FCC SAR Test Report Report No. : SA130826C27 Applicant : WGI Innovations, Ltd. Address : 602 Fountain Parkway, Grand Prairie, Texas United States 75050 Product : Trail Camera FCC ID : YTT-C8B5 Brand : Wildgame Innovations Model No. : C8B5 Standards : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE 1528:2003 / IEEE 1528a-2005 FCC OET Bulletin 65 Supplement C (Edition 01-01) / KDB 865664 D01 v01r01 KDB 447498 D01 v05r01 / KDB 941225 D01 v02 / KDB 941225 D03 v01 Date of Testing : Apr. 12, 2014 ~ Apr. 13, 2014 **CERTIFICATION:** The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., China Branch - Dongguan Lab**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA or any government agencies. Prepared By: Vera Huang / Specialist Approved By: Gordon Lin / Assistant Manager ACCREDITED No: 2951.01 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report Format Version 5.0.0 Page No. : 1 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 Page No. : 2 of 22 Issued Date : Apr. 30, 2014 ## **Table of Contents** | Rel | Release Control Record3 | | | | | |-----|-------------------------|--|-----|--|--| | 1. | Sumn | nary of Maximum SAR Value | 4 | | | | 2. | | iption of Equipment Under Test | | | | | 3. | | Neasurement System | | | | | | 3.1 | Definition of Specific Absorption Rate (SAR) | | | | | | 3.2 | SPEAG DASY System | | | | | | | 3.2.1 Robot | | | | | | | 3.2.2 Probes | | | | | | | 3.2.3 Data Acquisition Electronics (DAE) | 8 | | | | | | 3.2.4 Phantoms | | | | | | | 3.2.5 Device Holder | | | | | | | 3.2.6 System Validation Dipoles | | | | | | | 3.2.7 Tissue Simulating Liquids | 10 | | | | | 3.3 | SAR System Verification | 13 | | | | | 3.4 | SAR Measurement Procedure | | | | | | | 3.4.1 Area & Zoom Scan Procedure | | | | | | | 3.4.2 Volume Scan Procedure | | | | | | | 3.4.3 Power Drift Monitoring | | | | | | | 3.4.4 Spatial Peak SAR Evaluation | | | | | | | 3.4.5 SAR Averaged Methods | | | | | 4. | | Measurement Evaluation | | | | | | 4.1 | EUT Configuration and Setting | | | | | | 4.2 | EUT Testing Position | | | | | | 4.3 | Tissue Verification | | | | | | 4.4 | System Validation | | | | | | 4.5 | System Verification | | | | | | 4.6 | Maximum Output Power | | | | | | | 4.6.1 Maximum Conducted Power | 17 | | | | | | 4.6.2 Measured Conducted Power Result | | | | | | 4.7 | SAR Testing Results | 19 | | | | | | 4.7.1 SAR Results for Body (Separation Distance is 0 cm Gap) | 19 | | | | | | 4.7.2 SAR Measurement Variability | | | | | | | ation of Test Equipment | | | | | 6. | | urement Uncertainty | | | | | 7. | Inforn | nation on the Testing Laboratories | .22 | | | Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup ## **Release Control Record** | Report No. | Reason for Change | Date Issued | |-------------|-------------------|---------------| | SA130826C27 | Initial release | Apr. 30, 2014 | | | | | | | | | Report Format Version 5.0.0 Page No. : 3 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 ## 1. Summary of Maximum SAR Value | Equipment
Class | Mode | Highest Reported
Body SAR_{1g}
(0 cm Gap)
(W/kg) | |--------------------|----------|--| | | GSM850 | 0.23 | | РСВ | GSM1900 | 0.13 | | I FCB | WCDMA II | 0.14 | | | WCDMA V | 0.31 | #### Note: 1. The SAR limit **(SAR_{1g} 1.6 W/kg)** for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992. Report Format Version 5.0.0 Page No. : 4 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 ## 2. <u>Description of Equipment Under Test</u> | EUT Type | Trail Camera | |---------------------------------|--------------------------------| | FCC ID | YTT-C8B5 | | Brand Name | Wildgame Innovations | | Model Name | C8B5 | | | GSM850 : 824.2 ~ 848.8 | | Tx Frequency Bands | GSM1900 : 1850.2 ~ 1909.8 | | (Unit: MHz) | WCDMA Band II: 1852.4 ~ 1907.6 | | | WCDMA Band V : 826.4 ~ 846.6 | | | GSM & GPRS : GMSK | | Uplink Modulations | EDGE: 8PSK | | | WCDMA: QPSK | | | GSM850 : 32.7 | | Maximum Tune-up Conducted Power | GSM1900 : 28.2 | | (Unit: dBm) | WCDMA Band II: 22.0 | | | WCDMA Band V : 22.8 | | Antenna Type | Fixed External Antenna | | EUT Stage | Identical Prototype | #### Note: 1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual. ### **List of Accessory:** | | Brand Name | Jinli | |---------|---------------------|-------------| | Battery | Model Name | D CELL LR20 | | Dattery | Power Rating 1.5Vdc | 1.5Vdc | | | Туре | alkaline | Report Format Version 5.0.0 Page No. : 5 of 22 Report No. : SA130826C27 Issued Date : Apr. 30, 2014 ## 3. SAR Measurement System ### 3.1 Definition of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ### 3.2 SPEAG DASY System DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC. Report Format Version 5.0.0 Page No. : 6 of 22 Report No. : SA130826C27 Issued Date : Apr. 30, 2014 Fig-3.1 DASY System Setup #### 3.2.1 Robot The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - High reliability (industrial design) - · Jerk-free straight movements - · Low ELF interference (the closed metallic construction shields against motor control fields) Report Format Version 5.0.0 Page No. : 7 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 #### 3.2.2 Probes The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. | Model | EX3DV4 | | |---------------|--|--| | Construction | Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 10 MHz to 6 GHz
