WGI Innovations, Ltd.

Electronic Game Call

Model: EX1-TX, EM1-TX

May 17, 2012

Report No.: 12020293-FCC-R1 (This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:

William Long
Compliance Engineer

Wind Alex Liu
Technical Manager

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

KF Test Report

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 2 of 33 www.siemic.com.c

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

er culturions for ec	cultutions for Comornity Assessment								
Country/Region	Accreditation Body	Scope							
USA	FCC, A2LA	EMC, RF/Wireless, Telecom							
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom							
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom, Safety							
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom							
Australia	NATA, NIST	EMC, RF, Telecom, Safety							
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety							
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom							
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom							
Europe	A2LA, NIST	EMC, RF, Telecom, Safety							

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB , NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Hong Kong	OFTA (US002)	RF, Telecom
Japan	MIC, (RCB 208)	RF, Telecom

 Serial#:
 12020293-FCC-R1

 Issue Date:
 May 17, 2012

 Page:
 3 of 33

www.siemic.com.cn

This page has been left blank intentionally.

Serial#: 12020293-FCC-R Issue Date: May 17, 2012 Page: 4 of 33

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
4	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
ANI	NEX A. TEST INSTRUMENT & METHOD	19
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	23
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	29
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	33

Serial#: 12020293-FCC-R Issue Date: May 17, 2012 Page: 5 of 33 www.siemic.com.

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the WGI Innovations, Ltd., The Electronic Game Call, and model: EX1-TX, EM1-TX against the current Stipulated Standards. The Electronic Game Call has demonstrated compliance with the FCC 15.231:2012.

EUT Information

EUT Description	Electronic Game Call
Model No	EX1-TX, EM1-TX(note)
Serial No	N/A
Input Power	3V DC battery of power supply
Classification Per Stipulated Test Standard	Per FCC part 15.231:2012

Note: EM1-TX has the same design as EX1-TX.

Serial#: 12020293-FCC-R Issue Date: May 17, 2012 Page: 6 of 33 www.siemic.com/6

2 TECHNICAL DETAILS

Purpose	Compliance testing of Electronic Game Call with stipulated standard
Applicant / Client	WGI Innovations, Ltd. 602 Fountain Parkway Grand Prairie, TX 75050, U.S.A.
Manufacturer	Haojia Electronic (Shenzhen) Ltd. Fangmapu, Gui Hua Village, Guanlan, Baoan, Shenzhen, Guangdong 518110
Laboratory performing the tests	SIEMIC Nanjing (China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email:info@siemic.com
Test report reference number	12020293-FCC-R1
Date EUT received	March 31, 2012
Standard applied	FCC 15.231:2012
Dates of test	April 6, 2012 to May 16, 2012
No of Units :	1#
Equipment Category :	DSC
Trade Name :	Echo Baby
Test Model:	EX1-TX
RF Operating Frequency (ies)	Тх: 433.946МНz
Number of Channels :	N/A
Modulation :	N/A
FCC ID:	YTT-EX1EM1-TX

Serial#: 12020293-FCC-R-Issue Date: May 17, 2012 Page: 7 of 33 www.siemic.com.cn

MODIFICATION

NONE

Issue Date: May 17, 2012
Page: 8 of 33 Page:

TEST SUMMARY 4

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Test Results Summary

Test Standard	Description	Pass / Fail
CFR 47 Part 15.231: 2012		
15.203	Antenna Requirement	Pass
15.207	Conducted Emissions Voltage	N/A
15.231(b)	Fundamental & Radiated Spurious Emission	Pass
15.231(c)	20dB Bandwidth	Pass
15.231(a)(1)	Deactivation	Pass

ANSI C63.4: 2009

PS: All measurement uncertainties are not taken into consideration for all presented test result.

Preliminary radiated emission testing has been performed on X, Y, Z axis, only worst case test result is presented in this test report.

Serial#: 12020293-FCC-R Issue Date: May 17, 2012 Page: 9 of 33

5 <u>MEASUREMENTS, EXAMINATION AND DERIVED</u> RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The antenna is permanently attached to the device which meets the requirement.

