

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 1 of 33

TEST REPORT

Application No.:	SHCR2406001132AT	
FCC ID:	YWO-MIPT10MR	
Applicant:	ELECOM CO., LTD.	
Address of Applicant:	Fushimimachi 4-1-1, Chuo-ku, Osaka City, Osaka, Japan 541-8765	
Manufacturer:	ELECOM CO., LTD.	
Address of Manufacturer:	Fushimimachi 4-1-1, Chuo-ku, Osaka City, Osaka, Japan 541-8765	
Factory:	Success Compu China	
Address of Factory:	201 and 301, Building 3, No.1 Yangkeng Road, Shanxia Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China	
Equipment Under Test (EUT):	
EUT Name:	Wireless Trackball Mouse	
Model No.:	MIPT10MR, M-IPT10MRSBK, M-IPT10MRSABK	
Remark:	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.	
Trade Mark:	ELECOM	
Standard(s) :	47 CFR Part 15, Subpart C 15.249	
Date of Receipt:	2024-06-14	
Date of Test:	2024-06-26 to 2024-07-10	
Date of Issue:	2024-07-15	
Test Result:	Pass*	

* In the configuration tested, the EUT complied with the standards specified above.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at

http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report N	o.: SHCR240600113202
Page:	2 of 33

Revision Record			
Version Description Date Remark			
00	Original	2024-07-15	/

Authorized for issue by:		
Tested By	Wade thang	
	Wade Zhang/Project Engineer	
Approved By	Pourlam zhan	
	Parlam Zhan / Reviewer	

Report No.: SHCR240600113202 . Page: 3 of 33

2 **Test Summary**

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass

Radio Spectrum Matter Part				
Item	Standard	Method	Requirement	Result
Field Strength of the Fundamental Signal (15.249(a))		ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass
Restricted Band Around Fundamental Frequency	47 CFR Part 15,	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass
Radiated Emissions Below 1GHz	Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass
Radiated Emissions Above 1GHz		ANSI C63.10 (2013) Section 6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass
20dB Bandwidth		ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass

Note: There are series models mentioned in this report, and they are the similar in electrical and electronic characters. Only the model MIPT10MR was tested since their differences were the model number and appearance.

3 Contents

		Page
1	COVER PAGE	1
_		
2	Test Summary	3
3	Contents	4
		_
4		
	4.1 Details of E.U.T.	-
	4.2 Description of Support Units	
	4.3 Measurement Uncertainty	
	4.4 Test Location4.5 Test Facility	
	4.6 Deviation from Standards	
	4.7 Abnormalities from Standard Conditions	
_		
5	Equipment List	
6	Radio Spectrum Technical Requirement	8
	6.1 Antenna Requirement	8
	6.1.1 Test Requirement:	
	6.1.2 Conclusion	8
7	Radio Spectrum Matter Test Results	9
	7.1 Field Strength of the Fundamental Signal (15.249(a))	
	7.1 E.U.T. Operation	
	7.1.2 Test Mode Description	
	7.1.3 Test Setup Diagram	
	7.1.4 Measurement Procedure and Data	
	7.2 Restricted Band Around Fundamental Frequency	
	7.2.1 E.U.T. Operation	11
	7.2.2 Test Mode Description	11
	7.2.3 Test Setup Diagram	
	7.2.4 Measurement Procedure and Data	
	7.3 Radiated Emissions Below 1GHz	
	7.3.1 E.U.T. Operation	
	7.3.2 Test Mode Description	
	7.3.3 Test Setup Diagram 7.3.4 Measurement Procedure and Data	
	7.4 Radiated Emissions Above 1GHz	
	7.4.1 E.U.T. Operation	
	7.4.2 Test Mode Description	
	7.4.3 Test Setup Diagram	
	7.4.4 Measurement Procedure and Data	
	7.5 20dB Bandwidth	29
	7.5.1 E.U.T. Operation	29
	7.5.2 Test Mode Description	
	7.5.3 Test Setup Diagram	
	7.5.4 Measurement Procedure and Data	
8	Test Setup Photo	33
_		
9	EUT Constructional Details (EUT Photos)	

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 5 of 33

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3V (2*AA Battery)	
Test Voltage:	DC 3V	
Operating Frequency:	2405MHz-2476MHz	
Channel Number:	12 Channels	
Modulation Type:	GFSK	
Antenna Type:	FPC Antenna	
Antenna Gain:	2dBi (Provided by manufacturer)	
Receiver Category:	1	

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
5	2405	7	2407	8	2408
22	2422	23	2423	27	2427
47	2447	51	2451	52	2452
73	2473	74	2474	76	2476
Note: Erequency (MHz) = $2400+n$ n=channel number					

Note: Frequency (MHz) = 2400+n, n=channel number.

