WGI Innovations, Ltd.

Electronic Game Call

Model: EX1-RX, EM1-RX

May 17, 2012

Report No.: 12020292-FCC-E (This report supersedes NONE)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:

William Long
Compliance Engineer

Modifications made to the product: None

Alex Liu
Technical Manager

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

EMC Test Report

Laboratory Introduction

Serial#:

Issue Date: May 17, 2012 Page: 2 of 28

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom, Safety
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom
Australia	NATA, NIST	EMC, RF, Telecom, Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom, Safety

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB , NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC, (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

Model: EX1-RX, EM1-RX To: FCC Part 15 Subpart B Class B: 2012	Page: 3 of 28 www.siemic.com.cn
This page has been left blank intentionally.	

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 4 of 28 www.siemic.com.cn

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
4	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
AN	NEX A. TEST INSTRUMENT & METHOD	13
AN	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	17
AN	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	23
AN	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	27
AN	NEX E. DECLARATION OF SIMILARITY	28

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 5 of 28 www.siemic.com

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the WGI Innovations, Ltd., the Electronic Game Call, and model: EX1-RX, EM1-RX against the current Stipulated Standards. The Electronic Game Call has demonstrated compliance with the FCC Part 15 Subpart B Class B: 2012.

EUT Information

EUT Description	Electronic Game Call
Model No	EX1-RX, EM1-RX (note)
Serial No	N/A
Input Power	9V DC battery of power supply
Classification Per Stipulated Test Standard	Class B Emission Product

Note:

- 1. EX1-RX has two speakers, but EM1-RX just has one speaker.
- 2. EX1-RX's RC LCD will show two speaker icons, but EM1-RX's RC LCD just show one speaker icon
- 3. EM1-RX has no DC output.
- 4. EX1-RX has 80 sounds, but EM1-RX has 60 sounds.

2 TECHNICAL DETAILS

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 6 of 28 www.siemic.com.cn

2	TECHNICAL DETAILS
Purpose	Compliance testing of Electronic Game Call with stipulated standard
Applicant / Client	WGI Innovations, Ltd. 602 Fountain Parkway Grand Prairie, TX 75050, U.S.A.
Manufacturer	Haojia Electronic (Shenzhen) Ltd. Fangmapu, Gui Hua Village, Guanlan, Baoan, Shenzhen, Guangdong 518110
Laboratory performing the tests	SIEMIC Nanjing (China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email:info@siemic.com
Test report reference number	12020292-FCC-E
Date EUT received	March 31, 2012
Standard applied	FCC Part 15 Subpart B Class B: 2012
Dates of test	April 27, 2012
No of Units :	1#
Equipment Category :	Class B Emission Product
Trade Name :	Echo Baby
Test Model :	EX1-RX
RF Operating Frequency (ies)	Rx: 433.946MHz
FCC ID:	YTT-EX1EM1-RX

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 7 of 28 www.siemic.com.cn

3 MODIFICATION

NONE

Issue Date: May 17, 2012
Page: 8 of 28

TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Class B Emission Product

Test Results Summary

Emissions				
Test Standard	Description	Product Class	Pass / Fail	
FCC Part 15 Subpart B Class B: 2012	AC Line Conducted Emissions	See Above	N/A	
FCC Part 15 Subpart B Class B: 2012	Radiated Emissions	See Above	Pass	

All measurement uncertainty is not taken into consideration for all presented test result.

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 9 of 28

www.siemic.com.cn

5 <u>MEASUREMENTS, EXAMINATION AND DERIVED</u> <u>RESULTS</u>

5.1 AC Line Conducted Emissions Test Result

Note:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.86dB$.

4. Environmental Conditions Temperature 23°C

Relative Humidity 50% Atmospheric Pressure 1009mbar

5. Test Date: N/A

Tested By: William Long

Test result: N/A (Battery operated)

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 10 of 28 www.siemic.com.c

5.2 Radiated Emissions Test Result

Note:

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.

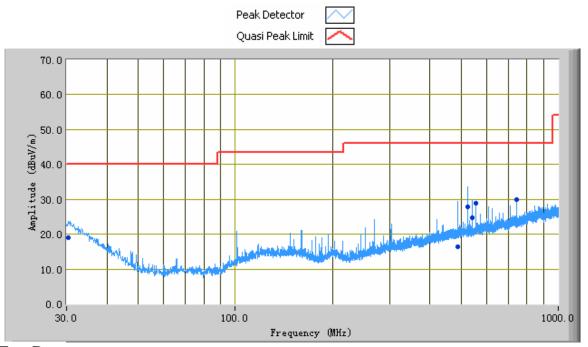
2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.

3. <u>Radiated Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30 MHz - 1 GHz (QP only @ 3m & 10m) is +5.6 dB/-4.5 dB (for EUTs < 0.5 m X 0.5 m X 0.5 m).

4. Environmental Conditions Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1009mbar

5. Test date: April 27, 2012 Tested By: William Long

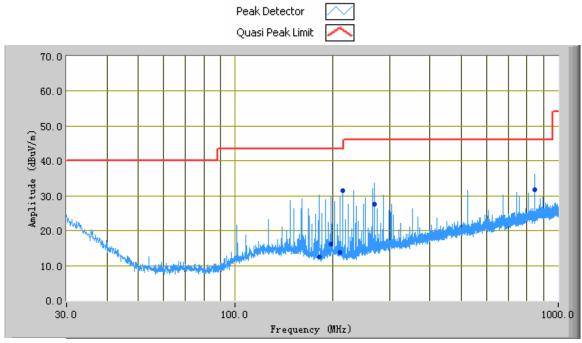

 Serial#:
 12020292-FCC-E

 Issue Date:
 May 17, 2012

 Page:
 11 of 28

 www.siemic.com

Test Result Complying For FCC Part 15 Subpart B Class B: 2012



Test Data

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity(H /V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
523.17	27.86	255.00	V	101.00	-27.66	46.00	-18.14
742.55	29.82	103.00	V	101.00	-23.21	46.00	-16.18
540.07	24.69	198.00	V	114.00	-27.13	46.00	-21.31
30.49	19.09	90.00	V	242.00	-21.81	40.00	-20.91
489.45	16.42	240.00	V	253.00	-27.90	46.00	-29.58
556.94	28.78	188.00	V	110.00	-26.02	46.00	-17.22

Note: Radiation emission data test to 4340 MHZ, The data above 1 GHz which below 20 dB to the limit was not recorded.

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 12 of 28 www.siemic.com.

Test Data

Frequency (MHz)	Quasi Peak (dBµV/m)	Azimuth	Polarity(H /V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
843.83	31.70	138.00	Н	100.00	-20.15	46.00	-14.30
270.03	27.46	164.00	Н	100.00	-31.74	46.00	-18.54
215.17	31.51	195.00	Н	154.00	-33.45	43.50	-11.99
181.42	12.45	0.00	Н	123.00	-33.17	43.50	-31.05
198.29	16.08	183.00	Н	130.00	-31.81	43.50	-27.42
210.96	13.68	189.00	Н	164.00	-32.95	43.50	-29.82

Note: Radiation emission data test to 4340 MHZ, The data above 1 GHz which below 20 dB to the limit was not recorded.

Issue Date: May 17, 2012
Page: 13 of 28

TEST INSTRUMENT & METHOD Annex A.

