/9/4
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2011/3/8	2012/3/7
ETSTW-CE 007	SPECTRUM ANALYZER 5GHz	FSB	849670/001	R&S	Pre-te	st Use
ETSTW-CE 008	HF-EICHLEITUNG RF STEP ATTENUATOR 139dB DPSP	334.6010.02	844581/024	R&S	Function	on Test
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2011/7/13	2012/7/12
ETSTW-CE 013	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T4-02	20242	FCC	2011/9/6	2012/9/5
ETSTW-CE 024	IMPEDANCE STABILIZATION NETWORK	ISN T800	29454	TESEQ	2012/1/4	2013/1/3
ETSTW-CS 004	COUPLING AND DECOUPLING NETWORK	CDN M016	20053	SCHAFFNER	2011/8/12	2012/8/11
ETSTW-CS 005	RF Power Amplifier	100A250A	306547	AR	Function	on Test
ETSTW-CS 010	6 dB Attenuator	SA3N1007-06	None	AISI	2011/7/29	2012/7/28
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2011/8/16	2012/8/15
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2011/9/5	2012/9/4
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2011/9/2	2012/9/1
ETSTW-RE 010	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2011/9/7	2012/9/6
ETSTW-RE 012	TUNABLE BANDREJECT FILTER	D.C 0309	146	K&L	Function	on Test
ETSTW-RE 013	TUNABLE BANDREJECT FILTER	D.C 0336	397	K&L	Function	on Test
ETSTW-RE 019	MICROWAVE HORN ANTENNA	22240-25	121074	FM	2011/4/25	2012/4/24
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Function	on Test
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	ETS-Lindgren	2011/7/19	2012/7/18
ETSTW-RE 028	Log-Periodic Dipole Array Antenna	3148	34429	EMCO	Function	on Test
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	Function Test	
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2012/2/21	2013/2/20
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2011/10/4	2012/10/3
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P1450 8	LeCroy	Function Test	
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2011/10/4	2012/10/3
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2012/1/10	2013/1/9
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2011/4/26	2012/4/25
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2011/4/25	2012/4/24

ETSTW-RE 045	ESA-E SERIES SPECTRUM ANALYZER	E4404B	MY45111242	Agilent	Pre-te	st Use
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2011/8/29	2012/8/28
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2011/4/8	2012/4/7
ETSTW-RE 050	Attenuator 10dB	50HF-010-1	None	JFW	2011/3/4	2012/3/3
ETSTW-RE 051	Attenuator 6dB	50HF-006-1	None	JFW	2011/3/4	2012/3/3
ETSTW-RE 053	Attenuator 3dB	50HF-003-1	None	JFW	2011/3/4	2012/3/3
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2011/5/30	2012/5/29
ETSTW-RE 060	Attenuator 30dB	5015-30	F651012z-01	ATM	2011/3/4	2012/3/3
ETSTW-RE 061	Amplifier Module	CHC 1	None	ETS	2011/5/18	2012/5/17
ETSTW-RE 062	Amplifier Module	CHC 2	None	KMIC	2011/11/29	2012/11/28
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function	on Test
ETSTW-RE 065	Amplifier	AMF-6F-18002650- 25-10P	941608	MITEQ	2011/4/8	2012/4/7
ETSTW-RE 066	Highpass Filter	H1G013G1	206015	MICROWAVE CIRCUITS, INC.	2011/3/4	2012/3/3
ETSTW-RE 069	Double-Ridged Guide Horn Antenna	3117	00069377	EMCO	Function	on Test
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2011/10/5	2012/10/4
ETSTW-RE 073	Power Meter	N1911A	MY45100769	Agilent	2012/1/4	2013/1/3
ETSTW-RE 074	Power Sensor	N1921A	MY45241198	Agilent	2012/1/4	2013/1/3
ETSTW-RE 081	Highpass Filter	H03G13G1	4260-02 DC0428	MICROWAVE CIRCUITS, INC.	2011/3/4	2012/3/3
ETSTW-RE 099	DC Block	50DB-007-1	None	JFW	2011/3/10	2012/3/9
ETSTW-RE 105	2.4GHz Notch Filter	NO124411	39555	MICROWAVE CIRCUITS, INC.	2011/3/11	2012/3/10
ETSTW-RE 106	Humidity Temperature Meter	TES-1366	091011113	TES	2011/12/1	2012/11/30
ETSTW-RE 111	TRILOG Super Broadband test Antenna	VULB 9160	9160-3309	Schwarz beck	2011/12/27	2012/12/26
ETSTW-RE 112	AC POWER SOURCE	TFC-1005	None	T-Power	Functi	on test
ETSTW-RE 115	2.4GHz Notch Filter	N0124411	473874	MICROWAVE CIRCUITS	2012/1/12	2013/1/11
ETSTW-RE 120	RF Player	MP9200	MP9210-111022	ADIVIC	Functi	on test
ETSTW-RE 122	SIGNAL GENERATOR	SMF100A	102149	R&S	2011/7/4	2012/7/3
ETSTW-RE 125	5GHz Notch filter	5NSL11- 5200/E221.3-O/O	1	K&L Microwave	2011/8/19	2012/8/18
ETSTW-RE 126	5GHz Notch filter	5NSL11- 5800/E221.3-O/O	1	K&L Microwave	2011/8/19	2012/8/18
ETSTW-EMI 001	HARMONICS 1000	HAR1000-1P	093	EMC-PARTNER	2011/9/1	2012/8/31
ETSTW-EMS 001	BASELSTRASSE 160 CH- 4242 LAUFEN	CN-EFT1000	354	EMC-PARTNER	Functio	on Test
ETSTW-EMS 002	Frequency Converter	YF-6020	0308014	None	Function	on Test
ETSTW-EMS 003	EMC Immunity Test System	TRA2000IN6	579	EMC-PARTNER	2011/11/2	2012/11/1
ETSTW-EMS 009	Magnetic Field Antenna	MF1000-1	104	EMC-PARTNER	Function	on Test
ETSTW-EMS 010	Coupling De-coupling Network	CDN-UTP8	014	EMC-PARTNER	Functio	on Test
ETSTW-EMS 012	EM Injection Clamp	F-203I-23MM	476	FCC	2011/6/1	2012/5/31
ETSTW-EMS 016	EMF Tester	1390	071208732	TES	2011/10/6	2012/10/5

ETSTW-EMS 017	Multimeter	DM-1220	518614	HOLA	2011/8/11	2012/8/10
ETSTW-EMS 019	Electrostatic Discharge Simulator	ESS-2002	ESS06Y6300	NoiseKen	2011/10/31	2012/10/30
ETSTW-EMS 020	Humidity Temperature Meter	TES-1366	091011116	TES	2011/12/20	2012/12/19
ETSTW-RS 003	RF Power Amplifier	30S1G3	306933	AR	Function	on Test
ETSTW-RS 004	RF Power Amplifier	150W1000	307009	AR	Function	on Test
ETSTW-RS 006	SIGNAL GENERATOR	SML03	101551	R&S	2011/3/7	2012/3/6
ETSTW-RS 007	14" COLOR VIDEO MONITOR	HS-CM145A	0512011548	None	Function	on Test
ETSTW-RS 009	SIGNAL GENERATOR	8648C	3642U01656	HP	2012/2/20	2013/2/19
ETSTW-RS 010	Broadband Field Meter	NBM-520	C-0195	Narda	2011/9/8	2012/9/7
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R&S	2011/10/4	2012/10/3
ETSTW-GSM 019	Band Reject Filter	WRCTF824/849- 822/851-40 /12+9SS	3	WI	2012/1/13	2013/1/12
ETSTW-GSM 020	Band Reject Filter	WRCD1747/1748- 1743/1752-32/5SS	1	WI	2012/1/13	2013/1/12
ETSTW-GSM 021	Band Reject Filter	WRCD1879.5/1880.5 -1875.5/1884.5- 32/5SS	3	WI	2012/1/13	2013/1/12
ETSTW-GSM 022	Band Reject Filter	WRCT901.9/903.1- 904.25-50/8SS	1	WI	2012/1/13	2013/1/12
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2011/9/19	2012/9/18
ETSTW-Cable 002	Microwave Cable	SUCOFLEX 104 (S_Cable 7)	238093	HUBER+SUHNER	2011/5/18	2012/5/17
ETSTW-Cable 003	Microwave Cable	SUCOFLEX 104 (S_Cable 11)	209953	HUBER+SUHNER	2011/5/18	2012/5/17
ETSTW-Cable 010	BNC Cable	5 M BNC Cable	None	JYE BAO CO.,LTD.	2011/3/8	2012/3/7
ETSTW-Cable 011	BNC Cable	BNC Cable 1	None	JYE BAO CO.,LTD.	Pre-test	Use NCR
ETSTW-Cable 012	N TYPE To SMA Cable	Cable 012	None	JYE BAO CO.,LTD.	2011/3/8	2012/3/7
ETSTW-Cable 013	Microwave Cable	SUCOFLEX 104 (S_Cable 5)	232345	HUBER+SUHNER	Function	on Test
ETSTW-Cable 016	BNC Cable	Switch Box	B Cable 1	Schwarz beck	2011/3/4	2012/3/3
ETSTW-Cable 017	BNC Cable	X Cable	B Cable 2	Schwarz beck	2011/3/4	2012/3/3
ETSTW-Cable 018	BNC Cable	Y Cable	B Cable 3	Schwarz beck	2011/3/4	2012/3/3
ETSTW-Cable 019	BNC Cable	Z Cable	B Cable 4	Schwarz beck	2011/3/4	2012/3/3
ETSTW-Cable 022	N TYPE Cable	5006	0002	JYE BAO CO.,LTD.	2011/3/4	2012/3/3
ETSTW-Cable 026	Microwave Cable	SUCOFLEX 104	279075	HUBER+SUHNER	2011/3/10	2012/3/9
ETSTW-Cable 027	Microwave Cable	SUCOFLEX 104	279083	HUBER+SUHNER	2011/3/10	2012/3/9
ETSTW-Cable 028	Microwave Cable	FA147A0015M2020	30064-2	UTIFLEX	2011/4/26	2012/4/25
ETSTW-Cable 029	Microwave Cable	FA147A0015M2020	30064-3	UTIFLEX	2011/4/26	2012/4/25
ETSTW-Cable 030	Microwave Cable	SUCOFLEX 104 (S_Cable 9)	279067	HUBER+SUHNER	2011/3/10	2012/3/9
ETSTW-Cable 031	Microwave Cable	SUCOFLEX 104 (S_Cable 10)	238092	HUBER+SUHNER	2011/11/29	2012/11/28
ETSTW-Cable 032	Microwave Cable	SUCOFLEX 104 (S_Cable 12)	237301	HUBER+SUHNER	Function	on Test
ETSTW-Cable 039	Microwave Cable	SUCOFLEX 104 (S_Cable 19)	316739	HUBER+SUHNER	2011/5/18	2012/5/17
ETSTW-Cable 040	Microwave Cable	SUCOFLEX 104 (S_Cable 20)	316738	HUBER+SUHNER	Functi	on Test
ETSTW-Cable 043	Microwave Cable	SUCOFLEX 104	317576	HUBER+SUHNER	2011/11/29	2012/11/28

ETSTW-Cable 047	Microwave Cable	SUCOFLEX 104	325518	HUBER+SUHNER	2011/11/29	2012/11/28
ETSTW-Cable 051	BNC Cable	BNC Cable 6	None	JYE BAO CO.,LTD.	2011/3/31	2012/3/30
ETSTW-Cable 052	BNC Cable	Clamp Cable	None	Schwarz beck	2011/3/31	2012/3/30
ETSTW-Cable 053	N TYPE To SMA Cable	RG142	None	JYE BAO CO.,LTD.	2011/3/4	2012/3/3
ETSTW-Cable 054	BNC To SMA Cable	RG142	None	JYE BAO CO.,LTD.	2011/3/4	2012/3/3
ETSTW-Cable 055	NTYPE Cable	N30N30-JBY240- 80CM	20110621-1.1	JYE BAO CO.,LTD.	Function	on Test
ETSTW-Cable 056	N TYPE Cable	N30N30-JBY240- 80CM	20110621-1.0	JYE BAO CO.,LTD.	Function Test	
ETSTW-Cable 057	N TYPE Cable	N30N30-JBY240- 80CM	20110621-1.1	JYE BAO CO.,LTD.	Function Test	
WTSTW-SW 001	EMI TEST SOFTWARE	Harmonics-1000	None	EMC PARTNER	HARCS Version 4.16 Firmware Version 2.18	
WTSTW-SW 002	EMI TEST SOFTWARE	EZ_EMC	None	Farad	Version ETS-03A1	
WTSTW-SW 003	EMS TEST SOFTWARE	i2	None	AUDIX	Version 3.2007-8-17b	

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2009 5.2 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2009 6.4 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:Freq (MHz)METER READING + ACF + CABLE LOSS (to the receiver) = FS33 $20 \text{ dB}\mu\text{V} + 10.36 \text{ dB} + 6 \text{ dB} = 36.36 \text{ dB}\mu\text{V/m} @3m$

The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.4-2009 6.3.1. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located at No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207, Taiwan (R.O.C.). The Registration Number: 930600.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows: Average = Peak + Duty Factor Duty Factor = 20 log (dwell time/T) T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

ANSI STANDARD C63.4-2009 10.2.7: Any measurements that utilize special test software shall be indicated and referenced in the test report. During testing, test software 'EZ EMC' was used for setting up different operation modes.

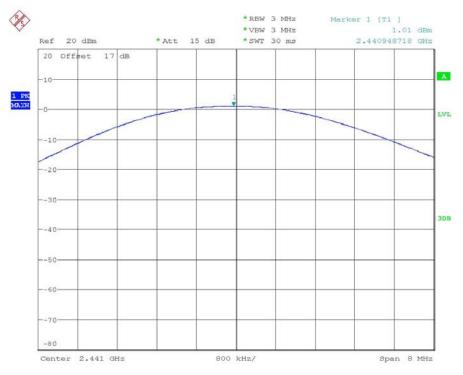
Registration number: W6M21202-12247-C-1 FCC ID: YX6BU4086

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.247(b)	×	×	
Equivalent radiated Power	15.247(b)	×	×	
Spurious Emissions radiated – Transmitter operating	15.247(c)	×	×	
Spurious Emissions conducted – Transmitter operating	15.247			
Carrier Frequency Separation	15.247(a) (1)	×	×	
Number of Hopping Frequencies	15.247(a) (1)(i)	X	×	
Time of Occupancy (Dwell Time)	15.247(a) (1)(i)	X	×	
20 dB Bandwidth	15.247(a) (1)(i)	X	×	
Minimum 6 dB Bandwidth	15.247(a)(2)	X	×	
Band-edge Compliance of RF Emission	15.247(c)	X	×	
Peak Power Spectral Density	15.247(d)	×	×	
Radiated Emission from Digital Part	15.109			
Power Line Conducted Emission	15.207(a)	×	×	

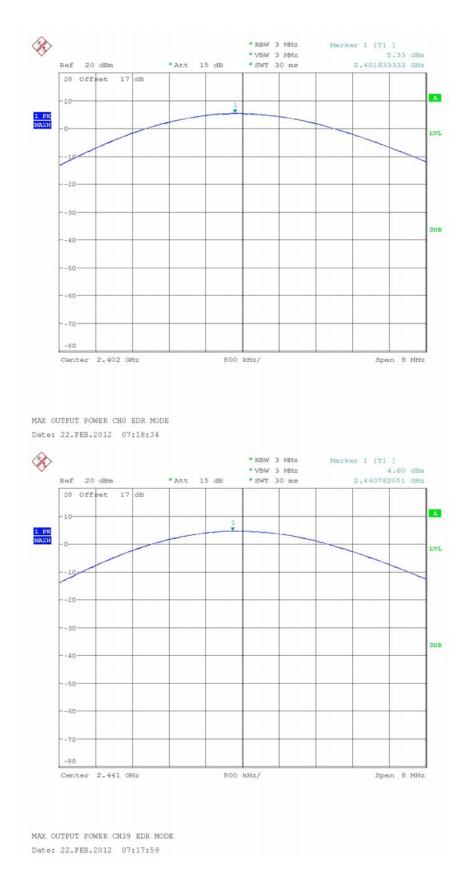
3.1 Peak Output Power (transmitter)

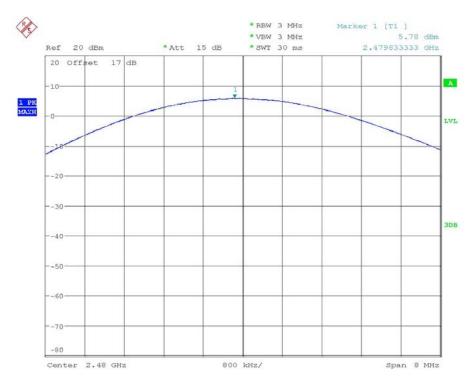
FCC Rule: 15.247(b)(3)


This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant. The power was measured with modulation (declared by the applicant).