CH list which is used on Firmware is 5, 7, 8, 22, 23, 27, 47, 51, 52, 73, 74, 76.

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Laptop	LENOVO	L460	-
SecureCRT	VanDyke	V 6.2.0	-
Serial port adapter plate	-	Test Plate 3	-

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	8.4 x 10 ⁻⁸
2	Timeout	2s
3	Duty cycle	0.4%
4	Occupied Bandwidth	3%
5	RF conducted power	0.6dB
6	RF power density	2.9dB
7	Conducted Spurious emissions	0.75dB
0	DE Dedicted newer	5.2dB (Below 1GHz)
8	RF Radiated power	5.9dB (Above 1GHz)
		4.2dB (Below 30MHz)
9	Dedicted Sourious optionies test	4.5dB (30MHz-1GHz)
9	Radiated Spurious emission test	5.1dB (1GHz-6GHz)
		5.4dB (6GHz-18GHz)
10	Temperature test	1°C
11	Humidity test	3%
12	Supply voltages	1.5%

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 6 of 33

-		
13	Time	3%
Note:	The measurement uncertainty rep	resents an expanded uncertainty expressed at

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

No tests were sub-contracted.

Note:

SGS is not responsible for wrong test results due to incorrect information (e.g. max. clock frequency, highest internal frequency, antenna gain, cable loss, etc.) is provided by the applicant. (if applicable).
SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (if applicable).
Sample source: sent by customer.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 6332.01)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the American Association for Laboratory Accreditation(A2LA).

• FCC (Designation Number: CN1301)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

• ISED (CAB Identifier: CN0020)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. EMC Laboratory has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 8617A

VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SHCR240600113202 Page: 7 of 33

Equipment List 5

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Conducted Test				041 2410	
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2023-12-19	2024-12-18
Spectrum Analyzer	Keysight	N9020B	SHEM241-1	2023-12-19	2024-12-18
Spectrum Analyzer	Agilent	N9020A	SHEM181-1	2023-08-01	2024-07-31
Signal Generator	R&S	SMR20	SHEM006-1	2023-08-01	2024-07-31
Signal Generator	Agilent	N5182A	SHEM182-1	2023-08-01	2024-07-31
Communication Tester	R&S	CMW270	SHEM183-1	2024-05-23	2025-05-22
Communication Tester	R&S	CMW500	SHEM268-1	2024-05-23	2025-05-22
Power Sensor	Keysight	U2021XA * 4	SHEM184-1	2023-08-01	2024-07-31
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2022-11-08	2024-11-07
AC Power Stabilizer	APC	KDF-31020T-V0-F0	SHEM216-1	2023-12-19	2024-12-18
DC Power Supply	HP	6010A	SHEM222-1	2023-12-19	2024-12-18
Conducted test Cable	/	RF01~RF04	/	2023-12-19	2024-12-18
Switcher	Tonscend	JS0806	SHEM184-1	2023-08-01	2024-07-31
Test software	Tonscend	JS Tonscend BT/WIFI System	scend Version: 2.6		/
Switcher+Power Sensor	TST	TSPS2023R	SHEM263-1	2023-08-01	2024-07-31
Test software	TST	TST PASS	Version: 2.0	/	/
RF Radiated Test		•			
EMI test Receiver	R&S	ESU40	SHEM051-1	2023-12-19	2024-12-18
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2023-12-19	2024-12-18
Communication Tester	R&S	CMW500	SHEM268-1	2024-05-23	2025-05-22
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2023-12-19	2024-12-18
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2023-09-03	2025-09-02
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM202-1	2023-04-17	2025-04-16
Horn Antenna (1-18GHz)	Schwarzbeck	HF906	SHEM009-1	2022-08-11	2024-08-10
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2023-09-03	2025-09-02
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2023-09-03	2025-09-02
Pre-Amplifier	HP	8447D	SHEM236-1	2023-12-19	2024-12-18
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2023-12-19	2024-12-18
Band Filter	LORCH	9BRX-875/X150	SHEM156-1	/	/
Band Filter	LORCH	13BRX-1950/X500	SHEM083-2	/	/
Band Filter	LORCH	5BRX-2400/X200	SHEM155-1	/	/
Band Filter	LORCH	5BRX-5500/X1000	SHEM157-2	/	/
High pass Filter	Wainwright	WHK3.0/18G	SHEM157-1	/	/
High pass Filter	Wainwright	WHKS1700	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2023-05-06	2026-05-05
RE test Cable	/	PT18-NMNM-10M	SHEM217-2	2023-12-19	2024-12-18
Test software	ESE	E3	Version: 6.111221a	/	/

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 8 of 33

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is FPC antenna and no consideration of replacement. The best case gain of the antenna is 2 dBi.