Linearity: ±
0.2 dB | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g to 100 mW/g
Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | Model | ES3DV3 | | |---------------|---|--| | Construction | Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 10 MHz to 4 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis)
± 0.3 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 5 μW/g to 100 mW/g
Linearity: ± 0.2 dB | | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm | | ## 3.2.3 Data Acquisition Electronics (DAE) | Model | DAE3, DAE4 | | |-------------------------|--|--| | Construction | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. | | | Measurement
Range | -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV) | | | Input Offset
Voltage | < 5μV (with auto zero) | | | Input Bias Current | < 50 fA | | | Dimensions | 60 x 60 x 68 mm | | Report Format Version 5.0.0 Page No. : 8 of 22 Report No. : SA130826C27 Issued Date : Apr. 30, 2014 #### 3.2.4 Phantoms | Model | Twin SAM | | |-----------------|---|-----| | Construction | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. | No. | | Material | Vinylester, glass fiber reinforced (VE-GF) | | | Shell Thickness | 2 ± 0.2 mm (6 ± 0.2 mm at ear point) | | | Dimensions | Length: 1000 mm Width: 500 mm Height: adjustable feet | | | Filling Volume | approx. 25 liters | | | Model | ELI | | |-----------------|---|--| | Construction | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. | | | Material | Vinylester, glass fiber reinforced (VE-GF) | | | Shell Thickness | 2.0 ± 0.2 mm (bottom plate) | | | Dimensions | Major axis: 600 mm
Minor axis: 400 mm | | | Filling Volume | approx. 30 liters | | ## 3.2.5 Device Holder | Model | Mounting Device | | |--------------|---|--| | Construction | In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). | | | Material | POM | | Report Format Version 5.0.0 Page No. : 9 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 #### 3.2.6 System Validation Dipoles | Model | D-Serial | | |------------------|--|--| | Construction | Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions. | | | Frequency | 750 MHz to 5800 MHz | | | Return Loss | > 20 dB | | | Power Capability | > 100 W (f < 1GHz), > 40 W (f > 1GHz) | | #### 3.2.7 Tissue Simulating Liquids For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1. The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, FCC OET 65 Supplement C Appendix C, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in FCC OET 65 Supplement C Appendix C, and KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an SPEAG DAK-3.5 Dielectric Probe Kit and an Agilent Network Analyzer. Report Format Version 5.0.0 Page No. : 10 of 22 Report No. : SA130826C27 Issued Date : Apr. 30, 2014 **Table-3.1 Targets of Tissue Simulating Liquid** | Erogueney. | | Range of | Target | Range of | |--------------------|------------------------|-------------|--------------|-------------| | Frequency
(MHz) | Target
Permittivity | ±5% | Conductivity | ±5% | | | | For Head | | | | 750 | 41.9 | 39.8 ~ 44.0 | 0.89 | 0.85 ~ 0.93 | | 835 | 41.5 | 39.4 ~ 43.6 | 0.90 | 0.86 ~ 0.95 | | 900 | 41.5 | 39.4 ~ 43.6 | 0.97 | 0.92 ~ 1.02 | | 1450 | 40.5 | 38.5 ~ 42.5 | 1.20 | 1.14 ~ 1.26 | | 1640 | 40.3 | 38.3 ~ 42.3 | 1.29 | 1.23 ~ 1.35 | | 1750 | 40.1 | 38.1 ~ 42.1 | 1.37 | 1.30 ~ 1.44 | | 1800 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 1900 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2000 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2300 | 39.5 | 37.5 ~ 41.5 | 1.67 | 1.59 ~ 1.75 | | 2450 | 39.2 | 37.2 ~ 41.2 | 1.80 | 1.71 ~ 1.89 | | 2600 | 39.0 | 37.1 ~ 41.0 | 1.96 | 1.86 ~ 2.06 | | 3500 | 37.9 | 36.0 ~ 39.8 | 2.91 | 2.76 ~ 3.06 | | 5200 | 36.0 | 34.2 ~ 37.8 | 4.66 | 4.43 ~ 4.89 | | 5300 | 35.9 | 34.1 ~ 37.7 | 4.76 | 4.52 ~ 5.00 | | 5500 | 35.6 | 33.8 ~ 37.4 | 4.96 | 4.71 ~ 5.21 | | 5600 | 35.5 | 33.7 ~ 37.3 | 5.07 | 4.82 ~ 5.32 | | 5800 | 35.3 | 33.5 ~ 37.1 | 5.27 | 5.01 ~ 5.53 | | | | For Body | Ţ.—· | 5.5. | | 750 | 55.5 | 52.7 ~ 58.3 | 0.96 | 0.91 ~ 1.01 | | 835 | 55.2 | 52.4 ~ 58.0 | 0.97 | 0.92 ~ 1.02 | | 900 | 55.0 | 52.3 ~ 57.8 | 1.05 | 1.00 ~ 1.10 | | 1450 | 54.0 | 51.3 ~ 56.7 | 1.30 | 1.24 ~ 1.37 | | 1640 | 53.8 | 51.1 ~ 56.5 | 1.40 | 1.33 ~ 1.47 | | 1750 | 53.4 | 50.7 ~ 56.1 | 1.49 | 1.42 ~ 1.56 | | 1800 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 1900 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 2000 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 2300 | 52.9 | 50.3 ~ 55.5 | 1.81 | 1.72 ~ 1.90 | | 2450 | 52.7 | 50.1 ~ 55.3 | 1.95 | 1.85 ~ 2.05 | | 2600 | 52.5 | 49.9 ~ 55.1 | 2.16 | 2.05 ~ 2.27 | | 3500 | 51.3 | 48.7 ~ 53.9 | 3.31 | 3.14 ~ 3.48 | | 5200 | 49.0 | 46.6 ~ 51.5 | 5.30 | 5.04 ~ 5.57 | | 5300 | 48.9 | 46.5 ~ 51.3 | 5.42 | 5.15 ~ 5.69 | | 5500 | 48.6 | 46.2 ~ 51.0 | 5.65 | 5.37 ~ 5.93 | | 5600 | 48.5 | 46.1 ~ 50.9 | 5.77 | 5.48 ~ 6.06 | | 5800 | 48.2 | 45.8 ~ 50.6 | 6.00 | 5.70 ~ 6.30 | Report Format Version 5.0.0 Page No. : 11 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 The following table gives the recipes for tissue simulating liquids. **Table-3.2 Recipes of
