

TEST REPORT

Applicant	Zaidtek Electronic Technology (Xiamen) Co. Ltd.
Address	No.285 Wengjiao Road,Haicang District,Xiamen,Fujian

Manufacturer or Supplier	Zaidtek Electronic Technology (Xiamen) Co. Ltd.
Address	No.285 Wengjiao Road,Haicang District,Xiamen,Fujian
Product	2.4GHz Wireless Desktop with Optical Mouse
Brand Name	N/A
Model	HK8016
Additional Model & Model Difference	N/A
Date of tests	Jun. 05, 2013 ~ Jun. 14, 2013

the tests have been carried out according to the requirements of the following standard:

FCC Part 15, Subpart C (Section 15.249)

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Tested by Glyn He Project Engineer / EMC Department	Approved by Sam Tung Manager / EMC Department		
Glyn	Date: Jun. 17, 2013		
This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification			

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

TABLE OF CONTENTS

R	ELEASE	CONTROL RECORD	3
1	SUM	MARY OF TEST RESULTS	4
2	MEA	SUREMENT UNCERTAINTY	4
3	GEN	ERAL INFORMATION	5
	3.1 G	ENERAL DESCRIPTION OF EUT	5
	3.2 D	ESCRIPTION OF TEST MODES	5
	3.3 G	ENERAL DESCRIPTION OF APPLIED STANDARDS	6
	3.4 D	ESCRIPTION OF SUPPORT UNITS	6
4	TES	T TYPES AND RESULTS	7
	4.1 R	ADIATED EMISSION MEASUREMENT	7
	4.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT	7
	4.1.2	TEST INSTRUMENTS	8
	4.1.3	TEST PROCEDURES	9
	4.1.4	DEVIATION FROM TEST STANDARD	9
	4.1.5	TEST SETUP	. 10
	4.1.6	EUT OPERATING CONDITIONS	. 10
	4.1.7	TEST RESULTS	11
	4.2 20	dB BANDWIDTH MEASUREMENT	. 17
	4.2.1	LIMITS OF 20dB BANDWIDTH MEASUREMENT	. 17
	4.2.2	TEST INSTRUMENTS	. 17
	4.2.3	TEST PROCEDURE	. 18
	4.2.4	DEVIATION FROM TEST STANDARD	. 18
	4.2.5	TEST SETUP	. 19
	4.2.6	EUT OPERATING CONDITIONS	. 19
	4.2.7	TEST RESULTS	. 20
5	РНО	TOGRAPHS OF THE TEST CONFIGURATION	. 22
6	APPE	NDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	
	EUT	BY THE LAB	. 23

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF130605N005	Original release	Jun. 17, 2013

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.249)				
STANDARD SECTION			REMARK	
§15.203	Antenna Requirement	PASS	Compliant	
§15.207 (a)	Conducted Emission	N/A	EUT is powered by battery	
§15.205	Restricted Band of Operation	PASS	Compliant	
§15.209 §15.249(a)	Radiated Emission	PASS	Compliant	
§15.215(c)	20dB Bandwidth Test	PASS	Compliant	

2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions	9kHz~30MHz	2.44dB	
	30MHz ~1GHz	3.64dB	
Radiated emissions	1GHz ~ 18GHz	2.26dB	
	18GHz ~ 40GHz	1.94dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	2.4GHz Wireless Desktop with Optical Mouse
MODEL NO.	HK8016
FCC ID	YVYHYXHK8016
NOMINAL VOLTAGE	DC 3V from battery
MODULATION TYPE	GFSK
OPERATING FREQUENCY	2403-2480MHz
ANTENNA TYPE	Integral PCB Antenna with 0dBi gain
I/O PORTS	N/A
CABLE SUPPLIED	N/A

NOTE: The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF TEST MODES

Following channel(s) was (were) selected for the test as listed below.

TESTED CHANNEL	TESTED FREQUENCY
Low	2403 MHz
Middle	2440 MHz
High	2480 MHz

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Verification). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together without any other necessary accessories or support units.

Tel: +86 769 8593 5656

Fax: +86 769 8593 1080

4 TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field strength of fundamental (milli-volts/meter)	Field strength of harmonics (micro-volts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply.