Antenna location: Refer to Internal photos

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 9 of 33

7 Radio Spectrum Matter Test Results

7.1 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement	47 CFR Part 15, Subpart C 15.249(a)
Test Method:	ANSI C63.10 (2013) Section 6.5&6.6

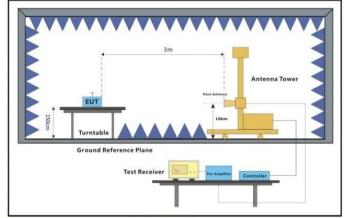
Limit:

Fundamental frequency(MHz)	Field strength of fundamental(millivolts/meter)	Field strength of harmonics(microvolts/meter)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500
24000-24250	250	2500

Remark: The frequencies above 1000MHz are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

For fundamental frequency in "902-928MHz", the field strength of fundamental is based on Quasi-Peak.

7.1.1 E.U.T. Operation


Operating Environment:

•	0						
Tem	perature:	26.3 °C	Humidity:	64.3 % RH	Atmospheric Pressure:	1010	mbar

7.1.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	TX mode_Keep the EUT in transmitting with modulation mode.

7.1.3 Test Setup Diagram

Above 1GHz

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 10 of 33

7.1.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c.The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h.Test the EUT in the lowest channel, the middle channel, the Highest channel.

i.The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j.Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
2405	96.84	-2.98	93.86	94	-0.14	Peak	Horizontal
	93.07	-2.98	90.09	94	-3.91	Peak	Vertical

Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
2447	82.03	-2.91	79.12	94	-14.88	Peak	Horizontal
	94.96	-2.91	92.05	94	-1.95	Peak	Vertical

Frequ (Mi	,	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Detector	Polarization
0.4	70	95.53	-2.77	92.76	94	-1.24	Peak	Horizontal
24	01	89.93	-2.77	87.16	94	-6.84	Peak	Vertical

Remark:

1) The basic equation with a sample calculation is as follows: Level = Read Level + Factor.

(The Factor is calculated by adding the Antenna Factor, Cable Loss and Preamp Factor) If the Peak value below the Average Limit, the Average test doesn't perform for this submission.

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 11 of 33 Page:

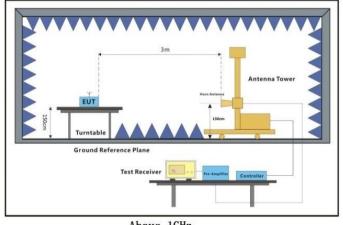
7.2 Restricted Band Around Fundamental Frequency

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5

Limit:

Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
Above 1GHz	74.0	Peak Value

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.


7.2.1 E.U.T. Operation

Operating Enviro	nment:				
Temperature:	26.3 °C	Humidity:	64.3 % RH	Atmospheric Pressure: 1010 n	nbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	TX mode_Keep the EUT in transmitting with modulation mode.

7.2.3 Test Setup Diagram

Above 1GHz

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 12 of 33

7.2.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

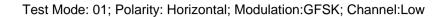
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

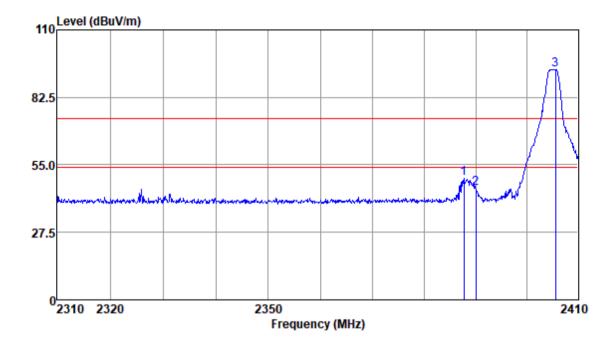
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

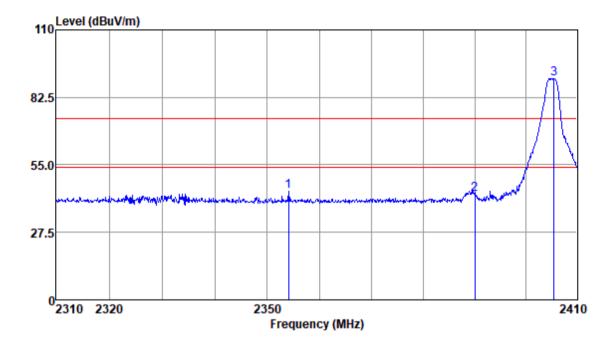

j. Repeat above procedures until all frequencies measured was complete.


Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 13 of 33

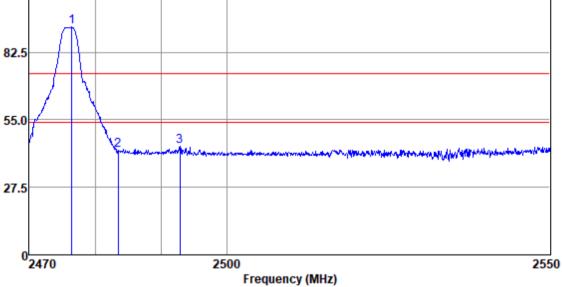
Antenna Polarity :HORIZONTAL EUT/Project :1132AT


Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Level	Factor	Loss	Factor	Level	Line	Limit	Remark
dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
52.41	28.80	3.34	35.18	49.37	74.00	-24.63	Peak
48.31	28.80	3.34	35.18	45.27	74.00	-28.73	Peak
96.84	28.89	3.33	35.20	93.86	74.00	19.86	Peak
	Level dBuv 52.41 48.31	Level Factor dBuv dB/m 52.41 28.80 48.31 28.80	Level Factor Loss dBuv dB/m dB 52.41 28.80 3.34 48.31 28.80 3.34	Level Factor Loss Factor dBuv dB/m dB dB 52.41 28.80 3.34 35.18 48.31 28.80 3.34 35.18	Level Factor Loss Factor Level dBuv dB/m dB dB dBuv/m 52.41 28.80 3.34 35.18 49.37 48.31 28.80 3.34 35.18 45.27	Level Factor Loss Factor Level Line dBuv dB/m dB dB dBuv/m dBuv/m 52.41 28.80 3.34 35.18 49.37 74.00 48.31 28.80 3.34 35.18 45.27 74.00	Read Antenna Cable Preamp Emission Limit Over Level Factor Loss Factor Level Line Limit dBuv dB/m dB dB dBuv/m dBuv/m dB 52.41 28.80 3.34 35.18 49.37 74.00 -24.63 48.31 28.80 3.34 35.18 45.27 74.00 -28.73 96.84 28.89 3.33 35.20 93.86 74.00 19.86

SHEM-TRF-001 Rev. 02 Sep01, 2023

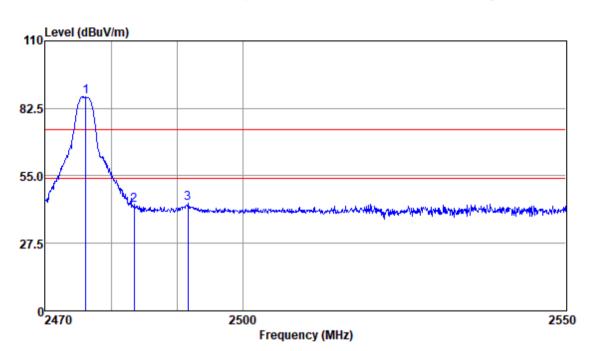
Report No.: SHCR240600113202 Page: 14 of 33

Antenna Polarity :VERTICAL EUT/Project :1132AT


Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2354.08	47.32	28.61	3.29	35.15	44.07	74.00	-29.93	Peak
2390.00	45.94	28.80	3.34	35.18	42.90	74.00	-31.10	Peak
2405.51	93.07	28.89	3.33	35.20	90.09	74.00	16.09	Peak

Report No.: SHCR240600113202 Page: 15 of 33

Test Mode: 01; Polarity: Horizontal; Modulation:GFSK; Channel:High



Antenna Polarity :HORIZONTAL EUT/Project :1132AT

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2476.46	95.53	29.08	3.40	35.25	92.76	74.00	18.76	Peak
2483.50	45.24	29.09	3.36	35.26	42.43	74.00	-31.57	Peak
2492.86	47.12	29.10	3.33	35.26	44.29	74.00	-29.71	Peak

Report No.: SHCR240600113202 Page: 16 of 33

Test Mode: 01; Polarity: Vertical; Modulation:GFSK; Channel:High

Antenna Polarity :VERTICAL EUT/Project :1132AT

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
2476.15	89.93	29.08	3.40	35.25	87.16	74.00	13.16	Peak
2483.50	45.73	29.09	3.36	35.26	42.92	74.00	-31.08	Peak
2491.67	46.65	29.10	3.33	35.26	43.82	74.00	-30.18	Peak

SHEM-TRF-001 Rev. 02 Sep01, 2023

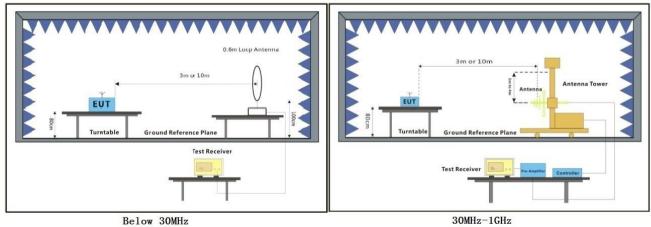
Report No.: SHCR240600113202 Page: 17 of 33

7.3 Radiated Emissions Below 1GHz

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
960-1000	500	3


7.3.1 E.U.T. Operation

Operating Enviro	onment	:					
Temperature:	22	°C	Humidity:	50	% RH	Atmospheric Pressure: 1010 mbar	

7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	TX mode_Keep the EUT in transmitting with modulation mode.

