
LEGRAND HOME SYSTEMS, NORTH AMERICA

900MHZ BAND RF MODULE

Model: 202860

Jan 16th , 2013 Report No.: RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0 (This report supersedes RF_RF_SL12102503-LHS-010_FCC-IC (202860))

Modifications made to the product : None

 This Test Report is Issued Under the Authority of:

 David Zhang
 Choon Sian Ooi

 David Zhang
 Choon Sian Ooi

 Compliance Engineer
 Engineering Reviewer

IEMIC, IN

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 2 of 73

 www.siemic.com

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accidations for comonity Assessment				
Country/Region	Accreditation Body	Scope		
USA	FCC, A2LA	EMC , RF/Wireless , Telecom , SAR		
Canada	IC, A2LA, NIST	EMC, RF/Wireless , Telecom , SAR		
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom , Safety		
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom		
Australia	NATA, NIST	EMC, RF, Telecom , Safety		
Korea	KCC/RRA, NIST	EMI, EMS, RF , Telecom, Safety , SAR		
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom		
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom		
Europe	A2LA, NIST	EMC, RF, Telecom , Safety, SAR		

Accreditations for Conformity Assessment

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC , RF , Telecom
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	ore iDA, NIST EMC , RF , Teleco	
EU	NB	EMC & R&TTE Directive
Japan	MIC, (RCB 208)	RF , Telecom
HongKong	OFTA (US002)	RF , Telecom

Serial# Issue Date Page	RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0 Jan 16th , 2013 3 of 73 www.siemic.com
-------------------------------	---

This page has been left blank intentionally.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 4 of 73

 www.siemic.com

<u>CONTENTS</u>

1	EXECUTIVE SUMMARY & EUT INFORMATION	6
2	TECHNICAL DETAILS	7
3	MODIFICATION	8
4	TEST SUMMARY	9
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	10
ANN	EX A. TEST INSTRUMENT & METHOD	39
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS	43
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	44
ANN	EX D. USER MANUAL, BLOCK & CIRCUIT DIAGRAM	47
ANN	EX E SIEMIC ACCREDITATION	48

Serial# Issue Date Page	RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1 Jan 16th , 2013 5 of 73 www.siemic.com
-------------------------------	---

This page has been left blank intentionally.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 6 of 73

 www.siemic.com

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the Legrand Home Systems, North America 900MHz band RF Module, against the current Stipulated Standards. The 900MHz band RF Module has demonstrated compliance with the FCC 15.247:2012 and RSS-210 Issue 8:2010.

EUT Information

EUT Description	900MHz band RF Module		
Model No	202860		
Serial No	N/A		
Input Power	120VAC, 60Hz		
Classification Per Stipulated Test Standard	Spread Spectrum System / Device		

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 7 of 73

 www.siemic.com

2 TECHNICAL DETAILS

Purpose	Compliance testing of 900MHz band RF Module with stipulated standard	
Applicant / Client	Legrand Home Systems, North America	
Manufacturer	Legrand Home Systems, North America 301 Fulling Mill Rd, Suite G Middletown, PA 17057, USA	
Laboratory performing the tests	SIEMIC Laboratories 775 Montague Expressway, Milpitas, CA 95035	
Test report reference number	RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0	
Date EUT received	Dec 19 th , 2012	
Standard applied	47 CFR §15.247: 2012 & RSS-210 Issue 8:2010	
Dates of test (from – to)	Dec 19 th – Jan16 th , 2013	
Equipment Category:	DTS	
Trade Name:	Legrand Home Systems, North America	
Model :	202860	
RF Operating Frequency (ies)	904.861 MHz to 924.873 MHz	
Number of Channels :	5	
Modulation :	Spread Spectrum System / Device	
Antenna Resonate Frequency:	915 ± 30MHz	
Antenna Impedance:	50 Ω	
Antenna Radiation Pattern:	Omni Directional	
Antenna Polarization:	Vertical	
Antenna V.S.W.R.:	2.6 or less	
FCC ID :	YV8-202860	
IC ID :	9922A-202860	

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 8 of 73
 www.siemic.com

MODIFICATION 3

NONE

SIEMIC, INC. Accessing global markets

RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 9 of 73

 www.siemic.com

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Spread Spectrum System / Device

Test Results Summary

Test Sta	Indard	Description		D / F!!
47 CFR Part 15.247:2011	RSS-210 Issue 8:2010	Description	Test Date	Pass / Fail
15.203		Antenna Requirement	N/A	Pass
15.205	RSS210(A8.5)	Restricted Band of Operation	N/A	Pass
15.207(a)	RSS210(A8.1)	AC Line Conducted Emissions Voltage	12/26/2012	Pass
15.247(a) (1)	RSS210(A8.1)	Channel Separation	12/26/2012	Pass
15.247(a)(1)	RSS210 (A8.2)	Occupied Bandwidth	12/26/2012	Pass
15.247(a) (2)	RSS210(A8.1)	6dB Occupied Bandwidth	N/A	N/A
15.247(a) (1) (i)	RSS210(A8.1)	Number of Hopping Channels	12/26/2012	Pass
15.247(a) (1) (i)	RSS210(A8.4)	Time of Occupancy	12/26/2012	Pass
15.247(b) (2)	RSS210(A8.4)	Output Power	01/02/2013	Pass
15.247(c)	RSS210(A8.5)	Antenna Gain	N/A	N/A
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	12/26/2012	Pass
15.247(e)	RSS210(A8.3)	Power Spectral Density	01/02/2013	Pass
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	N/A	Pass
15.247(i) §2.1091& §2.1093	RSSGen(5.5)	Maximum Permissible Exposure	N/A	Pass
15.247 (d)	RSS210(A8.5)	100 kHz Bandwidth of Frequency Band Edge	N/A	Pass

PS: All measurement uncertainties are not taken into consideration for all presented test result.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 10 of 73

 www.siemic.com

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.
- 1) The antenna was permanently soldered to the board with a gain of 2.56 dBi which meets the requirement.

Serial#	RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0
Issue Date	Jan 16th , 2013
Page	11 of 73

5.2 Conducted Emissions Voltage

Standard Requirement:

The frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.

AC Line Limit

Frequency ranges	Lim	it (dBuV)
(MHz)	QP	Average
0.15 ~ 0.5	66 – 56	56 - 46
0.5 ~ 5	56	46
5 ~ 30	60	50

Note:

1.	All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR
	and Average detectors, are reported. All other emissions were relatively insignificant.
2.	A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
3.	Conducted Emissions Measurement Uncertainty
	All test measurements carried out are traceable to national standards. The uncertainty of the measurement a=t a confidence level of approximately 95%
	(in the case where distributions are normal), with a coverage factor of 2, in the range 150kHz – 30MHz (Average & Quasi-peak) is ±3.5dB.

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 12 of 73

 www.siemic.com

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Description of Conducted Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 15 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.

Sample Calculation Example

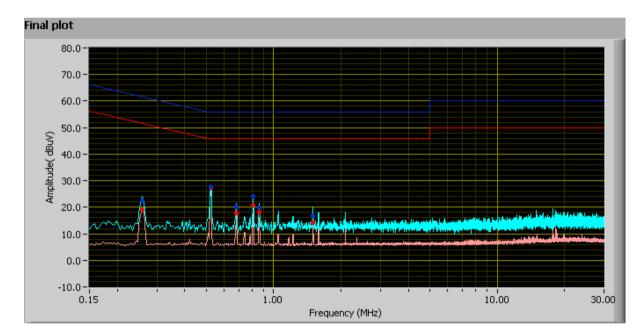
At 20 MHzlimit = $250 \ \mu V = 47.96 \ dB \mu V$ Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = $11.20 \ dB$ Q-P reading obtained directly from EMI Receiver = $40.00 \ dB \mu V$
(Calibrated for system losses)Therefore, Q-P margin = 47.96 - 40.00 = 7.96i.e. **7.96 dB below limit**

Test Result: Pass

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 13 of 73


 www.siemic.com

Test Result

Test specification:	Conducted	d Emission (CE) per	CE) per FCC		
Environ Conditions:		Temp:	21°C		
		Humidity:	53.20%		
			1019mbar	Result:	
Voltage/Line & Phase Test Date: Tested by:		120VAC, 60Hz/ L	120VAC, 60Hz/ Line		Pass
		12/26/2012	12/26/2012		
		David Zhang	David Zhang		
EUT Operati	ng Mode:	TX Mode		· · ·	
EUT Config	juration:	N/A			
Remarks: NONE					

Quasi-Peak Limit

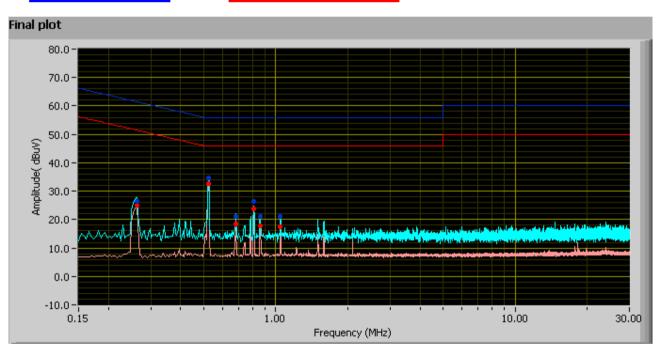
Average Limit

120V, 60Hz, Line

Frequency	QP Value	Class B Limit	Margin	Avg Value	Class B Limit	Margin
(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
0.52	34.57	56.00	-21.43	32.62	46.00	-13.38
0.81	26.43	56.00	-29.57	23.60	46.00	-22.40
0.26	26.55	61.47	-34.92	25.21	51.47	-26.26
0.68	21.23	56.00	-34.78	18.36	46.00	-27.65
0.86	20.95	56.00	-35.05	17.84	46.00	-28.16
1.05	21.09	56.00	-34.91	17.31	46.00	-28.69

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013


 Page
 14 of 73

 www.siemic.com

Test specification:	Conducted	d Emission (CE) per	FCC		
		Temp:	21°C		
Environ Co	Environ Conditions:		53.20%		
			1019mbar	Result:	Data
Voltage/Line	Voltage/Line & Phase		120VAC, 60Hz/ neutral		Pass
Test D	Test Date:		12/26/2012		
Tested	by:	David Zhang	David Zhang		
EUT Operati	EUT Operating Mode: TX Mode				
EUT Config	guration:	N/A			
Remarks: NONE					

Quasi-Peak Limit

Average Limit

120V, 60Hz, Neutral

Frequency	QP Value	Class B Limit	Margin	Avg Value	Class B Limit	Margin
(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
0.52	27.82	56.00	-28.18	27.38	46.00	-18.62
0.81	24.10	56.00	-31.90	20.84	46.00	-25.16
0.86	19.71	56.00	-36.30	18.16	46.00	-27.85
0.68	20.21	56.00	-35.79	17.88	46.00	-28.12
1.50	16.83	56.00	-39.17	13.99	46.00	-32.01
0.26	22.28	61.60	-39.32	19.15	51.60	-32.45

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 15 of 73

 www.siemic.com

5.3 Hopping Channel Separation

Procedures: The Channel Separation was measured using radiated measurement method with a spectrum analyzer at low, mid, and hi channels.

Frequency hopping systems shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.

Measurement uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$

Test Set-up

- 1. EUT shall be configured to operate at its maximum Dwell Time and maximum Duty Cycle.
- 2. Equipment was setup in a semi-anechoic chamber and measurement was made using antenna to detect EUT signal and record the reading on spectrum analyzer which is connected to antenna output.

Test Method

The Channel Separation was measured using radiated measurement method with a spectrum analyzer.