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

4.1.2 TEST INSTRUMENTS

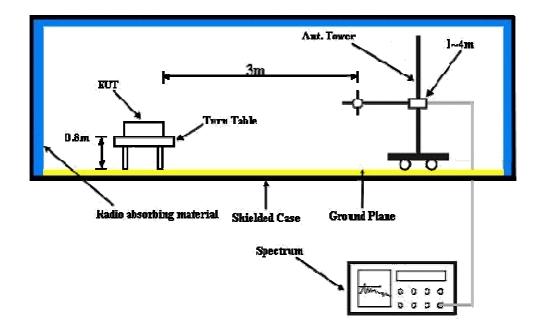
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Agilent	E4446A	MY46180622	April 24,13	April 23,14
EMI Test Receiver	Rohde&Schwarz	ESVD	847398/003	May 14,13	May 13,14
Bilog Antenna (25MHz-2GHz)	Teseq	CBL 6111D	27089	Jul. 16,12	Jul. 15,13
Bilog Antenna	Teseq	CBL 6111D	25757	Nov. 22,12	Nov. 21,13
Horn Antenna (1GHz -18GHz)	EMCO	3117	00062558	Oct.18,12	Oct.17,13
Pre-Amplifier (20MHz-3GHz)	EMCI	EMC 330	980095	Nov. 02,12	Nov.01,13
Pre-Amplifier (100MHz-26.5GHz)	Agilent	8449B	3008A00409	May 14,13	May 13,14
10m Semi-anechoic Chamber	CHANGLING	21.4m*12.1m*8 .8m	NSEMC006	Mar. 24,13	Mar. 23,14
Digital Multimeter	FLUKE	15B	A1220010D G	Oct. 31,12	Oct. 30,13
Test Software	ADT	ADT_Radiated _V7.6.15	N/A	N/A	N/A

- **NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA and NIM/CHINA.
 - 2. The test was performed in Dongguan 10m Chamber.
 - 3. The horn antenna are used only for the measurement of emission frequency above 1GHz if tested.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

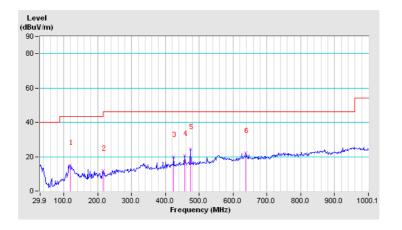
Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL TX Low Channel		FREQUENCY RANGE	Below 1000MHz	
TEST VOLTAGE	DC 3V from hattery	DETECTOR FUNCTION	Quasi-Peak	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	118.83	15.1 QP	43.5	-28.4	1.90 H	118	2.02	13.04		
2	215.85	11.9 QP	43.5	-31.6	1.66 H	229	0.82	11.04		
3	424.45	19.7 QP	46.0	-26.3	1.79 H	213	-0.02	19.75		
4	456.79	20.7 QP	46.0	-25.3	1.50 H	249	0.36	20.37		
5	474.57	24.4 QP	46.0	-21.6	2.05 H	180	3.63	20.76		
6	637.89	22.1 QP	46.0	-23.9	1.38 H	265	-2.07	24.19		


REMARKS:

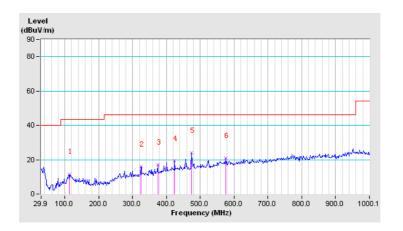
1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China



EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL TX Low Channel		FREQUENCY RANGE Below 1000MHz		
TEST VOLTAGE	DC 3V from hattery	DETECTOR FUNCTION	Quasi-Peak	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	112.37	11.6 QP	43.5	-31.9	1.00 V	203	-1.33	12.94		
2	324.19	15.9 QP	46.0	-30.1	1.33 V	113	-0.32	16.20		
3	374.32	17.2 QP	46.0	-28.9	1.17 V	133	-0.66	17.81		
4	424.45	19.3 QP	46.0	-26.7	1.03 V	151	-0.47	19.75		
5	474.57	24.0 QP	46.0	-22.0	1.00 V	187	3.22	20.76		
6	574.83	20.8 QP	46.0	-25.2	1.52 V	88	-2.54	23.34		