Tissue Simulating Liquid** | Tissue
Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton
X-100 | Water | Diethylene
Glycol
Mono-
hexylether | |----------------|-------------|------|-----|------|---------|-----------------|-------|---| | H750 | 0.2 | - | 0.2 | 1.5 | 56.0 | - | 42.1 | - | | H835 | 0.2 | - | 0.2 | 1.5 | 57.0 | - | 41.1 | - | | H900 | 0.2 | - | 0.2 | 1.4 | 58.0 | - | 40.2 | - | | H1450 | - | 43.3 | - | 0.6 | - | - | 56.1 | - | | H1640 | - | 45.8 | - | 0.5 | - | - | 53.7 | - | | H1750 | - | 47.0 | - | 0.4 | - | - | 52.6 | - | | H1800 | - | 44.5 | - | 0.3 | - | - | 55.2 | - | | H1900 | - | 44.5 | - | 0.2 | - | - | 55.3 | - | | H2000 | - | 44.5 | - | 0.1 | - | - | 55.4 | - | | H2300 | - | 44.9 | - | 0.1 | - | - | 55.0 | - | | H2450 | - | 45.0 | - | 0.1 | - | - | 54.9 | - | | H2600 | - | 45.1 | - | 0.1 | - | - | 54.8 | - | | H3500 | - | 8.0 | - | 0.2 | - | 20.0 | 71.8 | - | | H5G | - | - | - | • | - | 17.2 | 65.5 | 17.3 | | B750 | 0.2 | - | 0.2 | 0.8 | 48.8 | - | 50.0 | - | | B835 | 0.2 | - | 0.2 | 0.9 | 48.5 | - | 50.2 | - | | B900 | 0.2 | - | 0.2 | 0.9 | 48.2 | - | 50.5 | - | | B1450 | - | 34.0 | - | 0.3 | - | - | 65.7 | - | | B1640 | - | 32.5 | - | 0.3 | - | - | 67.2 | - | | B1750 | - | 31.0 | - | 0.2 | - | - | 68.8 | - | | B1800 | - | 29.5 | - | 0.4 | - | - | 70.1 | - | | B1900 | - | 29.5 | - | 0.3 | - | - | 70.2 | - | | B2000 | - | 30.0 | - | 0.2 | - | - | 69.8 | - | | B2300 | - | 31.0 | - | 0.1 | - | - | 68.9 | - | | B2450 | - | 31.4 | - | 0.1 | - | - | 68.5 | - | | B2600 | - | 31.8 | - | 0.1 | - | - | 68.1 | - | | B3500 | - | 28.8 | - | 0.1 | - | - | 71.1 | - | | B5G | - | - | - | - | - | 10.7 | 78.6 | 10.7 | Report Format Version 5.0.0 Page No. : 12 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 #### 3.3 SAR System Verification The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below. The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. Report Format Version 5.0.0 Page No. : 13 of 22 Report No. : SA130826C27 Issued Date : Apr. 30, 2014 #### 3.4 SAR Measurement Procedure According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement The SAR measurement procedures for each of test conditions are as follows: - (a) Make EUT to transmit maximum output power - (b) Measure conducted output power through RF cable - (c) Place the EUT in the specific position of phantom - (d) Perform SAR testing steps on the DASY system - (e) Record the SAR value #### 3.4.1 Area & Zoom Scan Procedure First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01 v01r01, the resolution for Area and Zoom scan is specified in the table below. | Items | <= 2 GHz | 2-3 GHz | 3-4 GHz | 4-5 GHz | 5-6 GHz | | |-----------------------|----------|----------|----------|----------|----------|--| | Area Scan
(Δx, Δy) | <= 15 mm | <= 12 mm | <= 12 mm | <= 10 mm | <= 10 mm | | | Zoom Scan
(Δx, Δy) | <= 8 mm | <= 5 mm | <= 5 mm | <= 4 mm | <= 4 mm | | | Zoom Scan
(Δz) | <= 5 mm | <= 5 mm | <= 4 mm | <= 3 mm | <= 2 mm | | | Zoom Scan
Volume | >= 30 mm | >= 30 mm | >= 28 mm | >= 25 mm | >= 22 mm | | #### Note: When zoom scan is required and report SAR is \leq 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: \leq 8 mm, 3-4GHz: \leq 7 mm, 4-6GHz: \leq 5 mm) may be applied. #### 3.4.2 Volume Scan Procedure The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. Report Format Version 5.0.0 Page No. : 14 of 22 Report No. : SA130826C27 Issued Date : Apr. 30, 2014 #### 3.4.3 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. #### 3.4.4 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g #### 3.4.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. Report Format Version 5.0.0 Page No. : 15 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 ## 4. SAR Measurement Evaluation #### 4.1 EUT Configuration and Setting For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Agilent E5515C). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing. For GSM850, the power control level is set to 5. For GPRS850 (GMSK, CS1), the power control level is set to 5. For EDGE850 (8PSK:MCS9), the power control level is set to 8. For GSM1900, the power control level is set to 0. For GPRS1900 (GMSK, CS1), the power control level is set to 0. For EDGE1900 (8PSK:MCS9), the power control level is set to 2. For WCDMA, body SAR is tested under 12.2k RMC mode with power control set all up bits. SAR for AMR is not required since its power is less than 1/4 dB higher than RMC. SAR for HSDPA/HSUPA is not required since its power is less than 1/4 dB higher than RMC without HSDPA/HSUPA and SAR for 12.2 kbps RMC is less than 75% of the SAR limit (1.2 W/kg). #### **4.2 EUT Testing Position** This EUT were tested in positions as **Front Face**,
Rear Face, **Left Side**, **Right Side**, and **Top Side** with phantom 0 cm gap. #### 4.3 Tissue Verification The measuring results for tissue simulating liquid are shown as below. | Test
Date | Tissue
Type | Frequency
(MHz) | Liquid
Temp.
(℃) | Measured
Conductivity
(σ) | Measured
Permittivity
(ε _r) | Target