7.3.3 Test Setup Diagram

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 18 of 33

7.3.4 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

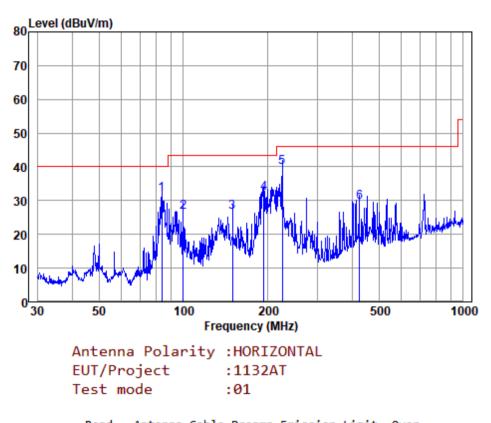
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

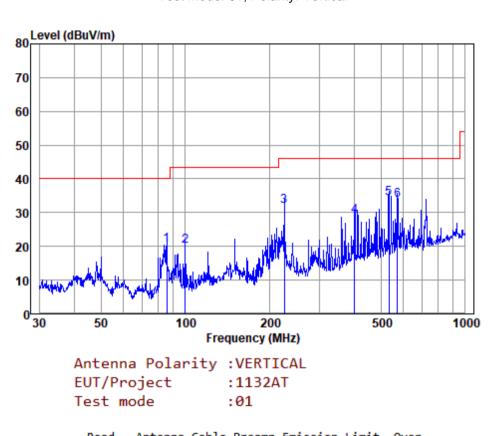
i. Repeat above procedures until all frequencies measured was complete.


Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page: 19 of 33



Test Mode: 01; Polarity: Horizontal

		Read	Antenna	Cable	Preamp	Emission	n Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	83.816	55.10	8.10	1.86	33.20	31.86	40.00	-8.14	QP
2	99.878	48.50	9.10	2.02	33.20	26.42	43.50	-17.08	QP
3	150.011	43.23	13.70	2.63	33.00	26.56	43.50	-16.94	QP
4	193.773	51.83	10.36	2.91	33.00	32.10	43.50	-11.40	QP
5	225.308	59.48	10.01	3.18	32.89	39.78	46.00	-6.22	QP
6	425.028	41.34	16.45	4.49	32.75	29.53	46.00	-16.47	QP
Note:E	mission L	evel=Re	ad Level	Anten	na Facto	or+Cable	loss-Pr	reamp Fa	ctor

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. SHEM-TRF-001 Rev. 02 Sep01, 2023 Report No · SHCR 24060 Report No.: SHCR240600113202 Page: 20 of 33

Test Mode: 01; Polarity: Vertical

		Read	Antenna	Cable	Preamp	Emissior	ı Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	85.898	43.80	7.80	1.85	33.20	20.25	40.00	-19.75	QP
2	99.878	42.02	9.10	2.02	33.20	19.94	43.50	-23.56	QP
3	225.308	51.71	10.01	3.18	32.89	32.01	46.00	-13.99	QP
4	401.839	41.62	15.81	4.39	32.80	29.02	46.00	-16.98	QP
5	533.832	43.36	18.54	5.10	32.70	34.30	46.00	-11.70	QP
6	572.614	41.82	19.26	5.30	32.70	33.68	46.00	-12.32	QP
Note:E	mission L	evel=Re	ad Level+	Antenr	na Facto	or+Cable	loss-Pr	eamp Fac	tor

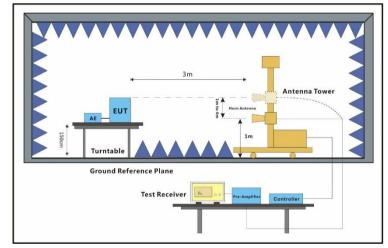
Report No.: SHCR240600113202 Page: 21 of 33

7.4 Radiated Emissions Above 1GHz

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)
Test Method:	ANSI C63.10 (2013) Section 6.6

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
Above 1000	500	3


7.4.1 E.U.T. Operation

Operating Enviror	nment:					
Temperature:	26.3 °C	Humidity:	64.2 % RH	Atmospheric Pressure:	1010	mbar

7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	TX mode_Keep the EUT in transmitting with modulation mode.