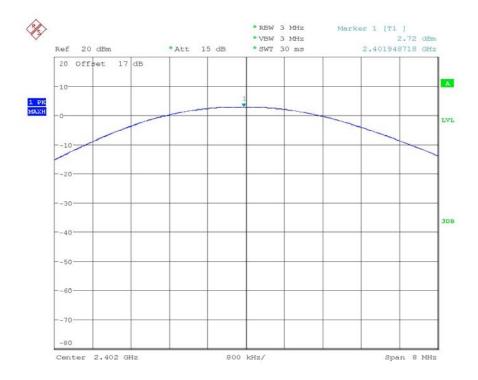
Mode 1

MAX OUTPUT POWER CH0 Date: 22.FEB.2012 05:38:11


MAX OUTPUT POWER CH39

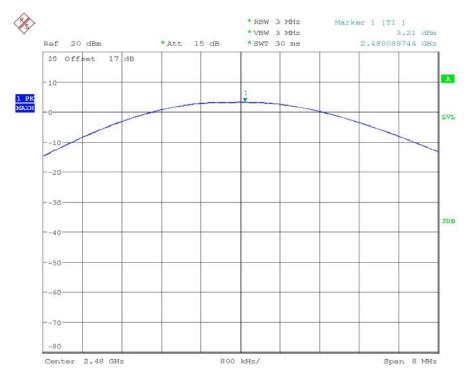

MAX OUTPUT POWER CH78 Date: 22.FEB.2012 05:39:08

Mode 2



MAX OUTPUT POWER CH78 EDR MODE Date: 22.FEB.2012 07:17:27

Mode 3



MAX OUTPUT POWER BT4.0 CH0 Date: 22.FEB.2012 09:16:13

MAX OUTPUT POWER BT4.0 CH19 Date: 22.FEB.2012 09:15:32

MAX OUTPUT POWER BT4.0 CH39 Date: 22.FEB.2012 09:14:49

Mode A

Test condition $T_{nom}= 23^{\circ}C, V_{nom} = 120 V$	Signal Field strength TX highest power mode $dB \ \mu V/m$
Frequency [MHz]	
Mode B	
Test condition $T_{nom}=23^{\circ}C$, $V_{nom}=120$ V	Signal Field strength TX highest power mode dB μ V/m
Frequency [MHz]	
Mode C	
Test condition $T_{nom}= 23^{\circ}C, V_{nom} = 120 V$	Signal Field strength TX highest power mode dB μ V/m
Frequency [MHz]	

--

--

Limits:

Frequency	Power
MHz	dBm
902 - 928	30
2400 - 2483.5	30
5725 - 5850	30

In case of employing transmitter antennas having antenna gain > 6 dBi and using fixed point-to point operation consider 15.247 (b)(4)

Test equipment used: ETSTW-RE 055

3.2 Equivalent isotropic radiated power

FCC Rule: 15.247(b)(3)Bluetooth 2.0+EDR EIRP = max. conducted output power + antenna gain EIRP = 5.78 dBm + 0.73 dBi = 6.51 dBmLimit: EIRP = +36 dBm for Antenna gain <6dBi Bluetooth 4.0 EIRP = max. conducted output power + antenna gain EIRP = 3.21 dBm + 0.73 dBi = 3.94 dBmLimit: EIRP = +36 dBm for Antenna gain <6dBi

Test equipment used: ETSTW-RE 055

3.3 RF Exposure Compliance Requirements

Conclusion: No Evaluation Required if power is below this threshold:

F(G	mW	
Low	2.402	24.58
High	2.480	24.38

Maximum measured transmitter power:

Bluetooth 2.0+EDR	Bluetooth 4.0
3.784 mW	2.094 mW
4.477 mW	2.477 mW
	3.784 mW

• The antenna is PCB antenna, antenna gain is 0.73 dBi.

Threshold for no SAR evaluation is 24.58mW.

Conclusion: No SAR evaluation required since Transmitter output power is below FCC threshold.

3.4 Transmitter Radiated Emissions in Restricted Bands

FCC Rules: 15.247 (c), 15.205, 15.209, 15.35 Radiated emission measurements were performed from 30 MHz to 26500 MHz. For radiated emission tests, the analyzer setting was as followings:

Frequency ≤ 1 GHz, RBW:100 kHz, VBW: 100 kHz (Peak measurements) Frequency > 1 GHz, RBW: 1 MHz, VBW: 1 MHz (Peak measurements) Frequency > 1 GHz, RBW:1 MHz, VBW: 10 Hz (Average measurements)

Limits.

For frequencies below 1GHz:

Frequency of Emission	Field strength	Field Strength
(MHz)	(microvolts/meter)	(dB microvolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of Digit Transmission Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the setting shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation."

The correction factor, based on the total channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty cycle correction = $20 \log (\text{dwell time}/ 100 \text{ms})$

Note: No duty cycle correction was added to the reading of this EUT.

Explanation: See attached diagrams in Appendix.

3.5 Spurious Emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))

FCC Rule: 15.247(c), 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

Limits:

For frequencies above 1GHz (Peak measurements). Modified Limit for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

For frequencies above 1GHz (Average measurements). Max. reading – 20dB

Max. reading – 20 dB

Guidance on Measurement of Digit Transmission Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation."

The correction factor, based on the total channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty Cycle correction = 20 log (dwell time/100ms)

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 042, ETSTW-RE 043, ETSTW-RE 044

Note: No duty cycle correction was added to the reading of EUT.

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance with point 2.3.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits.

In the Table being listed the critical peak and average value and exhibit the compliance with the above calculated Limits.

If in the column's correction factor states a value then the max. Field strength in the same row is corrected by a value gained from the "Correction Factor".

Model: Mode: Polarization:	BU-4086 BT2.0 240 Horizontal			Date Temj Hum	perature:	2012/ 24 60		°C %	E	ngineer:	Vic	;
Frequency (MHz)	Reading (dBuV)	Detector	r Facto (dB)		Result BuV/m)	Lin (dBu\		Mar (d	gin B)	Table Degree (Deg.)		Ant. High (cm)
166.8937	12.76	peak	14.7	4 2	27.50	43.	50	-16	.00	175		100
405.2102	8.68	peak	17.3	9 :	26.07	46.	00	-19	.93	175		100
Frequency	Read (dBu	ιV)	Factor (dB)	(dBu	t @3m V/m)		V/m)		Vargir	Degre	е	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave		(dB)	(Deg.)	(cm)
4804.0000	41.25		4.56	45.81		74.00	54.0		-28.19			100
7206.0000	39.78		6.93	46.71		74.00	54.0		-27.29			100
9608.0000	33.13		9.47	42.60		74.00	54.0		-31.40			100
12010.0000	32.94		13.25	46.19		74.00	54.0)0 ·	-27.81	325		100
Polarization	Vertical		1			-						
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)		Result BuV/m)	Lin (dBu\		Mar (d		Table Degree (Deg.)		Ant. High (cm)
110.0802	12.44	peak	12.0	7	24.51	43.	50	-18	.99	215		100
405.2104	13.71	peak	17.3	9	31.10	46.	00	-14	.90	225		100
-		•	•									•
Frequency	Read (dBu	ιV)	Factor (dB)	(dBu	t @3m V/m)	•	V/m)		Vargir	Degre	е	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave		(dB)	(Deg.)	(cm)
4804.0000	41.74		4.56	46.30		74.00	54.0		-27.70			100
7206.0000	39.58		6.93	46.51		74.00	54.0		-27.49			100
9608.0000	32.84		9.47	42.31		74.00	54.0		-31.69			100
12010.0000	31.87		13.25	45.12		74.00	54.0)() -	-28.88	215		100

Summary table with radiated data of the test plots

Mode: Polarization:	BT2.0 2441 Horizontal	IMHz									
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)		Result BuV/m)		Limit (dBuV/m)		argin dB)	Table Degree (Deg.)	Ant. High (cm)
166.8937	13.15	peak	14.7	4	27.89	43.	50	-15	5.61	270	100
335.0701	10.61	peak	15.7	7	26.38	46.	00	-19	9.62	165	100
Frequency (MHz)	Readi (dBu\ Peak		Factor (dB) Corr.		t @3m JV/m) Ave.	Limit (dBu Peak	@3m V/m) Ave		Margi (dB)	Degre	e Ant. High
4882.0000	40.46		4.59	45.05		74.00	54.0	00	-28.9	5 110	100
7323.0000	39.53		6.91	46.44		74.00	54.0	00	-27.5		100
9764.0000	33.20		9.67	42.87		74.00	54.(00	-31.1	3 275	100
12205.0000	33.11		14.76	47.87		74.00	54.0	00	-26.1	3 145	100
Polarization:	Vertical	1								T 11	
Frequency (MHz)	Reading (dBuV)	Detector	r Facto (dB)		Result BuV/m)	Lin (dBu ^v			argin dB)	Table Degree (Deg.)	Ant. High (cm)
110.0802	11.66	peak	12.0	7	23.73	43.	50	-19	9.77	300	100
405.2104	13.83	peak	17.3	9	31.22	46.	00	-14	4.78	205	100
Frequency (MHz)	Readi (dBu\ Peak		Factor (dB) Corr.		t @3m JV/m) Ave.	Limit (dBu Peak	@3m V/m) Ave		Margi (dB)	Degre	e Ant. High
4882.0000	40.68		4.59	45.27		74.00	54.0	00	-28.7	3 310	100
7323.0000	39.77		6.91	46.68		74.00	54.0		-27.3		100
9764.0000	33.33		9.67	43.00		74.00	54.0		-31.0		100
12205.0000	31.13		14.76	45.89		74.00	54.(00	-28.1	1 220	100
Mode: Polarization:	BT2.0 2480 Horizontal)MHz						-			
Frequency (MHz)	Reading (dBuV)	Detector	r Facto (dB)		Result BuV/m)	Lin (dBu ^v			argin dB)	Table Degree (Deg.)	Ant. High (cm)
166.3526	12.31	peak	14.7	7	27.08	43.	50	-16	6.42	320	100
405.2102	9.37	peak	17.3		26.76	46.			9.24	240	100
			-						•		

Frequency	Rea (dB		Factor (dB)		:@3m V/m)		@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4960.0000	40.40		4.79	45.19		74.00	54.00	-28.81	245	100
7440.0000	40.34		6.69	47.03		74.00	54.00	-26.97	315	100
9920.0000	33.33		9.85	43.18		74.00	54.00	-30.82	155	100
12400.0000	31.80		14.35	46.15		74.00	54.00	-27.85	285	100

Polarization	: Vertical	1		-		1							
Frequency (MHz)	Reading (dBuV)				Margin (dB)	Table Degree (Deg.)	Ant. High (cm)						
166.8938	8.92	peak	14.74	14.74 23.66		43.	50	-19.84	125	100			
405.2104	13.42	peak	17.39	30.81		46.0	00	-15.19	195	100			
-										<u> </u>			
Frequency (MHz)	Read (dBu Peak		Factor (dB) Corr.		t @3m V/m) Ave.	Limit (dBu Peak	@3m V/m) Ave		Degre	e Ant. High			
4960.0000	40.90		4.79	45.69		74.00	54.0		, , ,	100			
7440.0000	38.96		6.69	45.65		74.00	54.0			100			
9920.0000	33.94		9.85	43.79		74.00	54.0			100			
12400.0000	33.02		14.35	47.37		74.00	54.0			100			
12400.0000	JJ.02		14.55	47.37		74.00	54.0	0 -20.	03 330	100			
Model: Mode: Polarization:	BU-4086 BT4.0 240 Horizontal	2MHz		Date Temj Hum	perature:	2012/2 24 60		°C %	Engineer:	Vic			
Frequency (MHz)	Reading (dBuV)	Detector	, Facto (dB)		Result BuV/m)	Lim (dBu\		Margin (dB)	Table Degree (Deg.)	Ant. High (cm)			
166.8937	12.61	peak	14.74	4	27.35	43.50		-16.15	220	100			
405.2102	8.82	peak	17.39	9	26.21	46.0	00	-19.79	275	100			
Frequency	Read (dBu		Factor (dB)		t @3m V/m)	Limit (dBu	@3m V/m)	Degree					
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	· ·	/ / /) (cm)			
4804.0000	41.23		4.56	45.79		74.00	54.0	0 -28.	21 195	100			
7206.0000	39.75		6.93	46.68		74.00	54.0	0 -27.	32 225	100			
9608.0000	32.74		9.47	42.21		74.00	54.0	0 -31.	79 165	100			
12010.0000	31.79		13.25	45.04		74.00	54.0	0 -28.	96 285	100			
Polarization	: Vertical			Polarization: Vertical									
				1		-	1						
Frequency (MHz)	Reading (dBuV)	Detector	Facto (dB)		Result BuV/m)	Lim (dBu\		Margin (dB)	Table Degree (Deg.)	Ant. High (cm)			
		Detector peak		(d			//m)		Degree	High			
(MHz)	(dBuV)		(dB)	(d	BuV/m)	(dBu\	//m) 50	(dĔ)	Degree (Deg.)	High (cm)			
(MHz) 109.5391	(dBuV) 12.17	peak	(dB)	(d	BuV/m) 24.19	(dBu\ 43.	//m) 50	(dĔ) -19.31	Degree (Deg.) 215	High (cm) 100			
(MHz) 109.5391	(dBuV) 12.17	peak peak	(dB)	(d 2 :: 9 :: Result	BuV/m) 24.19	(dBu\ 43.! 46.0	//m) 50 00	(dĔ) -19.31 -15.01	Degree (Deg.) 215 135	High (cm) 100 100			
(MHz) 109.5391 405.2104	(dBuV) 12.17 13.60 Read	peak peak	(dB) 12.02 17.30 Factor	(d 2 :: 9 :: Result	BuV/m) 24.19 30.99 t @3m	(dBu\ 43.! 46.0	//m) 50 00 @3m	(dĔ) - <u>19.31</u> - <u>15.01</u> Març	Degree (Deg.) 215 135 gin Table Degre	High (cm) 100 100 e Ant. High			
(MHz) 109.5391 405.2104 Frequency	(dBuV) 12.17 13.60 Read (dBu	peak peak ing V)	(dB) 12.02 17.30 Factor (dB)	(d 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 :	BuV/m) 24.19 30.99 t @3m V/m)	(dBu\ 43.! 46.(Limit (dBu	//m) 50 00 @3m V/m)	(dB) - <u>19.31</u> - <u>15.01</u> Març . (dE	Degree (Deg.) 215 135 gin Table Degre 3) (Deg.	High (cm) 100 100 e Ant. High			
(MHz) 109.5391 405.2104 Frequency (MHz)	(dBuV) 12.17 13.60 Read (dBu Peak	peak peak ing V) Ave.	(dB) 12.02 17.30 Factor (dB) Corr.	(d 2 7 Result (dBu Peak	BuV/m) 24.19 30.99 t @3m V/m) Ave.	(dBu\ 43.! 46.0 Limit (dBu Peak	//m) 50 00 @3m V/m) Ave	(dB) -19.31 -15.01 Març . (dE 0 -28.	Degree (Deg.) 215 135 gin Table Degre 3) (Deg.	High (cm) 100 100 e Ant. High (cm)			
(MHz) <u>109.5391</u> <u>405.2104</u> Frequency (MHz) <u>4804.0000</u>	(dBuV) 12.17 13.60 Read (dBu Peak 41.13	ing V) Ave.	(dB) 12.02 17.30 Factor (dB) Corr. 4.56	(d 2 Result (dBu Peak 45.69	BuV/m) 24.19 30.99 t @3m V/m) Ave. 	(dBu\ 43.! 46.0 Limit (dBu Peak 74.00	//m) 50 00 @3m V/m) Ave 54.0	(dB) -19.31 -15.01 Marq . (dE 0 -28. 0 -27.	Degree (Deg.) 215 135 gin Table Degre 3) (Deg. 31 315 46 145	High (cm) 100 100 e Ant. High (cm) 100			
(MHz) <u>109.5391</u> <u>405.2104</u> Frequency (MHz) <u>4804.0000</u> 7206.0000	(dBuV) 12.17 13.60 Read (dBu Peak 41.13 39.61	peak peak ing V) Ave. 	(dB) 12.02 17.30 Factor (dB) Corr. 4.56 6.93	(d) 2	BuV/m) 24.19 30.99 t @3m V/m) Ave. 	(dBu\ 43.! 46.0 Limit (dBu Peak 74.00 74.00	//m) 50 00 @3m V/m) Ave 54.0 54.0	(dB) -19.31 -15.01 Marq . (dE 0 -28. 0 -27. 0 -28. 0 -28.	Degree (Deg.) 215 135 gin Table Degre 3) (Deg. 31 315 46 145 54 165	High (cm) 100 100 e Ant. High (cm) 100 100			

Mode: Polarization:	BT4.0 244 Horizontal	0MHz									
Frequency (MHz)	Reading (dBuV)	Detector	r Facto (dB)		Result BuV/m)		Limit (dBuV/m)		Tab Degr (Deg	ee	Ant. High (cm)
166.8937	11.61	peak	14.74	1	26.35	43.	50	-17.15	315	5	100
335.0701	11.40	peak	15.7	7	27.17	46.	00	-18.83	215	5	100
-											
Frequency	Readi (dBu		Factor (dB)		t @3m ıV/m)	(dBu	@3m ıV/m)			⁻able egree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave	e. (d	B) (I	Deg.)	(cm)
4880.0000	40.70		4.59	45.29		74.00	54.0	0 -28	.71	235	100
7320.0000	39.58		6.92	46.50		74.00	54.0	0 -27	.50	300	100
9760.0000	34.15		9.66	43.81		74.00	54.0	00 -30	.19	245	100
12200.0000	31.85		14.79	46.64		74.00	54.0	0 -27	.36	195	100
Polarization:	Polarization: Vertical										
Frequency (MHz)	Reading (dBuV)	Detector	r Facto (dB)		Result BuV/m)	Lir (dBu		Margin (dB)	Tab Degr (Deg	ee	Ant. High (cm)
110.0802	11.95	peak	12.0	7	24.02	43.	50	-19.48	165	5	100
405.2104	13.93	peak	17.39	9	31.32	46.	00	-14.68	320)	100
Frequency (MHz)	Readi (dBu Peak		Factor (dB) Corr.		t @3m ıV/m) Ave.		@3m IV/m) Ave		D	able egree Deg.)	Ant. High (cm)
4880.0000	40.37		4.59	44.96		74.00	54.0	、 、	/ \	325	100
7320.0000	39.91		6.92	46.83		74.00	54.0			165	100
9760.0000	33.50		9.66	43.16		74.00	54.0			245	100
12200.0000	31.42		14.79	46.21		74.00	54.0			110	100
Mode: Polarization:	BT4.0 248 Horizontal	0MHz									
Frequency (MHz)	Reading (dBuV)	Detector	r Facto (dB)		Result BuV/m)	Lir (dBu		Margin (dB)	Tab Degr (Deg	ee	Ant. High (cm)
166.3526	12.72	peak	14.7	7	27.49	43.	50	-16.01	230)	100
335.0701	10.72	peak	15.7	7	26.49	46.	00	-19.51	245	5	100
Frequency (MHz)	Read (dBu Peak		Factor (dB) Corr.		t @3m ıV/m) Ave.		@3m IV/m) Ave		D	⁻ able egree Deg.)	Ant. High (cm)
4960.0000	40.27		4.79	45.06		74.00	54.0)0 -28		205	100
7440.0000	39.78		6.69	46.47		74.00	54.0			115	100
	22.47		0.05	10.01		74.00	EA C	10 20	60	195	100
9920.0000	33.46		9.85	43.31		74.00	54.0	00 -30	.07	175	100

F	Polarization:	Vertical							
	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
	108.9980	11.62	peak	11.97	23.59	43.50	-19.91	285	100
	405.2104	14.04	peak	17.39	31.43	46.00	-14.57	125	100

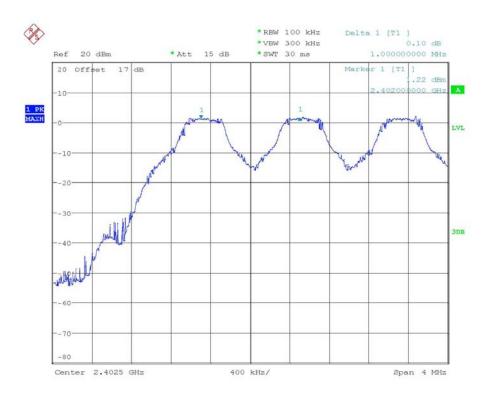
Frequency	Read (dB		Factor (dB)	Result (dBu	:@3m V/m)		@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4960.0000	40.64		4.79	45.43		74.00	54.00	-28.57	315	100
7440.0000	39.71		6.69	46.40		74.00	54.00	-27.60	285	100
9920.0000	32.58		9.85	42.43		74.00	54.00	-31.57	215	100
12400.0000	32.77		14.35	47.12		74.00	54.00	-26.88	175	100

Note

- 1. Correction Factor = Antenna factor + Cable loss Preamplifier
- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty for 3m measurement: 30-1000 MHz = \pm 3.72 dB, 1-18 GHz = \pm 5.56dB, 18-40 GHz = \pm 3.46 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. See attached diagrams in appendix.