Conductivity
(σ) | Target
Permittivity
(ε _r) | Conductivity Deviation (%) | Permittivity Deviation (%) | |--------------|----------------|--------------------|------------------------|---------------------------------|---|-------------------------------|---|----------------------------|----------------------------| | Apr. 12,2014 | Body | 835 | 20.8 | 0.992 | 55.56 | 0.97 | 55.2 | 2.27 | 0.65 | | Apr. 13,2014 | Body | 1900 | 20.6 | 1.506 | 52.307 | 1.52 | 53.3 | -0.92 | -1.86 | #### Note: The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within $\pm 2~\%$. Report Format Version 5.0.0 Page No. : 16 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 ## 4.4 System Validation The SAR measurement system was validated according to procedures in KDB 865664 D01 v01r01. The validation status in tabulated summary is as below. | Test | Probe | Calibration Point | | Measured | Measured | Validation for CW | | | Validation for Modulation | | | |--------------|-------|-------------------|------|------------------|--------------------------------|----------------------|--------------------|-------------------|---------------------------|-------------|-----| | Date | S/N | | | Conductivity (σ) | Permittivity (ε _r) | Sensitivity
Range | Probe
Linearity | Probe
Isotropy | Modulation
Type | Duty Factor | PAR | | Apr. 12,2014 | 3873 | Body | 835 | 0.992 | 55.56 | Pass | Pass | Pass | GMSK | Pass | N/A | | Apr. 13,2014 | 3873 | Body | 1900 | 1.506 | 52.307 | Pass | Pass | Pass | GMSK | Pass | N/A | ## 4.5 System Verification The measuring result for system verification is tabulated as below. | Test
Date | Mode | Frequency
(MHz) | 1W Target
SAR-1g
(W/kg) | Measured
SAR-1g
(W/kg) | Normalized
to 1W
SAR-1g
(W/kg) | Deviation
(%) | Dipole
S/N | Probe
S/N | DAE
S/N | |--------------|------|--------------------|-------------------------------|------------------------------|---|------------------|---------------|--------------|------------| | Apr. 12,2014 | Body | 835 | 9.52 | 2.39 | 9.56 | 0.42 | 4d139 | 3873 | 1341 | | Apr. 13,2014 | Body | 1900 | 40.70 | 10.4 | 41.60 | 2.21 | 5d159 | 3873 | 1341 | #### Note: Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report. #### 4.6 Maximum Output Power #### 4.6.1 Maximum Conducted Power The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below. | Mode | GSM850 | GSM1900 | |--------------------------|--------|---------| | GPRS 8 (GMSK, 1 Uplink) | 32.7 | 28.2 | | GPRS 10 (GMSK, 2 Uplink) | 29.3 | 26.7 | | EDGE 8 (GMSK, 1 Uplink) | 32.7 | 28.2 | | EDGE 10 (GMSK, 2 Uplink) | 29.3 | 26.7 | | EDGE 8 (8PSK, 1 Uplink) | 26.0 | 23.7 | | EDGE 10 (8PSK, 2 Uplink) | 25.5 | 23.7 | | Mode | WCDMA Band II | WCDMA Band V | |-----------|---------------|--------------| | RMC 12.2K | 22.0 | 22.8 | Report Format Version 5.0.0 Page No. : 17 of 22 Report No. : SA130826C27 Issued Date : Apr. 30, 2014 #### 4.6.2 Measured Conducted Power Result The measuring conducted average power (Unit: dBm) is shown as below. | Band | | GSM850 | | | GSM1900 | | |--------------------------|-------|----------------------|----------------|----------|---------|--------| | Channel | 128 | 189 | 251 | 512 | 661 | 810 | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | 1850.2 | 1880.0 | 1909.8 | | | | Maximum Burst | -Averaged Outp | ut Power | | | | GPRS 8 (GMSK, 1 Uplink) | 32.21 | 32.01 | 31.66 | 27.75 | 27.48 | 27.16 | | GPRS 10 (GMSK, 2 Uplink) | 28.81 | 28.57 | 28.19 | 26.21 | 25.94 | 25.62 | | EDGE 8 (GMSK, 1 Uplink) | 32.20 | 32.01 | 31.65 | 27.74 | 27.41 | 27.12 | | EDGE 10 (GMSK, 2 Uplink) | 28.79 | 28.56 | 28.17 | 26.20 | 25.87 | 25.58 | | EDGE 8 (8PSK, 1 Uplink) | 25.38 | 25.16 | 24.81 | 23.23 | 22.93 | 22.66 | | EDGE 10 (8PSK, 2 Uplink) | 24.87 | 24.66 | 24.30 | 23.22 | 22.90 | 22.61 | | | | Maximum Frame | -Averaged Outp | ut Power | | | | GPRS 8 (GMSK, 1 Uplink) | 23.21 | 23.01 | 22.66 | 18.75 | 18.48 | 18.16 | | GPRS 10 (GMSK, 2 Uplink) | 22.81 | 22.57 | 22.19 | 20.21 | 19.94 | 19.62 | | EDGE 8 (GMSK, 1 Uplink) | 23.20 | 23.01 | 22.65 | 18.74 | 18.41 | 18.12 | | EDGE 10 (GMSK, 2 Uplink) | 22.79 | 22.56 | 22.17 | 20.20 | 19.87 | 19.58 | | EDGE 8 (8PSK, 1 Uplink) | 16.38 | 16.16 | 15.81 | 14.23 | 13.93 | 13.66 | | EDGE 10 (8PSK, 2 Uplink) | 18.87 | 18.66 | 18.30 | 17.22 | 16.90 | 16.61 | #### Note: - 1. SAR testing was performed on the maximum frame-averaged power mode. - 2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8) | Band | V | WCDMA Band II | | | VCDMA Band | V | 3PGG | |-----------------|--------|---------------|--------|-------|------------|-------|------| | Channel | 9262 | 9400 | 9538 | 4132 | 4182 | 4233 | MPR | | Frequency (MHz) | 1852.4 | 1880.0 | 1907.6 | 826.4 | 836.4 | 846.6 | (dB) | | RMC 12.2K | 21.62 | 21.30 | 21.38 | 22.31 | 22.20 | 22.29 | - | | HSDPA Subtest-1 | 21.50 | 21.34 | 21.37 | 22.20 | 22.12 | 22.24 | 0 | | HSDPA Subtest-2 | 21.60 | 21.30 | 21.26 | 22.21 | 22.15 | 22.15 | 0 | | HSDPA Subtest-3 | 21.53 | 21.33 | 21.22 | 22.20 | 22.15 | 22.22 | 0.5 | | HSDPA Subtest-4 | 21.55 | 21.47 | 21.26 | 22.13 | 22.01 | 22.09 | 0.5 | Report Format Version 5.0.0 Page No. : 18 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 ## 4.7 SAR Testing Results #### 4.7.1 SAR Results for Body (Separation Distance is 0 cm Gap) | Plot