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

ABOVE 1GHz WORST-CASE DATA:

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL TX Low Channel		FREQUENCY RANGE 1 ~ 25GHz		
TEST VOLTAGE	TEST VOLTAGE DC 3V from battery		Peak (PK) Average (AV)	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2400.00	49.7 PK	74.0	-24.3	1.00 H	188	12.43	37.27
2	2400.00	12.1 AV	54.0	-41.9	1.00 H	188	-25.17	37.27
3	2403.00	95.8 PK	114.0	-18.2	1.00 H	188	58.53	37.27
4	2403.00	58.2 AV	94.0	-35.8	1.00 H	188	20.93	37.27
5	4806.00	58.2 PK	74.0	-15.8	1.53 H	196	16.59	41.61
6	4806.00	20.6 AV	54.0	-33.4	1.53 H	196	-21.01	41.61
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2400.00	48.7 PK	74.0	-25.3	1.22 V	270	11.43	37.27
2	2400.00	11.1 AV	54.0	-42.9	1.22 V	270	-26.17	37.27
3	2403.00	90.2 PK	114.0	-23.8	1.22 V	270	52.93	37.27
4	2403.00	52.6 AV	94.0	-41.4	1.22 V	270	15.33	37.27
5	4806.00	58.1 PK	74.0	-15.9	1.00 V	82	16.49	41.61
6	4806.00	20.5 AV	54.0	-33.5	1.00 V	82	-21.11	41.61

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:
 20 log (Duty cycle) = 20 log (6*0.22ms / 100ms) = -37.6dB
 - Please see page 16 for plotted duty.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL TX Middle Channel		FREQUENCY RANGE 1 ~ 25GHz		
TEST VOLTAGE	TEST VOLTAGE DC 3V from battery		Peak (PK) Average (AV)	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2440.00	97.8 PK	114.0	-16.2	1.00 H	193	60.46	37.34
2	2440.00	60.2 AV	94.0	-33.8	1.00 H	193	22.86	37.34
3	4880.00	59.1 PK	74.0	-14.9	1.48 H	189	17.40	41.70
4	4880.00	21.5 AV	54.0	-32.5	1.48 H	189	-20.20	41.70
5	7320.00	59.8 PK	74.0	-14.2	1.26 H	270	14.01	45.79
6	7320.00	22.2 AV	54.0	-31.8	1.26 H	270	-23.59	45.79
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2440.00	91.3 PK	114.0	-22.7	1.21 V	269	53.96	37.34
2	2440.00	53.7 AV	94.0	-40.3	1.21 V	269	16.36	37.34
3	4880.00	58.8 PK	74.0	-15.2	1.00 V	90	17.10	41.70
4	4880.00	21.2 AV	54.0	-32.8	1.00 V	90	-20.50	41.70
5	7320.00	59.3 PK	74.0	-14.7	1.00 V	324	13.51	45.79

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency.

6. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log (Duty cycle) = 20 log (6*0.22ms / 100ms) = -37.6dB

Please see page 16 for plotted duty.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL TX High Channel		FREQUENCY RANGE 1 ~ 25GHz		
TEST VOLTAGE	DC 3V from battery		Peak (PK) Average (AV)	

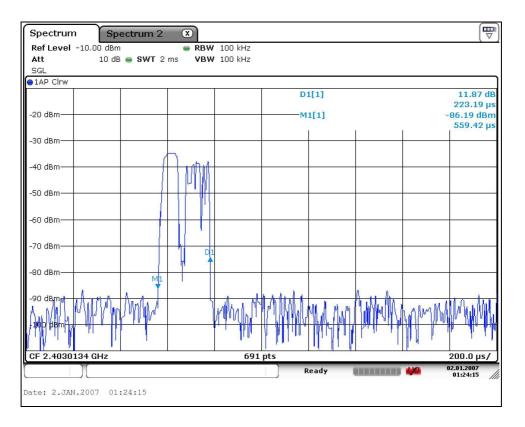
		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	98.3 PK	114.0	-15.7	1.00 H	195	60.89	37.41
2	*2480.00	60.7 AV	94.0	-33.3	1.00 H	195	23.29	37.41
3	2483.50	50.3 PK	74.0	-23.7	1.00 H	195	12.89	37.41
4	2483.50	12.7 AV	54.0	-41.3	1.00 H	195	-24.71	37.41
5	4960.00	56.8 PK	74.0	-17.2	1.45 H	186	15.00	41.80
6	4960.00	19.2 AV	54.0	-34.8	1.45 H	186	-22.60	41.80
7	7440.00	59.7 PK	74.0	-14.3	1.20 H	275	13.88	45.82
8	7440.00	22.1 AV	54.0	-31.9	1.20 H	275	-23.72	45.82
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	91.2 PK	114.0	-22.8	1.15 V	270	53.79	37.41
2	*2480.00	53.6 AV	94.0	-40.4	1.15 V	270	16.19	37.41
3	2483.50	48.1 PK	74.0	-25.9	1.15 V	270	10.69	37.41
4	2483.50	10.5 AV	54.0	-43.5	1.15 V	270	-26.91	37.41
5	4960.00	57.6 PK	74.0	-16.4	1.00 V	98	15.80	41.80
6	4960.00	20.0 AV	54.0	-34.0	1.00 V	98	-21.80	41.80
7	7440.00	58.8 PK	74.0	-15.2	1.07 V	327	12.98	45.82
8	7440.00	21.2 AV	54.0	-32.8	1.07 V	327	-24.62	45.82

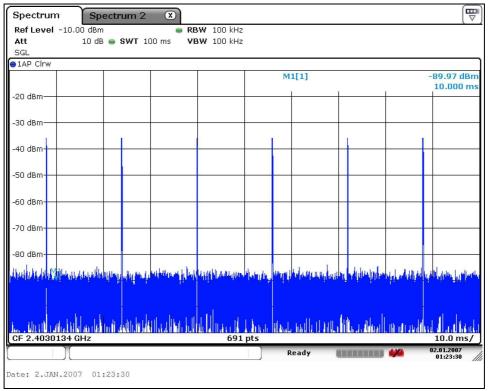
REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:
 20 log (Duty cycle) = 20 log (6*0.22ms / 100ms) = -37.6dB


Please see page 16 for plotted duty.


No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Duty Cycle:

20 log (Duty cycle) = 20 log (6*0.22ms / 100ms) = -37.6dB

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

4.2 20DB BANDWIDTH MEASUREMENT

4.2.1 LIMITS OF 20dB BANDWIDTH MEASUREMENT

According to FCC 15.215(c), must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.2.2 TEST INSTRUMENTS

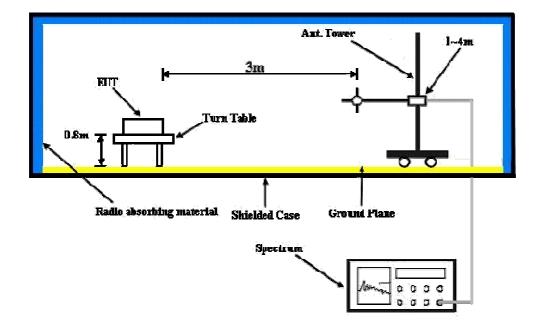
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Agilent	E4446A	MY46180622	April 24,13	April 23,14
EMI Test Receiver	Rohde&Schwarz	ESVD	847398/003	May 14,13	May 13,14
Bilog Antenna (25MHz-2GHz)	Teseq	CBL 6111D	27089	Jul. 16,12	Jul. 15,13
Bilog Antenna	Teseq	CBL 6111D	25757	Nov. 22,12	Nov. 21,13
Horn Antenna (1GHz -18GHz)	EMCO	3117	00062558	Oct.18,12	Oct.17,13
Pre-Amplifier (20MHz-3GHz)	EMCI	EMC 330	980095	Nov. 02,12	Nov.01,13
Pre-Amplifier (100MHz-26.5GHz)	Agilent	8449B		May 14,13	May 13,14
10m Semi-anechoic Chamber	CHANGLING	21.4m*12.1m*8 .8m	NSEMC006	Mar. 24,13	Mar. 23,14
Digital Multimeter	FLUKE	15B	A1220010D G	Oct. 31,12	Oct. 30,13
Test Software	ADT	ADT_Radiated _V7.6.15	N/A	N/A	N/A

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA and NIM/CHINA

2. The test was performed in Chamber 10m.

4.2.3 TEST PROCEDURE

The EUT was placed on a turn table which was 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on a antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 to 4 m for horizontal and vertical polarizations.


The spectrum analyzer was receiving the maximum emission level. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.5 TEST SETUP

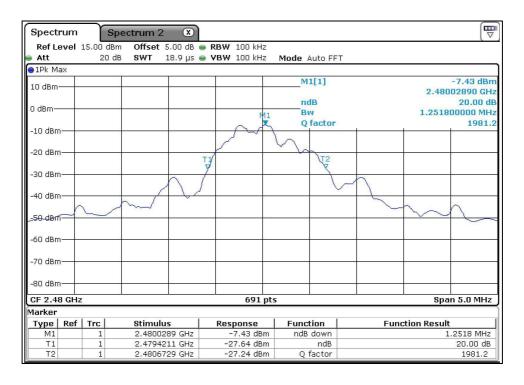
4.2.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 TEST RESULTS

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)
Low	2403	1.303
Middle	2440	1.288
High	2480	1.25

Test Data: Low channel


10 dBm 2.40300000 0 dBm 1.302500000 10 dBm 9 factor -10 dBm 0 factor -20 dBm 11 -30 dBm 11 -30 dBm 12 -40 dBm 12 -50 dBm 14 -60 dBm 14 -70 dBm 14 -70 dBm 14 -80 dBm 14 -70 dBm 14 -70 dBm 15 -80 dBm 10 -70 dBm 10 -80 dBm 10 -70 dBm 10 -80 dBm 10 -9.13 dBm ndB down 1.3025	Spect	rum	S	ectrum 2	2 🛛								
10 kmx M1[1] -9.13 10 dBm ndB 20.1 0 dBm Bw 1.30250000 10 dBm 0 factor 11 20 dBm 0 factor 11 20 dBm T1 12 30 dBm T1 T2 30 dBm T1 T2 40 dBm T1 T2 50 dBm Final Final 60 dBm Final Final 60 dBm Final Final 60 dBm Final Final 60 dBm Final Final 70 dBm Final Final 80 dBm Final Final 70 dBm Final Final 80 dBm Final Final 70 dBm Final Final 80 dBm Fina Fina <th>Ref Le</th> <th>evel</th> <th>15.00 dBr</th> <th>n Offset</th> <th>5.00 dB 🧉</th> <th>RBW</th> <th>100 kHz</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Ref Le	evel	15.00 dBr	n Offset	5.00 dB 🧉	RBW	100 kHz						
10 dBm M1[1] -9.13 10 dBm 0 dBm 2.40300000 0 dBm 0 dBm 20.1 -10 dBm 0 factor 1302500000 -20 dBm 11 0 factor -20 dBm 71 12 -30 dBm 71 12 -30 dBm 71 12 -30 dBm 71 12 -30 dBm 71 72 -60 dBm 691 pts Span 5.0 Aarker 70 dBm 691 pts Type Ref Trc Stimulus Response Function Function Result M1 1 2.403 GHz -9.13 dBm ndB down	Att		20 d	B SWT	18.9 µs 🧉	VBW	100 kHz	Mode Au	to FFT				
10 dBm 2.40300000 0 dBm ndB 20.1 10 dBm 9 1.302500000 10 dBm 0 factor 11 -10 dBm 1.302500000 11 -20 dBm 71 12 -30 dBm 71 12 -30 dBm 71 12 -30 dBm 71 12 -60 dBm 60 dBm 60 dBm -70 dBm 691 pts Span 5.0 Aarker 72 691 pts Span 5.0 Marker 79.13 dBm ndB down 1.3025	∋1Pk Ma	ЭX											
0 dBm ndB 20.1 -10 dBm 0 dBm 20.1 -20 dBm 1.30250000 13 -20 dBm 71 0 factor -30 dBm 71 12 -30 dBm 71 12 -30 dBm 72 14 -40 dBm 71 12 -50 dBm 691 pts Span 5.0 -70 dBm 691 pts Span 5.0 Marker 79.13 dBm ndB down 1.3025	10 dBm							M1[1]			-9.13 dBr	
0 dBm III Bw 1.302500000 -10 dBm Q factor 11 -20 dBm III Q factor 11 -20 dBm III Q factor 11 -30 dBm III III III IIII -30 dBm IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TO UDIII.										2.403		
-10 dBm -10 dBm Q factor 11 -20 dBm -20 dBm -11 12 -30 dBm -11 12 12 -30 dBm -11 12 12 -40 dBm -50 dBm -60 dBm -60 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -61 pts Span 5.0 Aarker -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm	0 dBm—											20.00 d	
-10 dBm	orabili						M1				1.3025		
20 dBm T1 T2 -30 dBm T1 T2 -30 dBm -11 T2 -40 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	-10 dBm	-					A A	Q fa	ictor		+	1845.	
-30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -10								m					
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -10	-20 dBm	e				1		m				-	
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -9.13 dBm -9.					Т	1/			12				
-50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -90	-30 dBm			-		r			Y		-	-	
-50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -90					m				1-	~			
-60 dBm -70 dBm -80	-40 dBm			1	4V	-				1		-	
-60 dBm			_	m						~			
-70 dBm	-50 d8m	-											
-70 dBm	co lo												
B0 dBm Figure 1 GP1 pts Span 5.0 CF 2.403 GHz 691 pts Span 5.0 Marker Type Ref Trc Stimulus Response Function Function Result M1 1 2.403 GHz -9.13 dBm ndB down 1.3025	-во авт												
B0 dBm Figure 1 GP1 pts Span 5.0 CF 2.403 GHz 691 pts Span 5.0 Marker Type Ref Trc Stimulus Response Function Function Result M1 1 2.403 GHz -9.13 dBm ndB down 1.3025	70 d9m												
CF 2.403 GHz 691 pts Span 5.0 Marker	-70 0611												
CF 2.403 GHz 691 pts Span 5.0 Marker	-80 dBm												
Marker Type Ref Trc Stimulus Response Function Function Result M1 1 2.403 GHz -9.13 dBm ndB down 1.3025						c.							
Type Ref Trc Stimulus Response Function Function Result M1 1 2.403 GHz -9.13 dBm ndB down 1.3025)3 G⊦	IZ				691 pt	:s			Spa	n 5.0 MHz	
M1 1 2.403 GHz -9.13 dBm ndB down 1.3025			1 1			_		1					
	T1		1	2.403 GHz 2.4023705 GHz			9.13 dBm 9.13 dBm		ndB		1	20.00 dB	
				2.4036729 GHz		-28.98 dBm		-	Q factor		1845.0		

Test Data: Middle channel

10 dBm 2.4400	-6.86 dBm)1950 GHz 20.00 dB)0000 MHz 1894.4
1Pk Max 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 factor 10 dBm 20 dBm	01950 GHz 20.00 dB 10000 MHz
10 dBm	01950 GHz 20.00 dB 10000 MHz
10 dBm 2.4400 0 dBm ndB -10 dBm Q factor	01950 GHz 20.00 dB 10000 MHz
0 dBm Mt Bw 1.288000 -10 dBm Q factor	20.00 dB 10000 MHz
0 dBm Bw 1.288000 -10 dBm Q factor	0000 MHz
-10 dBm	
-10 dBm	1894.4
-20 dBm	
-20 dBm	
-20 dBm	
$\overline{\nabla}$	
-30 dBm	
	~
-50 dBm	
-60 dBm	
-70 dBm	
-80 dBm	
CF 2.440034 GHz 691 pts Span	1 5.0 MHz
Marker	
Type Ref Trc Stimulus Response Function Function Result	1
	288 MHz
	20.00 dB
T2 1 2.440678 GHz -26.48 dBm Q factor	1894.4

Test Data: High channel

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080 Email: <u>customerservice.dg@cn.bureauveritas.com</u>

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----