7.4.3 Test Setup Diagram

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 22 of 33

7.4.4 Measurement Procedure and Data

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

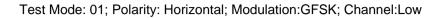
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.

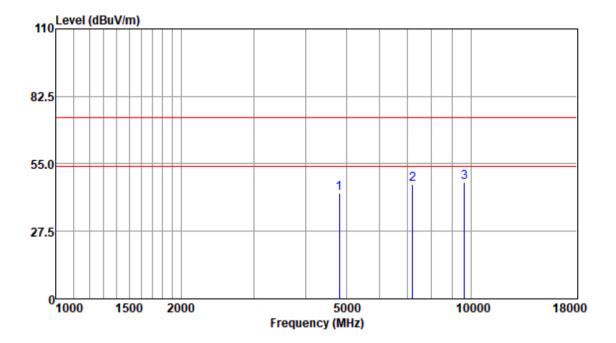
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

i. Repeat above procedures until all frequencies measured was complete.

Remark:

1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

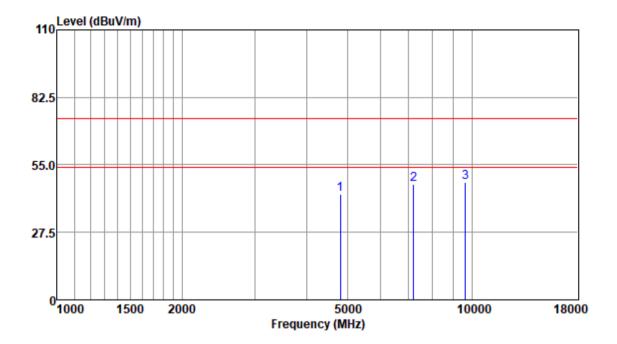

2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Report No.: SHCR240600113202

Page: 23 of 33

Antenna Polarity :HORIZONTAL EUT/Project :1132AT

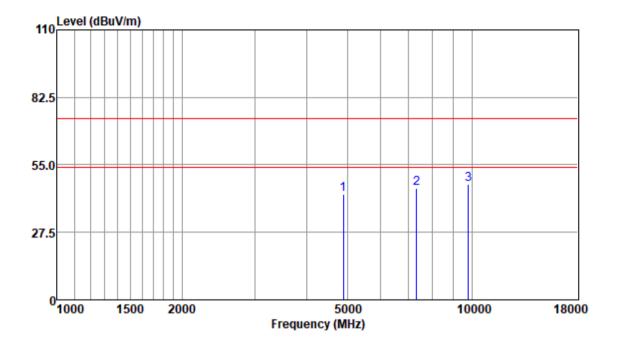

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
4810.11	40.86	33.57	5.22	36.79	42.86	74.00	-31.14	Peak
7215.15	38.69	36.26	7.33	35.51	46.77	74.00	-27.23	Peak
9620.43	34.75	37.75	8.66	33.58	47.58	74.00	-26.42	Peak

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 24 of 33

Test Mode: 01; Polarity: Vertical; Modulation:GFSK; Channel:Low

Antenna Polarity :VERTICAL EUT/Project :1132AT


	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
4810.11	40.96	33.57	5.22	36.79	42.96	74.00	-31.04	Peak
7215.15	38.91	36.26	7.33	35.51	46.99	74.00	-27.01	Peak
9620.43	35.18	37.75	8.66	33.58	48.01	74.00	-25.99	Peak

SHEM-TRF-001 Rev. 02 Sep01, 2023

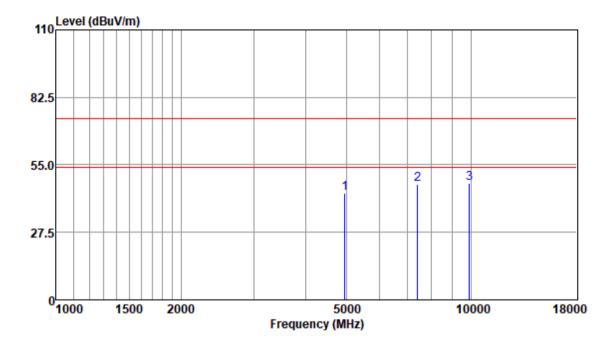
Report No.: SHCR240600113202 Page: 25 of 33