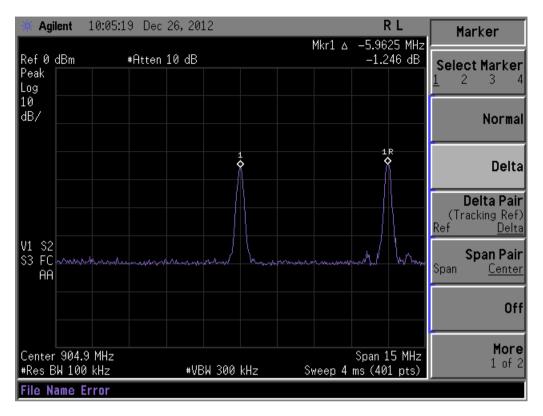
Test Result: N/A

Index	Mode	CH No.	Frequency (MHz)	Ch Separation (MHz)	Limit (MHz)	Results
1	ТХ	Low	904.861	5.9625	0.791	N/A
2	ТХ	Mid	918.869	3.5625	0.762	N/A
3	TX	High	924.873	2.4375	0.759	N/A

Note: EUT belongs to hybrid system. There is not hop channel separation restriction on hybrid system.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013


 Page
 16 of 73

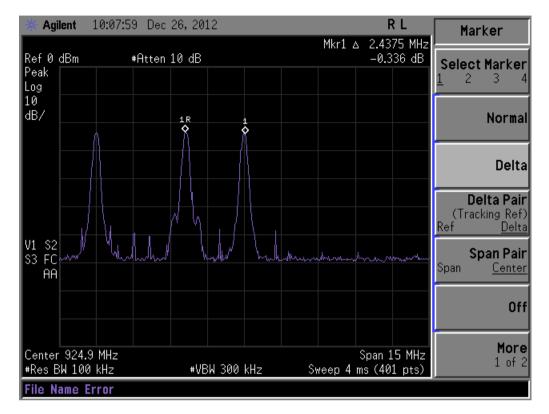
 www.siemic.com


Plot - TX-904.861MHz

Title: Model:

To:

Plot - TX-918.869MHz


 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 17 of 73

 www.siemic.com

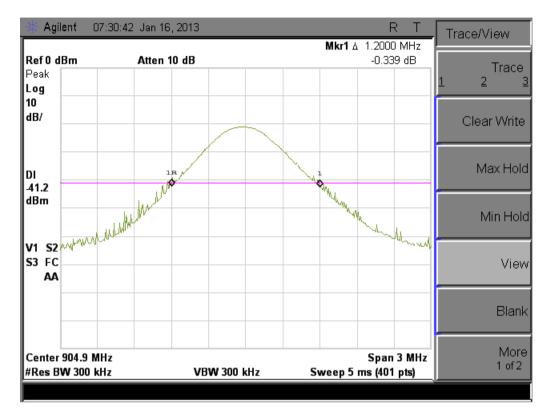
Plot - TX-924.873MHz

Serial#	RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0
ssue Date	Jan 16th , 2013
^D age	18 of 73
	www.siemic.com

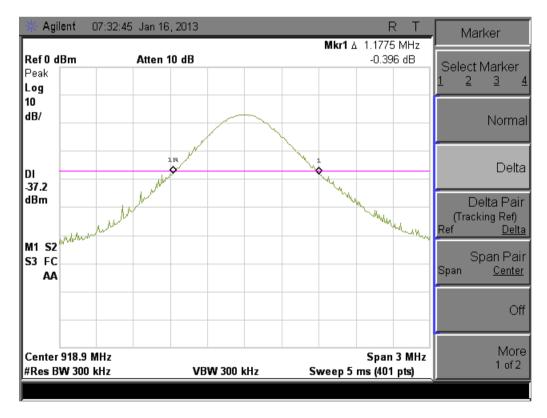
5.4 Occupied Bandwidth

1.	Radiated Measurement					
	EUT was set for low , mid, high cl	annel with modulated mode and highe	st RF output power.			
	The spectrum analyser was conn	ected to the antenna output in the charr	nber.			
2	Environmental Conditions	Temperature	20°C			
		Relative Humidity	50%			
		Atmospheric Pressure	1019mbar			
3	Radiated Emissions Measuremer	t Uncertainty				
	All test measurements carried out	All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a				
	confidence level of approximately	confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the				
	range 30MHz – 40GHz is ±1.5dB		,			
4	Test Date : 12/26/2012 - 01/16/20)13				

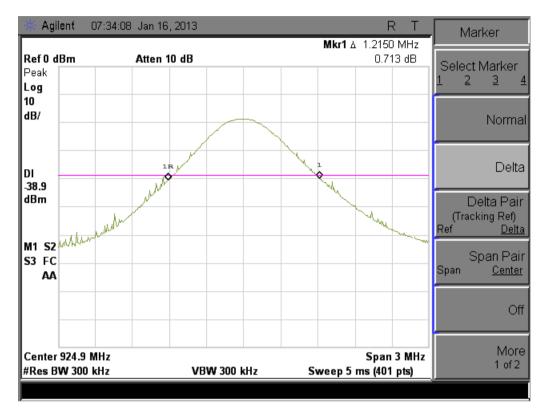
Tested By: David Zhang


Test Results:

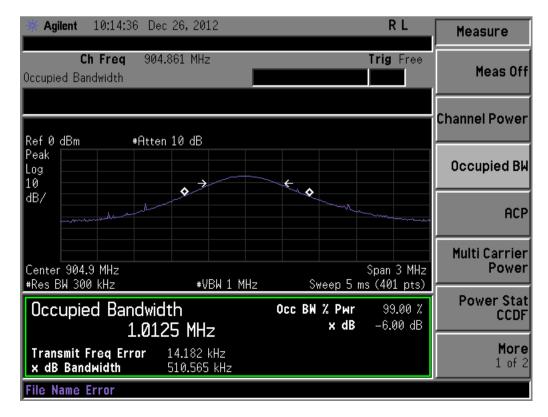
Index	Mode	CH No.	Frequency (MHz)	20dB OBW (MHz)	99% OBW (MHz)	Limit (MHz)	Results
1	ΤX	Low	904.861	1.200	1.184	N/A	N/A
2	TX	Mid	918.869	1.1775	1.130	N/A	N/A
3	ΤX	High	924.873	1.215	1.174	N/A	N/A


*Refer to 20dB Occupied Bandwidth section for test graphs.

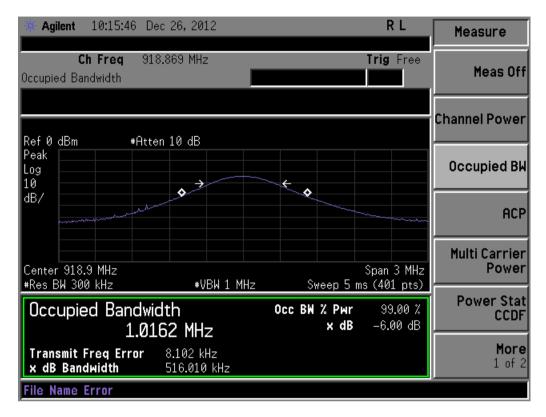
Plot - TX-904.861MHz-20dB BW



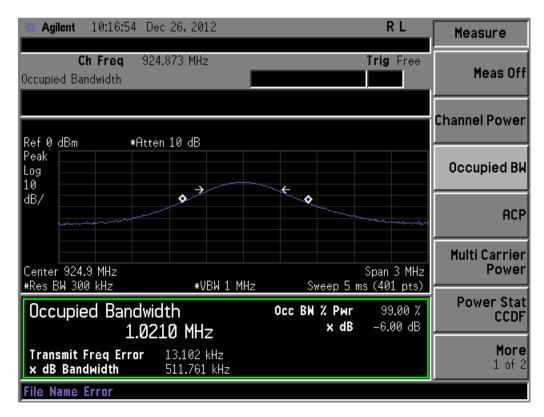
Plot - TX-918.869MHz-20dB BW



Plot - TX-924.873MHz-20dB BW



Plot - TX-904.861MHz-99% BW



Plot - TX-918.869MHz-99% BW

Plot - TX-924.873MHz-99% BW

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 22 of 73

 www.siemic.com

5.5 Time of Occupancy

1.	Radiated Measurement						
	EUT was set for low, mid, high ch	annel with modulated mode and highes	st RF output power.				
	The spectrum analyzer was conn	The spectrum analyzer was connected to the antenna terminal.					
2	Radiated Emissions Measuremer	It Uncertainty					
	All test measurements carried out are traceable to national standards. The uncertainty of the measuremen confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor range 30MHz – 20GHz is ±1.5dB.						
3	Environmental Conditions	Temperature	21°C				
		Relative Humidity	55%				
		Atmospheric Pressure	1019mbar				
4	Test Date : 12/26/2012						

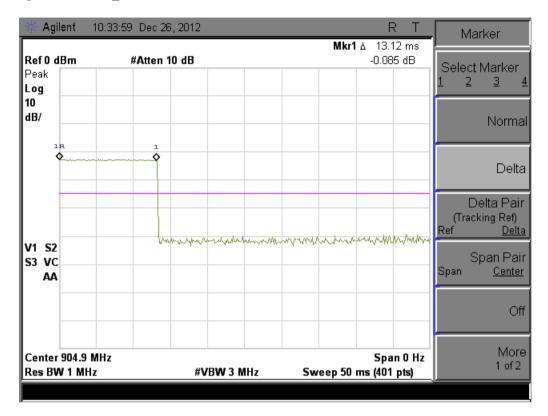
Test Date : 12/26/2012 Tested By : David Zhang

Standard Requirement: 47 CFR §15.247(a)(1)

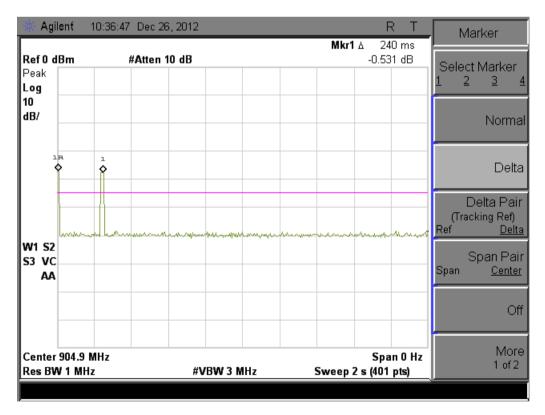
For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

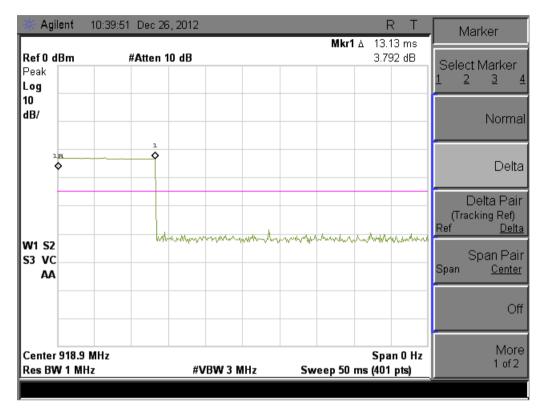
Procedures: The Time of Occupancy measurement was taken using radiated measurement method with a spectrum analyser.


Calculation: Dwell Time equals to the number of repetition times in each channel in 2 seconds multiply by the time of occupancy in each hopping frequency.