No. | Band | Mode | Test
Position | Ch. | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR-1g
(W/kg) | Scaled
SAR-1g
(W/kg) | |-------------|----------|----------|------------------|------|-----------------------------------|---|-------------------|------------------------|------------------------------|----------------------------| | | GSM850 | GPRS8 | Front Face | 128 | 32.7 | 32.21 | 1.12 | 0.03 | 0.111 | 0.12 | | | GSM850 | GPRS8 | Rear Face | 128 | 32.7 | 32.21 | 1.12 | -0.12 | 0.092 | 0.10 | | 01 | GSM850 | GPRS8 | Left Side | 128 | 32.7 | 32.21 | 1.12 | 0.09 | 0.208 | 0.23 | | | GSM850 | GPRS8 | Right Side | 128 | 32.7 | 32.21 | 1.12 | 0.07 | 0.045 | 0.05 | | | GSM850 | GPRS8 | Top Side | 128 | 32.7 | 32.21 | 1.12 | 0.07 | 0.078 | 0.09 | | | GSM1900 | GPRS10 | Front Face | 512 | 26.7 | 26.21 | 1.12 | 0 | 0.068 | 0.08 | | | GSM1900 | GPRS10 | Rear Face | 512 | 26.7 | 26.21 | 1.12 | 0.15 | 0.061 | 0.07 | | 02 | GSM1900 | GPRS10 | Left Side | 512 | 26.7 | 26.21 | 1.12 | 0.15 | 0.119 | <mark>0.13</mark> | | | GSM1900 | GPRS10 | Right Side | 512 | 26.7 | 26.21 | 1.12 | -0.14 | 0.091 | 0.10 | | | GSM1900 | GPRS10 | Top Side | 512 | 26.7 | 26.21 | 1.12 | 0.05 | 0.043 | 0.05 | | | WCDMA II | RMC12.2K | Front Face | 9262 | 22.0 | 21.62 | 1.09 | -0.06 | 0.1 | 0.11 | | | WCDMA II | RMC12.2K | Rear Face | 9262 | 22.0 | 21.62 | 1.09 | 0.1 | 0.056 | 0.06 | | 03 | WCDMA II | RMC12.2K | Left Side | 9262 | 22.0 | 21.62 | 1.09 | -0.07 | 0.131 | <mark>0.14</mark> | | | WCDMA II | RMC12.2K | Right Side | 9262 | 22.0 | 21.62 | 1.09 | -0.04 | 0.105 | 0.11 | | | WCDMA II | RMC12.2K | Top Side | 9262 | 22.0 | 21.62 | 1.09 | -0.18 | 0.042 | 0.05 | | | WCDMA V | RMC12.2K | Front Face | 4132 | 22.8 | 22.31 | 1.12 | -0.16 | 0.138 | 0.15 | | | WCDMA V | RMC12.2K | Rear Face | 4132 | 22.8 | 22.31 | 1.12 | 0.11 | 0.132 | 0.15 | | 04 | WCDMA V | RMC12.2K | Left Side | 4132 | 22.8 | 22.31 | 1.12 | 0.14 | 0.28 | <mark>0.31</mark> | | | WCDMA V | RMC12.2K | Right Side | 4132 | 22.8 | 22.31 | 1.12 | -0.05 | 0.062 | 0.07 | | | WCDMA V | RMC12.2K | Top Side | 4132 | 22.8 | 22.31 | 1.12 | 0.07 | 0.093 | 0.10 | #### Note: SAR is performed on the highest power channel. When the reported SAR value of highest power channel is <= <p>0.8 W/kg, SAR testing for optional channel is not required. #### 4.7.2 SAR Measurement Variability According to KDB 865664 D01 v01r01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged
before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. Since all the measured SAR are less than 0.8 W/kg, the repeated measurement is not required. Test Engineer: Yihu Xiong Report Format Version 5.0.0 Page No. : 19 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 ## 5. Calibration of Test Equipment | Equipment | Manufacturer | Model | SN | Cal. Date | Cal. Interval | |---------------------------------|--------------|---------|------------|---------------|---------------| | System Validation Dipole | SPEAG | D835V2 | 4d139 | Aug. 29, 2013 | Biennial | | System Validation Dipole | SPEAG | D1900V2 | 5d159 | Sep. 03, 2013 | Biennial | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3873 | Sep. 03, 2013 | Annual | | Data Acquisition Electronics | SPEAG | DAE4 | 1341 | Aug. 29, 2013 | Annual | | Wireless Communication Test Set | Agilent | E5515C | MY50260600 | Mar. 12, 2013 | Biennial | | ENA Series Network Analyzer | Agilent | E5071C | MY46214638 | Sep. 25, 2013 | Annual | | Dielectric Assessment Kit | SPEAG | DAK-3.5 | 1076 | CBT | CBT | | MXG Analong Signal Generator | Agilent | N5183A | MY50140980 | Nov. 04, 2013 | Annual | | Power Meter | Agilent | ML2495A | 1139001 | Feb. 21, 2014 | Annual | | Power Sensor | Agilent | MA2411B | 1126068 | Feb. 21, 2014 | Annual | | Power Amplifier | OPHIR | 5161F | 1048 | CBT | CBT | Report Format Version 5.0.0 Page No. : 20 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 ## 6. Measurement Uncertainty | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Standard
Uncertainty
(1g) | Vi | |------------------------------|------------------------------|-----------------------------|---------|------------|---------------------------------|----------| | Measurement System | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | ± 1.9 % | ∞ | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | ± 3.9 % | ∞ | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Linearity | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Readout Electronics | 0.6 | Normal | 1 | 1 | ± 0.6 % | ∞ | | Response Time | 0.0 | Rectangular | √3 | 1 | ± 0.0 % | ∞ | | Integration Time | 1.7 | Rectangular | √3 | 1 | ± 1.0 % | ∞ | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | 0.5 | Rectangular | √3 | 1 | ± 0.3 % | ∞ | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Max. SAR Eval. | 2.3 | Rectangular | √3 | 1 | ± 1.3 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | 3.9 | Normal | 1 | 1 | ± 3.9 % | 31 | | Device Holder | 2.7 | Normal | 1 | 1 | ± 2.7 % | 19 | | Power Drift | 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | Phantom and Setup | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | ± 1.8 % | ∞ | | Liquid Conductivity (Meas.) | 5.0 | Normal | 1 | 0.64 | ± 3.2 % | 29 | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | ± 1.7 % | ∞ | | Liquid Permittivity (Meas.) | 5.0 | Normal | 1 | 0.6 | ± 3.0 % | 29 | | Combined Standard Uncertai | nty | | | | ± 11.7 % | | | Expanded Uncertainty (K=2) | | | | | ± 23.4 % | | Uncertainty budget for frequency range 300 MHz to 3 GHz Report Format Version 5.0.0 Page No. : 21 of 22 Report No.: SA130826C27 Issued Date : Apr. 30, 2014 ## 7. Information on the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., China Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: #### **China Dongguan Lab:** No. 34, Guantai Rd., Houjie Town, Dongguan, Guangdong 523942, China Tel: 86-769-8593-5656 Fax: 86-769-8599-1080 Email: service.dg@cn.bureauveritas.com Web Site: www.adt.com.tw The road map of all our labs can be found in our web site also. ---END--- Report Format Version 5.0.0 Page No. : 22 of 22 Report No. : SA130826C27 Issued Date : Apr. 30, 2014 ## Appendix A. SAR Plots of System Verification The plots for system verification with largest deviation for each SAR system combination are shown as follows. Report Format Version 5.0.0 Issued Date : Apr. 30, 2014 Report No.: SA130826C27 ## **System Check_B850_140412** ## **DUT: Dipole:835 MHz; Type:D835V2; SN:4d139** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: B850-A_0412 Medium parameters used: f = 835 MHz; $\sigma = 0.992$ S/m; $\varepsilon_r = 55.56$; $\rho =$ Date: 2014/04/12 1000 kg/m^3 Ambient Temperature: 21.9°C; Liquid Temperature: 20.8°C ### DASY5 Configuration: - Probe: EX3DV4 SN3873; ConvF(9.21, 9.21, 9.21); Calibrated: 2013/09/03; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2013/08/29 - Phantom: ELI 5.0; Type: QD OVA 001 BB; Serial: TP:1205 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.95 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.663 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 3.44 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.6 W/kgMaximum value of SAR (measured) = 2.98 W/kg ## **System Check_B1900_140413** ## **DUT: Dipole:1900MHz; Type:D1900V2; SN:5d159** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: B1900-A_0413 Medium parameters used: f = 1900 MHz; $\sigma = 1.506$ S/m; $\varepsilon_r = 52.307$; $\rho =$ Date: 2014/04/13 1000 kg/m^3 Ambient Temperature: 21.7°C; Liquid Temperature: 20.6°C #### DASY5 Configuration: - Probe: EX3DV4 SN3873; ConvF(7.4, 7.4, 7.4); Calibrated: 2013/09/03; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2013/08/29 - Phantom: ELI 5.0; Type: QD OVA 001 BB; Serial: TP:1205 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.1 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 97.334 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.51 W/kgMaximum value of SAR (measured) = 14.7 W/kg ## Appendix B. SAR Plots of SAR Measurement The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows. Report Format Version 5.0.0 Issued Date : Apr. 30, 2014 Report No.: SA130826C27 ## P01 GSM850_GPRS8_Left Side_0cm_Ch128 #### **DUT: 130904N029** Communication System: GPRS8; Frequency: 824.2 MHz; Duty Cycle: 1:8.3 Medium: B850-A_0412 Medium parameters used: f = 824.2 MHz; $\sigma = 0.981$ S/m; $\varepsilon_r = 55.672$; $\rho =$ Date: 2014/04/12 1000 kg/m^3 Ambient Temperature: 21.9°C; Liquid Temperature: 20.8°C - Probe: EX3DV4 SN3873; ConvF(9.21, 9.21, 9.21); Calibrated: 2013/09/03; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2013/08/29 - Phantom: ELI 5.0; Type: QD OVA 001 BB; Serial: TP:1205 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) - Area Scan (111x281x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.247 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.251 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.273 W/kg SAR(1 g) = 0.208 W/kg; SAR(10 g) = 0.152 W/kg Maximum value of SAR (measured) = 0.246 W/kg ## P02 GSM1900_GPRS10_Left Side_0cm_Ch512 #### **DUT: 130904N029** Communication System: GPRS10; Frequency: 1850.2 MHz; Duty Cycle: 1:4 Medium: B1900-A_0413 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.449$ S/m; $\epsilon_r = 52.46$; $\rho = 1.449$ S/m; $\epsilon_r = 52.46$; Date: 2014/04/13 1000 kg/m^3 Ambient Temperature: 21.7°C; Liquid Temperature: 20.6°C - Probe: EX3DV4 SN3873; ConvF(7.4, 7.4, 7.4); Calibrated: 2013/09/03; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2013/08/29 - Phantom: ELI 5.0; Type: QD OVA 001 BB; Serial: TP:1205 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) - Area Scan (111x281x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.169 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.973 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.214 W/kg SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.066 W/kg Maximum value of SAR (measured) = 0.171 W/kg ## P03 WCDMA II_RMC12.2K_Left Side_0cm_Ch9262 #### **DUT: 130904N029** Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: B1900-A_0413 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.451$ S/m; $\epsilon_r = 52.455$; $\rho = 1.451$ S/m; $\epsilon_r = 52.455$; 52.45$ Date: 2014/04/13 1000 kg/m^3 Ambient Temperature: 21.7°C; Liquid Temperature: 20.6°C - Probe: EX3DV4 SN3873; ConvF(7.4, 7.4, 7.4); Calibrated: 2013/09/03; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2013/08/29 - Phantom: ELI 5.0; Type: QD OVA 001 BB; Serial: TP:1205 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) - Area Scan