Test Mode: 01; Polarity: Horizontal; Modulation:GFSK; Channel:middle


Antenna Polarity :HORIZONTAL EUT/Project :1132AT

Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Level	Factor	Loss	Factor	Level	Line	Limit	Remark
dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
40.71	33.66	5.36	36.81	42.92	74.00	-31.08	Peak
37.24	36.35	7.31	35.41	45.49	74.00	-28.51	Peak
34.34	37.56	8.77	33.49	47.18	74.00	-26.82	Peak
	Level dBuv 40.71 37.24	Level Factor dBuv dB/m 40.71 33.66 37.24 36.35	Level Factor Loss dBuv dB/m dB 40.71 33.66 5.36 37.24 36.35 7.31	Level Factor Loss Factor dBuv dB/m dB dB 40.71 33.66 5.36 36.81 37.24 36.35 7.31 35.41	Level Factor Loss Factor Level dBuv dB/m dB dB dBuv/m 40.71 33.66 5.36 36.81 42.92 37.24 36.35 7.31 35.41 45.49	Level Factor Loss Factor Level Line dBuv dB/m dB dB dBuv/m dBuv/m 40.71 33.66 5.36 36.81 42.92 74.00 37.24 36.35 7.31 35.41 45.49 74.00	Read Antenna Cable Preamp Emission Limit Over Level Factor Loss Factor Level Line Limit dBuv dB/m dB dB dBuv/m dBuv/m dB 40.71 33.66 5.36 36.81 42.92 74.00 -31.08 37.24 36.35 7.31 35.41 45.49 74.00 -28.51 34.34 37.56 8.77 33.49 47.18 74.00 -26.82

Report No.: SHCR240600113202 Page: 26 of 33

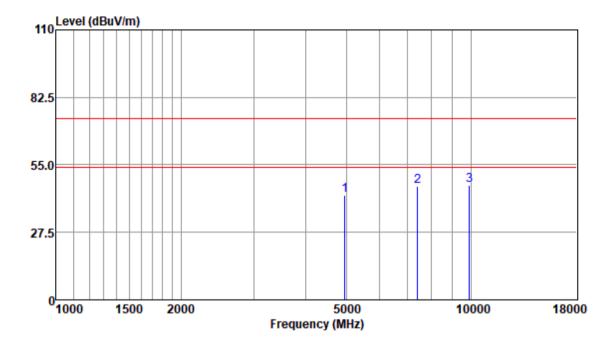

Antenna Polarity :VERTICAL EUT/Project :1132AT

Freq					Emission Level			Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
4894.15	41.93	33.66	5.36	36.81	44.14	74.00	-29.86	Peak
7341.47	38.05	36.35	7.31	35.41	46.30	74.00	-27.70	Peak
9788.60	34.73	37.56	8.77	33.49	47.57	74.00	-26.43	Peak

Report No.: SHCR240600113202 Page: 27 of 33

Test Mode: 01; Polarity: Horizontal; Modulation:GFSK; Channel:High

Antenna Polarity :HORIZONTAL EUT/Project :1132AT


Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Level	Factor	Loss	Factor	Level	Line	Limit	Remark
dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
41.01	33.65	5.46	36.83	43.29	74.00	-30.71	Peak
38.68	36.31	7.43	35.34	47.08	74.00	-26.92	Peak
34.77	37.61	8.66	33.42	47.62	74.00	-26.38	Peak
	Level dBuv 41.01 38.68	Level Factor dBuv dB/m 41.01 33.65 38.68 36.31	Level Factor Loss dBuv dB/m dB 41.01 33.65 5.46 38.68 36.31 7.43	Level Factor Loss Factor dBuv dB/m dB dB 41.01 33.65 5.46 36.83 38.68 36.31 7.43 35.34	Level Factor Loss Factor Level dBuv dB/m dB dB dBuv/m 41.01 33.65 5.46 36.83 43.29 38.68 36.31 7.43 35.34 47.08	Level Factor Loss Factor Level Line dBuv dB/m dB dB dBuv/m dBuv/m 41.01 33.65 5.46 36.83 43.29 74.00 38.68 36.31 7.43 35.34 47.08 74.00	Read Antenna Cable Preamp Emission Limit Over Level Factor Loss Factor Level Line Limit dBuv dB/m dB dB dBuv/m dBuv/m dB 41.01 33.65 5.46 36.83 43.29 74.00 -30.71 38.68 36.31 7.43 35.34 47.08 74.00 -26.92 34.77 37.61 8.66 33.42 47.62 74.00 -26.38

Report No.: SHCR240600113202

Page: 28 of 33

Test Mode: 01; Polarity: Vertical; Modulation:GFSK; Channel:High

Antenna Polarity :VERTICAL EUT/Project :1132AT

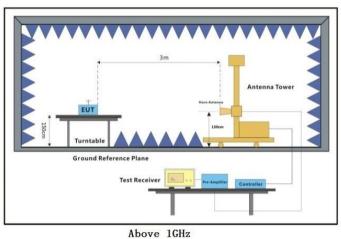
	Read	Antenna	Cable	Preamp	Emission	Limit	0ver	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuv	dB/m	dB	dB	dBuv/m	dBuv/m	dB	
4952.99	40.30	33.65	5.46	36.83	42.58	74.00	-31.42	Peak
7428.91	37.67	36.31	7.43	35.34	46.07	74.00	-27.93	Peak
9904.35	33.87	37.61	8.66	33.42	46.72	74.00	-27.28	Peak

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 29 of 33

7.5 20dB Bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.215
Test Method:	ANSI C63.10 (2013) Section 6.9


7.5.1 E.U.T. Operation

Operating Environment:Temperature:26.3 °CHumidity:64.2 % RHAtmospheric Pressure:1010mbar

7.5.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	TX mode_Keep the EUT in transmitting with modulation mode.