Serial#: 12020293-FCC-R Issue Date: May 17, 2012 Page: 10 of 33 www.siemic.com.

<u>5.2</u> Conducted Emissions Voltage

Requirement:

	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15–0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		

^{*}Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.5dB$.

4. Environmental Conditions Temperature 25°C

Relative Humidity 48% Atmospheric Pressure 1019mbar

5. Test date: N/A

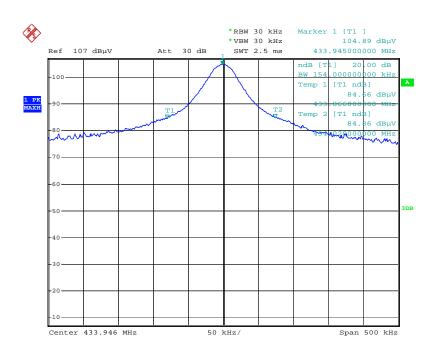
Tested By: William Long

Test result: N/A (Batteries operated)

Serial#: 12020293-FCC-R Issue Date: May 17, 2012 Page: 11 of 33 www.siemic.com.c

5.3 20dB Occupied Bandwidth

1. 20dB bandwidth was measured by conducted method using a spectrum analyzer.


2. Environmental Conditions Temperature 25°C Relative Humidity 51%

Atmospheric Pressure 1009mbar

3. Test Date: May 12, 2012 Test By: William Long

Test Result:

Fundamental Frequency	Measured 20dB Bandwidth	FCC 15.231 Limit	Result
(MHz)	(KHz)	(KHz)	
433.946 154		1084.75	Pass

Date: 12.MAY.2012 00:34:15

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 12 of 33 www.siemic.com.ci

5.4 Radiated Fundamental and Spurious Emission

- 1. Radiated emissions were measured according to ANSI C63.4. The EUT was set 3 meter away from the measuring antenna. The loop antenna was positioned 1 meter above the ground from the center of the loop. The measuring bandwidth was set to 10KHz. All possible modes of operation were investigated. Only the worst case emissions measured, All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Sample Calculation: Corrected Amplitude=Raw Amplitude(dBuV/m)+ACF(dB)+Cable Loss(dB)-Distance Correction Factor.

Sample Calculation:

- $1) \ Corrected \ Amplitude = Raw \ Amplitude (dBuV/m) + ACF(dB) + Cable \ Loss(dB) Distance \ Correction \ Factor$
- 2) Average = peak reading + 20log(duty cycle)
- 4. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30 MHz - 1 GHz (QP only3m & 10m) is +5.6/-4.5 dB (for

EUTs<0.5m×0.5m×0.5m).In range of 1-40GHz) is ± 3.6 dB.

5. Environmental Conditions Temperature 24°C
Relative Humidity 50%
Atmospheric Pressure 1009mbar

6. Test date : April 19, 2012 Tested By : William Long

Standard Requirement:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)		
40.66-40.70	2250	225		
70-130	1250	125		
130-174	1250 to 3750	125 to 375		
174-260	3750	375		
260-470	3750-12500	375 to 1250		
Above 470	12500	1250		

Note: All 3 axes have been investigated. Only worst case is presented in the test report.

Test Result: Pass

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 13 of 33 www.siemic.com.c

Fundamental Measurement @ 433.946MHz @3 Meter FCC 15.231(a)

Frequency (MHz)	Reading (dBμV/m)	Azimuth	Polarity	Height(m)	Factors(dB)	FCC 15.231(a) Limit (dBuV)	Margin(dB)	Comments
433.946	82.20	185.70	V	2.00	-29.19	100.8	-18.60	Pk
433.946	72.05	-	V	-	-	80.8	-8.75	Ave
433.946	88.93	321.10	Н	2.00	-29.19	100.8	-11.87	Pk
433.946	78.78	-	H	-	-	80.8	-2.02	Ave

Spurious Emissions (<1GHz) Measurement @ 3 Meter FCC 15.231(a)