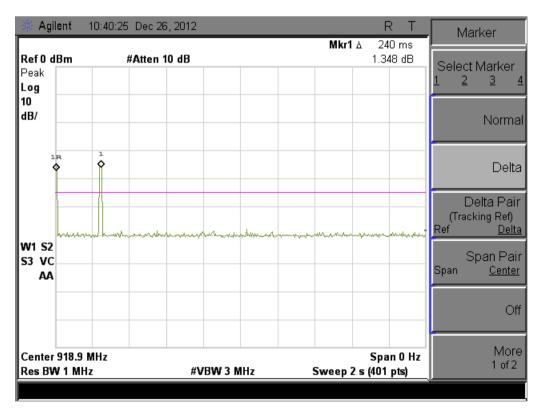
Calculated Index Mode Frequency (MHz) Measurement Dwell Limit (Sec) Туре Time(Sec) 1 ТΧ 904.861 0.01312 Single Pulse time (Sec) 0.1093 0.4 2 ТΧ 904.861 Cycle time(Sec) 0.240 3 ТΧ 918.869 0.01313 Single Pulse time (Sec) 0.1094 0.4 4 ТΧ 0.240 918.869 Cycle time(Sec) 5 ТΧ 924.873 0.01313 Single Pulse time (Sec) 0.1117 0.4 6 0.235 ТΧ 924.873 Cycle time(Sec)


Test Result: Pass

Plot - TX-Single Pulse time _Low CH

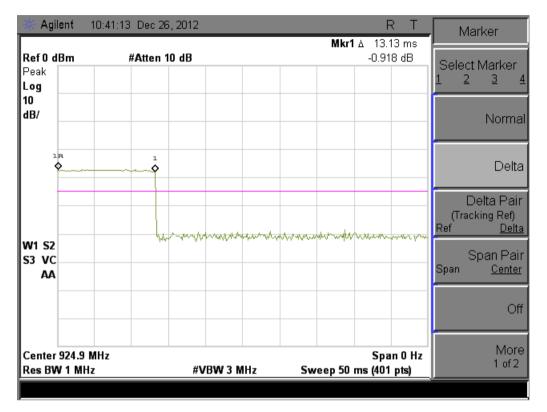


Plot - TX-Cycle time _Low CH

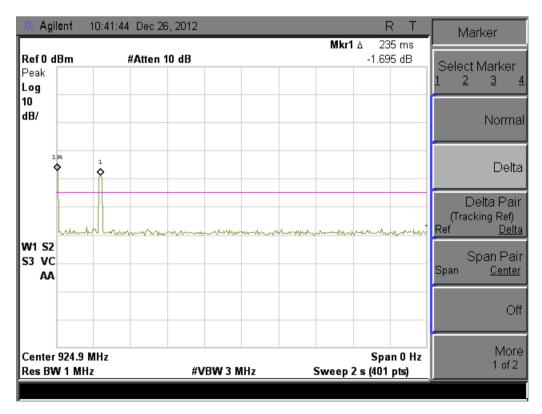


Plot - TX-Single Pulse time _Mid CH

Plot - TX-Cycle time _Mid CH


 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013


 Page
 25 of 73

 www.siemic.com

Plot - TX-Single Pulse time _High CH

Plot - TX-Cycle time _High CH

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 26 of 73

 www.siemic.com

5.6 Peak Output Power

1.	Radiated Measurement						
	EUT was set for low, mid, high ch	EUT was set for low, mid, high channel with modulated mode and highest RF output power.					
	The spectrum analyzer was conn	ected to the antenna terminal.					
2	Radiated Emissions Measuremer	It Uncertainty					
		95% (in the case where distributions a	he uncertainty of the measurement at a re normal), with a coverage factor of 2, in the				
3	Environmental Conditions	Temperature	21°C				
		Relative Humidity	55%				
		Atmospheric Pressure	1019mbar				
4	Test Date : 12/28/2012						

Tested By : David Zhang

Standard Requirement: 47 CFR §15.247(b)

Procedures: The peak output power was measured using radiated measurement method with a spectrum analyser at low, mid, and hi channels. Peak detector was set to measure the power output. The power is converted from watt to dBm, therefore, 1 watt = 30 dBm. The highest antenna gain that will be used is 2.56 dBi.

Note:

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Result: Pass

Index	Mode	CH No.	Frequency (MHz)	Measured Field Strength (dBuV/m)	Caculated EIRP (dBm)	Antenna Gain (dBi)	Measured Power(dBm)	Limit (dBm)
1	ΤX	Low	904.861	99.250	4.02	2.56	1.46	30.00
2	TX	Mid	918.869	100.604	5.374	2.56	2.814	30.00
3	ΤX	High	924.873	97.965	2.735	2.56	0.175	30.00

Note:

EIRP = Measured Field Strength – 95.23 Measured Power = EIRP – Ant Gain

Output Power Low Channel

Conducted power = EIRP – Ant Gain = Radiated Field Strength – 95.23 – Ant Gain = 99.250 dBuV/m – 95.23 - (2.56dBi) = 1.46 dBm

Output Power Mid Channel

Conducted power = EIRP – Ant Gain = Radiated Field Strength – 95.23 – Ant Gain = 100.604 dBuV/m – 95.23 – (2.56 dBi) = 2.814dBm

Output Power High Channel

Conducted power = EIRP – Ant Gain = Radiated Field Strength – 95.23 – Ant Gain = 97.965 dBuV/m – 95.23 – (2.56 dBi) = 0.175dBm

Serial#	RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0
Page	Jan 16th , 2013 28 of 73
i ugo	www.siemic.com

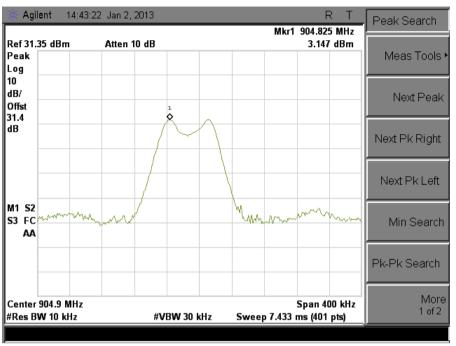
5.7 Peak Power Spectral Density

1.	Conducted Measurement		
	EUT was set for low, mid, high ch	annel with modulated mode and highes	st RF output power.
	The spectrum analyzer was conn	ected to the antenna inside the chambe	er. RBW = VBW = 3 KHz
2.	Environmental Conditions	Temperature	22°C
		Relative Humidity	50%
		Atmospheric Pressure	1019mbar
	Test Date : 01/02/2013		
	Tested By : David Zhang		

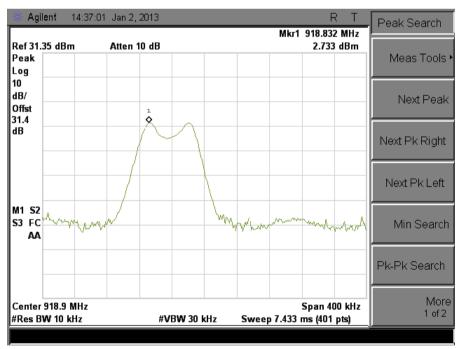
Standard Requirement:

Per FCC rule §15.247(e), the power spectral density shall not be greater than 8 dBm in any 3 KHz band.

Test Result: Pass


Index	Mode	CH No.	Frequency (MHz)	PSD (dBm/MHz)	Limit (dBm/MHz)	Results
1	TX	Low	904.861	0.587	8	Pass
2	TX	Mid	918.869	0.173	8	Pass
3	TX	Mid	924.873	-0.43	8	Pass

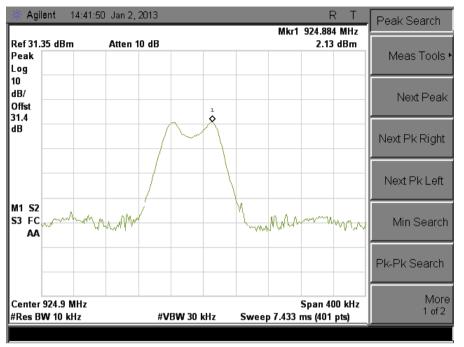
Title:


Model To: Accessing global markets RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

Serial# Issue Date Page	RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0 Jan 16th , 2013 29 of 73 www siemic com
Issue Date	Jan 16th , 2013

PSD Low Channel

Note: Above plot shows the radiated power measurement with antenna installed. Conducted PSD= Radiated PSD – Ant Gain = 3.147 dBm - (2.56 dBi) = 0.587 dBm


PSD Mid Channel

Note: Above plot shows the radiated power measurement with antenna installed. Conducted PSD= Radiated PSD – Ant Gain = 2.733 dBm – (2.56dBi) = 0.173 dBm

Title: Model: To: RT Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

Serial#	RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0
Issue Date	Jan 16th , 2013
Page	30 of 73
	www.siemic.com

PSD High Channel

Note: Above plot shows the radiated power measurement with antenna installed. Conducted PSD= Radiated PSD – Ant Gain = 2.13dBm – (2.56dBi) = -0.43 dBm

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 31 of 73

 www.siemic.com

50%

1019mbar

5.8 Radiated Spurious Emission < 1GHz

- 1. <u>All possible modes of operation were investigated</u>. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- Radiated Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz 1GHz (QP only @ 3m & 10m) is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).</p>

 Environmental Conditions Temperature 20°C
 - Environmental Conditions Temperature Relative Humidity Atmospheric Pressure

Test Date : 12/26/2012 Tested By : David Zhang

Standard Requirement: 47 CFR §15.247(c)

Procedures: Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set to transmit at mid channel. Note that setting the channel other than mid, the spurious emissions are the same.

The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBµV/m) + ACF(dB) + Cable Loss(dB)

Test Result: Pass

erial#	RF RF SL12102503-LHS-010 FCC-IC (202860) Rev1.0
	Jan 16th , 2013
ige	32 of 73

Emission Test Result (Below 1GHz)

20.0

10.0

5.0 30.00

Www.

the stander of stationer and

Test specification:	Radiated E	Emission (RE) Per	FCC	-1				
		Temp:	21°C					
Environ Conditions:		Humidity:	53.00%					
		Atmospheric:	1019mbar	Result:	Dass			
Mains Power:		120VAC, 60Hz		Result.	Pass Peak Detector Quasi Peak Limit			
Test Date:		12/26/2012						
Tested by:		David Zhang						
EUT Operating Mode:		TX Mode						
EUT Configuration:		N/A						
Remarks:		NONE						
70.0								
60.0								
(m 50.0 /∖ gp) 40.0								
Amplitude (dBuV/m) 40.0 30.0	4.		وروار والمراجع والمراجع والمحام والمحام	لىلىرى مەربىيە بىرىمەر				

Sei Iss Pa

Frequency (MHz)

100.00

EUT Operating

1000.00

frequencies

Frequency	QP Value	Azimuth	Polarity	Height	Class B Limit	Margin							
(MHz)	(dBuV/m)	(degree)	(H/V)	(cm)	(dBuV/m)	(dB)							
918.86	-	-	-	-	-	-							
905.92	-	-	-	-	-	-							
931.93	40.98	255.00	V	111.00	46.00	-5.02							
954.81	34.53	28.00	V	131.00	46.00	-11.47							
789.96	36.03	310.00	Н	275.00	46.00	-9.97							
940.27	34.56	97.00	V	233.00	46.00	-11.44							

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 33 of 73

 www.siemic.com

5.9 Radiated Spurious Emissions > 1GHz

- All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
 A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
 Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 1GHz – 20GH is +5.6dB/-4.5dB (for EUTs < 0.5m X 0.5m X 0.5m).
- 4. Environmental Conditions Temperature Relative Hum

Relative Humidity Atmospheric Pressure 20°C 50% 1019mbar

Test Date : 12/26/2012 Tested By : David Zhang

Standard Requirement: 47 CFR §15.247(d)

Procedures: Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. Investigated up to 10th harmonics of the operating frequency.

Sample Calculation:

EUT Field Strength = Raw Amplitude(dBµV/m) – Amplifier Gain(dB) + Antenna Factor(dB) + Cable Loss(dB) + Filter Attenuation(dB, if used)

Test Result: Pass

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 34 of 73

 www.siemic.com

Host Model: ASTP155RMW1 (RF Switch)

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3619.37	0.00	Н	182.00	48.61	74.00	-25.40	47.60	54.00	-6.41
4503.55	10.00	Н	101.00	46.72	74.00	-27.28	28.88	54.00	-25.12
4523.65	0.00	V	241.00	46.72	74.00	-27.28	32.88	54.00	-21.12
2999.86	0.00	V	102.00	41.90	74.00	-32.10	27.73	54.00	-26.27
3333.50	14.00	V	279.00	42.70	74.00	-31.30	28.03	54.00	-25.97
3536.40	0.00	V	262.00	42.94	74.00	-31.07	29.10	54.00	-24.91

904.861MHz @ 3 Meter

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

918.869MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3675.69	0.00	Н	176.00	48.77	74.00	-25.24	47.27	54.00	-6.74
4593.61	0.00	V	290.00	44.95	74.00	-29.05	27.78	54.00	-26.22
3543.78	20.00	V	289.00	42.94	74.00	-31.07	28.77	54.00	-25.24
3003.51	0.00	V	137.00	41.40	74.00	-32.60	27.73	54.00	-26.27
3289.69	0.00	V	100.00	42.34	74.00	-31.66	27.83	54.00	-26.17
3473.36	128.00	V	158.00	42.61	74.00	-31.40	28.77	54.00	-25.24

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

924.873MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3699.48	344.00	Н	181.00	48.32	74.00	-25.68	47.48	54.00	-6.52
4623.87	270.00	V	145.00	48.07	74.00	-25.93	40.40	54.00	-13.60
3538.67	352.00	V	298.00	43.44	74.00	-30.57	28.94	54.00	-25.07
3660.56	50.00	V	105.00	43.57	74.00	-30.43	28.23	54.00	-25.77
2999.37	360.00	V	134.00	41.90	74.00	-32.10	27.57	54.00	-26.43
3370.24	332.00	V	273.00	42.67	74.00	-31.33	28.50	54.00	-25.50

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 35 of 73

 www.siemic.com

Host Model: ASTHRRW1 (RF Remote Slave Switch)

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3619.36	0.00	Н	124.00	53.87	74.00	-20.13	44.83	54.00	-9.17
4523.77	0.00	Н	184.00	52.55	74.00	-21.45	37.67	54.00	-16.33
4093.39	0.00	V	152.00	51.99	74.00	-22.01	24.67	54.00	-29.33
3950.46	0.00	Н	213.00	51.56	74.00	-22.44	25.50	54.00	-28.50
4023.70	0.00	Н	140.00	51.24	74.00	-22.76	24.83	54.00	-29.17
3962.93	186.00	Н	283.00	51.17	74.00	-22.83	25.50	54.00	-28.50

904.861MHz @ 3 Meter

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

918.869MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3675.17	0.00	Н	103.00	55.70	74.00	-18.30	45.67	54.00	-8.33
3673.85	0.00	Н	100.00	54.67	74.00	-19.33	45.00	54.00	-9.00
4593.89	0.00	V	177.00	52.27	74.00	-21.73	39.50	54.00	-14.50
3972.94	0.00	Н	132.00	51.42	74.00	-22.58	24.33	54.00	-29.67
3949.97	0.00	Н	283.00	51.06	74.00	-22.94	25.50	54.00	-28.50
4019.63	0.00	V	286.00	50.92	74.00	-23.08	24.83	54.00	-29.17

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

924.873MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3699.34	0.00	Н	169.00	54.90	74.00	-19.10	44.17	54.00	-9.83
4623.90	0.00	Н	180.00	53.79	74.00	-20.21	40.00	54.00	-14.00
3973.31	0.00	Н	232.00	51.42	74.00	-22.58	24.17	54.00	-29.83
4187.00	0.00	V	230.00	51.33	74.00	-22.68	25.00	54.00	-29.00
4043.38	0.00	V	300.00	51.00	74.00	-23.00	24.83	54.00	-29.17
3950.54	0.00	V	277.00	50.89	74.00	-23.11	25.50	54.00	-28.50

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

Host Model: ADTP600RMHW1 (Incandecent RF Dimmer, 600W w/o Neutral)

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
1809.70	45.00	Н	183.54	44.92	74.00	-29.08	34.31	54.00	-19.69
1337.32	293.00	V	268.00	38.57	74.00	-35.43	24.48	54.00	-29.52
2714.55	281.00	V	160.58	43.60	74.00	-30.40	36.31	54.00	-17.69
1724.44	33.00	V	133.52	41.28	74.00	-32.72	27.82	54.00	-26.18
3619.40	102.00	V	226.18	45.68	74.00	-28.32	43.46	54.00	-10.54
1304.22	224.00	V	264.72	37.30	74.00	-36.70	23.53	54.00	-30.47

904.861MHz @ 3 Meter

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

918.869MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
1837.70	93.00	Н	197.00	45.17	74.00	-28.83	34.00	54.00	-20.00
1313.12	349.00	V	300.00	38.68	74.00	-35.32	23.84	54.00	-30.16
2756.59	317.00	V	169.00	43.67	74.00	-30.33	36.00	54.00	-18.00
1445.92	0.00	V	136.00	41.34	74.00	-32.66	27.17	54.00	-26.83
3675.27	22.00	V	249.00	45.74	74.00	-28.26	43.40	54.00	-10.60
1256.72	314.00	V	296.00	37.34	74.00	-36.66	22.84	54.00	-31.16

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

924.873MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
1849.59	98.00	Н	100.00	43.67	74.00	-30.33	35.83	54.00	-18.17
1393.17	159.00	V	219.00	37.34	74.00	-36.66	23.84	54.00	-30.16
2772.49	357.00	V	177.00	43.00	74.00	-31.00	36.50	54.00	-17.50
1337.41	17.00	V	209.00	40.84	74.00	-33.16	27.67	54.00	-26.33
1429.32	24.00	V	160.00	40.67	74.00	-33.33	27.33	54.00	-26.67
1294.20	167.00	V	181.00	36.84	74.00	-37.16	23.84	54.00	-30.16

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

Host Model: ADTH700RMTUW1 (True Universal RF Dimmer, 500W, w/neutral)

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
4523.33	193	Н	100.00	54.55	74.00	-19.45	37.03	54.00	-16.97
3620.00	151	Н	200.00	54.54	74.00	-19.46	37.92	54.00	-16.08
3960.00	197	V	200.00	51.80	74.00	-22.20	34.84	54.00	-19.16
4066.67	28	Н	100.00	50.91	74.00	-23.09	33.85	54.00	-20.15
3950.00	202	V	200.00	50.89	74.00	-23.11	33.94	54.00	-20.06
4143.33	186	Н	100.00	50.81	74.00	-23.19	33.67	54.00	-20.33

904.861MHz @ 3 Meter

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

918.869MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
4593.33	79	V	100.00	54.60	74.00	-19.40	37.00	54.00	-17.00
3676.67	62	V	100.00	51.86	74.00	-22.14	35.18	54.00	-18.82
4136.67	81	Н	100.00	51.00	74.00	-23.00	33.87	54.00	-20.13
4043.33	12	V	100.00	50.84	74.00	-23.16	33.79	54.00	-20.21
3976.67	83	V	100.00	50.62	74.00	-23.38	33.64	54.00	-20.36
3920.00	76	V	100.00	50.46	74.00	-23.54	33.54	54.00	-20.46

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

924.873MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
4522.94	334	Н	116.00	53.22	74.00	-20.78	36.00	54.00	-18.00
3619.24	262	Н	124.00	52.54	74.00	-21.46	41.50	54.00	-12.50
4022.15	341	V	106.00	51.24	74.00	-22.76	24.83	54.00	-29.17
3946.56	49	Н	176.00	51.03	74.00	-22.97	25.67	54.00	-28.33
3866.09	349	Н	245.00	51.00	74.00	-23.00	24.83	54.00	-29.17
4189.61	322	V	179.00	50.97	74.00	-23.03	24.83	54.00	-29.17

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

Host Model: ADTP700RMUW1 (Universal RF Dimmer 700W w/Neutral)

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3620.00	237	Н	200.00	55.04	74.00	-18.96	38.42	54.00	-15.58
4523.33	186	Н	200.00	54.22	74.00	-19.78	36.70	54.00	-17.30
3973.33	243	V	100.00	51.26	74.00	-22.74	34.29	54.00	-19.71
3953.33	35	V	200.00	51.09	74.00	-22.91	34.13	54.00	-19.87
4063.33	248	V	100.00	50.93	74.00	-23.08	33.86	54.00	-20.14
4673.33	229	Н	100.00	50.82	74.00	-23.18	33.14	54.00	-20.86

904.861MHz @ 3 Meter

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

918.869MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3676.67	251	Н	200.00	56.70	74.00	-17.30	40.02	54.00	-13.98
3673.33	197	Н	200.00	56.17	74.00	-17.83	39.49	54.00	-14.51
4593.33	257	V	100.00	53.93	74.00	-20.07	36.33	54.00	-17.67
3940.00	37	Н	200.00	51.47	74.00	-22.53	34.53	54.00	-19.47
4060.00	263	Н	100.00	51.44	74.00	-22.56	34.38	54.00	-19.62
3960.00	242	Н	100.00	51.14	74.00	-22.86	34.18	54.00	-19.82

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

924.873MHz @ 3 Meter

Frequency (MHz)	Azimute	Polarity	Height	Peak (dBuV/m)	Peak Limit (dBuV)	Margin (dB)	AV (dBuV/m)	AV Limit (dBuV)	Margin (dB)
3700.00	289	Н	200.00	55.90	74.00	-18.10	39.20	54.00	-14.80
4623.33	227	V	100.00	54.62	74.00	-19.38	36.99	54.00	-17.01
3896.67	296	Н	200.00	51.76	74.00	-22.24	34.86	54.00	-19.14
3963.33	42	V	200.00	51.33	74.00	-22.67	34.37	54.00	-19.63
4066.67	302	Н	200.00	51.08	74.00	-22.92	34.02	54.00	-19.98
3950.00	279	V	200.00	50.89	74.00	-23.11	33.94	54.00	-20.06

Note: Emission was scanned up to 10GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit.

SIEMIC, INC. Accessing global markets

RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 39 of 73
 www.siemic.com

Annex A. TEST INSTRUMENT & METHOD

TEST INSTRUMENTATION & GENERAL PROCEDURES Annex A.i.

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Conducted Emissions		<u> </u>	1	1	1	I
R & S Receiver	ESIB 40	100179	04/20/2012	1 Year	04/20/2013	✓
R&S LISN	ESH2-Z5	861741/013	05/18/2012	1 Year	05/18/2013	✓
CHASE LISN	MN2050B	1018	07/24/2012	1 Year	07/24/2013	✓
Sekonic Hygro Hermograph	ST-50	HE01-000092	05/25/2012	1 Year	05/25/2013	✓
Radiated Emissions						
R & S Receiver	ESL6	100178	03/01/2012	1 Year	03/01/2013	•
R & S Receiver	ESIB 40	100179	04/20/2012	1 Year	04/20/2013	
Spectrum Analyzer	E4407B	US88441016	5/31/2012	1 Year	05/31/2013	✓
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	02/09/2012	1 Year	02/09/2013	✓
Horn Antenna (1-26.5GHz)	3115	10SL0059	04/26/2012	1 Year	04/26/2013	✓
Horn Antenna (18-40 GHz)	AH-840	101013	04/23/2012	1 Year	04/23/2013	✓
Pre-Amplifier (1-26.5GHz)	8449B	3008A00715	05/30/2012	1 Year	05/30/2013	✓
Microwave Preamplifier (18-40GHz)	PA-840	181251	05/30/2012	1 Year	05/30/2013	✓
3 Meters SAC	3M	N/A	10/13/2012	1 Year	10/13/2013	
10 Meters SAC	10M	N/A	06/05/2012	1 Year	06/05/2013	✓
Sekonic Hygro Hermograph	ST-50	HE01-000092	05/25/2012	1 Year	05/25/2013	✓
Radio Communication Tester	CMU200	111078	11/30/2012	1 Year	11/30/2013	
Permitted Freq Range						
R & S Receiver	ESIB 40	100179	4/20/2012	1 Year	4/20/2013	
TestEquity Environment Chamber	1007H	61201	07/05/2012	1 Year	07/05/2013	
Signal Analyzer	FSIQ7	825555/013	5/10/2012	1 Year	5/10/2013	

Note: Functional Verification

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 40 of 73

 www.siemic.com

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 5. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 6. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 7. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 8. All other supporting equipments were powered separately from another main supply.