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibration Due
Radiated Emissions			
R&S Receiver	ESPI 3	101216	08/25/2012
Hp Spectrum Analyzer	8563E	3821A09023	01/10/2013
HP Pre-amplifier	8447F	1937A01160	05/25/2012
Sunol Sciences, Inc. antenna	JB6	A121411	12/27/2012
A-INFOMW Horn Antenna (1~18GHz)	JXTXLB-10180	J2031081120092	06/24/2012
MITEQ Pre-Amplifier(0.1 ~ 18GHz)	AMF-7D- 00101800-30-10P	1451710	05/25/2012

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 14 of 28 www.sjemic.com

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

At 20 MHz

 $limit = 250 \mu V = 47.96 dB\mu V$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

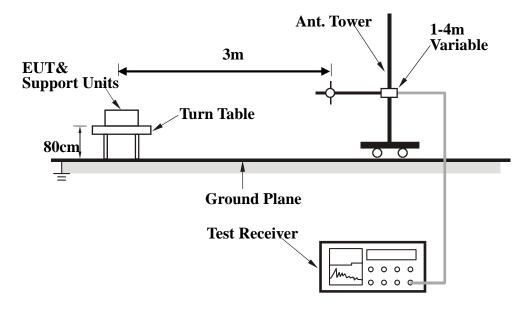
Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$

(Calibrated for system losses)

Therefore, Q-P margin = 47.96 - 40.00 = 7.96

i.e. 7.96 dB below limit

Annex A. iii. RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Serial#: Issue Date: May 17, 2012 Page: 16 of 28

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 or to 360 or with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any)

And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note:

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.


Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 17 of 28 www.sjemic.com.o

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph 1: EUT External Photo

Top View of EUT

Bottom View of EUT

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 18 of 28 www.siemic.com/o

Left View of EUT

Right View of EUT

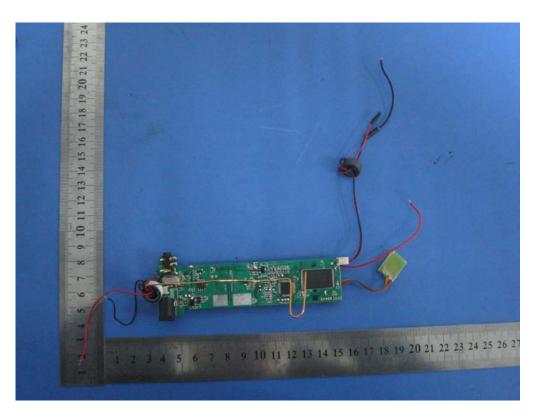
Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 19 of 28 www.siemic.com/o

Annex B.ii. Photograph 2: EUT Internal Photo

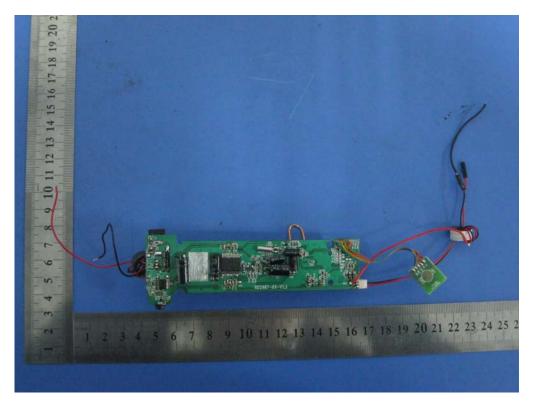
EUT – Inside View 1#

Rear View of Speaker

Issue Date: May 17, 2012
Page: 20 of 28



EUT - Inside View 2#

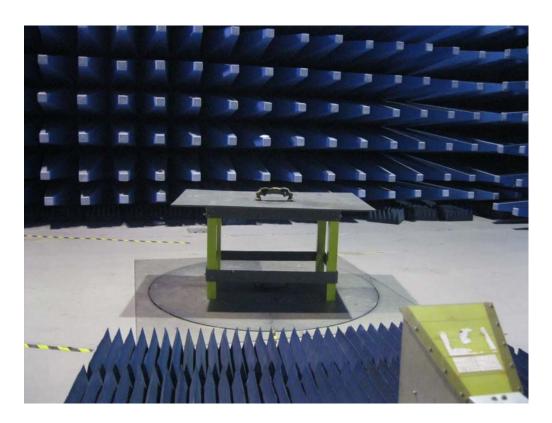


Front View of PCB Board

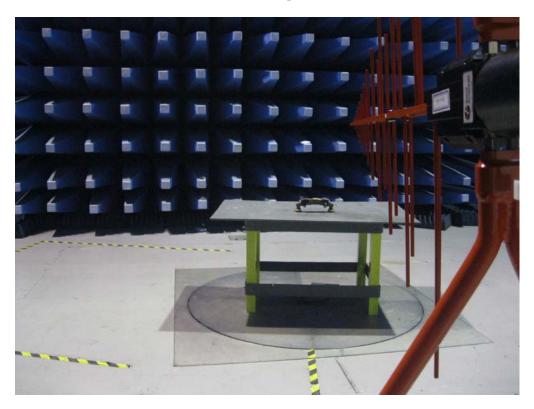
Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 21 of 28 www.siemic.com.c

Front View of PCB Board 1#

Rear View of PCB Board 1#


 Serial#:
 12020292-FCC-E

 Issue Date:
 May 17, 2012


 Page:
 22 of 28

 www.siemic.com.s

Annex B.iii. Photograph: Test Setup Photo

Radiated Emission Test Setup Front View (1GHz Above)

Radiated Emission Test Setup Front View (1GHz Below)

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 23 of 28 www.siemic.com.c

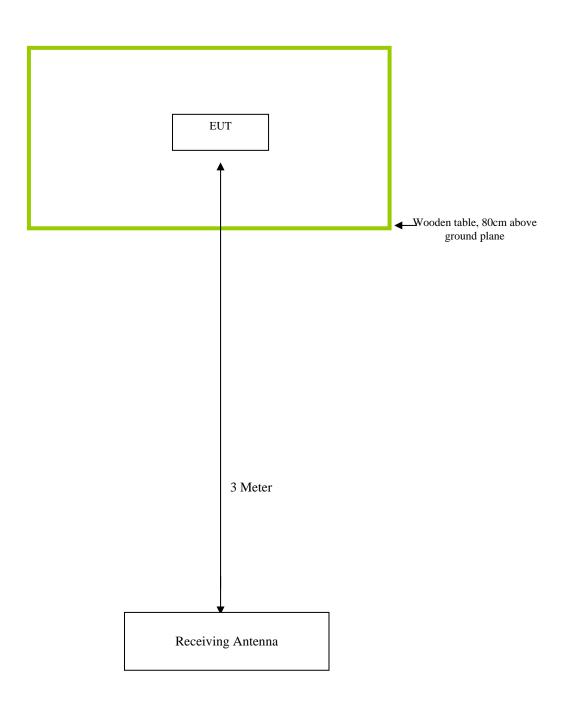
Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
N/A	N/A	N/A


Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 24 of 28 www.siemic.com.cn

Block Configuration Diagram for Conducted Emission

N/A

Serial#: 12020292-FCC-E
Issue Date: May 17, 2012
Page: 25 of 28
www.siemic.com.cn

Block Configuration Diagram for Radiated Emission

Serial#: 12020292-FCC-E Issue Date: May 17, 2012 Page: 26 of 28

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT is working normally to stimulate the worst case.

Issue Date: May 17, 2012
Page: 27 of 28

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART **LIST**

Please see attachment

 Serial#:
 12020292-FCC-E

 Issue Date:
 May 17, 2012

 Page:
 28 of 28

 www.siemic.com.

Annex E. Declaration of Similarity

EX1-RX has the same design as EM1-RX.

- 1. EX1-RX has two speakers, but EM1-RX just has one speaker.
- 2. EX1-RX 's RC LCD will show two speaker icons, but EM1-RX 's RC LCD just show one speaker icon EX1-RX
- 3. EM1-RX has no DC output.
- 4. EX1-RX has 80 sounds, but EM1-RX has 60 sounds.

EX1-TX has the same design as EM1-TX. The only differences are the model name.

Company Name: WGI Innovations, Ltd.

Address: 602 Fountain Parkway Grand Prairie, TX 75050, U.S.A.

Tel: 1-972-352-6600 ext. 129 Contact Person & Position: Jin Tan, Director of Quality,

jin.tan@feeders.com_

Signature: Fa