Frequency (MHz)	Reading (dBμV/m)	Azimuth	Polarity	Height(m)	Factors(dB)	FCC 15.231(a) Limit (dBuV)	Margin(dB)	Comments
867.892	51.92	120.20	V	1.00	-20.74	80.8	-28.88	Pk
867.892	41.77	-	V	-	-	60.8	-19.03	Ave
867.892	68.99	324.20	Н	2.00	-21.42	80.8	-11.81	Pk
867.892	58.84	-	Н	-	-	60.8	-1.96	Ave

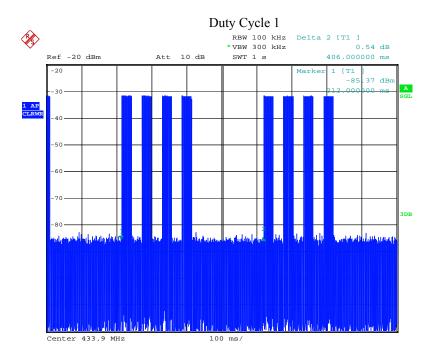
- Notes: 1. Duty cycle is 31.08%, 20log (duty cycle) = -10.15dB correction was used to determine the average level from the peak reading. Average = peak reading + 20log (duty cycle),
 Final Average= peak reading-10.15dB
 - 2. All the data measurement of peak values.
 - 3. FCC Limit for Average Measurement=41.6667(433.9)-7083.3333= $10995.84783 \mu V/m$ = $80.8 d B \mu V/m$
 - 4. Average pulsed signal over one complete pulse train or 100 ms time frame if pulse train exceeds 100 ms
 - 5. Maximum average in 100 ms
 - 6. Calculate duty cycle for pulse train or 100 ms
 - 7. Duty cycle = (t1 + t2 + t3 + ...tn)/T where tn = pulse width, T = pulse train length or 100 ms

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 14 of 33

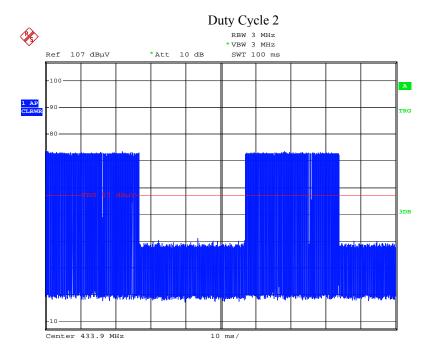
Spurious Emissions (>1GHz) Measurement @ 3 Meter FCC 15.231(a)

Frequency	Direction	Height	Polar	Factors (dB)	Amplifier	Reading	FCC 15.231		
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit	Margin	Comments
							(dBuV/m)		
1.302	69.70	1.06	Н	-25.85	55	61.21	74	-12.79	Peak
1.302	-	-	Н	-	-	51.06	54	-2.94	Ave
1.736	152.2	1.42	Н	-23.33	55	60.66	80.8	-20.14	Peak
1.736	-	-	Н	-	-	50.51	60.8	-10.29	Ave
2.170	85.0	1.16	Н	-20.66	55	59.14	80.8	-21.66	Peak
2.170	-	-	Н	-	-	48.99	60.8	-11.81	Ave
2.603	235.2	1.25	Н	-18.42	55	59.36	80.8	-21.44	Peak
2.603	-	-	Н	-	-	49.21	60.8	-11.59	Ave
3.037	76.0	1.14	Н	-15.46	55	53.13	80.8	-27.67	Peak
3.037	-	-	Н	-	-	42.98	60.8	-17.82	Ave
3.471	152.2	1.35	Н	-11.48	55	52.92	80.8	-27.88	Peak
3.471	-	-	Н	-	-	42.77	60.8	-18.03	Ave
3.905	86.7	1.12	Н	-9.25	55	49.9	74	-24.1	Peak
3.905	-	-	Н	•	-	39.75	54	-14.25	Ave
4.339	16.5	1.38	Н	-6.73	55	39.33	74	-34.67	Peak
4.339	-	-	Н	-	-	29.18	54	-24.82	Ave
1.302	221.7	1.31	V	-25.85	55	56.56	74	-17.44	Peak
1.302	-	-	V	-	-	46.41	54	-7.59	Ave
1.736	181.3	2.04	V	-23.33	55	57.21	80.8	-23.59	Peak
1.736	-	-	V	-	-	47.06	60.8	-13.74	Ave
2.170	210.7	1.03	V	-20.66	55	57.83	80.8	-22.97	Peak
2.170	-	-	V	-	-	47.68	60.8	-13.12	Ave
2.603	76.6	2.02	V	-18.42	55	60.14	80.8	-20.66	Peak
2.603	-	-	V	-	-	49.99	60.8	-10.81	Ave
3.037	154.8	1.22	V	-15.46	55	62.03	80.8	-18.77	Peak
3.037	-	-	V	-	-	51.88	60.8	-8.92	Ave
3.471	59.8	1.13	V	-11.48	55	58.63	80.8	-22.17	Peak
3.471	-	-	V	-	-	48.48	60.8	-12.32	Ave
3.905	157.5	1.05	V	-9.25	55	55.13	74	-18.87	Peak
3.905	-	-	V	-	-	44.98	54	-9.02	Ave
4.339	210.6	2.01	V	-6.73	55	53.52	74	-20.48	Peak
4.339	-	-	V	-	=	43.37	54	-10.63	Ave

Note: Duty cycle is 31.08%, 20log (duty cycle) = -10.15dB correction was used to determine the average level from the peak reading. Average = peak reading + 20log (duty cycle), final Average= peak reading -10.15dB


Note: Because the Pulse Emission Bandwidth is less than measuring Bandwidth, so the PDCF is not needed.

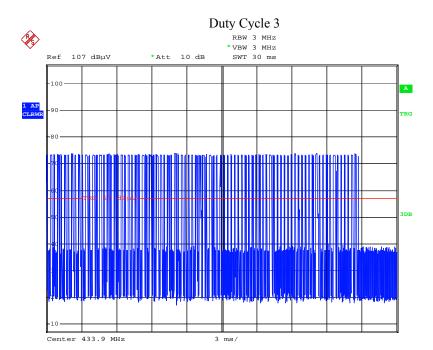
Serial#: 12020293-FCC-R Issue Date: May 17, 2012 Page: 15 of 33


www.siemic.com.cn

Pulse Duty Cycle: Wide Pulse: 0.23ms Narrow Pulse: 0.13ms

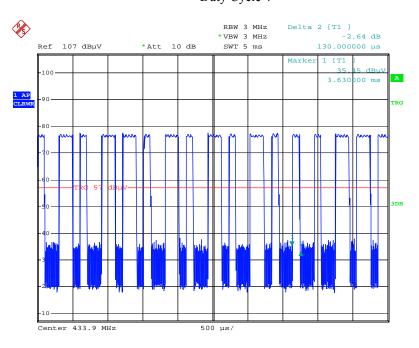
Duty cycle= (0.23*41*2+0.13*47*2)/100 =31.08% Average Duty Factor: 20*log (Duty Cycle)= -10.15dB

Date: 14.MAY.2012 18:43:16

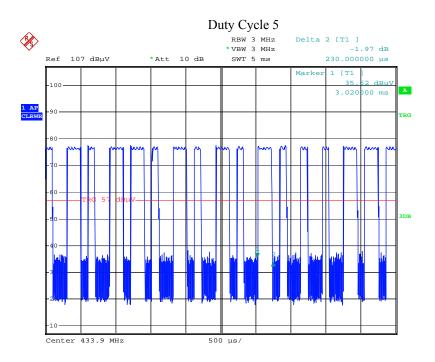

Date: 15.MAY.2012 18:58:49

 Serial#:
 12020293-FCC-R

 Issue Date:
 May 17, 2012


 Page:
 16 of 33

 www.siemic.com


Date: 15.MAY.2012 19:00:18

Duty Cycle 4

Date: 15.MAY.2012 19:09:14

Issue Date: May 17, 2012 Page: 17 of 33

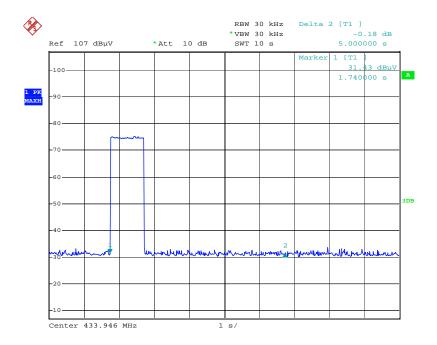
Date: 15.MAY.2012 19:09:45

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 18 of 33 www.siemic.com.c

5.5 Deactivation

1. Deactivation was measured by conducted method using a spectrum analyzer.

2. Environmental Conditions Temperature 23°C Relative Humidity 51%


Atmospheric Pressure 1009mbar

3. Test Data: May 12, 2012 Test By: William Long

Standard requirement: 47 CFR §15.231 (a)(1)

Release Time < 5 seconds

Test Result: Pass

Date: 12.MAY.2012 00:45:45

Issue Date: May 17, 2012 Page: 19 of 33

TEST INSTRUMENT & METHOD Annex A.

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibratio n Date	Calibration Due Date
Radiated Emissions				
R&S Receiver	ESPI 3	101216	08/26/2011	08/25/2012
Hp Spectrum Analyzer	8563E	3821A09023	01/10/2012	01/10/2013
HP Pre-amplifier	8447F	1937A01160	05/26/2011	05/25/2012
Sunol Sciences, Inc. antenna	JB6	A121411	12/28/2011	12/27/2012
A-INFOMW Horn Antenna (1~18GHz)	JXTXLB-10180	J2031081120092	06/25/2011	06/24/2012
MITEQ Pre-Amplifier(0.1 \sim 18GHz)	AMF-7D- 00101800-30-10P	1451710	05/26/2011	05/25/2012

Serial#: 12020293-FCC-R1 May 17, 2012 20 of 33 Issue Date: Page:

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
- The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains. 2.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz

 $limit = 250 \mu V = 47.96 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

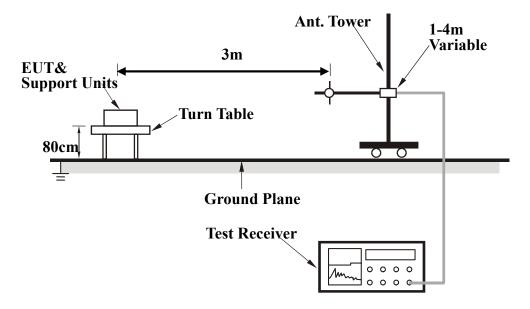
Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$

(Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96

i.e. 7.96 dB below limit

Annex A. iii. RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 22 of 33 www.siemic.com.ci

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highest when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.$
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

Set RBW = 1MHz, VBW = 10Hz.

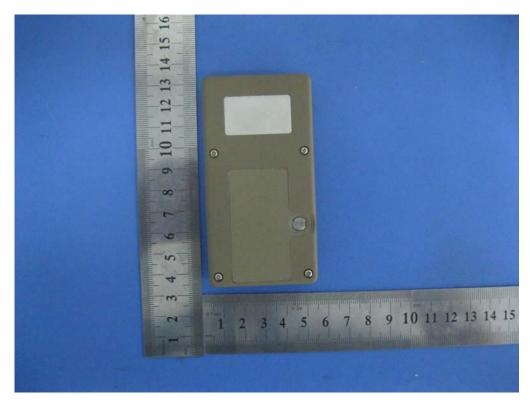
where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any)
And the average value is

Average = Peak Value + Duty Factor or

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

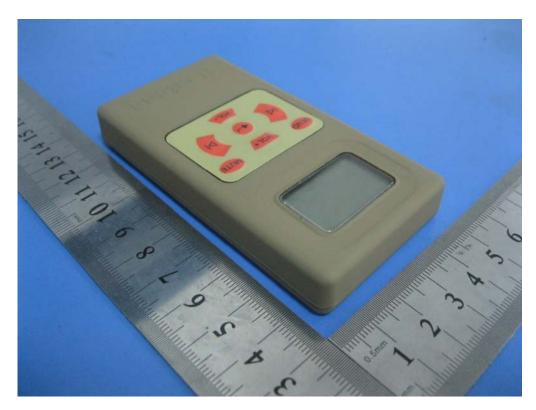

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 23 of 33 www.siemic.com.ci

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph: EUT External Photo

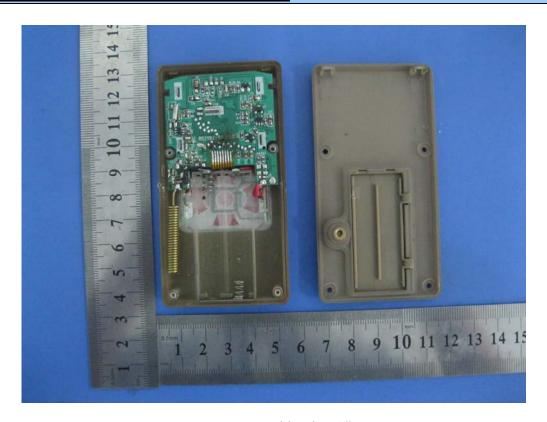


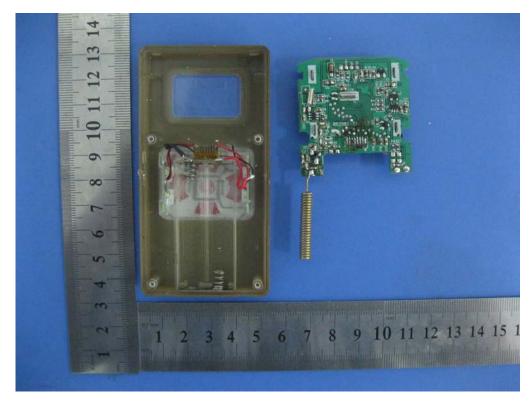
Front View of EUT



Rear View of EUT

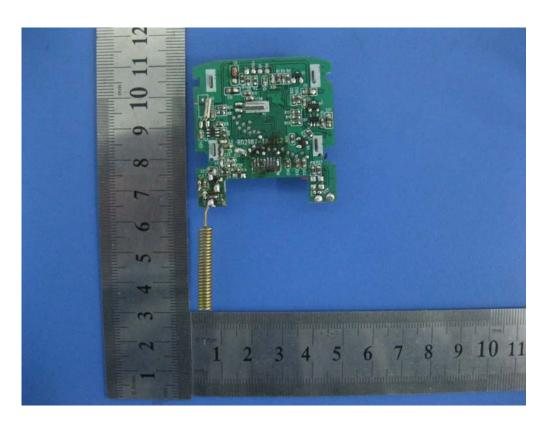
Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 24 of 33 www.siemic.com.cr


Left View of EUT

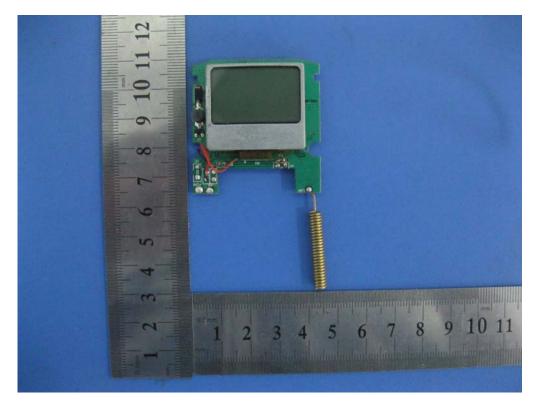

Right View of EUT

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 25 of 33

Annex B.ii. Photograph: EUT Internal Photo

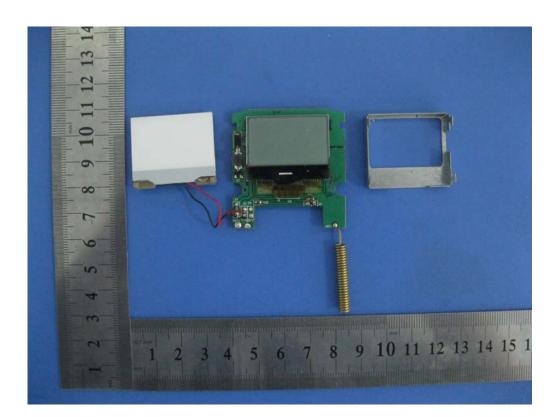


EUT – Inside View 1#

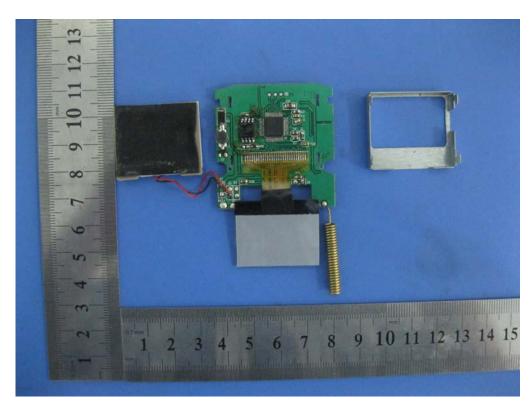


EUT – Inside View 2#

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 26 of 33 www.siemic.com.ci

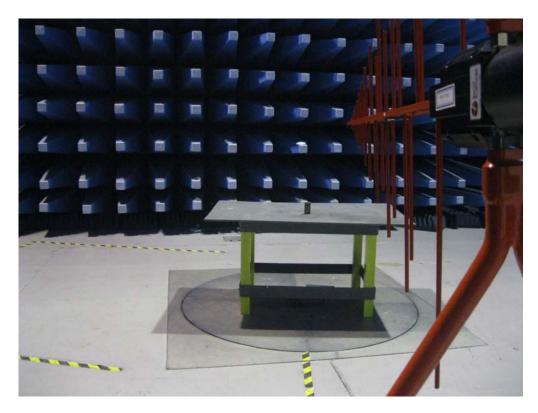


Front View of Main PCB Board



Rear View of Main PCB Board

Serial#: 12020293-FCC-R Issue Date: May 17, 2012 Page: 27 of 33 www.siemic.com.c


EUT – Inside View 3#

EUT – Inside View 4#

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 28 of 33 www.siemic.com.c

Annex B.iii. Photograph: Test Setup Photo

Radiated Emission Test Setup Front View Below 1GHz

Radiated Emission Test Setup Front View Above 1GHz

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 29 of 33 www.siemic.com.c

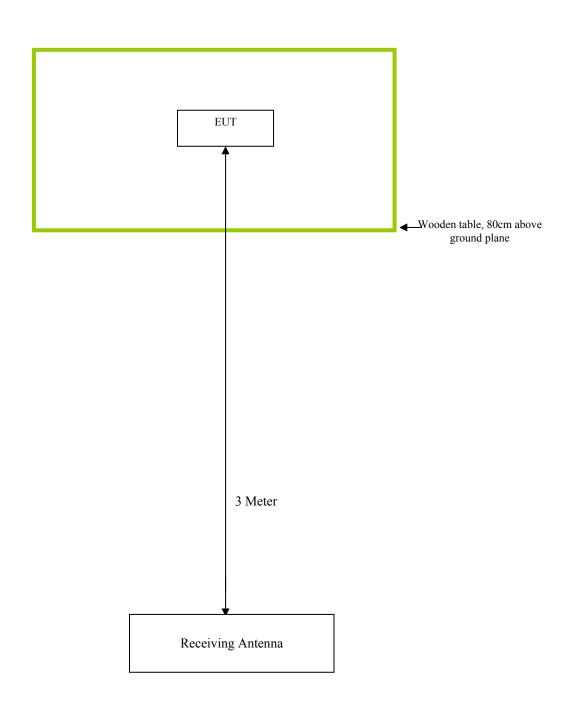
Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)	
N/A	N/A	N/A	


Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 30 of 33 www.siemic.com.cn

Block Configuration Diagram for Conducted Emission

N/A

Serial#: 12020293-FCC-R1 Issue Date: May 17, 2012 Page: 31 of 33

Block Configuration Diagram for Radiated Emission

 Serial#:
 12020293-FCC-R1

 Issue Date:
 May 17, 2012

 Page:
 32 of 33

Annex C.ii. **EUT OPERATING CONDITIONS**

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	TX mode is continuous transmitting with full power.

Serial#: 12020293-FCC-R-Issue Date: May 17, 2012 Page: 33 of 33 www.siemic.com.cn

ST		
ase see attachment		