Test Method

- 6. The EUT was switched on and allowed to warm up to its normal operating condition.
- 7. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 8. High peaks, relative to the limit line, were then selected.
- The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 10. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Description of Conducted Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the common scan range from 15 kHz to 30 MHz; the program will first start a peak and average scan on selectable measurement time and step size. After the program complete the pre-scan, this program will perform the Quasi Peak and Average measurement, based on the pre-scan peak data reduction result.

Sample Calculation Example

At 20 MHz	limit = 250 μV = 47.96 dBμV	
Transducer factor of LISN, pulse limiter & cable loss at 20 MHz	: = 11.20 dB	
Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu$	/ Calibrated for system losses)	
Therefore, Q-P margin = 47.96 – 40.00 = 7.96	i.e. 7.96 dB below limit	

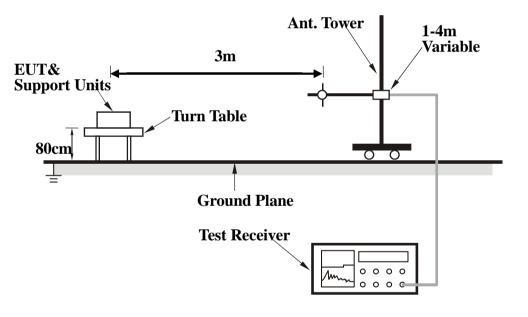
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 41 of 73

 www.siemic.com

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 42 of 73

 www.siemic.com

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.$

5. Repeat step 4 until all frequencies need to be measured were complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Description of Radiated Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the scan on four different antenna heights, 2 antenna polarity, and 360 degrees table rotation. For example, the program was set to run 30 MHz to 1 GHz scan; the program will first start from a meter antenna height and divide the 30 MHz to 1 GHz into 10 separate parts of maximum hold sweeps. Each parts of maximum hold sweep, the program will collect the data from 0 degree to 360 degrees table rotation. After the program complete the 1m scan, the antenna continues to rise to 2m and continue the scan. The step will repeated for all specified antenna height and polarity. This program will perform the Quasi Peak measurement after the signal maximization process and pre-scan routine. The final measurement will be based on the pre-scan data reduction result.

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

> Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 43 of 73

 www.siemic.com

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment

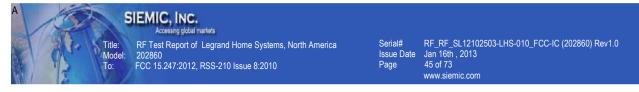
SIEMIC, INC. Accessing global markets

RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

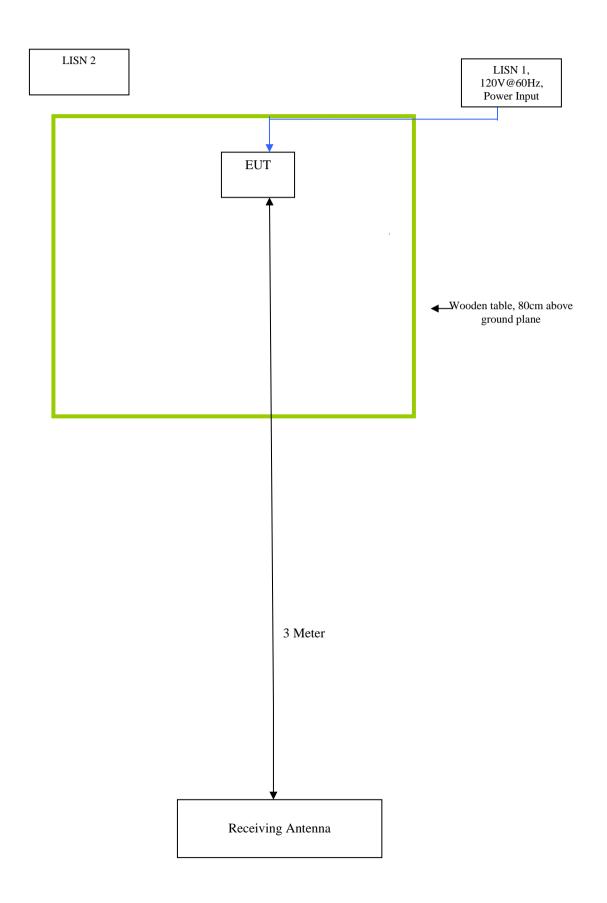
 Issue Date
 Jan 16th , 2013

 Page
 44 of 73

 www.siemic.com


Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS


Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
None	None	None

Block Configuration Diagram for Radiated Emission

Serial#	RF RF SL12102503-LHS-010 FCC-IC (202860) Rev1.0
Issue Date	Jan 16th , 2013
Page	46 of 73
	www.siemic.com

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing Others Testing	EUT was configured to continuously transmit at full power.

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 47 of 73

 www.siemic.com

Annex D. USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment

SIEMIC, INC. Accessing global markets RF Test Report of Legrand Home Systems, North America

202860 FCC 15.247:2012, RSS-210 Issue 8:2010
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 48 of 73

 www.siemic.com

Annex E SIEMIC ACCREDITATION

SIEMIC ACCREDITATION DETAILS: A2LA 17025 & ISO Guide 65 : 2742.01 , 2742.2

SIEMIC, INC. Accessing global markets

RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 49 of 73

 www.siemic.com

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SIEMIC, INC. dba SIEMIC LABORATORIES 775 Montague Expressway Milpitas, CA 95035 Mr. Leslie Bai Phone: 408 526 1188 Email: leslie.bai@siemic.com Mr. Snell Leong Phone: 408 526 1188 Email: snell.leong@siemic.com

ELECTRICAL

Valid to: September 30, 2014

Certificate Number: 2742.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following <u>EMC</u>, <u>Product Safety</u>, <u>Radio and Telecommunication tests</u>:

Test Technology:	Test Method(s):
EN & IEC – Emissions & Immunity	IEC/CISPR 11; EN 55011; IEC/CISPR 12; IEC/CISPR 20; EN 55020; IEC/CISPR 22; EN 55022; IEC/CISPR 24; EN 55024; EN 61000-6-1; EN 61000-6-2; EN 61000-6-3; EN 61000-6-4; EN 61204-3; EN 61326-2-4; EN 61326-2-5; EN 61000-3-2; EN 61326-2-3; EN 61326-2-4; EN 61326-2-5; EN 61000-3-2; EN 61000-3-3; EN 50081-1, EN 50081-2; EN 50082-1; IEC 61000-4-2; EN 61000-4-2; IEC 61000-4-3 (limited up to 2.7 GHz and 3V/m); EN 61000-4-3 (limited up to 2.7 GHz and 3V/m); IEC 61000-4-4; EN 61000-4-4; IEC 61000-4-5; EN 61000-4-5; IEC 61000-4-6; EN 61000-4-6; IEC 61000-4-8; EN 61000-4-6; IEC 61000-4-8; EN 61000-4-8; IEC 61000-4-11; EN 61000-4-11; EN 50412-2-1; EN 50083-2; EN 50090-2-2; EN 50091-2; EN 50491-5-1; EN 50491-5-2; EN 50491-5-3; EN 50130-4; EN 50130-4 + A12; EN 12184; EN 55015; EN 61547; IEC 60601-1-2; CISPR 16-2-3

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 50 of 73

 www.siemic.com

Test Technology:	Test Method(s):
Korea – Emissions & Immunity	RRA Public Notification 2011-24; RRA Announce 2011-30; Annex 2 (KN 11); Annex 3 (KN 13); Annex 4 (KN 14-1); Annex 5 (KN 22); Annex 6 (KN 41); Annex 7 (KN 50); Annex 9 (KN 15); Annex 10 (KN 19); Annex 11 (KN 60); Annex 1-1 (KN 16-1-1); Annex 1-2 (KN 16-1-2); Annex 1-3 (KN 16-1-3); Annex 1-4 (KN 16-1-4); Annex 1-5 (KN 16-1-5); Annex 1-6 (KN 16-2-1); Annex 1-7 (KN 16-2-2); Annex 1-6 (KN 16-2-3); Annex 1-9 (KN 16-2-4); Annex 8-5 (KN 301-489-06); Annex 8-6 (KN 301-489-13); Annex 8-7 (KN 301-489-05); Annex 8-8 (KN 301-489-03); Annex 8-9 (KN 301-489-09); Annex 8-10 (KN 301-489-03); Annex 8-9 (KN 301-489-09); Annex 8-10 (KN 301-489-26); Annex 8-11 (KN 301-489-02); Annex 8-10 (KN 301-489-26); Annex 8-11 (KN 301-489-32); Annex 8-16 (KN 301-489-27); Annex 8-13 (KN 301-489-32); Annex 8-16 (KN 301-489-20); Annex 8-17 (KN 60945) RRA Public Notification 2011-25; RRA Announce 2011-31; Annex 1-3 (KN 61000-4-2); Annex 1-2 (KN 61000-4-3); Annex 1-5 (KN 61000-4-4); Annex 1-4 (KN 61000-4-5); Annex 1-5 (KN 61000-4-4); Annex 1-6 (KN 61000-4-5); Annex 1-7 (KN 61000-4-11); Annex 2 (KN 60601-1-2); Annex 3 (KN 20); Annex 4 (KN 14-2); Annex 5 (KN 24); Annex 6 (KN 41); Annex 7 (KN 51); Annex 8-1 (KN 301-489-01); Annex 8-2(KN 301-489-07); Annex 8-3 (KN 301-489-17); Annex 8-4(KN 301-489-24);
US / FCC - Emissions	Annex 1-7 (KN 61000-4-11); Annex 2 (KN 60601-1-2); Annex 3 (KN 20); Annex 4 (KN 14-2); Annex 5 (KN 24); Annex 6 (KN 41); Annex 7 (KN 51); Annex 8-1 (KN 301-489-01); Annex 8-2(KN 301-489-07); Annex 8-3 (KN 301-489-17); Annex 8-4(KN 301-489-24); FCC Method 47 CFR Part 18, FCC Report and Order ET Docket 98-153 (FCC 02-48); FCC Method 47 CFR Parts15, including Subpart G, using FCC Order 04-425; ANSI C63.4 (2003); ANSI C63.4 (2009); ANSI C63.10 (2009);
	ANSI C63.4 (2003) with FCC Method 47 CFR Part 11; ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart E; ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart C; ANSI C63.4 (2003) and DA 02-2138; ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B
Canada – Emissions	ICES-001; ICES-002; ICES-003; ICES-005; ICES-006
Vietnam – Emission & Immunity	TCN 68-193:2003; TCN 68-196:2001; TCVN 7189:2002; TCVN 7189:2009 (CISPR 22:2006)
Australia / New Zealand – Emissions and Immunity	AS/NZS 1044; AS/NZS 2279.3; AS/NZS 3548; AS/NZS 4251.1; AS/NZS 4251.2; AS/NZS CISPR 11; AS/NZS CISPR 14.1; AS/NZS CISPR 22; AS/NZS CISPR 24; AS/NZS 61000.3.2; AS/NZS 61000.3.3; AS/NZS 61000.6.3; AS/NZS 61000.6.4
Japan – Emissions	JEITA IT-3001; VCCI-V-3 (up to 6 GHz)
China – Emissions	GB9254: GB17625.1