7.5.3 Test Setup Diagram

7.5.4 Measurement Procedure and Data

Frequency (MHz)	Bandwidth (MHz)	Result
2405	2.39	PASS
2447	2.42	PASS
2476	2.40	PASS

Report No.: SHCR240600113202 Page: 30 of 33

Test plot as follows:

Channel: 2405MHz

Evsight Spectrum Analyzer - Swept SA RF 50 Ω DC Marker 3 Δ 2.385000000	0 MHz PNO: Wide →→→ Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 100/100	01:25:03 PM Jul 05, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN	Marker
10 dB/div Ref -10.00 dBr	IFGain:Low Atten: 10 dB	ΔΜ	kr3 2.385 MHz -0.112 dB	Select Marker 3
30.0	2			Norma
-40.0 -50.0 -60.0 -70.0		3Δ1	-55.51 dBn	Delta
-80.0				Fixed
Center 2.405000 GHz #Res BW 30 kHz	#VBW 100 kHz	Sweep 5.	Span 5.000 MHz 333 ms (1001 pts)	Of
1 N 1 f 2.	403 830 GHz -55.992 dBm 405 015 GHz -35.505 dBm 2.385 MHz (Δ) -0.112 dB		E	Properties
7 8 9 10 11 •	т.			Mor 1 of 2
ISG		STATUS		

Report No.: SHCR240600113202 Page: 31 of 33

Keysight Spectr	rum Analyzer - Swept SA RF 50 Ω DC		SENSE:PULS	E		01:30:30 PM Jul 05, 2024	
arker 3Δ	2.415000000	NHZ PNO: Wide ↔ IFGain:Low	, Trig: Free Run Atten: 10 dB		Type: Log-Pwr Hold: 100/100	TRACE 12345 TYPE MWWWW DET PNNNN	N
dB/div	Ref -10.00 dBm	II Gam.Low			ΔN	lkr3 2.415 MHz -0.158 dE	Select Marke
9).0).0			2				Norm
).0).0).0		1 mm		w.t.	Mar 1 3∆1	-58.20 dBr	De
.0 .0 <mark></mark>					w		Fixe
	17000 GHz 0 kHz	#VBV	v 100 kHz		Sweep 5	Span 5.000 MH 333 ms (1001 pts	
R MODE TRC	f 2.44	5 795 GHz 7 015 GHz	Y -59.226 dBm -38.195 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
		2.415 MHz (Δ)	-0.158 dB				Propertie
							M 0
Í							
ì					STATUS		

Channel: 2447MHz

Report No	SHCR240600113202
Page:	32 of 33

Keysight Spectrum Analyzer - Swept SA						- F
RF 50 Ω DC rker 3 Δ 2.390000000	MHz	SENSE:PULSE	Avg Type: Lo	01:33:21 PM g-Pwr TRACE	123456	Marker
	PNO: Wide ↔ IFGain:Low	Trig: Free Run Atten: 10 dB	Avg Hold: 100	7100 TYP		
	IFGalli.LOW	, ment to up		ΔMkr3 2.3		Select Marke
dB/div Ref -10.00 dBm				-1.	323 dB	
0						Norr
0		<u> </u> <mark>∂</mark> 2				non
	<u>^</u> ^	m man	horn the the the test of test			
0	1 martin +			_3∆1	-58,88 dBm	_
س0	<u>y</u> *				-58.88 aBm	De
0 M				-		_
					When and the second sec	
o						Fixe
o						
nter 2.476000 GHz es BW 30 kHz	#\/B)/	V 100 kHz	Swe	span 5. ep 5.333 ms (1	000 MHz	
	<i>"</i> • D •					
N 1 f 2.47	4 835 GHz	-59.371 dBm	-UNCTION FUNCTIO	N WIDTH FUNCTIO		
	6 075 GHz 2.390 MHz (Δ)	-38.879 dBm -1.323 dB				
		-1.020 00				Propertie
						M 1
						1

SHEM-TRF-001 Rev. 02 Sep01, 2023

Report No.: SHCR240600113202 Page: 33 of 33

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for SHCR2406001132AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for SHCR2406001132AT

-End of the Report -