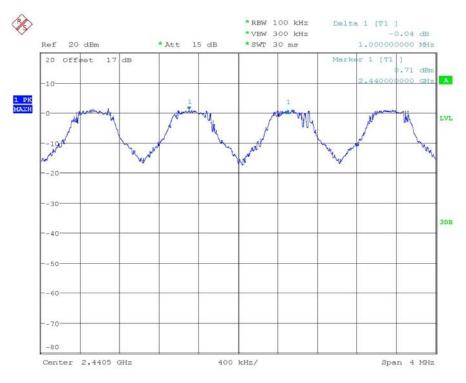
TEST RESULT (Transmitter): The unit DOES meet the FCC requirements.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 042, ETSTW-RE 043, ETSTW-RE 044

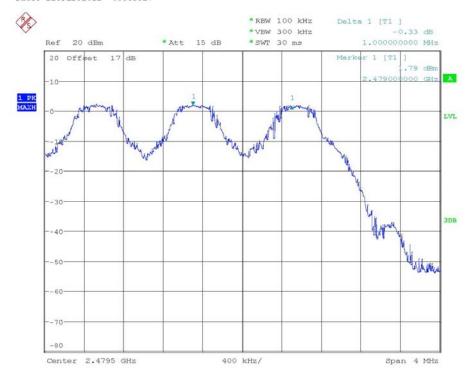


3.6 Carrier Frequency Separation

Carrier Frequency Separation was measured with modulation (declared by manufacturer).


According to FCC rules part 15 subpart C §15.247 frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater.

Bluetooth 2.0



FREQUENCY SEPARATION CH0 Date: 22.FEB.2012 05:42:44

FREQUENCY SEPARATION CH39 Date: 22.FEB.2012 05:43:27

FREQUENCY SEPARATION CH78 Date: 22.FEB.2012 05:44:15

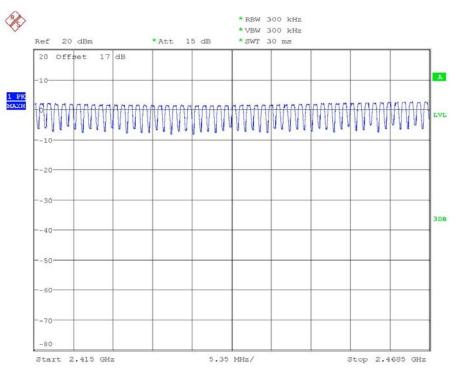
Limits:

Frequency Range	Lin	nits			
MHz	20 dB bandwidth $<$ 25 kHz	20 dB bandwidth > 25 kHz			
902-928	25 kHz	20 dB bandwidth			
2400-2483.5 5725-5850.0	25 kHz	20 dB bandwidth			

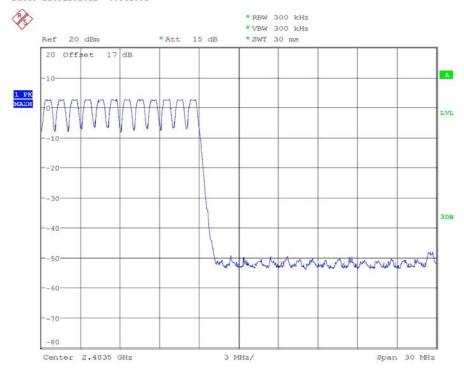
Test equipment used: ETSTW-RE 055, ETSTW-RE 064

3.7 Number of Hopping Frequencies

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping frequencies. Frequency hopping systems in 5725-5850 MHz bands shall use least 75 hopping frequencies.


For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20dB bandwidth of the hopping channel 250 kHz or greater, the system shall use at least 25 hopping frequencies.

Bluetooth 2.0



NUMBER OF HOPPING CH0-13 Date: 22.FEB.2012 05:40:03

NUMBER OF HOPPING CH14-66 Date: 22.FEB.2012 05:41:51

NUMBER OF HOPPING CH67-78 Date: 22.FEB.2012 05:40:43

Limits:

Frequency Range	Limit						
MHz	20dB Bandwidth	Number of Channels					
902-928 MHz	Bandwidth < 250 kHz	≥ 50					
902-928 MHZ	Bandwidth $\ge 250 \text{ kHz}$	≥ 25					
2400-2483.5	not defined	15					
5725-5850.0 MHz	1 MHz	75					

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

3.7.1 Pseudorandom Frequency Hopping Sequence

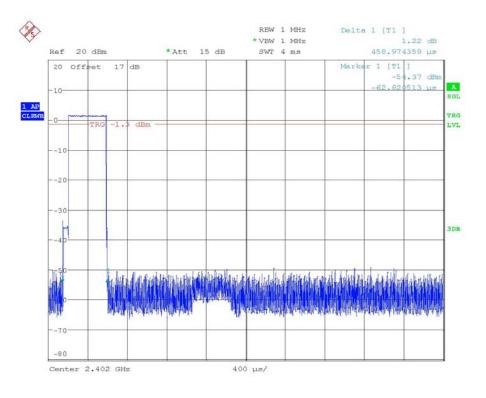
The generation of the hopping sequence is determined by the Bluetooth cord specification and complies with the FCC requirements.

3.7.2 Coordination of hopping sequences to other transmitters

According to the Bluetooth core specification V1.1 such a coordination is not possible. During scatternet function only one of the two hopping sequences will be used at a definite moment.

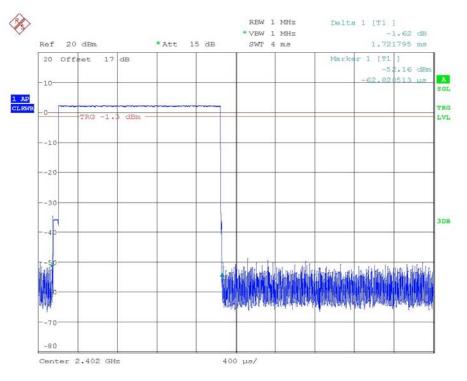
3.7.3 System Receiver Hopping Capability

According to the Bluetooth core specification. The system receivers shift frequencies in synchronization with the transmitted signals.

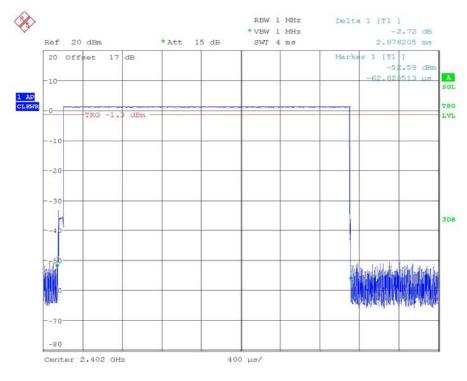

3.8 Time of Occupancy (Dwell Time)

Frequency hopping systems operating in the 5725-5850 MHz band shall use an average time of occupancy on any frequency not greater than 0.4 seconds within a 30 second period.

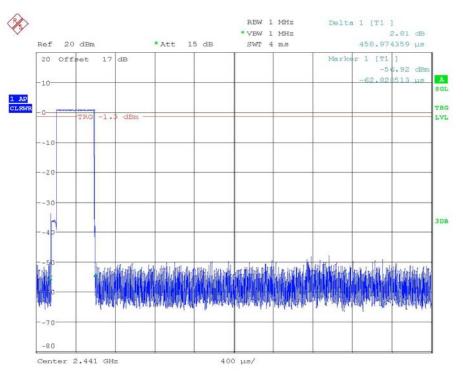
In 2400-2483.5 MHz band the average time of occupancy on any channel shall not be greater than 0.4 seconds multiplied by the number of hopping channels employed.


For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not greater than 0.4 seconds within a 20 second period; if the 20dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

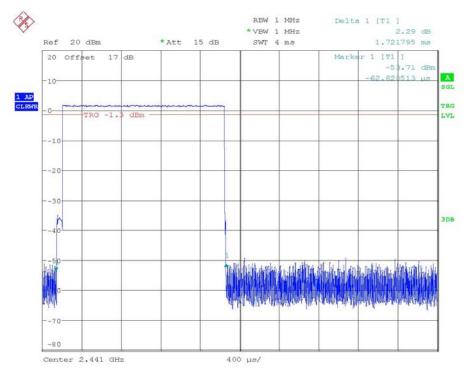
Bluetooth 2.0



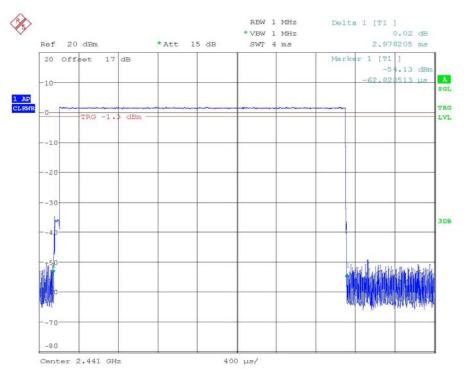
DWELL TIME CH0 DH1 (0.4589ms * 320event = 146.848ms) Date: 22.FEB.2012 07:00:32



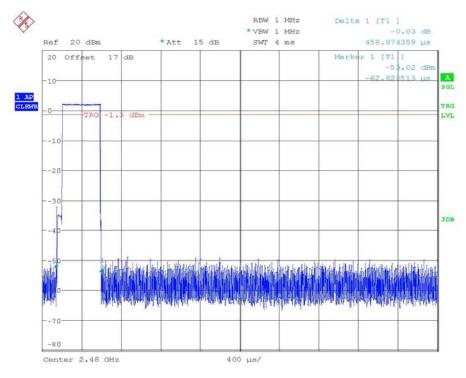
DWELL TIME CH0 DH3 (1.7217ms * 160event = 275.472ms) Date: 22.FEB.2012 07:04:56



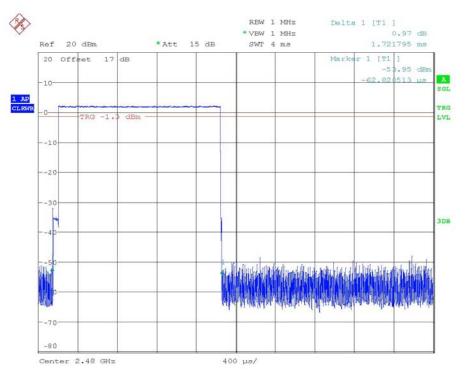
DWELL TIME CH0 DH5 (2.9782ms * 110event = 327.602ms) Date: 22.FEB.2012 07:06:20



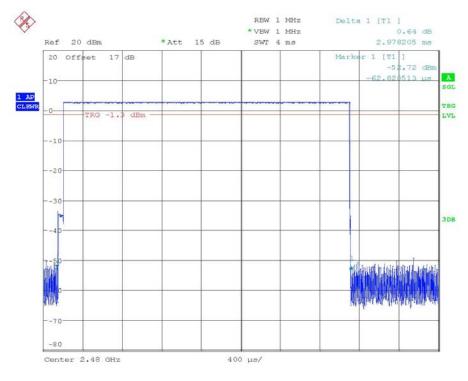
DWELL TIME CH39 DH1 (0.4589ms * 320event = 146.848ms) Date: 22.FEB.2012 07:01:31



DWELL TIME CH39 DH3 (1.7217ms * 160event = 275.472ms) Date: 22.FEB.2012 07:04:24



DWELL TIME CH39 DH5 (2.9782ms * 110event = 327.602ms) Date: 22.FEB.2012 07:06:52



DWELL TIME CH78 DH1 (0.4589ms * 320event = 146.848ms) Date: 22.FEB.2012 07:02:08

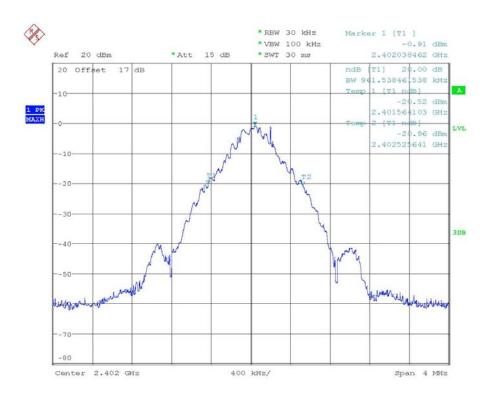
DWELL TIME CH78 DH3 (1.7217ms * 160event = 275.472ms) Date: 22.FEB.2012 07:03:51

DWELL TIME CH78 DH5 (2.9782ms * 110event = 327.602ms) Date: 22.FEB.2012 07:07:25

Limits and measurement periods:

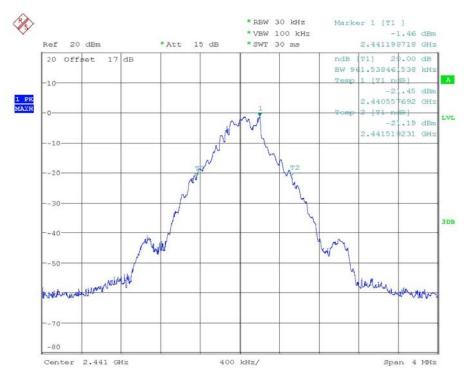
Frequency MHz	Number of channels	Measurement Periode	Limit
902 - 928	≥50	20 s	0.4 s
902 - 928	49 ≥ 25	10 s	0.4 s
2400 - 2483.5	≥ 15	0.4 s * number of used channels	0.4 s
5725- 5850	≥ 75	30 s	0.4s

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

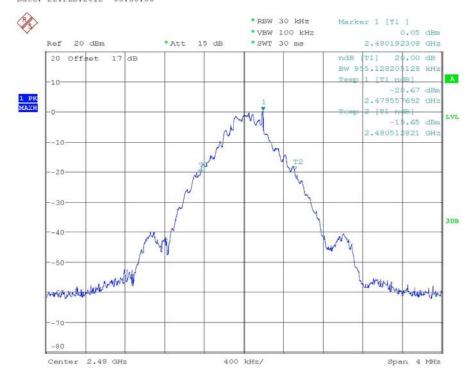

3.9 20dB Bandwidth

Frequency hopping systems operating in the 5725-5850 MHz bands shall use a maximum 20dB bandwidth of 1 MHz.

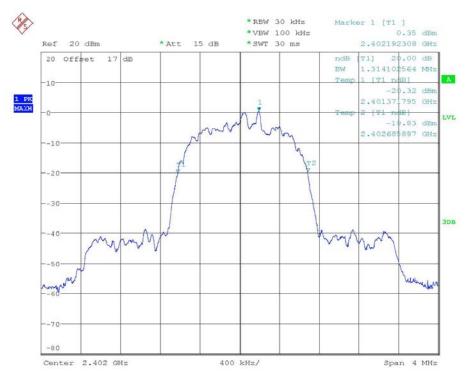
The 20dB bandwidth is measured on the lowest, middle and highest hopping channel.


For frequency hopping systems operating in the 902-928 MHz band the maximum 20dB bandwidth of the hopping channel is 500 kHz.

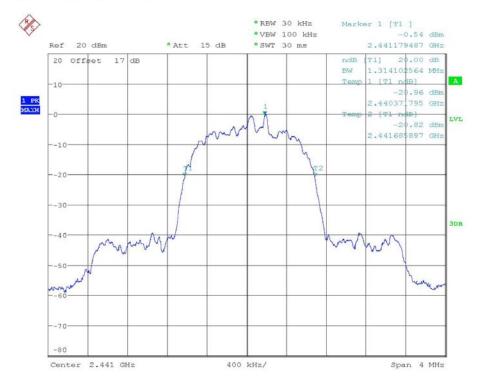
Bluetooth 2.0



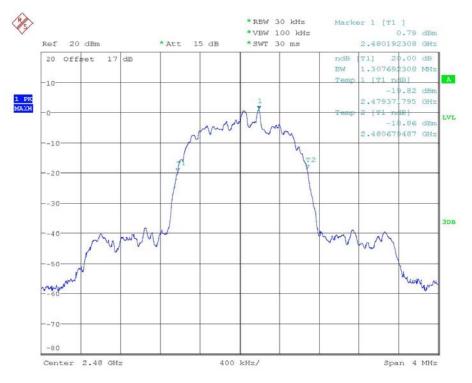
20DB BANDWIDTH CH0 Date: 22.FEB.2012 05:38:20



20DB BANDWIDTH CH39 Date: 22.FEB.2012 05:38:56



20DB BANDWIDTH CH78 Date: 22.FEB.2012 05:39:16



20DB BANDWIDTH CH0 EDR MODE Date: 22.FEB.2012 06:24:18

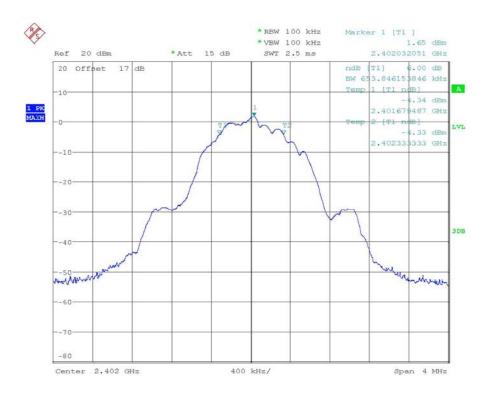
20DB BANDWIDTH CH39 EDR MODE Date: 22.FEB.2012 06:27:22

20DB BANDWIDTH CH78 EDR MODE Date: 22.FEB.2012 06:28:35

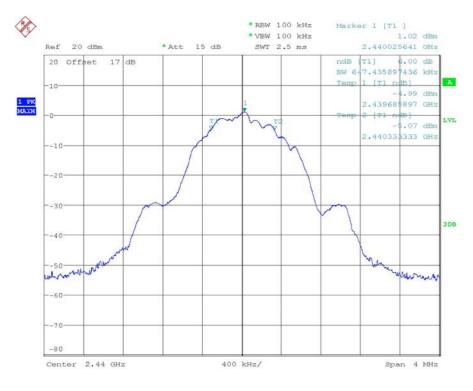
Limits:

Frequency Range / MHz	Limit
902-928	\leq 500 kHz
2400-2483.5	not defined
5725-5850	$\leq 1 \text{ MHz}$

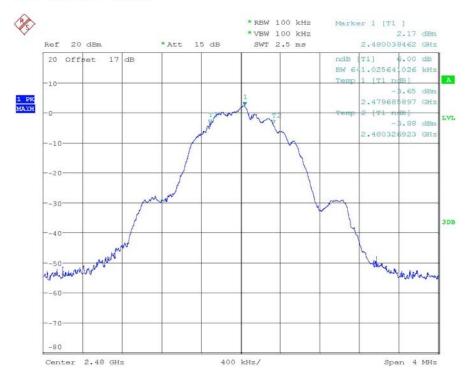
Test equipment used: ETSTW-RE 055, ETSTW-RE 064


3.9.1 System Receiver Input Bandwidth

It is determined in the Bluetooth core specification. The value matches to the bandwidth of transmitter signal.


3.10 Minimum 6 dB Bandwidth

The analyzer ResBW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK reading was taken, two markers were set 6 dB below the maximum level on the right and the left side of the emission. The 6 dB bandwidth is the frequency difference between the two markers.



6DB BANDWIDTH BT4.0 CH0 Date: 22.FEB.2012 09:04:00

6DB BANDWIDTH BT4.0 CH19 Date: 22.FEB.2012 09:05:25

6DB BANDWIDTH BT4.0 CH39 Date: 22.FEB.2012 09:06:12

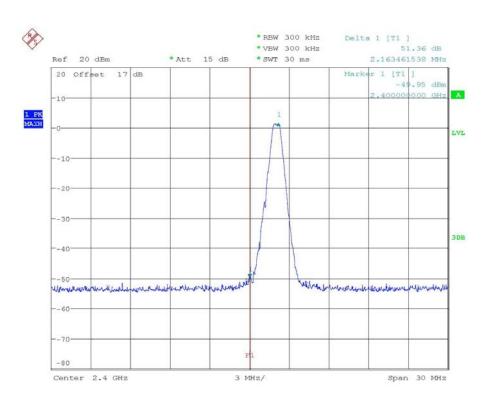
Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M21202-12247-C-1 FCC ID: YX6BU4086

Limits:

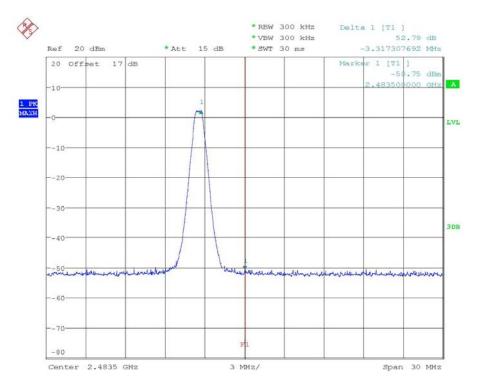
Frequency Range MHz	Limits
902-928	min 500 kHz
2400-2483.5	min 500 kHz
5725-5850	min 500 kHz

Test equipment used: ETSTW-RE 055



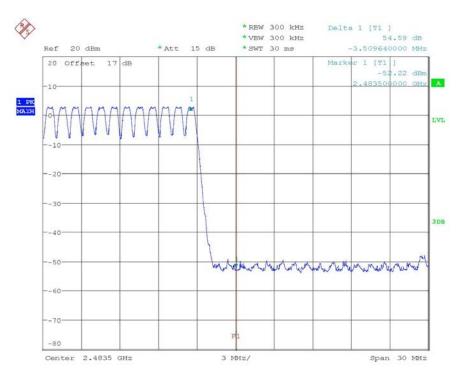
3.11 Radiated Emission on the band edge

According to FCC rules part 15 subpart C §15.247(c) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

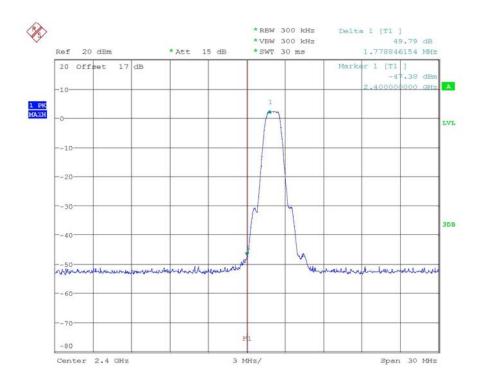

In addition radiated emission which fall in the restricted bands, as defined in section 15.205(a), must also with the radiated emission limits.

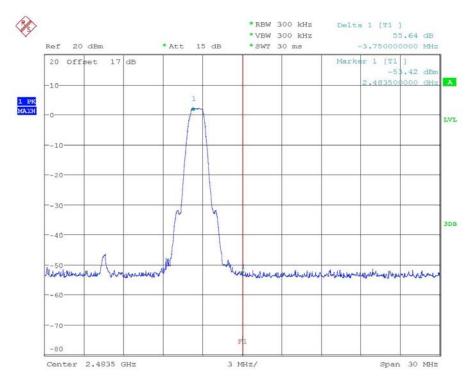
Mode 1

BANDEDGE CH0 Date: 22.FEB.2012 05:38:36

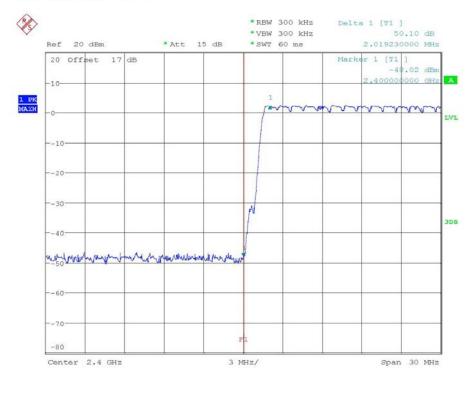


BANDEDGE CH78 Date: 29.FEB.2012 10:44:13

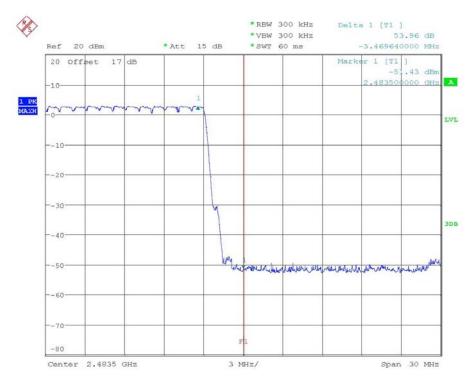

BANDEDGE CH0 HOPPING MODE Date: 22.FEB.2012 05:40:04


BANDEDGE CH78 HOPPING MODE Date: 22.FEB.2012 05:40:44

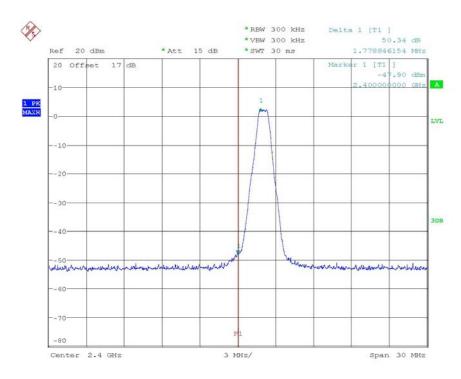
Mode 2

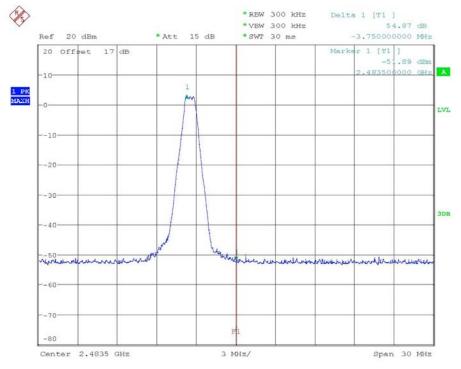


BANDEDGE CH0 EDR MODE Date: 22.FEB.2012 06:38:25



BANDEDGE CH78 EDR MODE Date: 22.FEB.2012 05:45:40


BANDEDGE CH0 EDR HOPPING MODE Date: 22.FEB.2012 05:47:28


BANDEDGE CH78 EDR HOPPING MODE Date: 22.FEB.2012 05:49:12

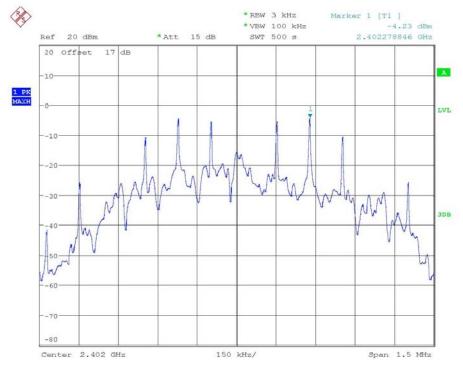
Mode 3

BANDEDGE BT4.0 CH0 Date: 22.FEB.2012 09:11:16

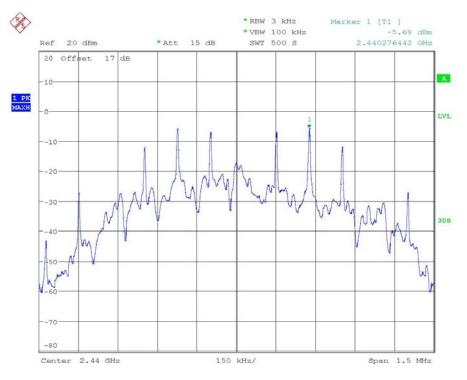
BANDEDGE BT4.0 CH39 Date: 22.FEB.2012 09:13:12

Limit:

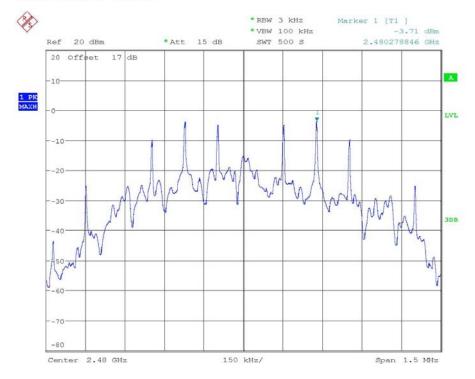
Frequency Range / MHz	Limit
902 –928	
2400 - 2483.5	- 20 dB
5725 - 5850	


Test equipment used: ETSTW-RE 055

3.12 Peak Power Spectral Density


Peak Power Spectral density is a measured at low, middle and high channel.

The peak output power is measured with a measurement bandwidth of 10 MHz and displayed on diagram together with Peak Power Spectral Density result which was measured with a bandwidth of 3 kHz, appreciate frequency span and sweep time.



POWER DENSITY BT4.0 CH0 Date: 22.FEB.2012 09:22:10

POWER DENSITY BT4.0 CH19 Date: 22.FEB.2012 09:08:31

POWER DENSITY BT4.0 CH39 Date: 22.FEB.2012 09:07:53

Limits:

Frequency Range MHz	dBm
902-928	8
2400-2483.5	8
5725-5850	8

Test equipment used: ETSTW-RE 055

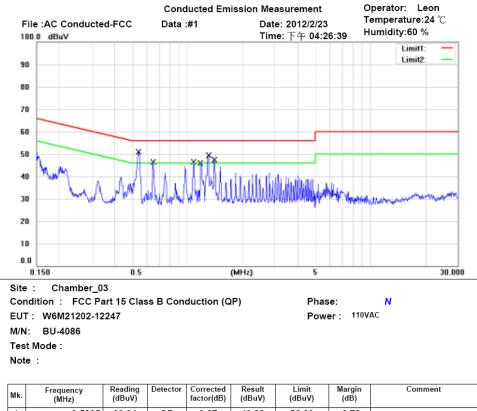
3.13 Radiated Emission from Digital Part

FCC Rule: 15.109

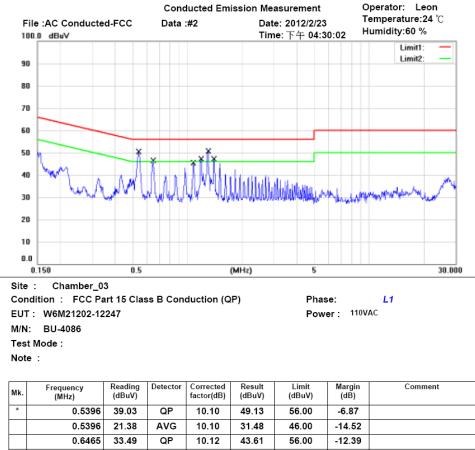
Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission	Field Strength	Field Strength
(MHz)	(microvolts/meter)	(dBmicrovolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 042, ETSTW-RE 043, ETSTW-RE 044


Explanation: Please refer to separated test report no.: W6M21202-12247-P-15B.

3.14 Power Line Conducted Emission


For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Mk.	Frequency (MHz)	Reading (dBuV)	Detector	Corrected factor(dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Comment
*	0.5395	39.31	QP	9.97	49.28	56.00	-6.72	
	0.5395	21.58	AVG	9.97	31.55	46.00	-14.45	
	0.6462	34.04	QP	9.98	44.02	56.00	-11.98	
	0.6462	19.02	AVG	9.98	29.00	46.00	-17.00	
	1.0778	33.97	QP	9.99	43.96	56.00	-12.04	
	1.0778	20.96	AVG	9.99	30.95	46.00	-15.05	
	1.1860	33.06	QP	10.00	43.06	56.00	-12.94	
	1.1860	18.22	AVG	10.00	28.22	46.00	-17.78	
	1.2927	36.61	QP	10.00	46.61	56.00	-9.39	
	1.2927	18.17	AVG	10.00	28.17	46.00	-17.83	
	1.4018	35.03	QP	10.01	45.04	56.00	-10.96	
	1.4018	20.45	AVG	10.01	30.46	46.00	-15.54	

0.6465	16.22	AVG	10.12	26.34	46.00	-19.66	
1.0784	33.19	QP	10.17	43.36	56.00	-12.64	
1.0784	17.25	AVG	10.17	27.42	46.00	-18.58	
1.1857	32.64	QP	10.18	42.82	56.00	-13.18	
1.1857	16.25	AVG	10.18	26.43	46.00	-19.57	
1.2930	36.74	QP	10.19	46.93	56.00	-9.07	
1.2930	17.90	AVG	10.19	28.09	46.00	-17.91	
1.4012	34.57	QP	10.20	44.77	56.00	-11.23	
1.4012	18.76	AVG	10.20	28.96	46.00	-17.04	

Erecuency	Level	(dBµV)			
Frequency	quasi-peak average				
150 kHz	lower limit line	Lower limit line			

Note: 1. The formula of measured value as: Test Result = Reading + Correction Factor

2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss

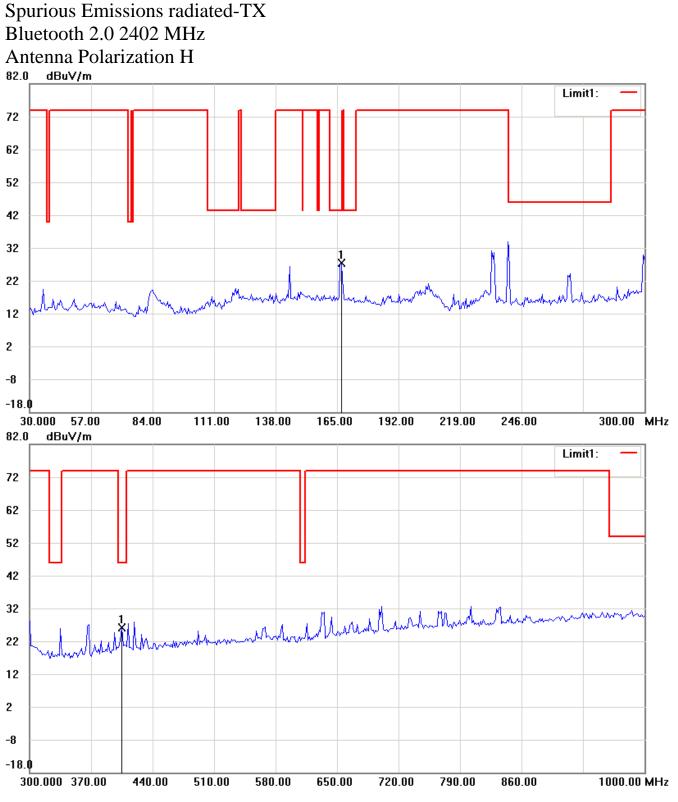
- 3. Detector function in the form : PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty = ± 1.10 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

6. Up Line: QP Limit Line, Down Line: Ave Limit Line.

Limits:

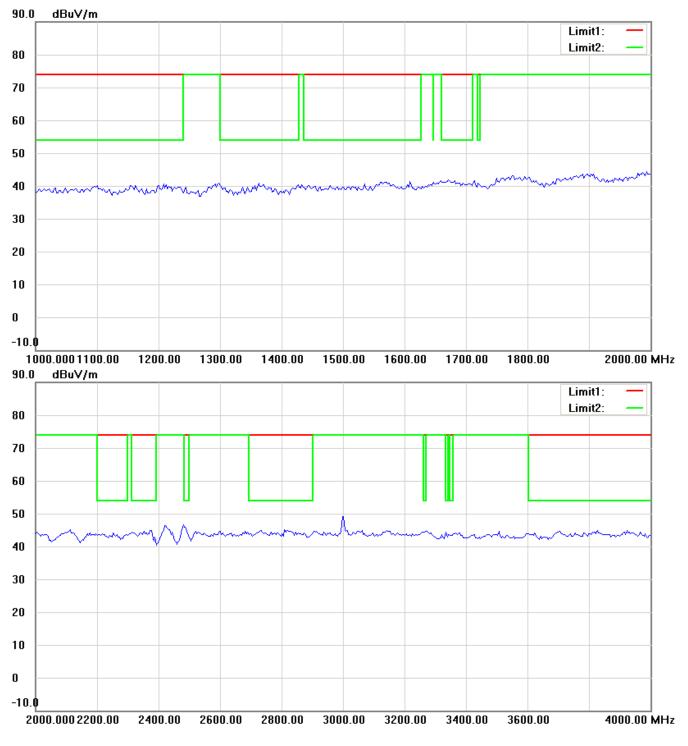
Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi Peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

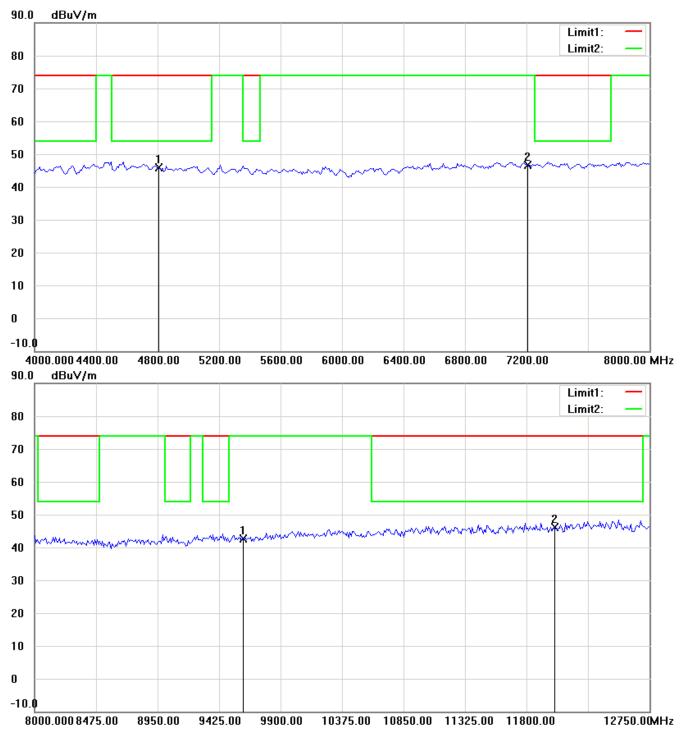
Test equipment used: ETSTW-CE 001, ETSTW-CE 004, ETSTW-CE 006

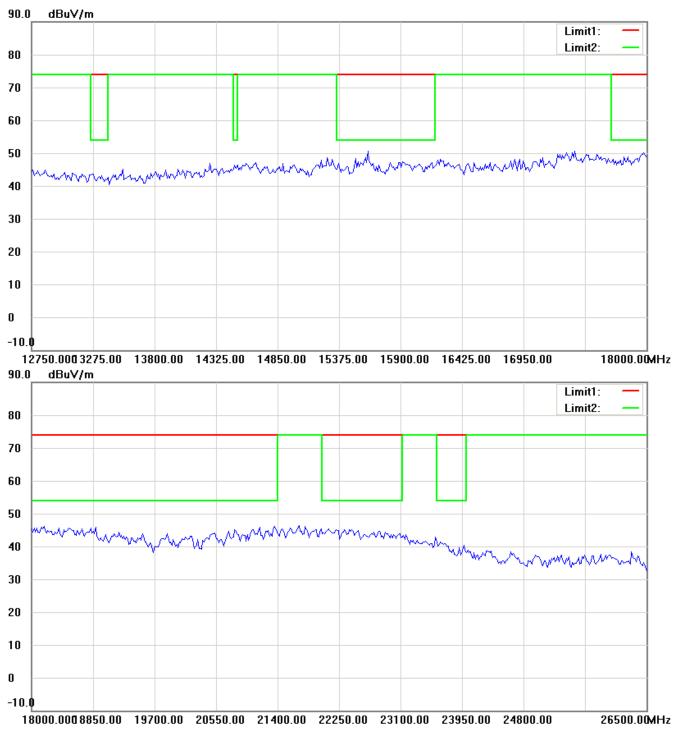


Appendix

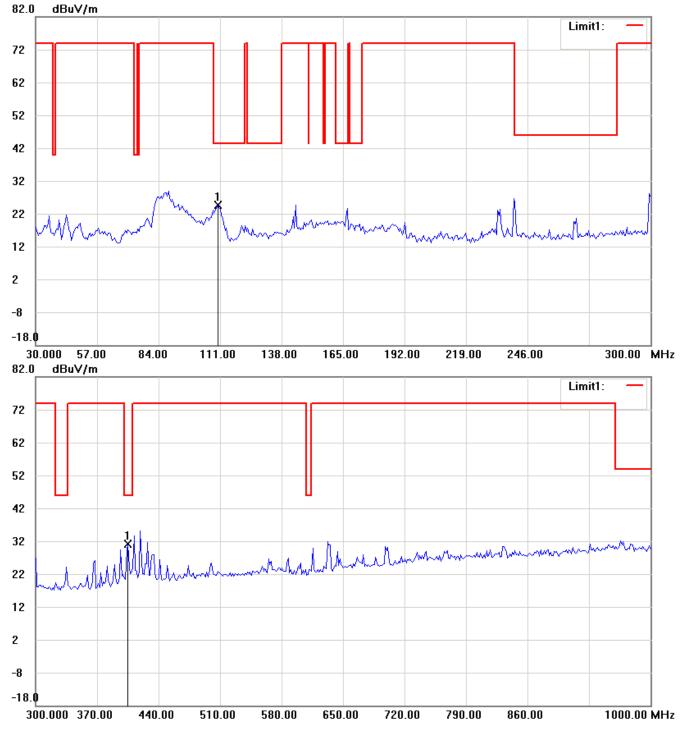
Measurement diagrams


Spurious Emissions radiated

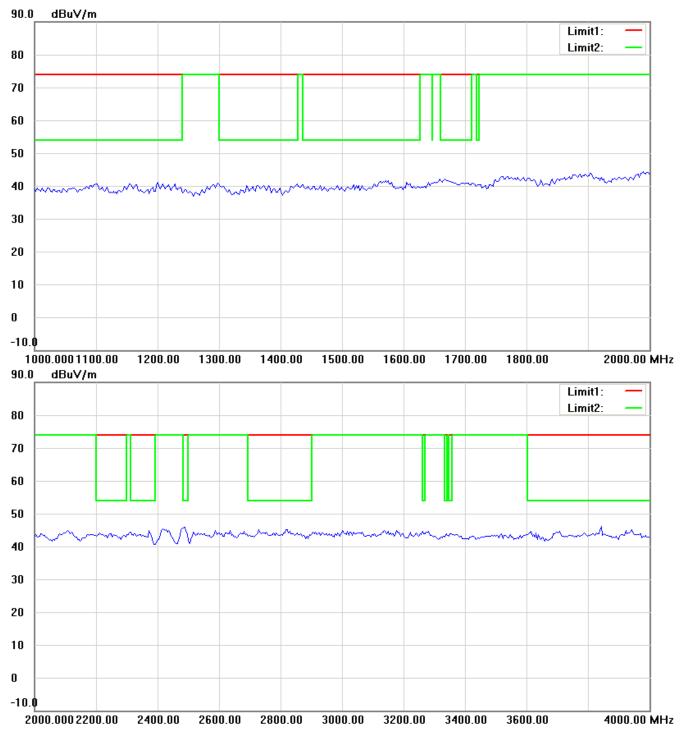

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

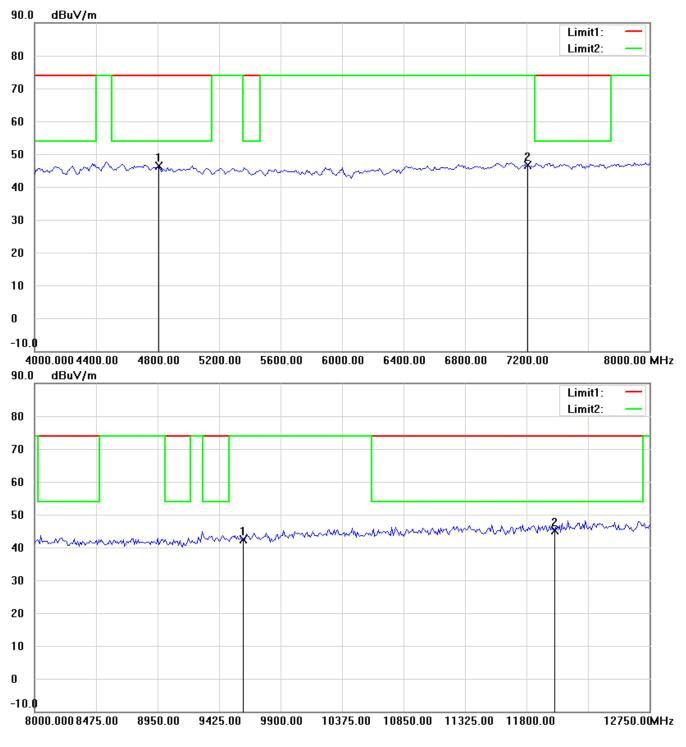
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

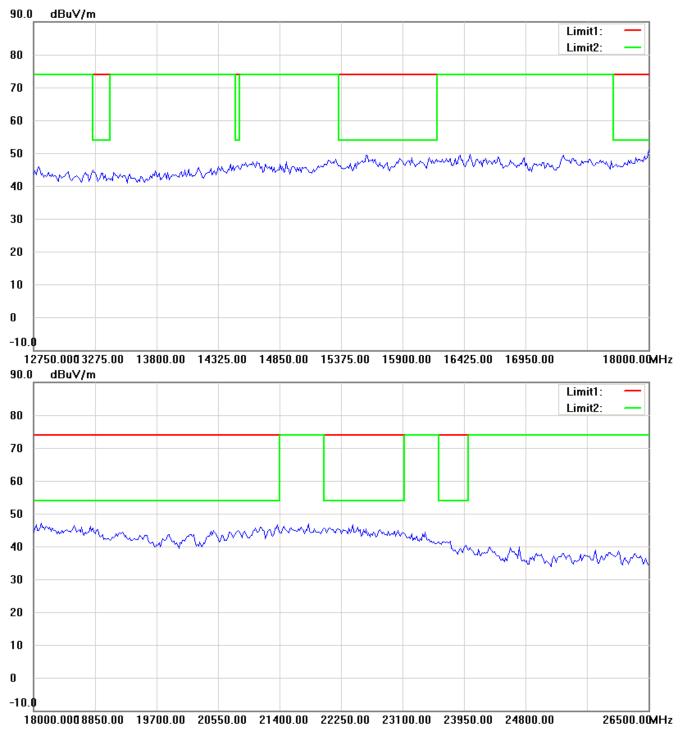


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

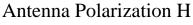


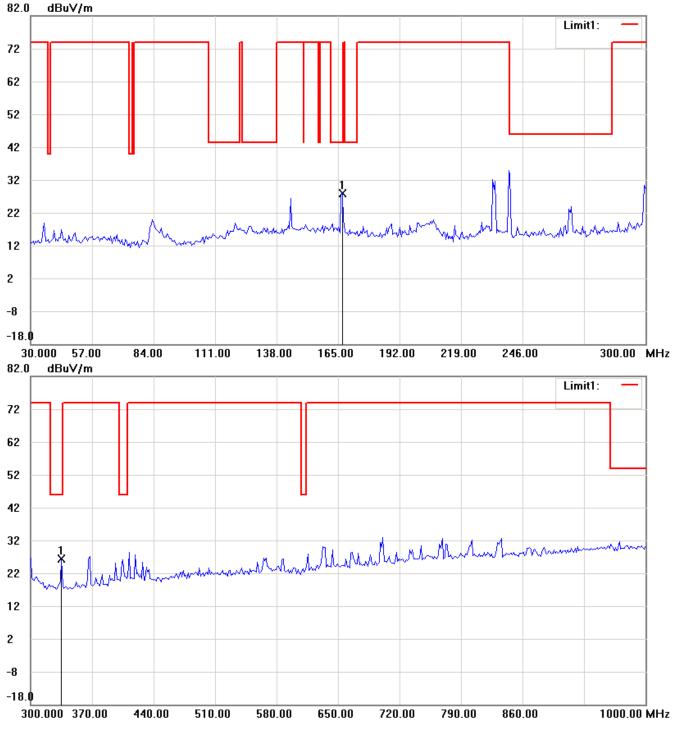
Antenna Polarization V


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

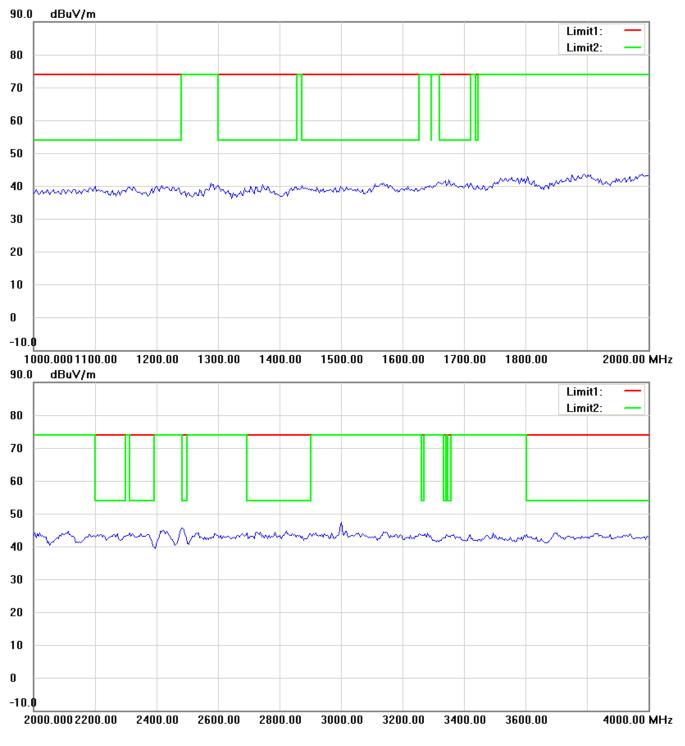

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.





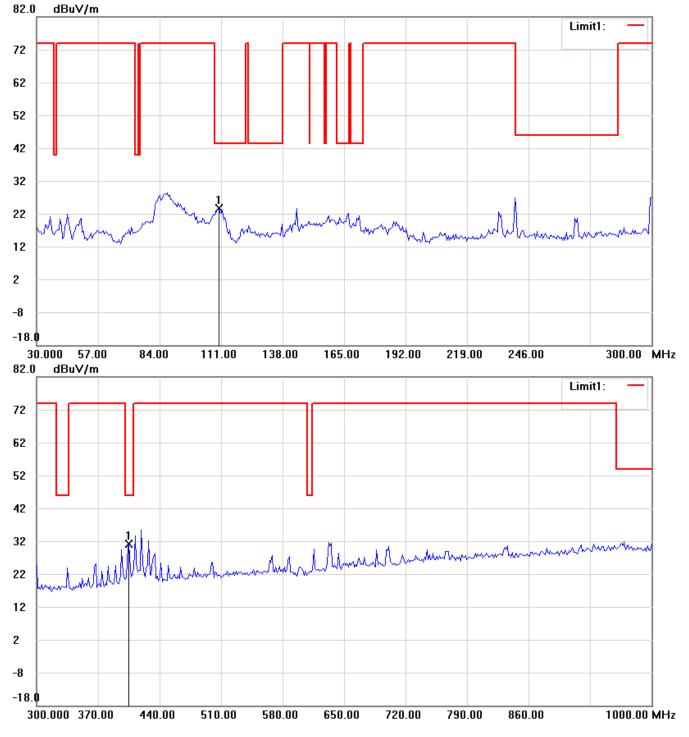
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Bluetooth 2.0 2441 MHz

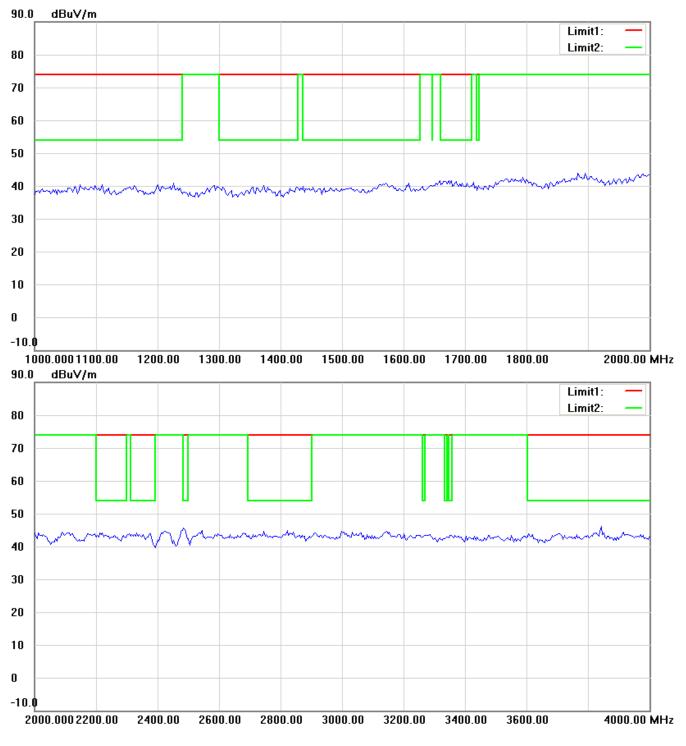
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

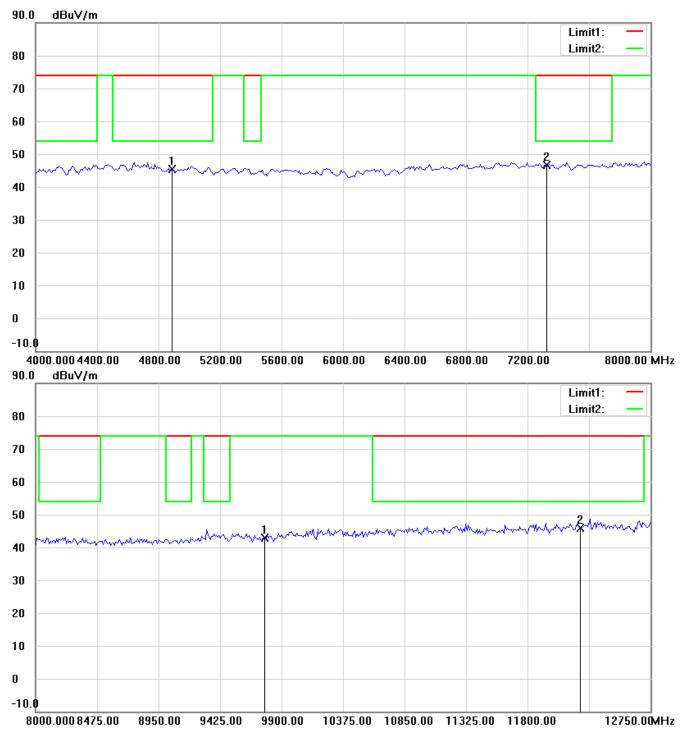
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

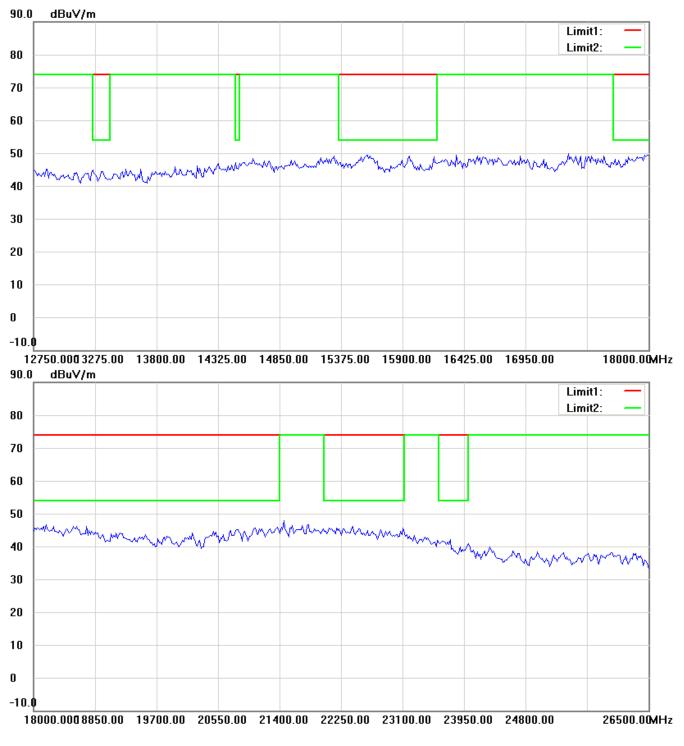


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

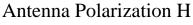


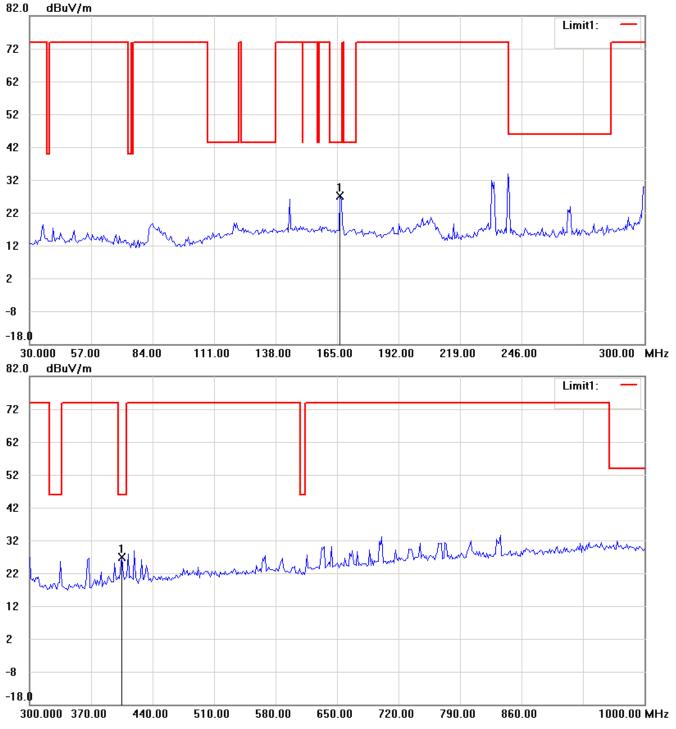
Antenna Polarization V


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

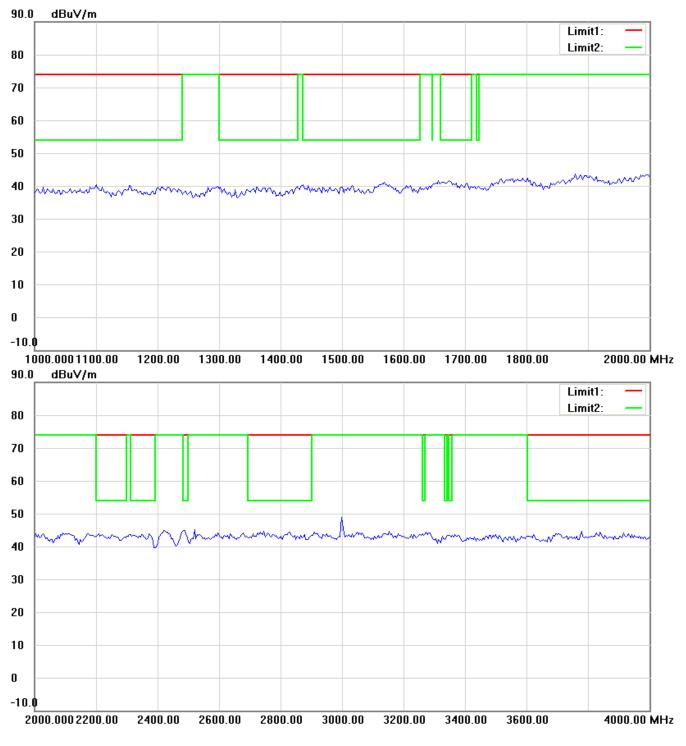

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

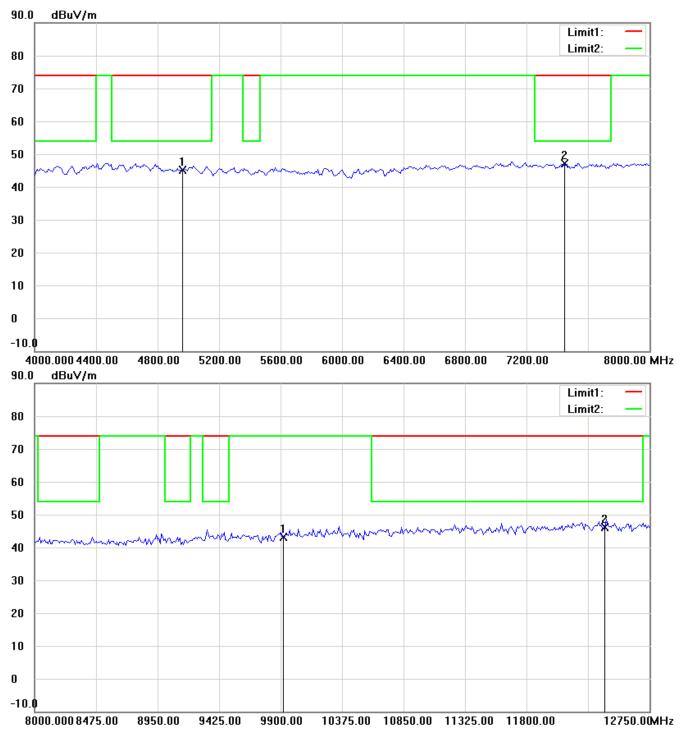
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

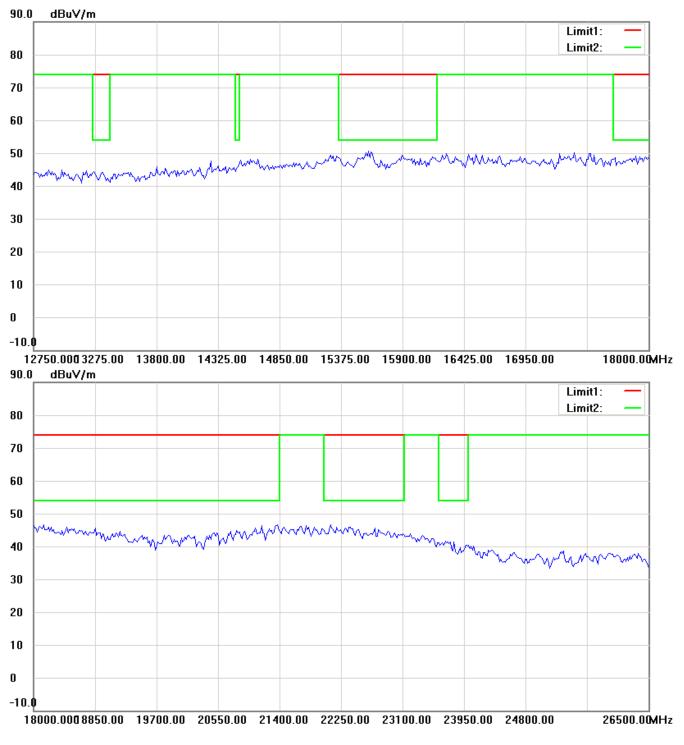




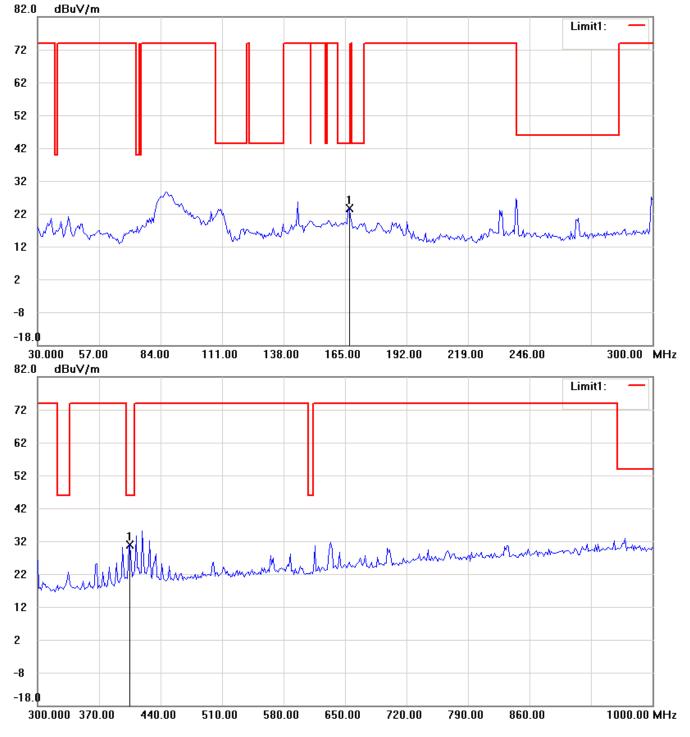
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Bluetooth 2.0 2480 MHz

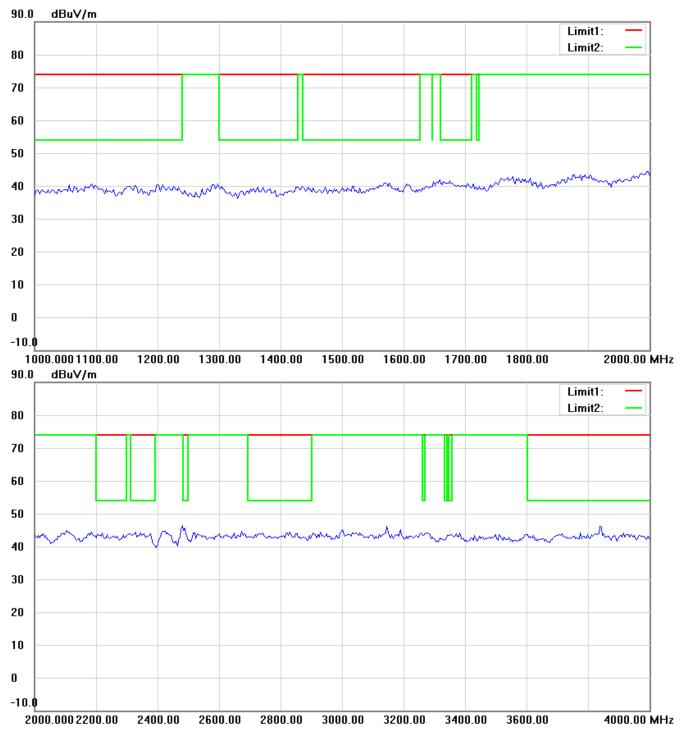

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

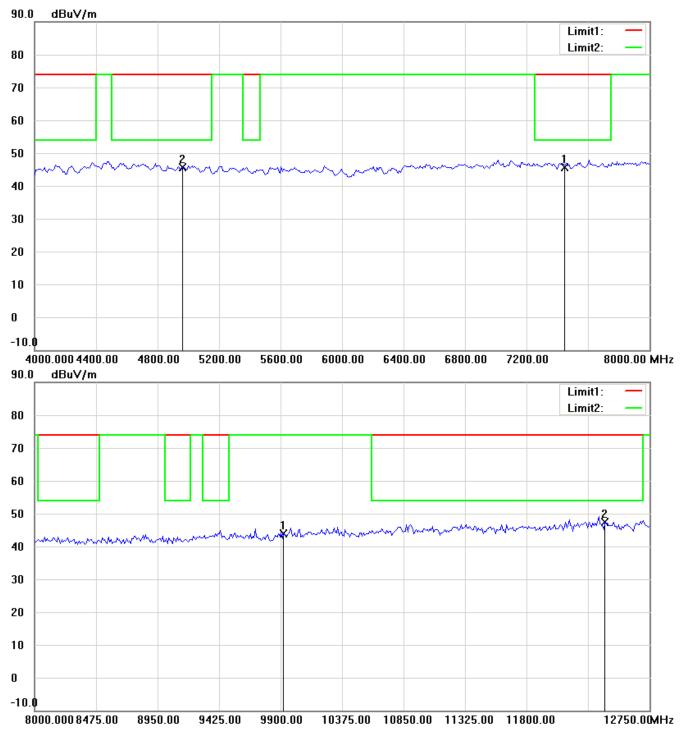
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

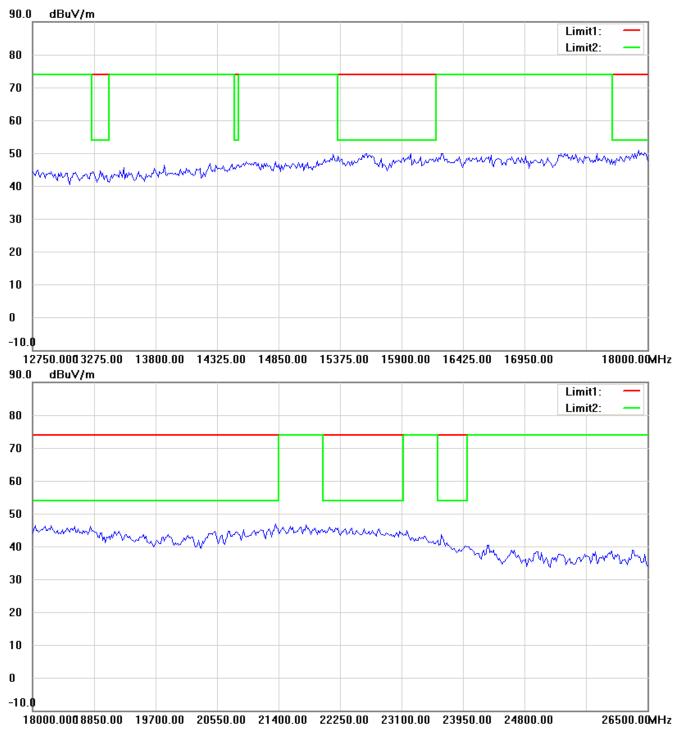


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

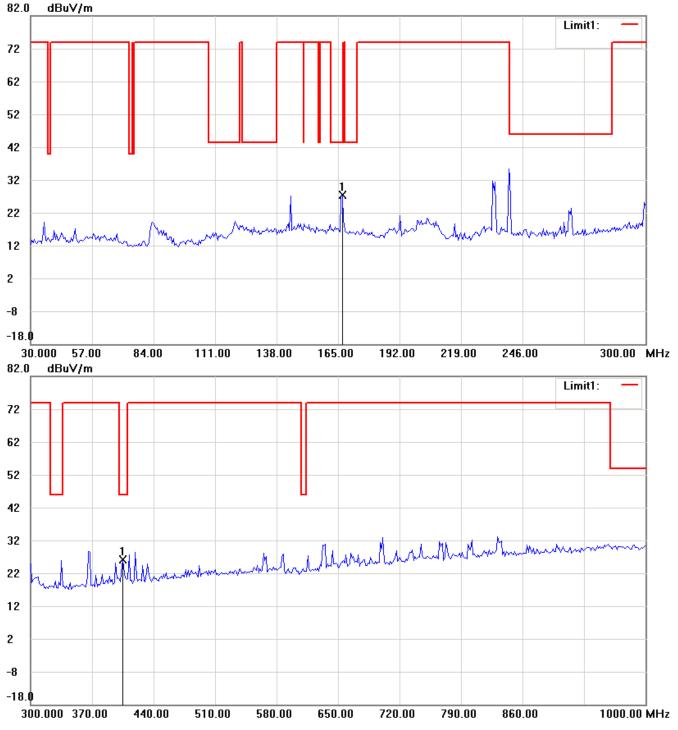


Antenna Polarization V

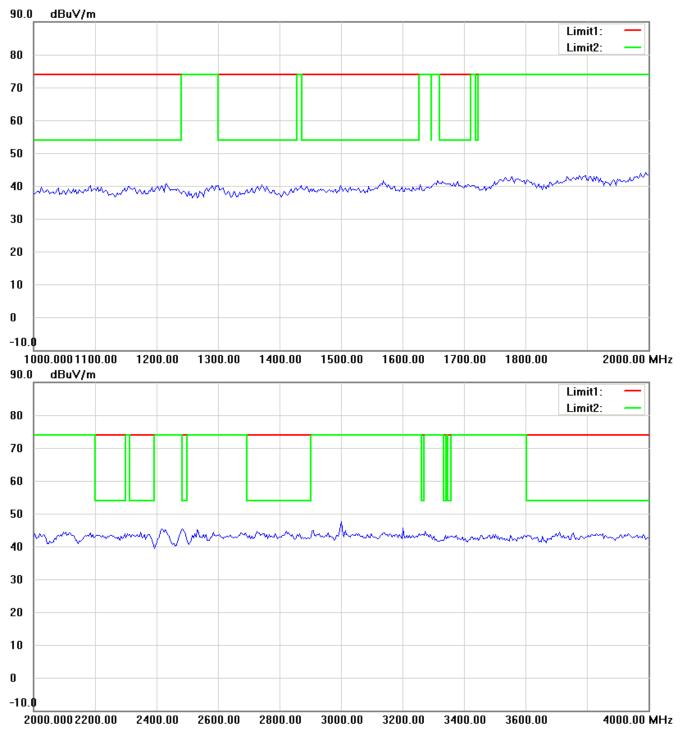

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

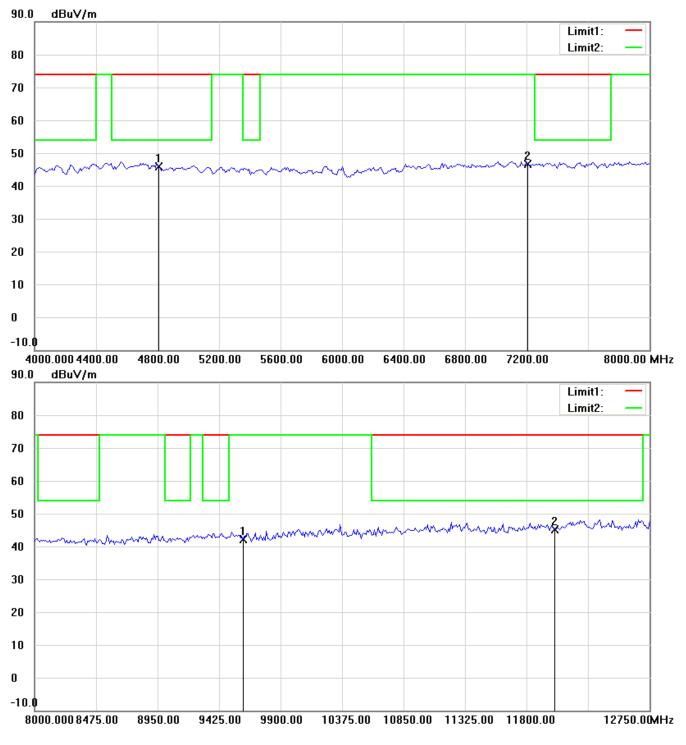

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

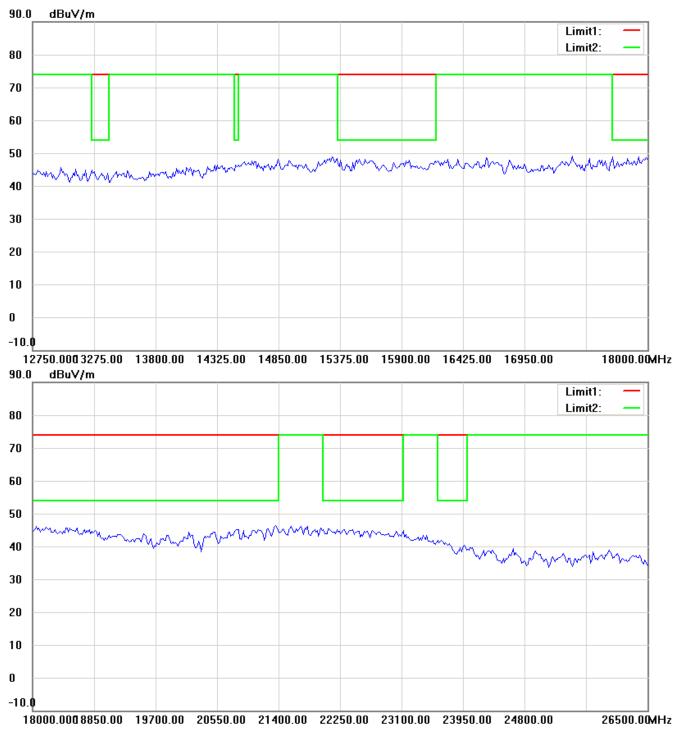
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



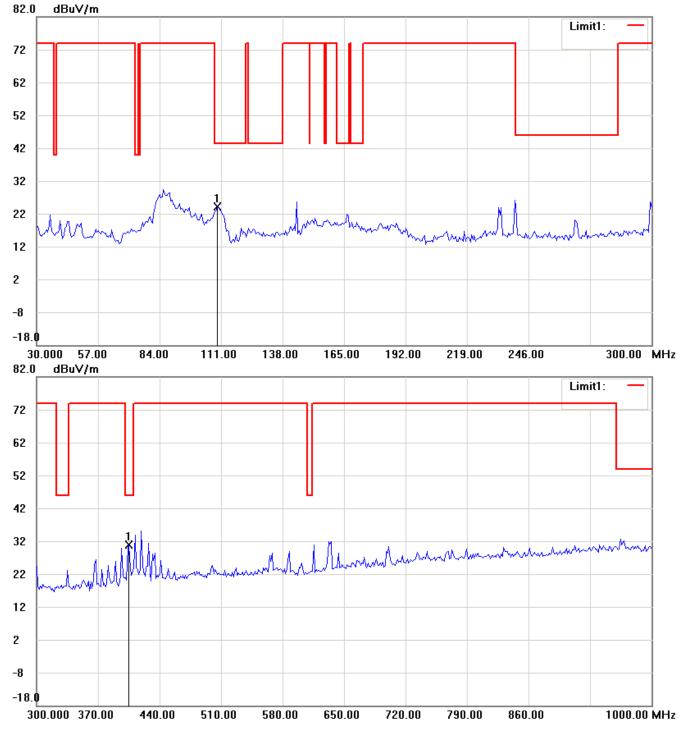
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Bluetooth 4.0 2402 MHz

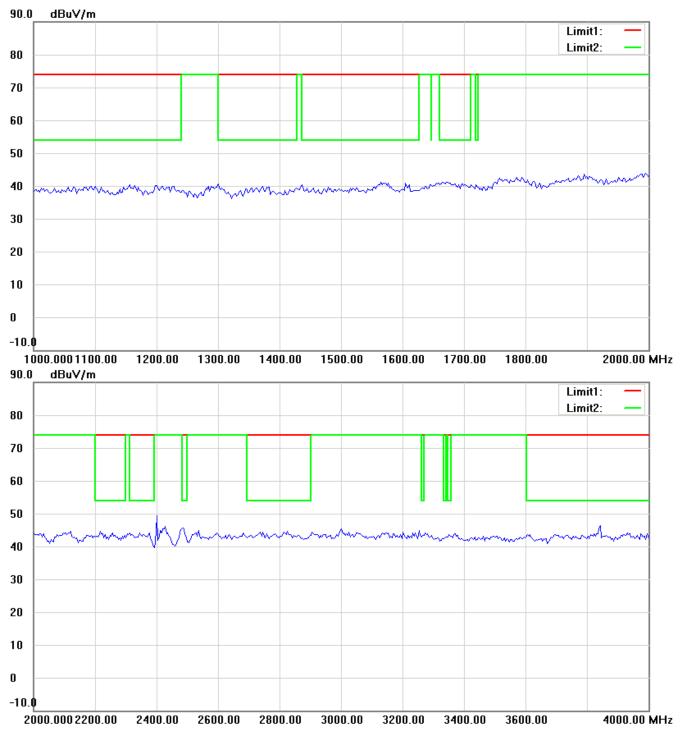

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

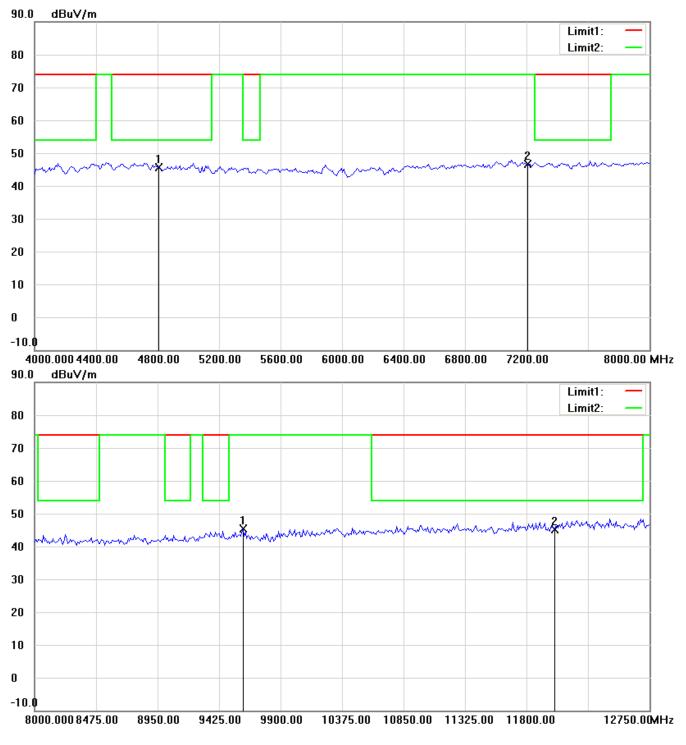
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

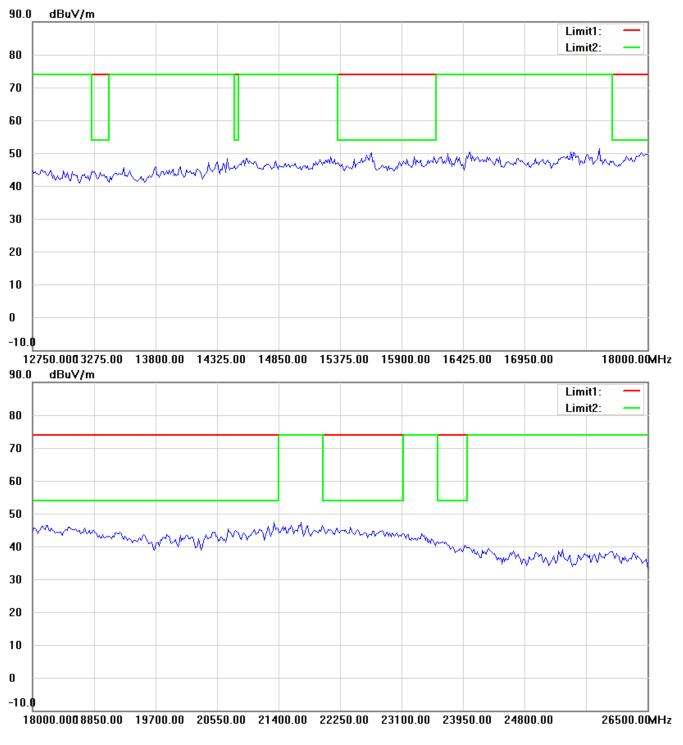


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

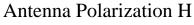


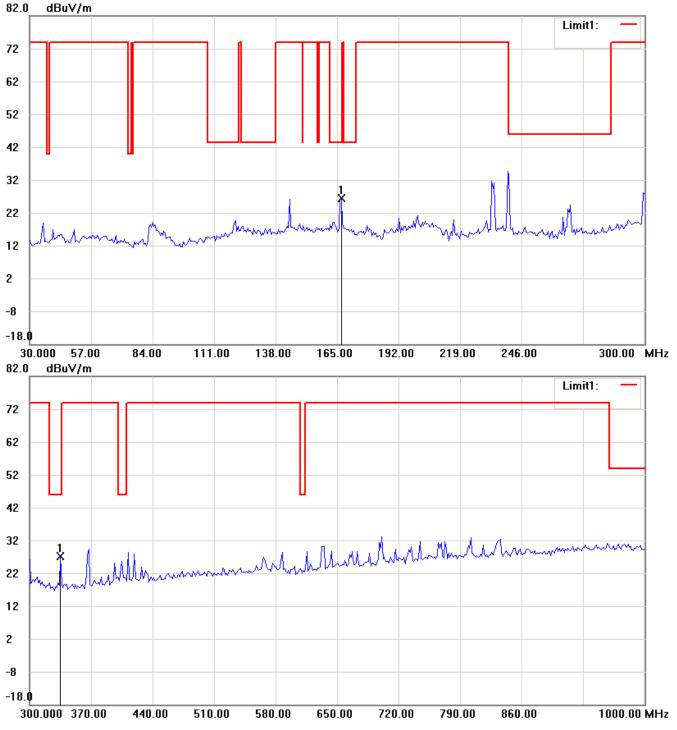
Antenna Polarization V


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

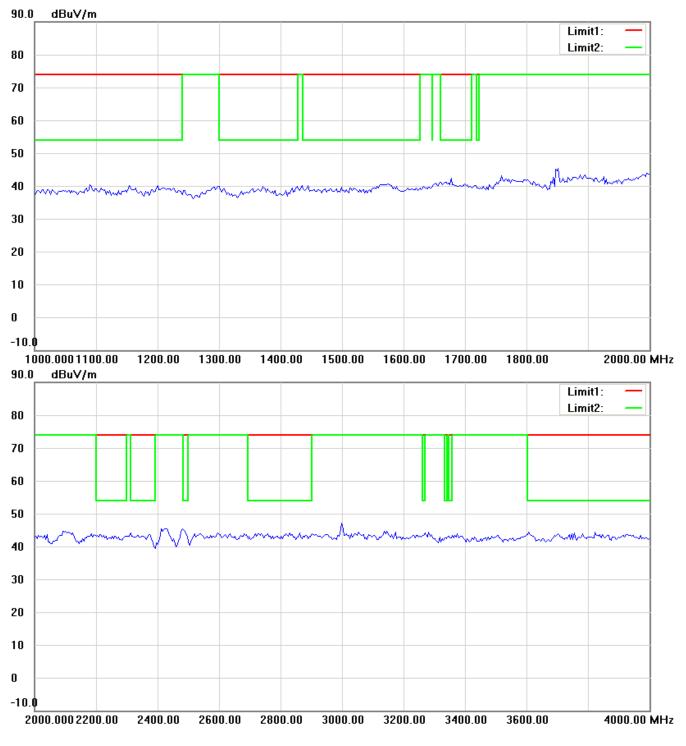

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

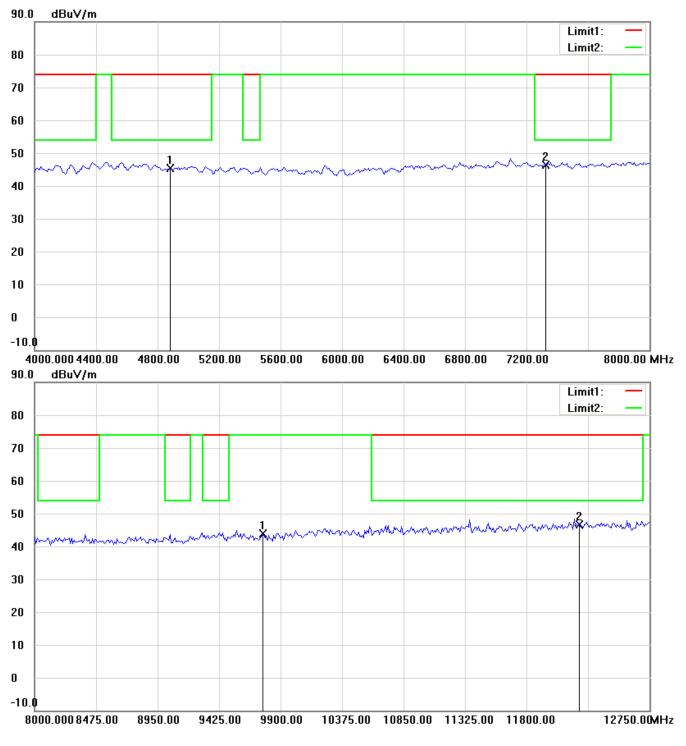
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

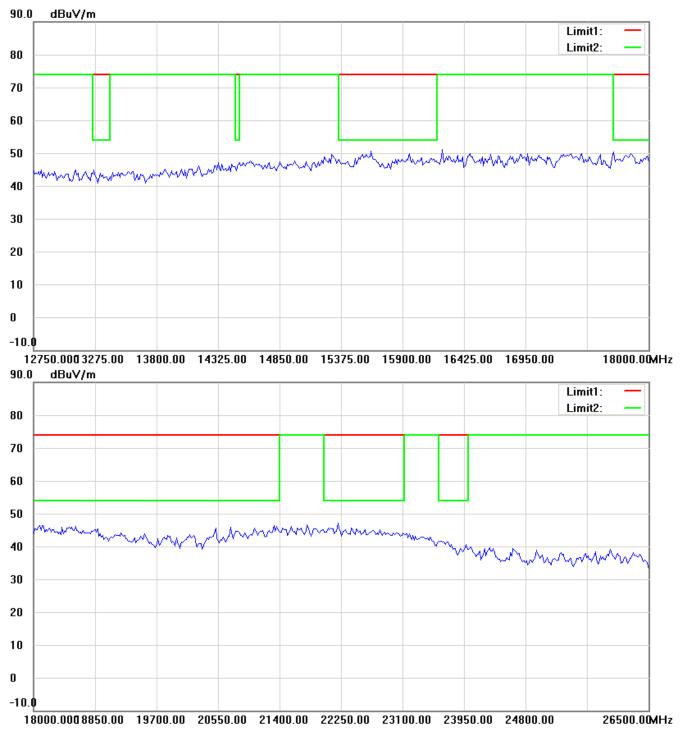




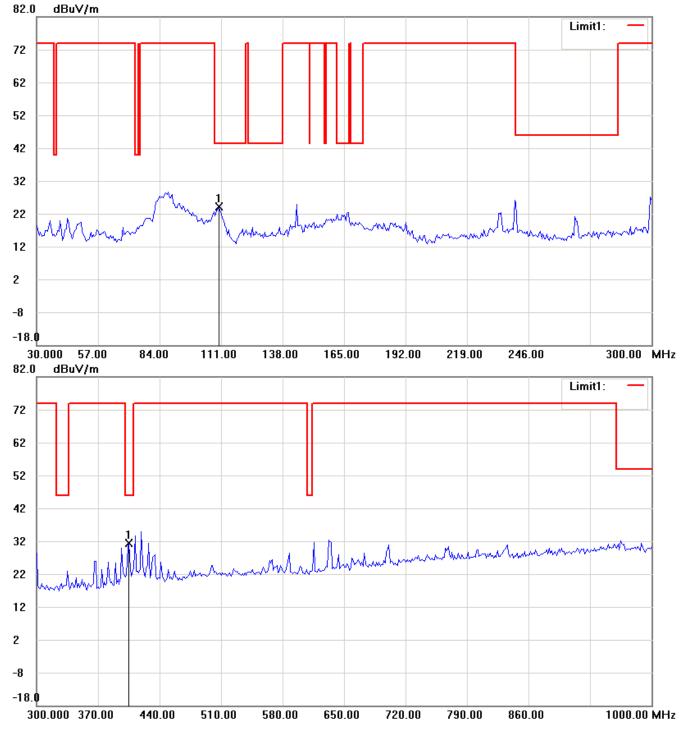
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Bluetooth 4.0 2440 MHz

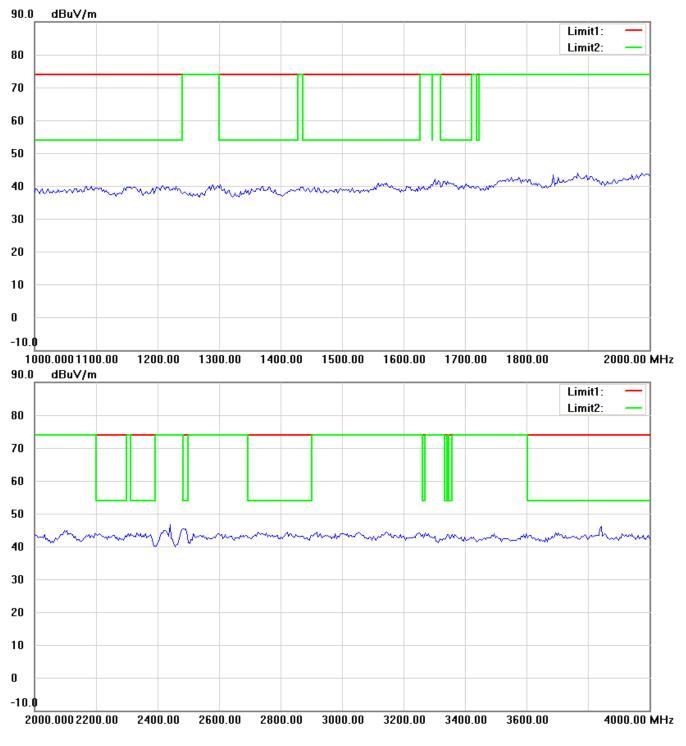

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

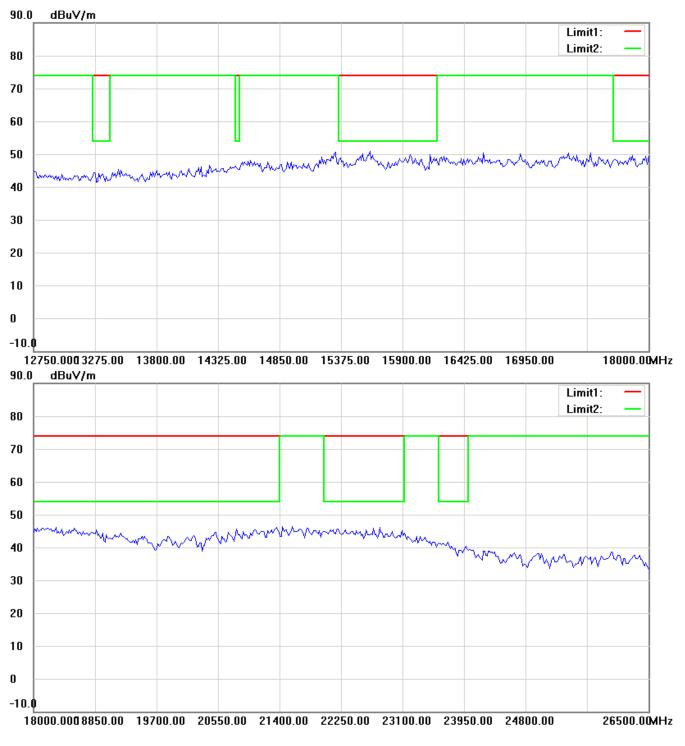


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

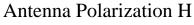


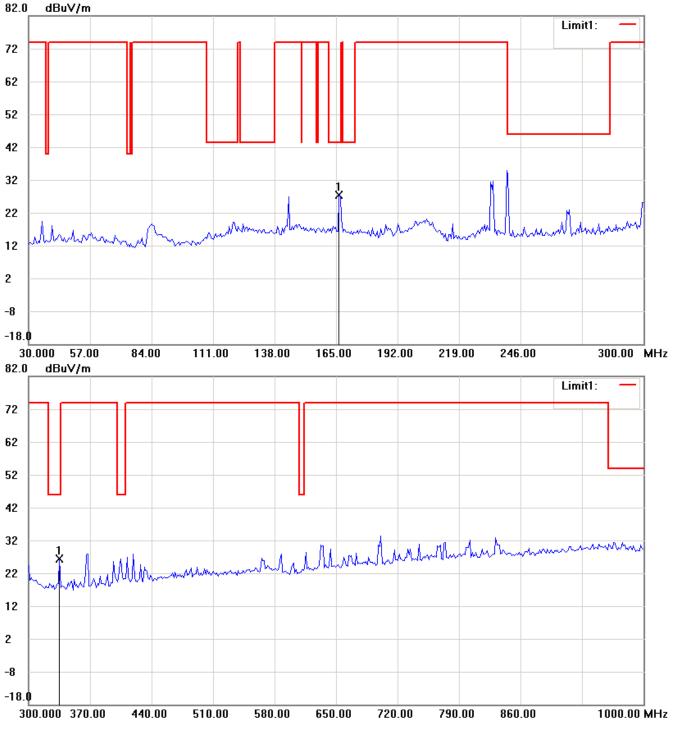
Antenna Polarization V


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

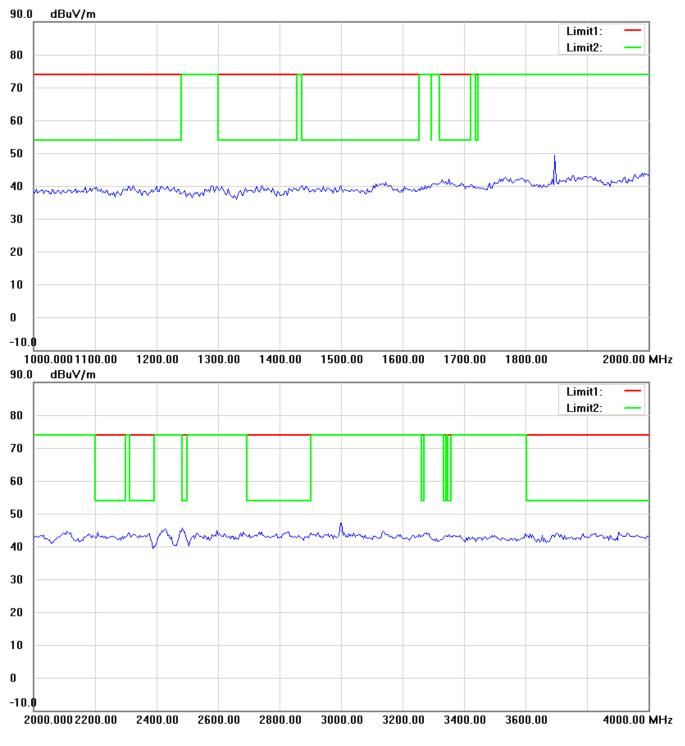

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

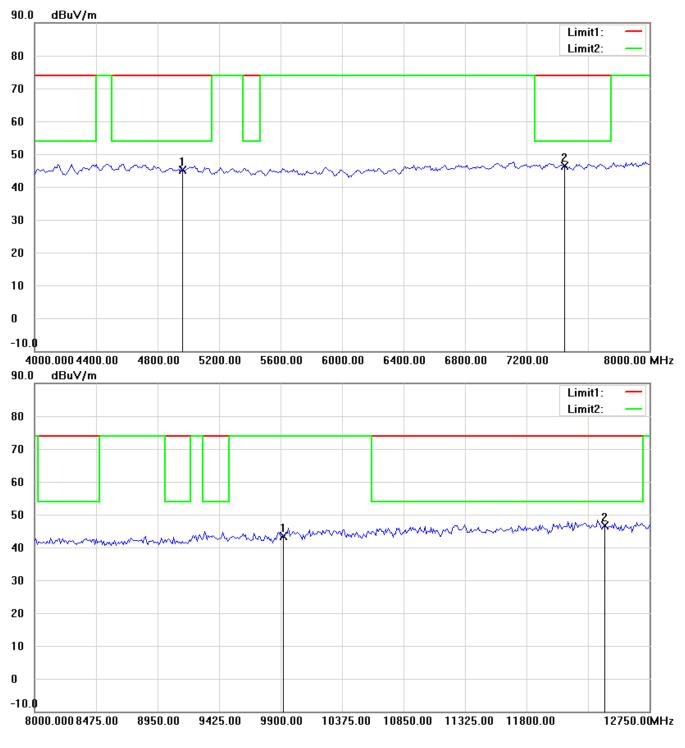
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

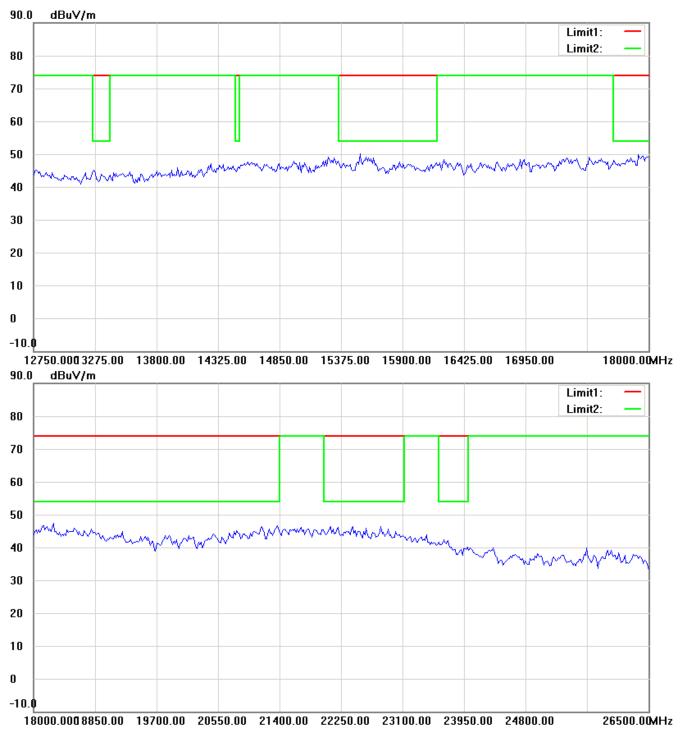




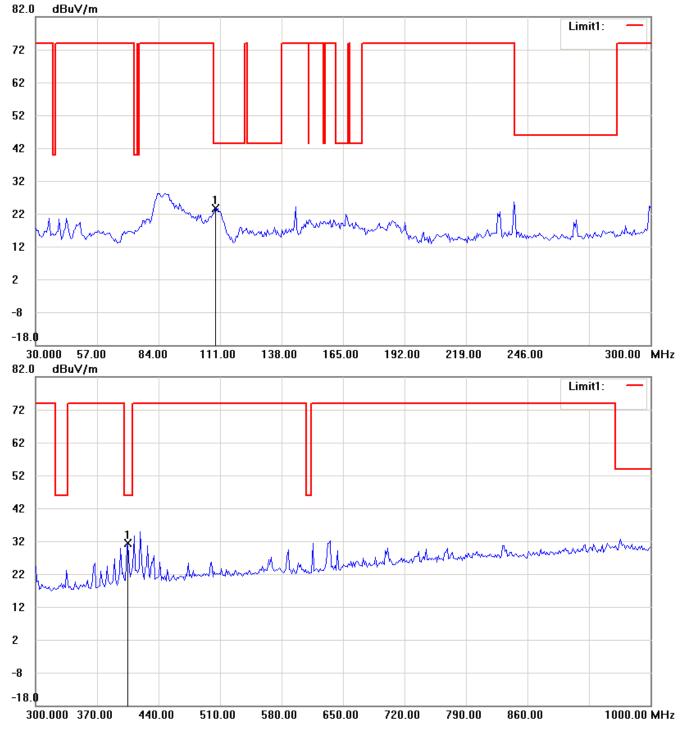
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


Bluetooth 4.0 2480 MHz

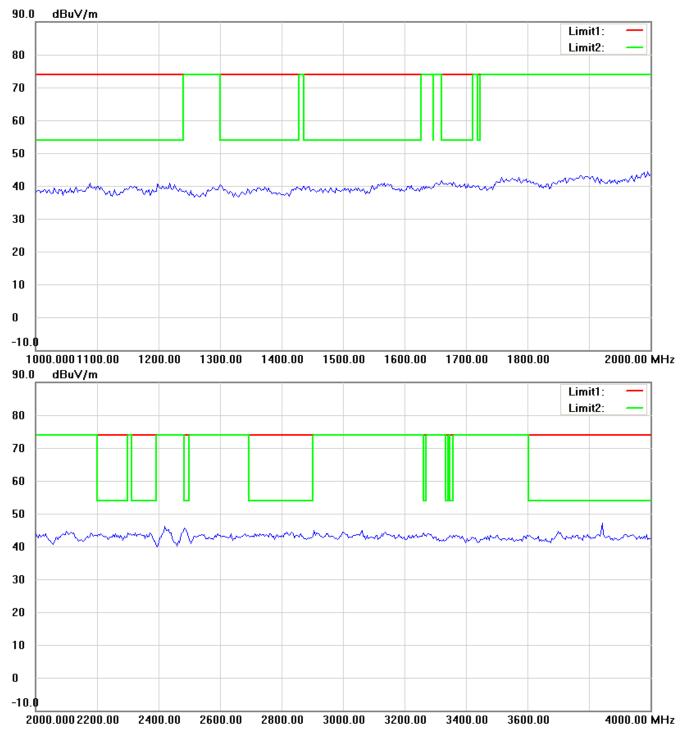

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

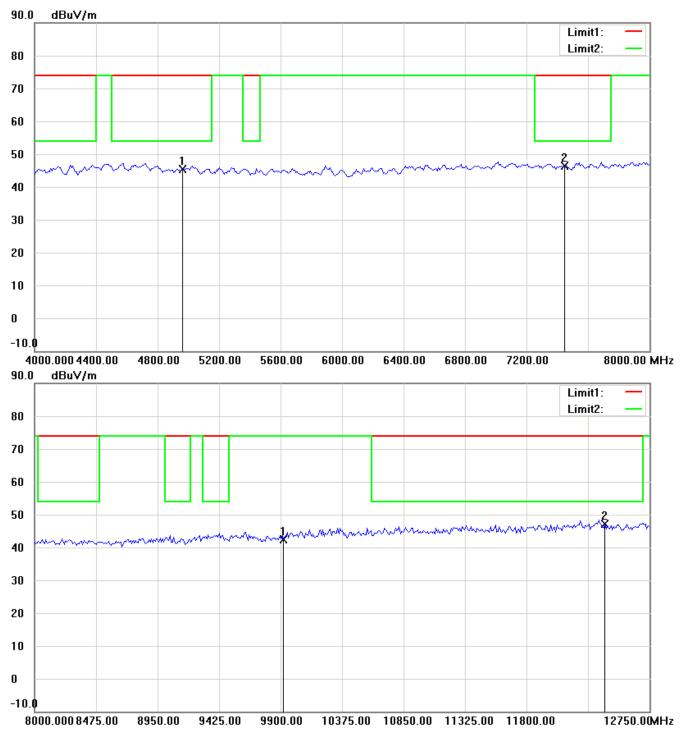
- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

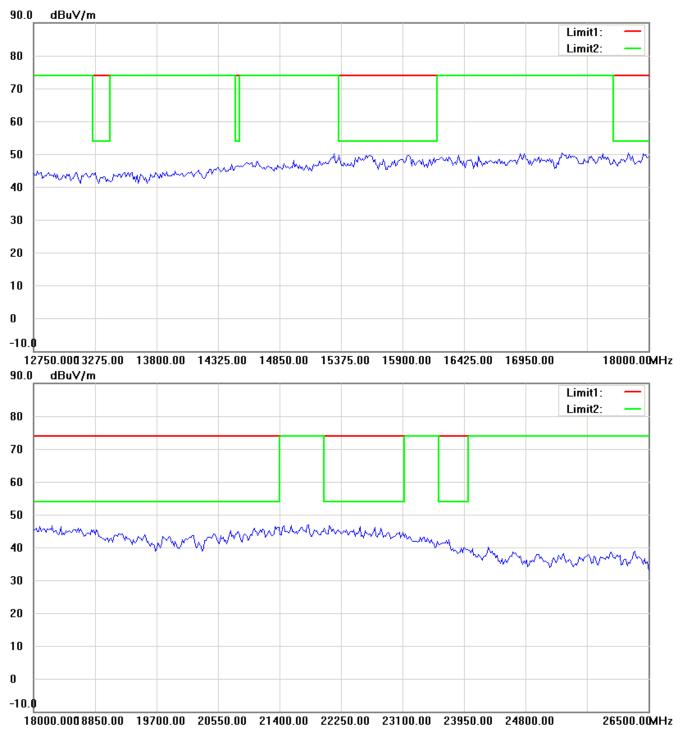


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.



Antenna Polarization V


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.


- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.