Peter Mlayer Page 2 of 8

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 51 of 73

 www.siemic.com

Test Technology:	Test Method(s):
Taiwan – Emissions	CNS 13438 (up to 6 GHz); CNS 13783-1; CNS 13803; CNS 13439
Singapore – Emissions & Immunity	IDA TS EMC; CISPR 22; IEC 61000-4-2; IEC 61000-4-3; IEC 61000-4-4; IEC 61000-4-5; IEC 61000-4-6
FCC – Unlicensed Radio A1 to A4	A1: 47 CFR Parts 11 (Emergency Alert System (EAS)), 15 (Radio Frequency Devices) and 18 (Industrial, Scientific, and Medical Equipment); FCC OST/MP-5(1986); ANSI C63.4(2003); ANSI C63.4(2009); ANSI C63.10(2009)
	A2: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.4(2003); ANSI C63.4(2009); ANSI C63.10(2009)
	A3: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.17:2006; ANSI C63.10(2009); IEEE Std 1528:2003 + A1; Std IEEE 528A:2005
	A4: 47 CFR Part 15 (Radio Frequency Devices); ANSI C63.10(2009); IEEE Std 1528:2003 + A1; Std IEEE 1528A:2005
FCC – Licensed Radio B1 to B4	 B1: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations), 22 (Public Mobile Services), 24 (Personal Communications Services), 25 (Satellite Communications), and 27 (Miscellaneous Wireless Communications Services); ANSI/TIA-603-C (2004), ANSI/TIA-603-D(2010), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard; IEEE Std 1528:2003 + Ad1; Std IEEE 1528A:2005 B2: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations), 22 (Public Mobile Services), 74 (Experimental Radio Auxiliary, Special Broadcast and Other Program Distributional Services), 90 (Private Lend Mobile Radio Services)
	 Distributional Services), 90 (Private Land Mobile Radio Services), 95 (Personal Radio Services), and 97 (Amateur Radio Services); ANSI/TIA-603-C (2004), ANSI/TIA-603-D(2010), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard
	B3: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations); 80 (Stations in the Maritime Services), 87 (Aviation Services); ANSI/TIA-603-C (2004), ANSI/TIA-603- D(2010), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard
	 B4: 47 CFR Parts 2 (Frequency Allocations and Radio Treaty Matters; General Rules and Regulations); 27 (Broadband Radio Services (BRS) and Educational Broadband Services (EBS)), 74 (Experimental Radio Auxiliary, Special Broadcast and Other Program Distributional Services), and 101 (Fixed Microwave Services); ANSI/TIA-603-C (2004), ANSI/TIA-603-D(2010), Land Mobile FM or PM Communications Equipment Measurement and Performance Standard

Peter Allaye Page 3 of 8

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 52 of 73

 www.siemic.com

Test Technology:	Test Method(s):
Canada – Radio	RSS 102; RSS 111; RSS 112; RSS 117; RSS 118; RSS 119; RSS 123;
	RSS 125; RSS 127; RSS 129; RSS 131; RSS 132; RSS 133; RSS 134;
	RSS 135; RSS 136; RSS 137; RSS 138; RSS 139; RSS 141; RSS 142;
	RSS 170; RSS 181; RSS 182; RSS 191; RSS 192; RSS 194; RSS 194;
	RSS 196; RSS 197; RSS 199; RSS 210; RSS 220; RSS 213; RSS 215;
	RSS 243; RSS 287; RSS 288; RSS 310; RSS Gen
CE – Radio	EN 301 502; EN 301 511; EN 301 526; EN 301 681; EN 301 721;
L – Radio	EN 301 751; EN 301 753; EN 301 783-2; EN 301 796; EN 301 797;
	EN 301 840-2; EN 301 843-1; EN 301 843-4; EN 301 843-5;
	EN 301 893; EN 301 908-01; EN 301 908-02; EN 301 908-03;
	EN 301 908-04; EN 301 908-05; EN 301 908-06; EN 301 908-07;
	EN 301 908-08; EN 301 908-09; EN 301 908-10; EN 301 908-11; EN 301 929 2; EN 301 907 2; EN 302 018 2; EN 302 054 2;
	EN 301 929-2; EN 301 997-2; EN 302 018-2; EN 302 054-2; EN 302 064 2; EN 302 066 2; EN 302 077 2; EN 302 186;
	EN 302 064-2; EN 302 066-2; EN 302 077-2; EN 302 186; EN 302 105 2; EN 302 217 2; EN 302 245 2; EN 302 288 2;
	EN 302 195-2; EN 302 217-3; EN 302 245-2; EN 302 288-2;
	EN 302 291-2; EN 302 296; EN 302 297; EN 302 326-2;
	EN 302 326-3; EN 302 340; EN 302 372-2; EN 302 426;
	EN 302 454-2; EN 302 480; EN 302 502; EN 302 510-2;
	EN 302 217-4-2; EN 300 224-1; EN 300 279; EN 300 339;
	EN 300 385; EN 301 839-2; EN 301 843-6; EN 302 017-2;
	EN 302 208-2; EN 302 217-2-2; ETS 300 329; ETS 300 445;
	ETS 300 446; ETS 300 683; ETS 300 826; ETS EN 300 328;
	ETSI EN 300 086-2; EN 302 217-1; EN 302 217-2-1; EN 302 217-4-1;
	EN 302 288-1; EN 302 908-12; EN 302 326-1; EN 301 929-1;
	EN 301 997-1; EN 300 224-2; EN 301 839-1; EN 301 843-1;
	EN 301 843-2; EN 301 843-3; EN 301 843-4; EN 301 843-5;
	EN 302 017-1; EN 302 208-1; EN 300 086-1; EN 300 113-1;
	EN 300 224-1; EN 300 341-1; EN 302 291-1; EN 302 500-1;
	EN 302 500-2; ETSI EN 300 113-2; ETSI EN 300 197;
	ETSI EN 300 198; ETSI EN 300 219-1; ETSI EN 300 219-2;
	ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3;
	ETSI EN 300 224-2; ETSI EN 300 296-1; ETSI EN 300 296-2;
	ETSI EN 300 328-1; ETSI EN 300 328-2;
	ETSI EN 300 330; ETSI EN 300 330-1; ETSI EN 300 330-2;
	ETSI EN 300 341-2; ETSI EN 300 373-1; ETSI EN 300 373-2;
	ETSI EN 300 373-3; ETSI EN 300 390-1; ETSI EN 300 390-2;
	ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 431;
	ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 454-1;
	ETSI EN 300 454-2; ETSI EN 300 718-2; ETSI EN 301 021;
	ETSI EN 301 166-1; ETSI EN 301 166-2; ETSI EN 301 178-2;
	ETSI EN 301 213-1; ETSI EN 301 213-2; ETSI EN 301 213-3;
	ETSI EN 301 213-4; ETSI EN 301 213-5; ETSI EN 301 357-1;
	ETSI EN 301 357-2; ETSI EN 301 390; ETSI EN 301 459;
	ETSI EN 301 489-01 (excluding section 9.6);
	ETSI EN 301 489-02; ETSI EN 301 489-03; ETSI EN 301 489-04;
	ETSI EN 301 489-05; ETSI EN 301 489-06; ETSI EN 301 489-07;
	ETSI EN 301 489-03; ETSI EN 301 489-09; ETSI EN 301 489-07; ETSI EN 301 489-08; ETSI EN 301 489-09; ETSI EN 301 489-10;
	ETSI EN 301 489-08, ETSI EN 301 489-09, ETSI EN 301 489-10, ETSI EN 301 489-11; ETSI EN 301 489-12; ETSI EN 301 489-13;
	ETSI EN 301 489-11; ETSI EN 301 489-12; ETSI EN 301 489-15; ETSI EN 301 489-14; ETSI EN 301 489-15; ETSI EN 301 489-16;
	ETSI EN 301 489-14; ETSI EN 301 489-15; ETSI EN 301 489-16; ETSI EN 301 489-17; ETSI EN 301 489-18; ETSI EN 301 489-19;
	이 것은 것 안사 안사 안사 있다. 그는 지수는 것 같아요. 것 같아요. 것 같아요. 것 것 같아요. 가지는 것 것 같아요. 가지가 것 같아. 그는 것 같아요. 그는 것 같아요. 것 같아요.
	ETSI EN 301 489-20; ETSI EN 301 489-22; ETSI EN 301 489-23; ETSI EN 201 489-24; ETSI EN 201 489 25; ETSI EN 201 489 26;
	ETSI EN 301 489-24; ETSI EN 301 489-25; ETSI EN 301 489-26;

Peter Allage Page 4 of 8

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 53 of 73

 www.siemic.com

Test Technology:	Test Method(s):
CE - Radio (continued)	ETSI EN 301 489-27; ETSI EN 301 489-28; ETSI EN 301 489-31; ETSI EN 301 489-32; IEC 60945; EN 302 480
IDA – Radio	IDA TS AR; IDA TS CT-CTS; IDA TS GMPCS; IDA TS LMR; IDA TS RPG; IDA TS SRD; IDA TS UWB; IDA TS WBA; IDA TS CMT; IDA TS CBS
Vietnam – Radio	QCVN 54:2011/BTTTT; TCN 68-242:2006; QCVN 11:2010/BTTTT; QCVN 17:2010/BTTTT
Korea – Radio	KCC Public Notification 2012-12; RRA Announce 2011-32; RRA Public Notification 2010-46
Taiwan – Radio	LP0002; PLMN07; PLMN01; PLMN08
Australia - New Zealand – Radio	AS 2772.2; AS/NZS 4281; AS/NZS 4268; AS/NZS 4280.1; AS/NZS 4583; AS/NZS 4280.2; AS/NZS 4281; AS/NZS 4295; AS/NZS 4582; AS/NZS 4769.1; AS/NZS 4769.2; AS/NZS 4770; AS/NZS 4771
Hong Kong – Radio	HKCA 1002; HKCA 1007; HKCA 1008; HKCA 1010; HKCA 1015; HKCA 1016; HKCA 1020; HKCA 1022; HKCA 1026; HKCA 1027; HKCA 1029; HKCA 1030; HKCA 1031; HKCA 1032; HKCA 1033; HKCA 1034; HKCA 1035; HKCA 1036; HKCA 1037; HKCA 1039; HKCA 1041; HKCA 1042; HKCA 1043; HKCA 1044; HKCA 1046; HKCA 1047; HKCA 1048; HKCA 1049; HKCA 1051; HKCA1052; HKCA1053; HKCA 1054; HKCA 1055; HKCA 1056; HKCA 1057; HKCA 1061
FCC Telephone Terminal Equipment Scope C1	TIA-968-B; FCC Rule Part 68; 47 CFR Part 68.316; 47 CFR Part 68.317; ANSI/TIA/EIA-464-C; TIA-810-B; T1.TRQ6 (2002); TCB-31-B (1998); TIA-470.110-C; TIA-920
Canada – Telecom	CS-03 Part I Issue 9:2010, Amendment 4; CS-03 Part II Issue 9:2004; CS-03 Part V Issue 9:2009 Amendment 1; CS-03 Part VI Issue 9:2004; CS-03 Part VII Issue 9:2006 Amendment 3; CS-03 Part VIII Issue 9:2009 Amendment 4
Europe – Telecom	TBR 2: 01-1997; TBR 004 Ed.1.95 + A1 (97); TBR 1; TBR 3; TBR 12:A1 01-1996; TBR 013 ed.1; TBR 024 ed.1; TBR 25; TBR 38 ed.1; TBR 021; ETSI ES 203 021-05 ; ETSI ES 203 021-2 ; ETSI ES 021-3; ETSI EG 201 121; ETSI EN 301 437; ETSI TS 101 270-1; ITU-T Recommendation Q.920; ITU-T Recommendation Q.920 – Amendment 1; ITU-T Recommendation Q.921; ITU-T Recommendation Q.921 – Amendment 1; ITU-T Recommendation Q.931; ITU-T Recommendation Q.931; ITU-T Recommendation Q.931 – Amendment 1; Erratum 1 (02/2003) ITU-T Recommendation Q.931 (05/1998);

Peter Allage Page 5 of 8

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 54 of 73

 www.siemic.com

Test Technology:	Test Method(s):
Europe – Telecom (cont'd)	ISDN User Network Interface Layer 3 Specification for Basic Call Control; ITU-T Recommendation P.300
Australia – Telecom Australia – Telecom	AS/CA S003.1:2010; AS/CA S002:2011; AS/ACIF S004:2008; AS/CA S042.1:2011; AS/CA S003.2:2010; AS/CA S003.2:2010; AS/CA S004:2010; AS/ACIF S006:2008; AS/ACIF S041.2:2009; AS/ACIF S041.1:2009; AS/ACIF S041.3:2009; AS/ACIF S041.3:2009; AS/ACIF S043.2:2008; AS/ACIF S043.2:2008; AS/ACIF S043.3:2008; AS/ACIF S043.3:2008; AS/ACIF S002:05; AS/ACIF S004:08; AS/ACIF S004:08; AS/ACIF S004:08; AS/ACIF S006:01; AS/ACIF S016:01; AS/ACIF S016:01; AS/ACIF S038:01; AS/ACIF S041:05; AS/ACIF S043.2:206
New Zealand – Telecom	PTC200:2006; PTC200 Issue No.2:97 + A1(980); PTC220; PTC273:2007; TNA 115; TNA 117
Singapore – Telecom	IDA TS ADSL; IDA TS DLCN; IDA TS ISDN BA; IDA TS ISDN PRA; IDA TS BISDN; IDA TS-PSTN; IDA TS ACLIP; IDA TS CM
Hong Kong – Telecom	HKCA 2011; HKCA 2012; HKCA 2013; HKCA 2014; HKCA 2015; HKCA 2017; HKCA 2018; HKCA 2019; HKCA 2022; HKCA 2023; HKCA 2024; HKCA 2026; HKCA 2027; HKCA 2028; HKCA 2029; HKCA 2030; HKCA 2031; HKCA 2032; HKCA 2033
Vietnam – Telecom	QCVN 10:2010/BTTTT; QCVN 19:2010/BTTTT; TCN 68-189:2000; QCVN 18:2010/BTTTT; TCVN 7317:2003 (CISPR 24:1997); QCVN 12:2010/BTTTT; QCVN 13:2010/BTTTT; QCVN 55:2011/BTTTT; QCVN 15:2010/BTTTT
Korea – Telecom	Presidential Decree 21098; RRA Public Notification 2010-36; RRA Public Notification 2009-38; RRA Announce 2011-2; Annex 1 (RRA Announce 2011-2); Annex 3 (RRA Announce 2011-2); Annex 5 (RRA Announce 2011-2); Annex 6 (RRA Announce 2011-2)

Teter Allage Page 6 of 8

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th, 2013

 Page
 55 of 73

 www.siemic.com

Test Technology:	Test Method(s):
China – Telecom	YD/T 514-1:98; YD/T 1277.1-2003; GB/T 17904.1-1999; GB/T 17904.2-1999; GB/T 17154.1-1997; GB/T 17154.2-1997; YD/T1091-2000; YD/T1006-1999; GB/T 17789-1999
Taiwan – Telecom	PSTN01:2007; ADSL01:08; ID0002:2007; IS6100: 93
Japan – Telecom	JATE Blue Book, Green Book; Ministerial Ordinance of the Ministry of Posts and Telecommunications No. 31 of April 1, 1985 (last amended on March 22 2004); Ordinance Concerning Technical Conditions Compliance Approval etc. of Terminal Equipment (amended by the Ministerial Ordinance of the MIC No.92 of October 25, 2010) and Ordinance Concerning Terminal Facilities etc. (amended by the Ministerial Ordinance of the MIC No. 91 of October 25, 2010)
South Africa – Telecom	DPT-TE-001; TE-002; TE-003; TE-004; TE-005; TE-006; TE-007; TE-008; TE-009; TE-010; TE-012 (telephone interface); TE-013 (telephone interface); TE-014; TE-015; TE-018; SWS-001; SWS-002; SWS-003; SWS-004; SWS-005; SWS-006; SWS-007; SWS-008; SWS-009; SWS-010
Israel – Telecom	Israel MoC Spe. 23/96
Mexico – Telecom	NOM-151-SCT1-1999; NOM-152-SCT1-1999
Argentina – Telecom	CNC-ST2-44-01
Brazil – Telecom	Resolution 392-2005
International Telecom Union	ITU-T-G.703:01; ITU-T-G.823:93; ITU-T G.824; ITU-T G.825; ITU-T-G.991.2; ITU-T-G.992.1; ITU-T-G.992.3; ITU-T-G.992.5; ITU-T-G.993.1
Product Safety	IEC 60950-1; EN 60950-1; UL 60950-1; IEC 60601-1-1; CAN/CSA 22.2 NO. 60950-1-03; SS-EN 60950-1; AS/NZ 60950-1, (voltage surge testing up to 6kV, excluding Annex A, H, and Y); CNS 14336, CNS 14408; GB4943; President Notice 20664; RRA Public Notification 2011-14; RRA Announce 2011-3; Annex 1(RRA Announce 2011-3); QCVN 22:2010/BTTTT; SABS IEC 60950; IEC/EN 61558; IEC/EN 61558-2-7; EN 62115; IEC 60215; EN 60958; EN 60598; IEC 215 (1987) + A1 (1992) + A2 (1994)
Japan - Radio	ARIB STD-T81; ARIB STD-T66; RCR STD-1; RCR STD-29; ARIB STD-T94 Fascicle 1; ARIB STD-T90; ARIB STD-T89; RCR STD-33
SAR & HAC	IEEE P1528:2003 + Ad1; IEEE 1528A:2005; FCC OET Bulletin 65 Supplement C; FCC OET Bulletin 65; ANSI C95 ANSI C63.19; FCC 47 CFR 20.19; H46-2/99-273E; EN 50360; EN 50361; IEC62209-1; IEC 62209-2; EN 50371; EN 50383; EN 50357; EN 50364;

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 56 of 73

 www.siemic.com

Test Technology:	Test Method(s):
SAR & HAC (cont'd)	KCC Public Notification 2009-27; RRA Public Notification 2010-45; KCC Public Notification 2012-2;CNS 14958-1; CNS 14959; NZS 2772.1; Resolution N 533; AS/NZS 2772.2:2011
Japan – Notification No. 88 of MIC 2004	
Table No 13	CB Radio
Table No 21	Cordless Telephone
Table Nos 22-1 thru 22-17	Low Power Radio Equipment
Table No 36	Low Power Security System
Table No 43	Low Power Data Communication in the 2.4 GHz Band
Table No 44	Low Power Data Communication in the 2.4 GHz Band
Table No 45	Low Power Data Communication in the 5.2, 5.3, 5.6 GHz Bands
Table No 46	Low Power Data Communication in the 25 and 27 GHz Bands
Table No 47	Base Station for 5 GHz Band Wireless Access System
Table No 47	Base Station for 5 GHz Band Wireless Access System (low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (limited for use in special zones)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (limited for use in special zones, low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (low spurious type)
Table No 47	Land Mobile Relay for 5 GHz Band Wireless Access System (low power type)
Table No 50	Digital Cordless Telephone
Table No 50	PHS Base Station
Table No 50	PHS Land Mobile Station
Table No 50	PHS Relay Station
Table No 50	PHS Test Station
Table No 64	Mobile Station for Dedicated Short Range Communication Systems
Table No 64	Base Station for Dedicated Short Range Communication Systems
Table No 64	Test Station for Dedicated Short Range Communication Systems
Table No 70	UWB (Ultra Wide Band) Radio System

^{*}Limitations for listed standards are indicated by italics and Scope excludes protocol sections of applicable standards.

Peter Mlayer Page 8 of 8

Accessing global markets RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 58 of 73

 www.siemic.com

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC GUIDE 65:1996

SIEMIC, INC. 775 Montague Expressway Milpitas, CA 95035 Mr. Snell Leong (Authorized Representative) Phone: 408 526 1188 www.siemic.com

PRODUCT CERTIFICATION CONFORMITY ASSESSMENT BODY (CAB)

Valid to: September 30, 2014

Certificate Number: 2742.02

In recognition of the successful completion of the A2LA Certification Body Accreditation Program evaluation, including the US Federal Communications Commission (FCC), Industry Canada (IC), Singapore (IDA), Hong Kong (OFCA) and Japan (MIC) requirements for the indicated types of product certifications, accreditation is granted to this organization to certify products in accordance with the following <u>product certification schemes</u>:

Economy:

Scope:

Federal Communication Commission - (FCC)

Unlicensed Radio Frequency Devices	A1, A2, A3, A4
Licensed Radio Frequency Devices	B1, B2, B3, B4
Telephone Terminal Equipment	C

*Please refer to FCC TCB Program Roles and Responsibilities, released January 6, 2011, detailing scopes, roles and responsibilities. <u>TCB Program Roles and Responsibilities</u>

Industry Canada - (IC)

Radio

Scope 1-Licence-Exempt Radio Frequency Devices; Scope 2-Licensed Personal Mobile Radio Services; Scope 3-Licensed General Mobile & Fixed Radio Services; Scope 4-Licensed Maritime & Aviation Radio Services; Scope 5-Licensed Fixed Microwave Radio Services;

*Please refer to Industry Canada (IC) website at: http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf09888.html

Peter Alnye

(A2LA Cert, No. 2742.02) 09/19/2012 Page 1 of 2 5301 Buckeystown Pike, Suite 350 | Frederick, Maryland 21704-8373 | Phone: 301 644 3248 | Fax: 301 662 2974 | www.A2LA.org

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 59 of 73

 www.siemic.com

IDA - Singapore

Line Terminal Equipment	All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
Radio-Communication Equipment	All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2

*Please refer to Info-Communication Development Authority (iDA) Singapore website at: http://www.ida.gov.sg/doc/Policies%20and%20Regulation/Policies_and_Regulation_Level2/20060609145118/ MRARecScheme.pdf

OFCA - Hong Kong

Radio Equipment HKCA 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1015, 1016, 1019, 1020, 1022, 1026, 1027, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052, 1053, 1054, 1056, 1057, 1061

*Please refer to the Office of the Communications Authority's website at: Radio Equipment Specifications (HKCA 10XX)

Fixed Network Equipment

HKCA 2001, 2005, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2040, 2041, 2102, 2103, 2104, 2108, 2201, 2202, 2203, 2204

*Please refer to the Office of the Communications Authority's website at: Etxed Network Equipment Specifications (HKCA 2XXX)

MIC-Japan

Telecommunications Business Law (Terminal Equipment) Scope A1 - Terminal Equipment for the Purpose of Calls

Radio Law (Radio Equipment) Scope B1 - Specified Radio Equipment specified in, Article 38-2-2, paragraph 1, item 1 of the Radio Law

Peter Alnye

Page 2 of 2

Title:

To:

Model

Accessing global markets RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 60 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: FCC Test Site Registration No. 881796

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

August 03, 2012

Registration Number: 881796

SIEMIC Labs 775 Montague Expressway, , Milpitas, CA 95035 Attention: Leslie BAI Re: Measurement facility located at 775 Montague Expressway, Milpitas, CA 95035 Anechoic chamber (10 meters) Date of Listing: August 03, 2012

Dear Sir or Madam:

Your request for registration of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC rules. The information has, therefore, been placed on file and the name of your organization added to the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FOC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Katie Hawkins Electronics Engineer

Accessing global markets Title: RF Test Report of Legrand Home Systems, North America Model: 202860 To: FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 61 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Industry of Canada CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

March 4, 2009

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by Industry Canada (IC), under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC, Inc. Physical Location: 2206 Ringwood Avenue, San Jose, CA 95131 USA Identification No.: US0160 Recognized Scope: CS-03 Part I, II, V, VI, VII and VIII

You may submit test data to IC to verify that the equipment to be imported into Canada satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov if you have any questions.

Sincerely,

Panil I Ald

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: CAB Program Manager

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 62 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Industry of Canada Test Site Registration No. 4842-1

Andustry Industri Canada Canada

July 03, 2012

Title:

To:

Model

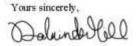
OUR FILE: 46405-4842 Submission No: 157820

Siemic Inc. 775 Montague Expressway Milpitas, CA, 95035 United States

Attention:

Dear Sir/Madame: Snell Leong

The Bureau has received your application for the renewal of 3/10m alternative test site. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 4842D-2). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;


- The company address code associated to the site(s) located at the above address is: 4842D

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed three years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Dalwinder Gill For Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carling Are., Buiking 94 P.O. Box 11490, Station "H" Ottawa, Ontario K2H 882 Email: dalwinder gill@sc.gc.ch Tel. No. (613) 998-8363 Fax. No. (613) 990-4752

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 63 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: FCC DOC CAB Recognition : US1109

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

August 28, 2008

Siemic Laboratories 2206 Ringwood Ave., San Jose, CA 95131

Attention: Leslie Bai

Re: Accreditation of Siemic Laboratories Designation Number: US1109 Test Firm Registration #: 540430

Dear Sir or Madam:

We have been notified by American Association for Laboratory Accreditation that Siemic Laboratories has been accredited as a Conformity Assessment Body (CAB).

At this time Siemic Laboratories is hereby designated to perform compliance testing on equipment subject to Declaration Of Conformity (DOC) and Certification under Parts 15 and 18 of the Commission's Rules.

This designation will expire upon expiration of the accreditation or notification of withdrawal of designation.

Sincerely,

George Ternahill

George Tannahill Electronics Engineer

Accessing global markets RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 64 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Title:

То

Mode

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	Siemic, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131
Identification No .:	US0160
Recognized Scope:	EMC: AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009), AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
	Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
	Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06, AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

Sincerely,

Daniel I. alder

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST

Accessing global markets RF Test Report of Legrand Home Systems, North America Model 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0 Serial# Issue Date Jan 16th , 2013 Page www.siemic.com

SIEMIC ACCREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

December 6, 2011

Title:

To:

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory's recognition by the Radio Research Agency (RRA) Korea Communications Commission (KCC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA) has been updated. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131
Identification No.:	US0160
Current Scope:	EMI: KCC Notice 2008-39; RRA Public Notification 2011-5; KN22
	EMS: KCC Notice 2008-38; RRA Public Notification 2011-6, KN24
Updated Scope:	EMI: RRA Public Notification 2011-18; RRA Announce 2010-5; KN 11; KN 13;
60 AS	KN 14-1; KN 22; KN 41; KN50; KN15; KN19; KN60; KN16-1-1; KN16-1-2;
	KN16-1-3; KN16-1-4; KN16-1-5; KN16-2-1; KN16-2-2; KN 16-2-3; KN 16-2-4;
	EMS: RRA Public Notification 2011-17; RRA Announce 2010-6; KN24; KN 61000-4-2,
	-4-3, -4-4, -4-5, -4-6, -4-8, -4-11; KN60101-1-2, KN20; KN41, KN51;
	RF: KCC Public Notification 2011-31: KCC Public Notification 2011-10;
	RRA Public Notification 2010-46; KN301-489-1; KN301-489-07; KN301-489-17; KN 301-489-24
	SAR: KCC Public Notification 2009-27; RRA Public Notification 2010-45; KCC Public Notification 2011-10
	TELECOM: RRA Public Notification 2010-36; RRA Public Notification 2009-38

You may submit test data to RRA/KCC to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as the accreditation for the designated scope remains valid and complies with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please, contact me at (301) 975-5521 or via email at ramona.saar@nist.gov.

Sincerely. Jaar famona

Ramona Saar Standards Services Group

Enclosure

Title:

To:

Model

Accessing global markets RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 66 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gathersburg, Maryland 20895

NIS

May 3, 2006

Mr. Leslie Bai SIEMIC Laboratories 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bui:

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows:

BSMI number:
 U.S Identification No:

Scope of Designation: Authorized signatory: SL2-IN-E-1130R (Must be applied to the test reports) US0160 CNS 13438 Mr. Leslie Bai

The names of all recognized CABs will be posted on the NIST website at http://ts.nist.gov/mra. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

2 ach

David F. Alderman Group Leader, Standards Coordination and Conformity Group

ce: Jogindar Dhillon

Accessing global markets Title: RF Test Report of Legrand Home Systems, North America Model: 202860 To: FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 67 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

April 25, 2011

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwwod Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about the laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.	
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131	
Identification No .:	US0160	
Previous Scope:	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS 14336, PLMN07	
Current Scope:	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS 14336, PLMN07, PLMN01 and PLMN08	

You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

Duvid The alderm

David F. Alderman Standards Services Group

Enclosure

cc: Ramona Saar

Accessing global markets RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 68 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Vietnam CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

July 11, 2012

Title:

То

Model

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory continues to be recognized by Vietnam's Ministry of Information and Communication (MIC) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). MIC has updated your scope of recognition. The pertinent information about the continued recognition is as follows:

CAB Name:	SIEMIC, Inc.	
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131	
Identification No .:	US0160	
Current Scope:	TCN68-188, TCN68-190, TCN68-193, TCN68-196, TCN68-143, TCN68-192,	
2493313-340100000000000000	TCN68-189, TCN68-221, TCN68-222, TCN68-223, TCN68-245, TCN68-242,	
	TCN68-243, TCN68-246, TCVN 7189	
Updated Scope:	QCVN 19:2010/BTTTT, QCVN 22:2010/BTTTT, TCVN 7189:2009, TCVN	
	7317:2003, QCVN 10:2010/BTTTT, QCVN 12:2010/BTTTT, QCVN 3:2010/BTTTT	
	QCVN 15:2010/BTTTT, QCVN 11:2010/BTTTT, QCVN 54:2011/BTTTT,	
	QCVN 55:2011/BTTTT, QCVN 18:2010/BTTTT, QCVN 17:2010/BTTTT	
	작용하지 않는 것 이 가슴가 있는 것은 것은 것은 것을 수 있다. 것은 것은 것은 것은 것은 것은 것은 것을 것을 것을 것을 것을 것을 수 있다. 것을 물러 가슴 것을 가지 않는 것을 가지 않는 것을 수 있다. 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 수 있다. 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 수 있다. 것을 가지 않는 것을 가지 않는 것을 수 있다. 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 수 있다. 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 수 있다. 것을 가지 않는 것을 수 있다. 것을 것을 것을 수 있다. 것을 것을 수 있다. 것을 것을 수 있다. 것을 것을 것을 수 있다. 것을 것을 것을 것을 수 있다. 것을 것을 것을 것을 수 있다. 것을 것을 것을 수 있다. 것을	

You may submit test data to MIC to verify that the equipment to be imported into Vietnam satisfies the applicable requirements. Please note that your recognition from Vietnam will expire on September 30, 2012. To continue the recognition beyond this date, it will be necessary to submit to NIST the updated ISO/IEC 17025 Scope and Certification of Accreditation as soon as it is reissued during your next accreditation renewal period, NIST will then submit the updated information to MIC so that the recognition can be extended.

Recognized CABs are listed on the NIST website at http://gsi.nist.gov/global/index.cfm/L1-4/L2-16/L3-90/A-380. If you have any questions please contact Ramona Saar via email at ramona.saar@nist.gov or phone at (301) 975-5521.

Sincerely,

Pavil T. alderman

David F. Alderman Standards Services Group

Enclosure

cc: Ramona Saar

Accessing global markets Title: RF Test Report of Legrand Home Systems, North America

Model

To:

202860 FCC 15.247:2012, RSS-210 Issue 8:2010
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 69 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Mexico NOM Recognition

Accessing global markets RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010

 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 70 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Hong Kong OFTA CAB ID : US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

December 8, 2008

Title:

Mode

То

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Office of the Telecommunications Authority (OFTA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	SIEMIC, Inc.	
Physical Location:	2206 Ringwood Avenue, San Jose, California 95131 USA	
Identification No .:	US0160	
Recognized Scope:	Radio: HKTA 1002, 1007, 1008, 1010, 1015, 1016, 1020, 1022, 1026,	
	1027, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1039, 1041,	
	1042, 1043, 1044, 1046, 1047, 1048, 1049, 1051	
	Telecom: HKTA 2011, 2012, 2013, 2014, 2017, 2018, 2022, 2024, 2026,	
	2027, 2028, 2029, 2030, 2031, 2032, 2033	

You may submit test data to OFTA to verify that the equipment to be imported into Hong Kong satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. If you have any questions please contact Ramona Saar at (301) 975-5521 or ramona.saar@nist.gov.

Sincerely,

David I. alden

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Ramona Saar

SIEMIC, INC. Accessing global markets

RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 71 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia ACMA CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, Maryland 20899-

November 20, 2008

Mr. Leslie Bai SIEMIC, Inc. 2206 Ringwood Avenue San Jose, CA 95131

Dear Mr. Bai:

NIST is pleased to inform you that your laboratory has been recognized by the Australian Communications and Media Authority (ACMA) under the Asia Pacific Economic Cooperation for Telecommunications Equipment Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name:	Siemic, Inc.
Physical Location:	2206 Ringwood Avenue, San Jose, CA 95131
Identification No .:	US0160
Recognized Scope:	EMC: AS/NZS 4251.1 (until 5/31/2009), AS/NZS 4251.2 (until 5/31/2009),
	AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR 22, AS/NZS
	61000.6.3, AS/NZS 61000.6.4
	Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS
	4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS
	4769.2, AS/NZS 4770, AS/NZS 4771
	Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06,
	AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01,
	AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/NZS 60950.1

You may submit test data to ACMA to verify that the equipment to be imported into Australia satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. Recognized CABs are listed on the NIST website at http://ts.nist.gov/mra. Please contact Ms. Ramona Saar, at (301) 975-5521 or ramona.saar@nist.gov if you have questions.

Sincerely,

David T. alder

David F. Alderman Group Leader, Standards Coordination and Conformity Group Standards Services Division

Enclosure

cc: Snell Leong, Siemic, Inc.; Ramona Saar, NIST

Title:

To:

Model

Accessing global markets

RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 72 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: Australia NATA Recognition

SIEMIC, INC. Accessing global markets

RF Test Report of Legrand Home Systems, North America 202860 FCC 15.247:2012, RSS-210 Issue 8:2010
 Serial#
 RF_RF_SL12102503-LHS-010_FCC-IC (202860) Rev1.0

 Issue Date
 Jan 16th , 2013

 Page
 73 of 73

 www.siemic.com

SIEMIC ACCREDITATION DETAILS: VCCI Radiated Test Site Registration No. A-0133

Certificate of VCCI Laboratory registration

1.1 Laboratory Info.	Company name (VCCI Membership No.)	SIEMIC Laboratories (3081)
	Laboratory Name	SIEMIC Labs (Milpitas location)
	VCCI Laboratory registration No.	A-0133
	VCCI Laboratory registration date	09/21/2012 (mm/dd/yyyy)
	Registration expiration date	09/30/2014 (mm/dd/yyyy)
	Country of Laboratory	USA
	ISO 17025 Accreditation body name	A2LA
	Accreditation No.	2742.01
	Accreditation valid to mm/dd/yyyy	09/30/2014 (mm/dd/yyyy)
	Edition (year) of the VCCI rule indicated in the scope of accreditation (example: V-3 20xx.04)	Not described in Scope
	Zip code	95035
	Address	775 Montague Expressway, Milpitas , CA 95035 USA