(81x211x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.193 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.131 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.238 W/kg SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.067 W/kg Maximum value of SAR (measured) = 0.185 W/kg ## P04 WCDMA V_RMC12.2K_Left Side_0cm_Ch4132 #### **DUT: 130904N029** Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium: B850-A_0412 Medium parameters used: f = 826.4 MHz; $\sigma = 0.983$ S/m; $\epsilon_r = 55.65$; $\rho = 0.983$ S/m; $\epsilon_r = 5.65$; $\epsilon_r = 0.983$ S/m; ϵ Date: 2014/04/12 1000 kg/m^3 Ambient Temperature: 21.9°C; Liquid Temperature: 20.8°C - Probe: EX3DV4 SN3873; ConvF(9.21, 9.21, 9.21); Calibrated: 2013/09/03; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1341; Calibrated: 2013/08/29 - Phantom: ELI 5.0; Type: QD OVA 001 BB; Serial: TP:1205 - Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164) - Area Scan (111x281x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.356 W/kg - Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.869 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.367 W/kg SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.204 W/kg Maximum value of SAR (measured) = 0.330 W/kg ## Appendix C. Calibration Certificate for Probe and Dipole The SPEAG calibration certificates are shown as follows. Report Format Version 5.0.0 Issued Date : Apr. 30, 2014 Report No.: SA130826C27 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V. ADT China (Auden) Accreditation No.: SCS 108 Certificate No: D835V2-4d139 Aug13 ## **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d139 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 29, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Seil Men | | Approved by: | Katja Pokovic | Technical Manager | Al M | Issued: August 30, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servicie suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d139_Aug13 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|---------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5$ mm | , , , , , , , , , , , , , , , , , , , | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.5 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.52 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.20 W/kg ± 16.5 % (k=2) | **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.4 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.52 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.27 W/kg ± 16.5 % (k=2) | Page 3 of 8 Certificate No: D835V2-4d139_Aug13 ## **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.1 Ω - 3.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.0 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.386 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight
warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 22, 2011 | Certificate No: D835V2-4d139_Aug13 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 29.08.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d139 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 41.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.153 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.83 W/kg 0 dB = 2.83 W/kg = 4.52 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 29.08.2013 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d139 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.153 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.62 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.87 W/kg 0 dB = 2.87 W/kg = 4.58 dBW/kg Certificate No: D835V2-4d139_Aug13 Page 7 of 8 ### Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT China (Auden)** Certificate No: D1900V2-5d159 Sep13 Accreditation No.: SCS 108 #### CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d159 Calibration procedure(s) **QA CAL-05.v9** Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 03, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | B: 0: 1 1 | Lie ii | | 1 | |-----------------------------|--------------------|-----------------------------------|------------------------| | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Sel ally | | Approved by: | Katja Pokovic | Technical Manager | Ment . | Issued: September 3, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d159_Sep13 Page 1 of 8 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Service suisse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d159_Sep13 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.71 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity |
---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.3 ± 6 % | 1.50 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.39 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.7 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d159_Sep13 Page 3 of 8 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $54.6~\Omega + 6.4~\mathrm{j}\Omega$ | | |--------------------------------------|--------------------------------------|--| | Return Loss | - 22.5 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.9 Ω + 6.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.2 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.200 ns | |----------------------------------|----------| | Electrical Belay (one direction) | 1.200115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 20, 2011 | Certificate No: D1900V2-5d159_Sep13 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 03.09.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d159 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.452 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.12 W/kg Maximum value of SAR (measured) = 12.0 W/kg 0 dB = 12.0 W/kg = 10.79 dBW/kg Certificate No: D1900V2-5d159_Sep13 Page 5 of 8 #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 03.09.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d159 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ S/m}$; $\epsilon_r = 53.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.452 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.39 W/kg Maximum value of SAR (measured) = 12.5 W/kg 0 dB = 12.5 W/kg = 10.97 dBW/kg Certificate No: D1900V2-5d159_Sep13 Page 7 of 8 ### Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **BV ADT China (Auden)** Certificate No: EX3-3873_Sep13 S C S Accreditation No.: SCS 108 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3873 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 3, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 28-Dec-12 (No. ES3-3013_Dec12) | Dec-13 | | DAE4 | SN: 660 | 31-Jan-13 (No. DAE4-660_Jan13) | Jan-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-15 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 3, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization \$ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and
inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3873 Sep13 Page 2 of 11 # Probe EX3DV4 SN:3873 Manufactured: March 13, 2012 Calibrated: September 3, 2013 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--|----------|----------|----------|-----------|--| | Norm (μV/(V/m) ²) ^A | 0.38 | 0.46 | 0.49 | ± 10.1 % | | | DCP (mV) ^B | 100.3 | 97.6 | 96.4 | | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unc ^E | |-----|---------------------------|---|-----|-------|-----|------|-------|------------------| | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 189.8 | ±3.0 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 153.1 | | | | | Z | 0.0 | 0.0 | 1.0 | | 163.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3873 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 9.80 | 9.80 | 9.80 | 0.35 | 0.91 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.56 | 9.56 | 9.56 | 0.37 | 0.84 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.46 | 9.46 | 9.46 | 0.47 | 0.77 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.27 | 8.27 | 8.27 | 0.47 | 0.73 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.94 | 7.94 | 7.94 | 0.46 | 0.73 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.20 | 7.20 | 7.20 | 0.33 | 0.94 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.05 | 5.05 | 5.05 | 0.25 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.83 | 4.83 | 4.83 | 0.25 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.87 | 4.87 | 4.87 | 0.25 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.51 | 4.51 | 4.51 | 0.30 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.61 | 4.61 | 4.61 | 0.30 | 1.80 | ± 13.1 % | ^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to ^L At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. EX3DV4-SN:3873 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750_ | 55.5 | 0.96 | 9.35 | 9.35 | 9.35 | 0.80 | 0.58 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.21 | 9.21 | 9.21 | 0.25 | 1.19 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.97 | 8.97 | 8.97 | 0.26 | 1.17 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.69 | 7.69 | 7.69 | 0.70 | 0.63 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.40 | 7.40 | 7.40 | 0.25 | 1.09 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.91 | 6.91 | 6.91 | 0.78 | 0.58 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.39 | 4.39 | 4.39 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.20 | 4.20 | 4.20 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.88 | 3.88 | 3.88 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.85 | 3.85 | 3.85 | 0.40 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.01 | 4.01 | 4.01 | 0.45 | 1.90 | ± 13.1 % | ^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Tot ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Tot Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4-SN:3873 ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz EX3DV4-SN:3873 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3873 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 20 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm |