

Г

٦

TEST REPORT						
IEEE1528:2003						
Report Reference No	TRE13110103 R/C: 46308 YT9-7910A					
Compiled by (position+printed name+signature): Supervised by	File administrators Jerome Luo	Jerome luv yuchao.wang Wentiog/				
(position+printed name+signature): Approved by	Test Engineer Yuchao Wang	yuchao.wang				
(position+printed name+signature): Date of issue	Manager Wenliang Li Nov 28, 2013	wennage-				
Testing Laboratory Name: Address	Shenzhen Huatongwei Internation Keji Nan No.12 Road, Hi-tech Park,					
Applicant's name: Address	Aervoe Industries, Inc 1100 Mark circle, Gardnerville, NV 8	39410, USA				
Test specification: ANSI C95.1–1999 Standard 47CFR § 2.1093 KDB447498 v05r01 KDB447498 v05r01 TRF Originator Shenzhen Huatongwei International Inspection CO., Ltd Master TRF Dated 2006-06 Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its						
Test item description	-					
Trade Mark: Manufacturer: Model/Type reference: Listed Models: Ratings:	SINORISE TECHNOLOGY CO., LT 7910A / DC 3.7V Supplied by Adapter AC 10					
Modulation and Emission Type: Channel Separation	FM 25KHz 462.5500MHz-462.7250MHz(GMRS					
Operation Frequency Range	462.5625 MHz -462.7125 MHz(FRS 467.5625 MHz -467.7125 MHz(FRS PASS	S/GMRS Band)				

TEST REPORT

Test Report No. :		TRE13110103	Nov 28, 2013
			Date of issue
Equipment under Test	:	Walkie Talkie	
Model /Type	:	7910A	
Listed Models	:	/	
Applicant	:	Aervoe Industries, Inc	
Address	:	1100 Mark circle, Gardn	erville, NV 89410, USA
Manufacturer	:	SINORISE TECHNOLO	GY CO., LTD
Address	:	6F,6th Bld,Education roa town,longgang,Shenzhe	

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS	4
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Summary SAR Results	5
2.4.	Equipment under Test	5
2.5.	Short description of the Equipment under Test (EUT)	6
2.6.	TEST Configuration	6
2.7.	EUT operation mode	6
2.8.	EUT configuration	6
2.9.	Note	7
<u>3.</u>	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	9
3.4.	SAR Limits	9
3.5.	Equipments Used during the Test	9
<u>4.</u>	SAR MEASUREMENTS SYSTEM CONFIGURATION	10
4.1.	SAR Measurement Set-up	10
4.2.	DASY5 E-field Probe System	11
4.3.	Phantoms	12
4.4.	Device Holder	12
4.5.	Scanning Procedure	13
4.6.	Data Storage and Evaluation	13
4.7.	Tissue Dielectric Parameters for Head and Body Phantoms	15
4.8.	Dielectric Performance	15
4.9.	System Check	15
<u>5.</u>	TEST CONDITIONS AND RESULTS	17
5.1.	Conducted Power Results	17
5.2.	Test reduction procedure	17
5.3.	SAR Measurement Results	17
5.4.	Measurement Uncertainty (300MHz-3GHz)	17
5.5.	System Check Results	19
5.6.	SAR Test Graph Results	20
<u>6.</u>	CALIBRATION CERTIFICATE	22
6.1.	Probe Calibration Ceriticate	22
6.2.	D450V3 Dipole Calibration Ceriticate	33
6.3.	DAE4 Calibration Ceriticate	41
<u>7.</u>	TEST SETUP PHOTOS	4 6
•		
<u>8.</u>	EUT PHOTOS	47

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

<u>IEEE Std 1528TM-2003</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

<u>KDB 447498 D01 Mobile Portable RF Exposure v05r01:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Nov 27, 2013
Testing commenced on	:	Nov 28, 2013
Testing concluded on	:	Nov 28, 2013

2.2. Product Description

The **Aervoe Industries**, **Inc**'s Model:7910A or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Walkie Talkie
FCC ID	YT9-7910A
Model Number	7910A
Rated Output Power	0.5W
Modilation Type	FM
Emission Type	16K0F3E
Channel Separation	25KHz
Antenna Gain	1.0dBi
Frequency range	462.5500MHz-462.7250MHz(GMRS Band) 462.5625 MHz -462.7125 MHz(FRS/GMRS Band) 467.5625 MHz -467.7125 MHz(FRS Band)

2.3. Summary SAR Results

The maximum of results of SAR found during testing for 7910A are follows:

Exposure Configuration	Technology	Test	Highest Re 1g(V	ported SAR //Kg)	Equipment
Exposure Configuration	Band	Frequency	100% Duty Cycle	50% Duty Cycle	Class
Head Face	PMR	462.6625	0.600	0.300	FRE
(Separation Distance 25mm)	FINIK	467.6625	0.493	0.246	FRE

The SAR values found for Walkie Talkie are below the maximum recommended levels of 1.6W/Kg as averaged over any 1g tissue accordintg to the ANSI C95.1-1999.

For body worn operation, this devices not need tested beacuse the product without any earphone point. The EUT battery must be fully charged and checked periodically during the test to ascertain iniform power output. The highest reported SAR values is obtained at the case of, and the values are:0.600W/Kg(1g) for 100% Duty Cycle and 0.300W/Kg(1g) for 50% Duty Cycle.

2.4. Equipment under Test

Power supply system utilised

Power supply voltage	0	120V / 60 Hz	0	115V / 60Hz
	0	12 V DC	0	24 V DC
	•	Other (specified in blank bel	ow)

DC 3.7V Supplied by Adapter AC 100-240V,50Hz/60Hz, 0.5A

2.5. Short description of the Equipment under Test (EUT)

Walkie Talkie (Model: 7910A).

The spatial peak SAR values were assessed for UHF systems. Battery and accessories shell be specified by

the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain

uniform power output.

2.6. TEST Configuration

Face-held Configuration

The front of the EUT is towards the phantom.

The front surface of the EUT is positioned at 25mm parallel to the flat phantom.

Body-worn Configuration

Body-worn Configuration - Default Battery Selection - per FCC KDB 447498,) A): Start by testing a PTT radio with the thinnest battery and a standard (default) Body-worn accessory.

Body-worn Configuration - Default Body-worn Accessory Selection - the belt-clip was selected as the default Body-worn accessory based on the smaller separation distance it provides between the radio and the user in comparison to the remaining accessories. Per FCC KDB 447498, A): "When multiple default Body-worn accessories are supplied with a radio, the standard Body-worn accessory expected to result in the highest SAR based on its construction and exposure conditions is considered the default Body-worn accessory for making Body-worn measurements."

Body-worn Configuration - Additional Body-worn Accessories - the remaining Body-worn accessories were evaluated based on the "additional Body-worn accessory" guidance provided in FCC KDB 447498). The remaining Body-worn accessories can be utilized with all the audio accessory options.

Body-worn Configuration - Selection of Default Audio Accessories by Category - the Default Audio Accessories by Category were selected based on the guidance provided in FCC KDB 447498, Section "Body SAR Test Considerations for Audio Accessories without Built-in Antenna", Page 10: "For audio accessories with similar construction and operating requirements, test only the audio accessory within the group that is expected to result in the highest SAR, with respect to changes in RF characteristics and exposure conditions for the combination. If it is unclear which audio accessory within a group of similar accessories is expected to result in the highest SAR, good engineering judgment and preliminary testing should be applied to select the accessory that is expected to result in the highest SAR." The Remaining Audio Accessories by Category were evaluated on the highest SAR channel from the Default Audio Accessory evaluations.

2.7. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal

operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.8. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

0	Power Cable	Length (m) :	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer :	/
		Model No. :	/

2.9. Note

1. The EUT is a U frequency band Walkie Talkie, The functions of the EUT listed as below:

	Test Standards	Reference Report
SAR	FCC Part 2 §2.1093	TRE13110103

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar. 29, 2012. Valid time is until Feb. 28, 2015.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept. 30, 2015.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date June. 01, 2012, valid time is until June. 01, 2015.

IC-Registration No.: 5377A

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Jan. 25, 2011, valid time is until Jan. 24, 2014.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-anechoic chamber $(12.2m \times 7.95m \times 6.7m)$ and Shielded Room $(8m \times 4m \times 3m)$ of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2010. Valid time is until Dec. 23, 2013.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.4. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.5. Equipments Used during the Test

				Calib	ration
Test Equipment	Manufacturer	Type/Model	Serial Number	Last	Calibration
				Calibration	Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2013/02/27	1
E-field Probe	SPEAG	ES3DV3	3292	2013/02/24	1
System Validation	SPEAG	D450V3	1079	2013/02/28	1
Dipole D450V3	SFEAG	D450V5	1079	2013/02/20	I
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Power meter	Agilent	E4417A	GB41292254	2013/03/26	1
Power sensor	Agilent	8481H	MY41095360	2013/03/26	1
Signal generator	IFR	2032	203002/100	2013/10/26	1
Amplifier	AR	75A250	302205	2013/10/26	1

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

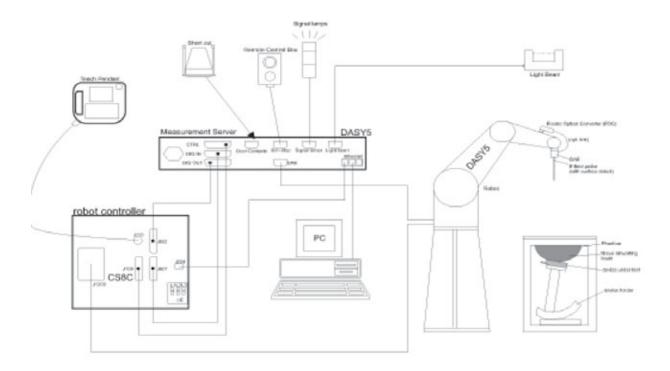
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

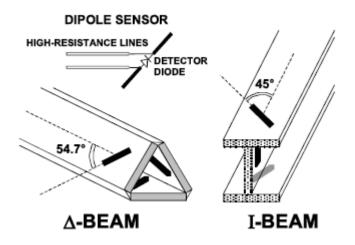
The device holder for handheld mobile phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.


Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
 Diode compression point 	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i	(i = x, y, z)
Ui = input signal of channel i	(i = x, y, z)
cf = crest factor of exciting field	(DASY parameter)
dcpi = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

		E - field probes :	$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$
		H - field probes :	$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$
With	Vi Normi	 compensated signal of channel i sensor sensitivity of channel i [mV/(V/m)2] for E-field Probes 	(i = x, y, z) (i = x, y, z)
	ConvF aij f Ei Hi	 sensitivity enhancement in solution sensor sensitivity factors for H-field carrier frequency [GHz] electric field strength of channel i in magnetic field strength of channel i 	probes V/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with	SAR	= local specific absorption rate in mW/g
	Etot	= total field strength in V/m
	σ	= conductivity in [mho/m] or [Siemens/m]
	ρ	= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

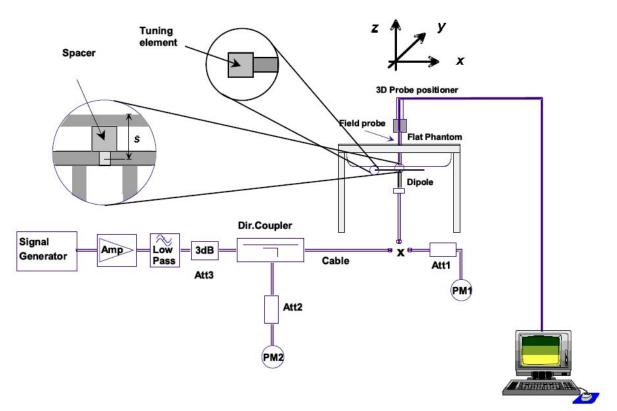
4.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Target Frequency	He	ad	Bo	dy
(MHz)	٤ _r	σ(S/m)	٤ _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.8. Dielectric Performance


Dielectric Performance of Head Tissue Simulating Liquid					
Measurement is made at temperature 22.0°C and relative humidity 55%.					
Liquid temperature during the test: 22.0°C					
Measurement Date: 450 MHz Nov 27 th , 2013					
/ Frequency Frequency ε Conductivity σ (S/m)					
Measurement value	450 MHz	44.10	0.89		

4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 26 dBm (398mW) before dipole is connected.

Photo of Dipole Setup

_		
Svetom	Validation	of Hoad
JVSICIII	valluation	ULLEAU

Measurement is made at temperature 22.0 $^{\circ}$ C and relative humidity 55%.							
	Liquid temperature during the test: 22.0°C						
Measurement Date: 450 MHz Nov 27 th , 2013							
Verification				Devi	ation		
results	(MHz)	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average
	450	1.21	1.81	1.16	1.73	-4.13%	-4.42%

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v05r01Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

Madulation Turna	Channel	Test	Test	ERP
Modulation Type	Separation	Channel	Frequency	(dBm)
Arclar	25KHz	5	462.6625 MHz	24.12
Analog	ZUNTZ	12	467.6625 MHz	24.68

Manufacturing tolerance

	GMRS		
Test Channel	Channel 5		
Target (dBm)	24.50		
Tolerance ±(dB)	±1.00		
	FRS		
Test Channel	Channel 12		
Target (dBm)	24.50		
Tolerance ±(dB)	±1.00		

5.2. Test reduction procedure

Maximum power level

The maximum power level, $P_{max,m}$, that can be transmitted by a device before the SAR averaged over a mass, m, exceeds a given limit, SAR_{lim}, can be defined. Any device transmitting at power levels below $P_{max,m}$ can then be excluded from SAR testing. The lowest possible value for $P_{max,m}$ is: $P_{max,m} = SAR_{lim}^*m$.

5.3. SAR Measurement Results

Test F	requency	Mode/	Maximum Allowed	ERP	Test	SAR	rement over V/kg)	Power	Scaling	Report ove (W/		SAR limit	Ref. Plot
Channel	MHz	Band	Power (dBm)	(dBm)	Configuration	100% Duty Cycle	50% Duty Cycle	drift	Factor	100% Duty Cycle	50% Duty Cycle	1g (W/kg)	#
5	462.6625	PTT	25.50	24.12	Face Held	0.437	0.219	-0.02	1.38	0.600	0.300	1.60	1
12	467.6625	PTT	25.50	24.68	Face Held	0.408	0.204	-0.07	1.21	0.493	0.246	1.60	2

5.4. Measurement Uncertainty (300MHz-3GHz)

No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measuremen	it System									
1	Probe calibration	В	5.50%	Ν	1	1	1	5.50%	5.50%	8
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	8
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8

Issued:2013-11-28

7	RF ambient conditions- noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	~
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	~
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	8
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8
Test Sample	Related									
15	Test sample positioning	А	1.86%	N	1	1	1	1.86%	1.86%	œ
16	Device holder uncertainty	А	1.70%	N	1	1	1	1.70%	1.70%	∞
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
Phantom and	d Set-up									
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	œ
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
20	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	8
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
22	Liquid cpermittivity (meas.)	A	0.16%	N	1	0.64	0.43	0.10%	0.07%	8
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i}$	l_i^2	/	/	/	/	/	10.20%	10.00%	8
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	/	/	20.40%	20.00%	8

5.5. System Check Results

System Performance Check at 450 MHz Head TSL

DUT: Dipole450 MHz; Type: D450V3; Serial: 1079

Date/Time: 11/27/2013 13:10:05 PM

Communication System: DuiJiangJi; Frequency: 450 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 450 MHz; σ = 0.89 S/m; ϵ_r = 44.10; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.71, 6.71, 6.71); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

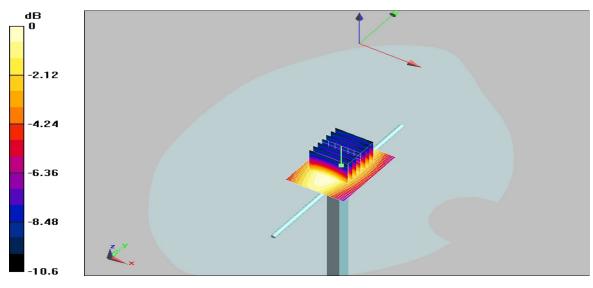
Electronics: DAE4 Sn1315; Calibrated: 27/02/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (41x131x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 3.48 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.1 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 4.06 mW/g

SAR(1 g) = 1.73 mW/g; SAR(10 g) = 1.16 mW/g

Maximum value of SAR (measured) = 3.16 W/kg

System Performance Check 450MHz 398mW

5.6. SAR Test Graph Results

Face Held ,Front towards Phantom 462.6625 MHz

Communication System: DuiJiangJi; Frequency: 462.6625 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 462.6625 MHz; σ = 0.91 S/m; ϵ_r = 44.07; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.71, 6.71, 6.71); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

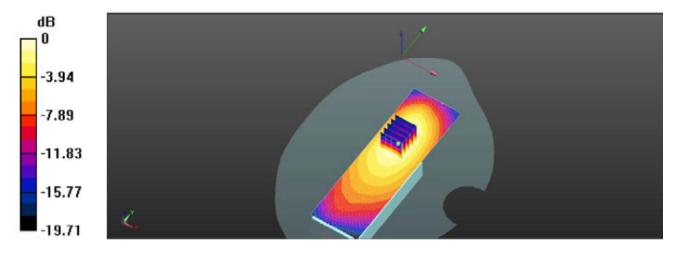
Electronics: DAE4 Sn851; Calibrated: 02/27/2013

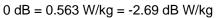
Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 0.417 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 15.658 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 0.593 W/kg

SAR(1 g) = 0.437 W/kg; SAR(10 g) = 0.214 W/kg

Maximum value of SAR (measured) = 0.563 W/kg

Face Held ,Front towards Phantom 467.6625 MHz

Communication System: DuiJiangJi; Frequency: 467.6625 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 467.6625 MHz; σ = 0.88 S/m; ϵ_r = 44.12; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(6.71, 6.71, 6.71); Calibrated: 24/02/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

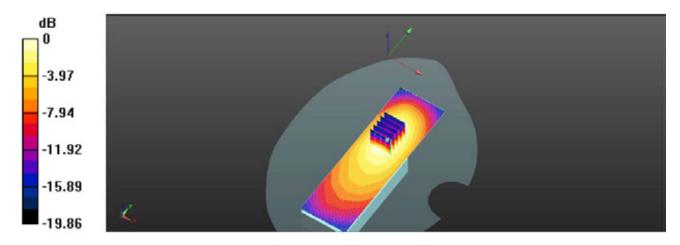
Electronics: DAE4 Sn851; Calibrated: 02/27/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (51x101x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 0.415 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.358 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.583 W/kg

SAR(1 g) = 0.408 W/kg; SAR(10 g) = 0.196 W/kg

Maximum value of SAR (measured) = 0.552 W/kg

0 dB = 0.552 W/kg = -2.83 dB W/kg

Figure 2: Front towards Phantom 467.6625 MHz

6. Calibration Certificate

6.1. Probe Calibration Ceriticate

coredited by the Swiss Accredit		Accreditation N	Servizio svizzero di taratura Swiss Calibration Service No.: SCS 108
he Swiss Accreditation Service ultilateral Agreement for the			
lient CIQ SZ (Aude			ES3-3292_Feb13
CALIBRATION	CERTIFICATI		
Dbject	ES3DV3 - SN:32	92	
Calibration procedure(s)		QA CAL-14.v7, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
Calibration date:	February 24, 201	3	
The measurements and the unc	ertainties with confidence p	robability are given on the following pages and y facility: environment temperature (22 ± 3) °C a	
The measurements and the unc	ertainties with confidence p ucted in the closed laborator		
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M8 Primary Standards	ertainties with confidence p ucted in the closed laborator STE critical for calibration)	y facility: environment temperature (22 ± 3)°C a	and humidity < 70%.
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M8 Primary Standards Power meter E4419B	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372)	and humidity < 70%. Scheduled Calibration Apr-13
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372)	Apr-13 Apr-13
The measurements and the unc All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41496087 SN: S5054 (3c)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369)	Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the uncount All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ertainties with confidence p ucted in the closed laborator TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367)	Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unc All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator	ertainties with confidence p ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01370)	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the uncount of the measurements and the uncount of the measurement o	ertainties with confidence p ucted in the closed laborator TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Dec-12 (No. ES3-3013_Dec12)	Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13
The measurements and the uncount of the measurements and the uncount of the uncount of the measurement of the uncount of the	ertainties with confidence p ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY4149087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01370)	Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the uncount All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ertainties with confidence p ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY4149087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Dec-12 (No. ES3-3013_Dec12)	Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13
The measurements and the unco All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 9 NB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ertainties with confidence p ucted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01370) 29-Dec-12 (No. ES3-3013_Dec12) 3-May-12 (No. DAE4-654_May12)	Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13
The measurements and the unce All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 00 dB Attenuator Reference 00 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ertainties with confidence p ucted in the closed laborator KTE critical for calibration) ID GB41293874 MY41496087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. ES3-3013_Dec12) 3-May-12 (No. DAE4-654_May12) Check Date (in house)	Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check
The measurements and the unce All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ertainties with confidence p ucted in the closed laborator KTE critical for calibration) ID GB41293874 MY41496087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Dec-12 (No. ES3-3013_Dec12) 3-May-12 (No. DAE4-654_May12) Check Date (in house) 4-Aug-99 (in house check Apr-12)	Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check In house check: Apr-13
	ertainties with confidence p ucted in the closed laborator TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID US3642U01700 US37390585 Name	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01370) 29-Dec-12 (No. ES3-3013_Dec12) 3-May-12 (No. DAE4-654_May12) - Check Date (in house) 4-Aug-99 (in house check Apr-12) 18-Oct-01 (in house check Oct-12) Function	Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check In house check: Apr-13 In house check: Oct-13

Certificate No: ES3-3292_Feb13

Page 1 of 11

Page 23 of 48

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS REIBRA

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossan

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques', December 2003 b) IEC 62209-", "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y.z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of ٠ power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3292 Feb12

Page 2 of 11

ES3DV3 - SN:3292

February 24, 2013

Probe ES3DV3

SN:3292

Manufactured: July 6, 2010 Calibrated: February 24, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3292_Feb13

Page 3 of 11

ES3DV3-SN:3292

February 24, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.81	0.90	1.18	± 10.1 %
DCP (mV) ⁸	105.9	104.7	102.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	WR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	117.3	±2.2 %
			Y	0.00	0.00	1.00	94.2	
			Z	0.00	0.00	1.00	108.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3292_Feb13

Page 4 of 11

ES3DV3-SN:3292

February 24, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	6.71	6.71	6.71	0.15	1.80	± 13.4 %
835	41.5	0.90	6.06	6.06	6.06	0.26	2.19	± 12.0 %
900	41.5	0.97	6.03	6.03	6.03	0.29	2.00	± 12.0 %
1810	40.0	1.40	5.25	5.25	5.25	0.80	1.17	± 12.0 %
1900	40.0	1.40	5.21	5.21	5.21	0.63	1.38	± 12.0 %
2100	39.8	1.49	5.15	5.15	5.15	0.80	1.20	± 12.0 %
2450	39.2	1.80	4.47	4.47	4.47	0.63	1.50	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the CorvF uncertainty for indicated target tissue parameters.

Certificate No: ES3-3292_Feb13

Page 5 of 11

ES3DV3-SN:3292

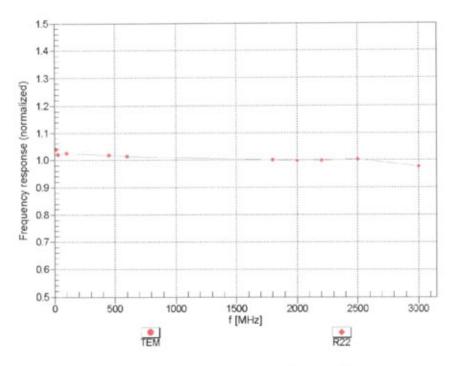
February 24, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.10	7.10	7.10	0.09	1.00	± 13.4 %
835	55.2	0.97	6.14	6.14	6.14	0.42	1.57	± 12.0 %
900	55.0	1.05	6.07	6.07	6.07	0.48	1.49	± 12.0 %
1810	53.3	1.52	4.86	4.86	4.86	0.62	1.42	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.47	1.75	± 12.0 %
2100	53.2	1.62	4.76	4.76	4.76	0.70	1.39	± 12.0 %
2450	52.7	1.95	4.25	4.25	4.25	0.80	1.03	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequencies below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. A: frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Certificate No: ES3-3292_Feb13

Page 6 of 11

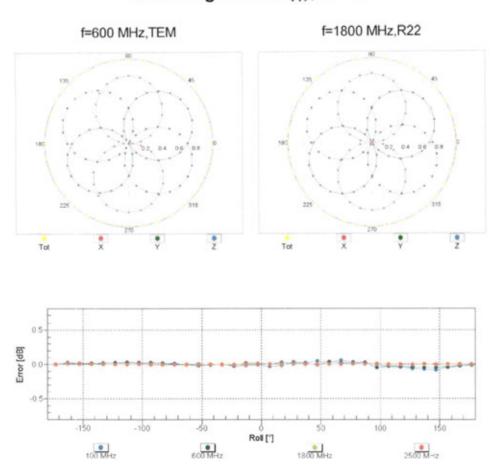
ES3DV3- SN:3292

February 24, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3292_Feb13


Page 7 of 11

Page 29 of 48

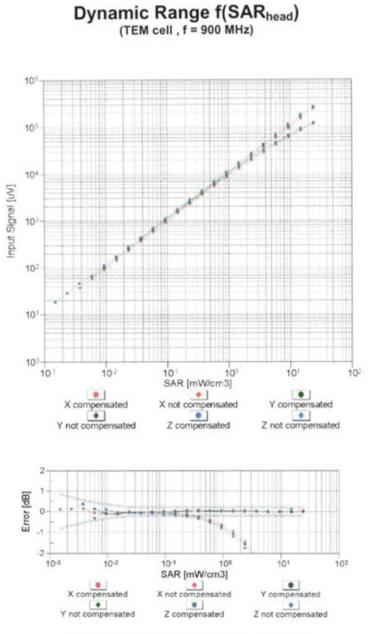
Issued:2013-11-28

ES3DV3- SN:3292

February 24, 2013

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

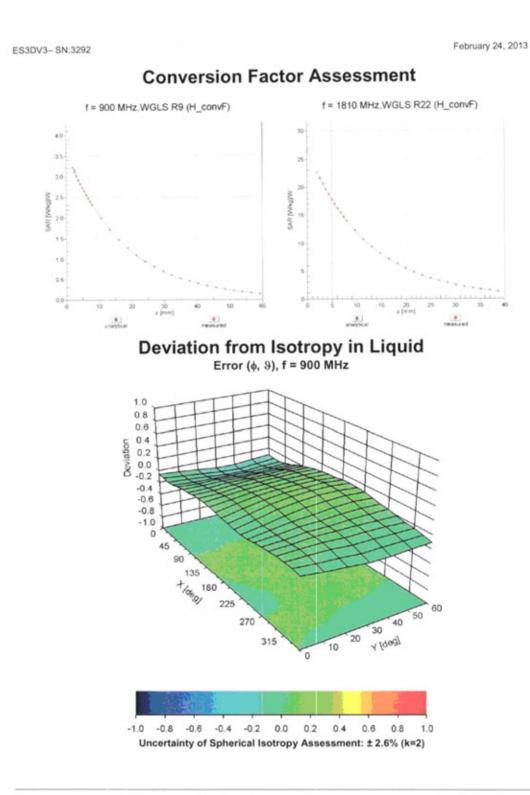
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: ES3-3292_Feb13

Page 8 of 11

Page 30 of 48

ES3DV3- SN:3292


February 24, 2013

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3292_Feb13

Page 9 of 11

Certificate No: ES3-3292_Feb13

Page 10 of 11

ES3DV3- SN:3292

February 24, 2013

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Other Probe Parameters

Triangular
Not applicable
enabled
disabled
337 mm
10 mm
10 mm
4 mm
2 mm
2 mm
2 mm
3 mm

Certificate No: ES3-3292_Feb13

Page 11 of 11

Page 33 of 48

6.2. D450V3 Dipole Calibration Ceriticate

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich	y of n, Switzerland	IDC MRA (SWISS C C RUSRATION S S	Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredita	tion Service (SAS)		No.: SCS 108
The Swiss Accreditation Service Multilateral Agreement for the re	e is one of the signatories ecognition of calibration of	to the EA certificates	
Client CIQ SZ (Auden	-		D450V3-1079_Feb13
CALIBRATION C		The second s	ADAREA BANGALENCING
CALIBRATION	ENTIFICATE		
Object	D450V3 - SN: 107	79	
			The sol Phyle Sola it
Calibration procedure(s)	QA CAL-15.v6	dure for dipole validation kits belo	w 700 MHz
	Gailbration proces	dure for apoie validation has beit	
	Real Providence and the		Internet and the second
Calibration date:	February 28, 201	3	
The measurements and the unce	rtainties with confidence pr	onal standards, which realize the physical un robability are given on the following pages an y facility: environment temperature (22 ± 3)°(d are part of the certificate.
The measurements and the unce	rtainties with confidence protection of the closed laborator	onal standards, which realize the physical un robability are given on the following pages an y facility: environment temperature (22 ± 3)°(d are part of the certificate.
The measurements and the unce All calibrations have been conduc	rtainties with confidence protection of the closed laborator	robability are given on the following pages an y facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& ⁻ Primary Standards Power meter E4419B	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& ^T Primary Standards Power meter E4419B Power sensor E4412A	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& ¹ Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	rtainties with confidence protected in the closed laborator FE critical for calibration) ID # GB41293874 MY41498087	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& ¹ Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: 5047.3 / 06327	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 1507 SN: 654	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 5047.3 / 06327 SN: 1507 SN: 654 ID #	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 5047.3 / 06327 SN: 1507 SN: 654 ID #	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check In house check: Oct-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: 55047.3 / 06327 SN: 55047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5047.3 / 06327 SN: 5047.3 / 06327 SN: 1507 SN: 654 ID # MY41092317 100005	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check In house check: Oct-13 In house check: Oct-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5086 (20b) SN: 5047.3 / 06327 SN: 1507 SN: 1507 SN: 1507 SN: 654 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5086 (20b) SN: 5047.3 / 06327 SN: 1507 SN: 1507 SN: 1507 SN: 654 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 31-Mar-12 (No. 217-01372) 29-Mar-12 (No. 217-01369) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01367) 29-Mar-12 (No. 217-01168) 30-Dec-12 (No. ET3-1507_Dec11) 03-May-12 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-11) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-13 May-13 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-12

Page 34 of 48

Calibration Laboratory of Schweizerischer Kalibrierdienst NISC S Service suisse d'étalonnage Schmid & Partner С Servizio svizzero di taratura Engineering AG S **Swiss Calibration Service** Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: tissue simulating liquid TSL sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 Additional Documentation: d) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. SAR measured: SAR measured at the stated antenna input power. SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D450V3-1079_Feb13 Page 2 of 8

Measurement Conditions

ASY system configuration, as far as not DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	a top and some
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.6 ± 6 %	0.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	and the second second
SAR measured	398 mW input power	1.81 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.63 mW /g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition 398 mW input power	1.21 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.91 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.45 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	2.97 mW / g ± 17.6 % (k=2)

Certificate No: D450V3-1079_Feb13

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	59.8 Ω - 0.5 jΩ	
Return Loss	- 21.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.4 Ω - 5.9 jΩ	
Return Loss	- 21.7 dB	- 77

General Antenna Parameters and Design

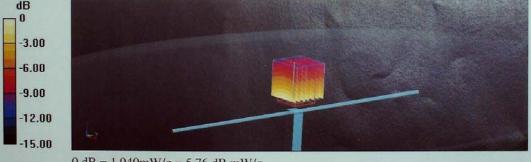
Electrical Delay (one direction)	1.350 ns

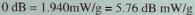
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

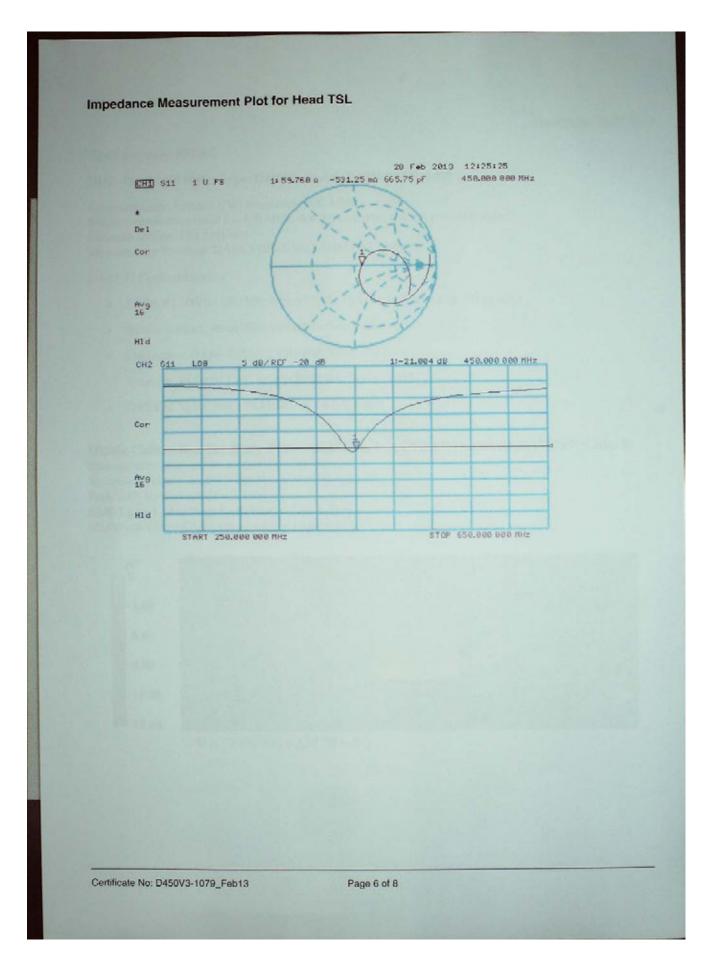

Manufactured by	SPEAG
Manufactured on	March 03, 2011


Certificate No: D450V3-1079_Feb13

Page 4 of 8

Page 37 of 48

DASY5 Validation Report for Head TSL Date/Time: 28.02.2013 Test Laboratory: SPEAG DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1079 Communication System: CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.85 \text{ mho/m}$; $\varepsilon_r = 43.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY52 Configuration: • Probe: ET3DV6 - SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 30.12.2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 03.05.2012 Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) Dipole Calibration for Head Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.699 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.7560 SAR(1 g) = 1.81 mW/g; SAR(10 g) = 1.21 mW/gMaximum value of SAR (measured) = 1.936 mW/g dB



Certificate No: D450V3-1079_Feb13

Page 5 of 8

Page 38 of 48

Page 39 of 48

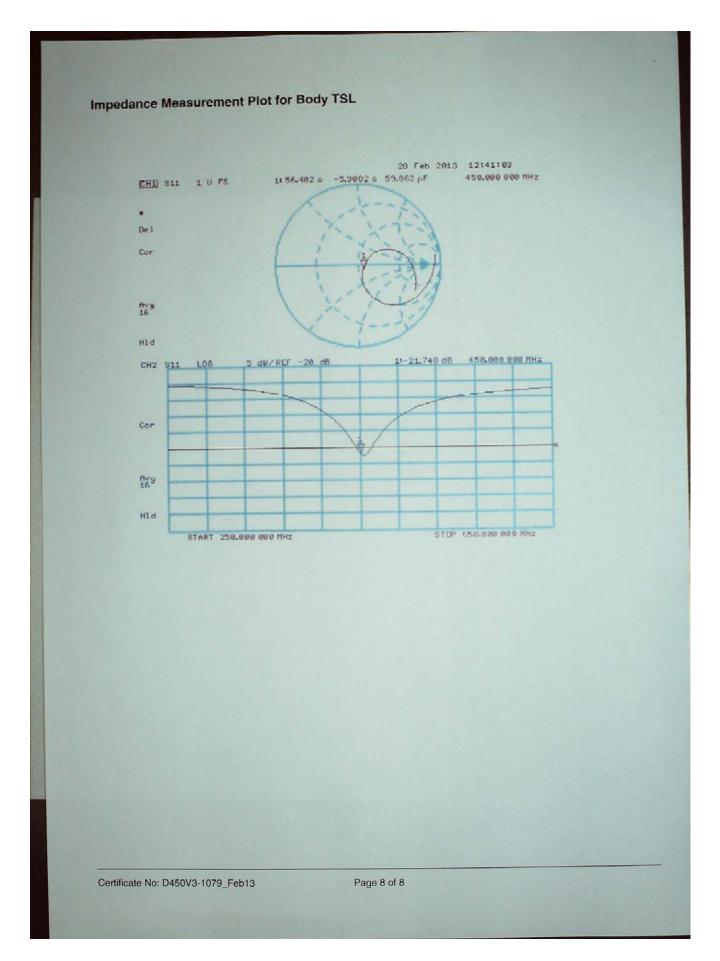
DASY5 Validation Report for Body TSL Date/Time: 28.02.2013 Test Laboratory: SPEAG DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1079 Communication System: CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; σ = 0.91 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY52 Configuration: Probe: ET3DV6 - SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 30.12.2012 Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 03.05.2012 Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) Dipole Calibration for Body Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.491 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.7360 SAR(1 g) = 1.74 mW/g; SAR(10 g) = 1.16 mW/g Maximum value of SAR (measured) = 1.861 mW/g dB 0 -3.00

 0

 -3.00

 -6.00

 -9.00


 -12.00

0 dB = 1.860mW/g = 5.39 dB mW/g

Certificate No: D450V3-1079_Feb13

Page 7 of 8

Page 40 of 48

6.3. DAE4 Calibration Ceriticate

fultilateral Agreement for the re		to the EA	tion No.: SCS 108
lient CIQ SZ (Auden)	Certificate	• No: DAE4-1315_Feb13
	DAE4 - SD 000 D		
Calibration procedure(s)	QA CAL-06.v24 Calibration procee	lure for the data acquisition e	electronics (DAE)
Calibration date:	February 27, 2013	3	
The measurements and the unce	ertainties with confidence pro	nal standards, which realize the physica bability are given on the following page facility: environment temperature (22 ±	s and are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pro cted in the closed laboratory TE critical for calibration)	obability are given on the following page facility: environment temperature (22 ±	s and are part of the certificate. 3)°C and humidity < 70%.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence pro cted in the closed laboratory TE critical for calibration)	bability are given on the following page facility: environment temperature (22 ± Cal Date (Certificate No.)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence pro cted in the closed laboratory TE critical for calibration)	obability are given on the following page facility: environment temperature (22 ±	s and are part of the certificate. 3)°C and humidity < 70%.
The measurements and the unce	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following page facility: environment temperature (22 ± Cal Date (Certificate No.)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID #	bability are given on the following page facility: environment temperature (22 ± <u>Cal Date (Certificate No.)</u> 28-Sep-12 (No:11450) Check Date (in house)	s and are part of the certificate. :3)°C and humidity < 70%. Scheduled Calibration Sep-13 Scheduled Check In house check: Jan-13 Signature
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Calibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	bability are given on the following page facility: environment temperature (22 ± <u>Cal Date (Certificate No.)</u> 28-Sep-12 (No:11450) <u>Check Date (in house)</u> 05-Jan-12 (in house check) Function	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Sep-13 Scheduled Check In house check: Jan-13

Certificate No: DAE4-1315_Feb13

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle • mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a . result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of . the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Page 2 of 5

DC Voltage Measurement

A/D - Converter Reso	olution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Au	to Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	x	Y	z
High Range	405.194 ± 0.1% (k=2)	405.031 ± 0.1% (k=2)	405.006 ± 0.1% (k=2)
Low Range	4.00179 ± 0.7% (k=2)	3.99504 ± 0.7% (k=2)	4.00535 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	20.0 ° ± 1 °
---	--------------

Certificate No: DAE4-1315_Feb12

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X - Input	199993.07	-0.46	-0.00
Channel X + Input	19998.21	0.29	0.00
Channel X - Input	-19997.04	5.94	-0.03
Channel Y + Input	199992.78	-1.05	-0.00
Channel Y + Input	19995.99	-1.88	-0.01
Channel Y - Input	-20001.41	1.50	-0.01
Channel Z + Input	199996.23	3.02	0.00
Channel Z + Input	19996.75	-0.72	-0.00
Channel Z - Input	-20003.50	-0.24	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.32	-1.73	-0.09
Channel X + Input	200.22	-1.03	-0.51
Channel X - Input	-198.55	0.32	-0.16
Channel Y + Input	1997.53	-3.28	-0.16
Channel Y + Input	199.64	-1.21	-0.60
Channel Y - Input	-199.77	-0.78	0.39
Channel Z + Input	1997.90	-2.04	-0.10
Channel Z + Input	199.23	-1.21	-0.61
Channel Z - Input	-200.63	-1.12	0.56

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-1.10	-3.09
	- 200	4.35	3.23
Channel Y	200	-22.09	-22.46
	- 200	21.74	22.31
Channel Z	200	-4.46	-4.92
	- 200	3.65	2.86

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	•	-2.62	-3.29
Channel Y	200	6.73		-2.17
Channel Z	200	8.11	5.38	

Certificate No: DAE4-1315_Feb12

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16132	15682
Channel Y	16251	15151
Channel Z	15551	15659

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.32	0.22	2.38	0.46
Channel Y	-1.23	-2.04	-0.58	0.36
Channel Z	-1.89	-3.56	-1.12	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

7. <u>Test Setup Photos</u>

450MHz Liquid of Head

Front towards Phantom

8. EUT Photos

91/1

8/8

91/1

.....End of Report.....

0