

# **FCC Test Report**

Report No.: RF181101E04A

FCC ID: YSI-NMR2

Test Model: SensOn3x

Received Date: Mar. 12, 2020

**Test Date:** Mar. 25 to May 12, 2020

Issued Date: May 12, 2020

Applicant: Delta Mobile Systems

Address: 645 Tollgate Road, Suite 300 Elgin IL 60123 United States Of America

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

FCC Registration / Designation Number:

723255 / TW2022





This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF181101E04A Page No. 1 / 41 Report Format Version: 6.1.1 Reference No.: 200312E05



## **Table of Contents**

| R | Release Control Record                               |                                                                                                                                                                                                               |                             |  |  |  |  |
|---|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
| 1 | (                                                    | Certificate of Conformity                                                                                                                                                                                     | 4                           |  |  |  |  |
| 2 | ;                                                    | Summary of Test Results                                                                                                                                                                                       | 5                           |  |  |  |  |
|   | 2.1<br>2.2                                           | Measurement Uncertainty                                                                                                                                                                                       |                             |  |  |  |  |
| 3 | (                                                    | General Information                                                                                                                                                                                           | 6                           |  |  |  |  |
|   | 3.1<br>3.2<br>3.2.1<br>3.3<br>3.3.1<br>3.4           | Description of Support Units  Configuration of System under Test  General Description of Applied Standards and references                                                                                     | 6<br>7<br>8<br>8            |  |  |  |  |
| 4 | -                                                    | Test Types and Results                                                                                                                                                                                        | 10                          |  |  |  |  |
|   | 4.1.2<br>4.1.3<br>4.1.4<br>4.1.5                     | Radiated Power and Unwanted Emission Measurement Limits of Radiated Power and Unwanted Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions | 10<br>.11<br>14<br>16<br>16 |  |  |  |  |
|   | 4.1.7<br>4.1.8                                       | Test Results (Mode 1) Test Results (Mode 2)                                                                                                                                                                   | 19<br>26                    |  |  |  |  |
|   | 4.2<br>4.3<br>4.3.1                                  | Modulation characteristics Measurement  Occupied Bandwidth Measurement  Test Setup  Test Instruments                                                                                                          | 34<br>34                    |  |  |  |  |
|   | 4.3.3<br>4.3.4                                       | Test Procedure  Deviation from Test Standard  EUT Operating Conditions                                                                                                                                        | 34<br>34                    |  |  |  |  |
|   | 4.3.7<br>4.4                                         | Test Results (Mode 1) Test Results (Mode 2) Frequency Stability Measurement                                                                                                                                   | 36<br>37                    |  |  |  |  |
|   | 4.4.2<br>4.4.3                                       | Limits of Conducted Emission Measurement  Test Instruments  Test Procedure  Test Setup                                                                                                                        | 37<br>37                    |  |  |  |  |
|   | 4.4.5<br>4.4.6                                       | Test Results (Mode 1) Test Results (Mode 2)                                                                                                                                                                   | 38<br>39                    |  |  |  |  |
| 5 |                                                      | Pictures of Test Arrangements                                                                                                                                                                                 |                             |  |  |  |  |
| Α | Appendix – Information of the Testing Laboratories41 |                                                                                                                                                                                                               |                             |  |  |  |  |



## **Release Control Record**

| Issue No.    | Description       | Date Issued  |
|--------------|-------------------|--------------|
| RF181101E04A | Original release. | May 12, 2020 |

Report No.: RF181101E04A Page No. 3 / 41 Report Format Version: 6.1.1



#### **Certificate of Conformity** 1

Product: SensOn3x

Brand: SensOn3x

Test Model: SensOn3x

Sample Status: ENGINEERING SAMPLE

Applicant: Delta Mobile Systems

Test Date: Mar. 25 to May 12, 2020

Standards: 47 CFR FCC Part 95, Subpart M

ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: Vivian Huang / Specialist , Date: May 12, 2020

Approved by : May 12, 2020 Date:

Clark Lin / Technical Manager



## 2 Summary of Test Results

| 47 CFR FCC Part 95, Subpart M |                                                    |        |                                |  |  |
|-------------------------------|----------------------------------------------------|--------|--------------------------------|--|--|
| FCC<br>Clause                 | Test Item                                          | Result | Remarks                        |  |  |
| 95.3367<br>(a)/(b)            | Equivalent Isotropically Radiated Power (EIRP)Test | PASS   | Meet the requirement of limit. |  |  |
| 95.3379(a)                    | Unwanted Emission Test                             | PASS   | Meet the requirement of limit. |  |  |
| 95.3379(b)                    | Frequency Stability Test                           | PASS   | Meet the requirement of limit. |  |  |
| 2.1049                        | Occupied Bandwidth Measurement                     | PASS   | Meet the requirement of limit. |  |  |
| 2.1047                        | Modulation characteristics                         | PASS   | Meet the requirement           |  |  |

## 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                    | Frequency     | Expanded Uncertainty (k=2) (±) |
|--------------------------------|---------------|--------------------------------|
| Radiated Emissions up to 1 GHz | 30MHz ~ 1GHz  | 4.8 dB                         |
|                                | 1GHz ~ 6GHz   | 5.0 dB                         |
| Radiated Emissions above 1 GHz | 6GHz ~ 18GHz  | 4.9 dB                         |
|                                | 18GHz ~ 40GHz | 5.2 dB                         |

## 2.2 Modification Record

There were no modifications required for compliance.



### 3 General Information

## 3.1 General Description of EUT

| Product             | SensOn3x                     |
|---------------------|------------------------------|
| Brand               | SensOn3x                     |
| Test Model          | SensOn3x                     |
| Status of EUT       | ENGINEERING SAMPLE           |
| Power Supply Rating | 12Vdc                        |
| Modulation Type     | FMCW                         |
| Operating Frequency | 76.050 ~ 76.820GHz, 77~81GHz |
| Emission designator | 3G87MF1N                     |
| Antenna Type        | Refer to Note                |
| Antenna Connector   | Refer to Note                |
| Accessory Device    | NA                           |
| Data Cable Supplied | NA                           |

#### Note:

- 1. This report is prepared for FCC class II permissive change. The difference compared with the Report No.: RF181101E04 as the following:
  - ♦ F/W changed, others are the same as original (Original: 76.025 76.975GHz; Updated: 76.050 76.820GHz)
  - ◆ Added operating frequency: 77~81GHz
  - ◆ Updated antenna frequency range as below table list:

| Original            |                    |                |                          |  |  |  |
|---------------------|--------------------|----------------|--------------------------|--|--|--|
| Antenna Type        | Antenna Gain (dBi) | Connector Type | Frequency range<br>(GHz) |  |  |  |
| Printed Patch Array | 10                 | none           | 76 ~ 77                  |  |  |  |
| Newly               |                    |                |                          |  |  |  |
| Antenna Type        | Antenna Gain (dBi) | Connector Type | Frequency range<br>(GHz) |  |  |  |
| Printed Patch Array | 10                 | none           | 76 ~ 81                  |  |  |  |

<sup>2.</sup> The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

## 3.2 Description of Test Modes

Frequency range is 76.050 ~ 76.820GHz, 77~81GHz provided for test.



## 3.2.1 Test Mode Applicability and Tested Channel Detail

| EUT CONFIGURE |              | APPLICA      | DESCRIPTION  |    |             |
|---------------|--------------|--------------|--------------|----|-------------|
| MODE          | RE≥1G        | RE<1G        | FS           | ОВ | DESCRIPTION |
| 1             | $\checkmark$ | $\checkmark$ | $\checkmark$ | √  | 76.453 GHz  |
| 2             | V            | V            | V            | √  | 79 GHz      |

Where

**RE≥1G:** Radiated Emission above 1GHz & Bandedge

RE<1G: Radiated Emission below 1GHz

Measurement

FS: Frequency Stability

**OB:** Occupied Bandwidth measurement

NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane (below 1GHz) & Y-plane (above 1GHz).** 

## **Test Condition:**

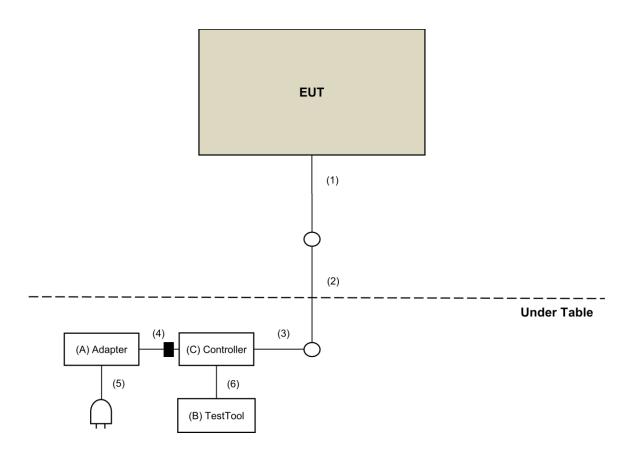
| APPLICABLE TO | ENVIRONMENTAL CONDITIONS           | INPUT POWER | TESTED BY |
|---------------|------------------------------------|-------------|-----------|
| 55.46         | 23deg. C, 66%RH                    | DO 40V      | Tom Yang  |
| RE≥1G         | 24deg. C, 67%RH<br>23deg. C, 62%RH | DC 12V      | Weiwei Lo |
| RE<1G         | 22deg. C, 63%RH                    | DC 12V      | Tom Yang  |
| FS            | 23deg. C, 62%RH                    | DC 12V      | Weiwei Lo |
| ОВ            | 23deg. C, 62%RH                    | DC 12V      | Weiwei Lo |

Report No.: RF181101E04A Page No. 7 / 41 Report Format Version: 6.1.1



## 3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


| ID | Product    | Brand                          | Model No. | Serial No.    | FCC ID | Remarks            |
|----|------------|--------------------------------|-----------|---------------|--------|--------------------|
| A. | Adapter    | MEAN WELL                      | GST60A12  | EB7A516259    | NA     | Supplied by client |
| B. | Test Tool  | NA                             | NA        | NA            | NA     | Supplied by client |
| C. | Controller | Delta Mobile<br>Systems , Inc. | NA        | AC71808220003 | NA     | Supplied by client |

#### Note:

1. All power cords of the above support units are non-shielded (1.8m).

| ID | Descriptions | Qty. | Length (m) | Shielding (Yes/No) | Cores (Qty.) | Remarks            |
|----|--------------|------|------------|--------------------|--------------|--------------------|
| 1. | Signal Cable | 1    | 0.65       | No                 | 0            | Supplied by client |
| 2. | Signal Cable | 1    | 4          | No                 | 0            | Supplied by client |
| 3. | Signal Cable | 1    | 0.12       | No                 | 0            | Supplied by client |
| 4. | DC Cable     | 1    | 1.1        | No                 | 1            | Supplied by client |
| 5. | AC Cable     | 1    | 1.5        | No                 | 0            | Supplied by client |
| 6. | Signal Cable | 1    | 0.2        | No                 | 0            | Supplied by client |

## 3.3.1 Configuration of System under Test



Report No.: RF181101E04A Page No. 8 / 41 Report Format Version: 6.1.1



Report Format Version: 6.1.1

## 3.4 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 95, Subpart M

ANSI 63.10-2013

All test items have been performed and recorded as per the above standards.

**References Test Guidance:** 

### KDB 653005 D01 76-81 GHz Radars v01r01

All test items have been performed as a reference to the above KDB test guidance.

Report No.: RF181101E04A Page No. 9 / 41



### 4 Test Types and Results

#### 4.1 Radiated Power and Unwanted Emission Measurement

4.1.1 Limits of Radiated Power and Unwanted Emission Measurement

According to 95.3367 the field strength of emissions from intentional radiators operated under these

frequencies bands shall not exceed the following:

| Fundamental Frequency<br>(GHz) | Equivalent Isotropically Radiated Power (EIRP) |         |  |
|--------------------------------|------------------------------------------------|---------|--|
| (-11-)                         | Peak                                           | Average |  |
| 76 ~ 81                        | 55 dBm/MHz                                     | 50 dBm  |  |

According to 95.3379 the power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:

(1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

| Frequencies<br>(MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|----------------------|-----------------------------------|-------------------------------|
| 0.009-0.490          | 2400/F(kHz)                       | 300                           |
| 0.490-1.705          | 24000/F(kHz)                      | 30                            |
| 1.705-30.0           | 30                                | 30                            |
| 30-88                | 100                               | 3                             |
| 88-216               | 150                               | 3                             |
| 216-960              | 200                               | 3                             |
| Above 960            | 500                               | 3                             |

#### NOTE:

- 1. The tighter limit applies at the band edges.
- 2. The limits are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- 3. The emissions limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9.0-90.0 kHz, 110.0-490.0 kHz, and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.
- (2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:
- (i) For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 600 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.
- (ii) For radiated emissions above 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 1000 pW/cm2 at a distance of 3 meters from the exterior surface of the radiating structure.
- (3) For field disturbance sensors and radar systems operating in the 76-81 GHz band, the spectrum shall be investigated up to 231.0 GHz.

Report No.: RF181101E04A Page No. 10 / 41 Report Format Version: 6.1.1



### 4.1.2 Test Instruments

## Below 40GHz test:

| DESCRIPTION &                                 | MODEL NO.            | SERIAL NO.  | CALIBRATED    | CALIBRATED    |
|-----------------------------------------------|----------------------|-------------|---------------|---------------|
| MANUFACTURER                                  | WODEL NO.            | SERIAL NO.  | DATE          | UNTIL         |
| Test Receiver<br>ESR7 R&S                     | ESR7                 | 102026      | Apr. 24, 2019 | Apr. 23, 2020 |
| Spectrum Analyzer<br>Keysight                 | N9030B               | MY57141948  | May 25, 2019  | May 24, 2020  |
| Pre-Amplifier<br>EMCI                         | EMC330N              | 980538      | Apr. 30, 2019 | Apr. 29, 2020 |
| Trilog Broadband Antenna SCHWARZBECK          | VULB9168             | 9168-0842   | Nov. 08, 2019 | Nov. 07, 2020 |
| RF Cable                                      | 8D                   | 966-5-1     | May 03, 2019  | May 02, 2020  |
| RF Cable                                      | 8D                   | 966-5-2     | May 03, 2019  | May 02, 2020  |
| RF Cable                                      | 8D                   | 966-5-3     | May 03, 2019  | May 02, 2020  |
| Fixed attenuator Mini-Circuits                | UNAT-5+              | PAD-ATT5-02 | Jan. 14, 2020 | Jan. 13, 2021 |
| Horn_Antenna<br>SCHWARZBECK                   | BBHA 9120D           | 9120D-1819  | Nov. 24, 2019 | Nov. 23, 2020 |
| Pre-Amplifier<br>EMCI                         | EMC12630SE           | 980509      | May 03, 2019  | May 02, 2020  |
| RF Cable<br>EMCI                              | EMC104-SM-SM-1500    | 180503      | May 03, 2019  | May 02, 2020  |
| RF Cable<br>EMCI                              | EMC104-SM-SM-2000    | 180501      | May 03, 2019  | May 02, 2020  |
| RF Cable<br>EMCI                              | EMC104-SM-SM-6000    | 180505      | May 03, 2019  | May 02, 2020  |
| Pre-Amplifier<br>EMCI                         | EMC184045SE          | 980387      | Jan. 15, 2020 | Jan. 14, 2021 |
| Horn_Antenna<br>SCHWARZBECK                   | BBHA 9170            | BBHA9170519 | Nov. 24, 2019 | Nov. 23, 2020 |
| RF Cable                                      | EMC102-KM-KM-1200    | 160924      | Jan. 15, 2020 | Jan. 14, 2021 |
| RF Cable                                      | EMC-KM-KM-4000       | 200214      | Mar. 11, 2020 | Mar. 10, 2021 |
| Software                                      | ADT_Radiated_V8.7.08 | NA          | NA            | NA            |
| Boresight Antenna Tower & Turn Table Max-Full | MF-7802BS            | MF780208530 | NA            | NA            |

### Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 5.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: Mar. 25 to 26, 2020



## Above 40GHz test:

| Above 40GHz test:                                                                               |                       |                |                    |                  |
|-------------------------------------------------------------------------------------------------|-----------------------|----------------|--------------------|------------------|
| DESCRIPTION & MANUFACTURER                                                                      | MODEL NO.             | SERIAL NO.     | CALIBRATED<br>DATE | CALIBRATED UNTIL |
| Spectrum Analyzer<br>Keysight                                                                   | N9030A                | MY55330160     | Feb. 07, 2020      | Feb. 06, 2021    |
| *Horn Antenna (33~55GHz)<br>OML                                                                 | M22RH                 | 110215-1       | Oct. 17, 2017      | Oct. 16, 2020    |
| *Horn Antenna (50~75GHz) OML                                                                    | M15HWD                | 110215-1       | Oct. 17, 2017      | Oct. 16, 2020    |
| *Horn Antenna (75~110GHz) OML                                                                   | M10RH                 | 110215-1       | Oct. 17, 2017      | Oct. 16, 2020    |
| *Horn Antenna(110~170GHz) OML                                                                   | M06HWD                | 110215-1       | Oct. 17, 2017      | Oct. 16, 2020    |
| *Horn Antenna (140~220GHz) OML                                                                  | M05RH                 | 110215-1       | Oct. 17, 2017      | Oct. 16, 2020    |
| *Horn Antenna (220~325GHz)<br>OML                                                               | M03RH                 | M03RH_140508-1 | Oct. 17, 2017      | Oct. 16, 2020    |
| Conical Horn Antenna<br>(75~110GHz)<br>Keysight                                                 | WR10CH-Conical        | WR10CH_001     | CoC                | CoC              |
| N9029AV15-DC9 - 50-75 GHz<br>VDI Standard Downconverter<br>with 9VDC supply<br>Keysight         | SA Extension<br>WR15  | SAX 381        | CoC                | CoC              |
| N9029AV10-DC9 - 75-110 GHz<br>VDI Standard Downconverter<br>with 9VDC supply<br>Keysight        | SA Extension<br>WR10  | SAX 378        | CoC                | CoC              |
| N9029AV06-DC9 - 110-170 GHz VDI Standard Downconverter with 9VDC supply Keysight                | SA Extension<br>WR6.5 | SAX 377        | CoC                | CoC              |
| N9029AV05-DC9 - 140-220<br>GHz VDI Standard<br>Downconverter with 9VDC<br>supply<br>Keysight    | SA Extension<br>WR5.1 | SAX 375        | CoC                | CoC              |
| N9029AV03-DC9 - 220-330 GHz VDI Standard Downconverter with 9VDC supply Keysight                | SA Extension          | SAX 376        | CoC                | CoC              |
| *Millimeter-Wave Signal<br>Generator Frequency<br>Extension Module (50~75 GHz)<br>Keysight      | E8257DV15             | SGX 050        | CoC                | CoC              |
| *Millimeter-Wave Signal<br>Generator Frequency<br>Extension Module (75~110<br>GHz)<br>Keysight  | E8257DV10             | SGX 069        | CoC                | CoC              |
| *Millimeter-Wave Signal<br>Generator Frequency<br>Extension Module (110~170<br>GHz)<br>Keysight | E8257DV06-DC9         | SGX 223        | CoC                | CoC              |
| PSG analog signal generator<br>Keysight                                                         | E8257D                | MY53401987     | June 21, 2019      | June 20, 2020    |
| Antenna Tower & Turn Table<br>Max-Full                                                          | MF-7802               | MF780208406    | NA                 | NA               |
| Boresight Antenna Fixture                                                                       | FBA-01                | FBA-SIP01      | NA                 | NA               |



### Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. \*The calibration interval of the above test instruments is 36 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Certificate of Conformance (CoC) which is issued by manufacturer states that the product meets the specification.
- 4 The test was performed in 966 Chamber No. 3
- 5 Tested Date: Apr. 07 to 23, 2020

Report No.: RF181101E04A Page No. 13 / 41 Report Format Version: 6.1.1



#### 4.1.3 Test Procedures

#### For Radiated emission: Below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

#### For Radiated emission: 30 MHz ~ 40GHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection (PK) at frequency from 1GHz to 40GHz.
- 3. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Average detection (AV) at frequency from 1GHz to 40GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RF181101E04A Page No. 14 / 41 Report Format Version: 6.1.1



#### For Radiated emission: Above 40GHz

External mixers are utilized.

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The distance at which limits are typically specified is 3 meter; however, closer measurement distances may be utilized.
- c. Begin handheld measurements with the test antenna (horn) at a distance of 1 meter from the EUT, in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 meter from the FLIT
- d. Repeat (b) with the horn in a vertically polarized position.
- e. If the emission cannot be detected at 1 meter, reduce the RBW in order to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.
- f. Note the maximum level indicated on the Spectrum Analyzer.
- g. Based on the distance at which the measurement was made and the calculated distance to the edge of the far field, determine the appropriate distance attenuation factor. Apply this factor to the calculated field strength in order to determine the equivalent field strength at the distance at which the regulatory limit is specified. Compare to the appropriate limits
- h. Repeat (a) (f) for every emission that must be measured, up through the required frequency range of investigation

#### NOTE:

1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Average detection at frequency above 40GHz.

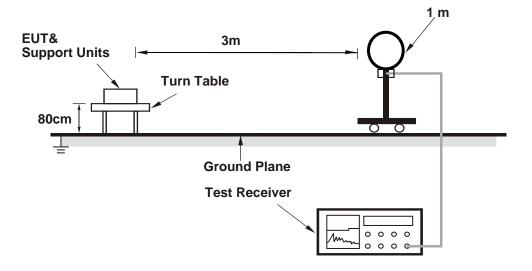
### For Fundamental Frequency

- a. Substitution method is used for EIRP measurement. In the semi-anechoic chamber, EUT placed on the 1.5m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value". Record the power level of S.G.
- c. EIRP = Output power level of S.G + Antenna gain

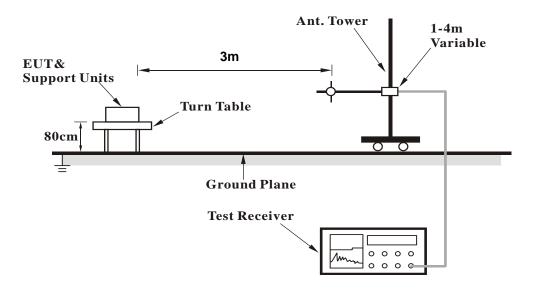
#### NOTE:

1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak and Average detection for fundamental emission.

Report No.: RF181101E04A Page No. 15 / 41 Report Format Version: 6.1.1

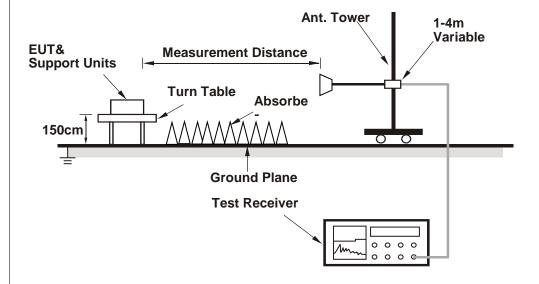



### 4.1.4 Deviation from Test Standard

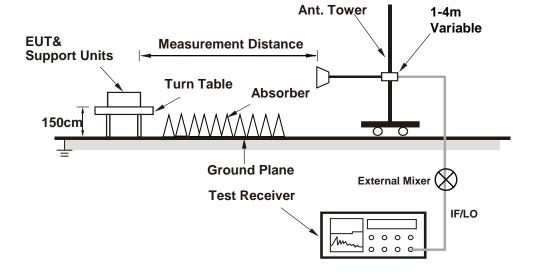

No deviation.

## 4.1.5 Test Setup

### For Radiated emission below 30MHz

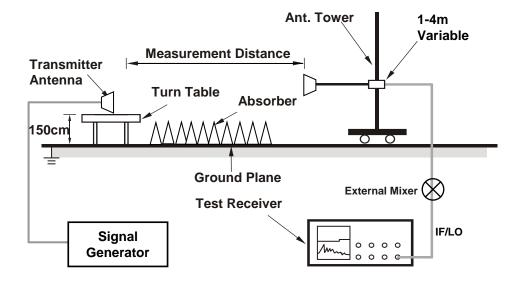



### For Radiated emission 30MHz to 1GHz






## For Radiated emission 1GHz to 40GHz




## Frequency Range above 40GHz





## **EIRP Test Setup for Fundamental Frequency**



For the actual test configuration, please refer to the attached file (Test Setup Photo).

## 4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.



### 4.1.7 Test Results (Mode 1)

#### **Above 1GHz Data**

| FREQUENCY RANGE | 1GHz ~ 18GHz | DETECTOR FUNCTION | Peak (PK)<br>Average (AV) |
|-----------------|--------------|-------------------|---------------------------|
|-----------------|--------------|-------------------|---------------------------|

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                             |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |  |  |
| 1   | #1763.30                                            | 39.4 PK                       | 74.0              | -34.6       | 1.00 H                | 360                        | 45.2                | -5.8                        |  |  |
| 2   | #1763.30                                            | 30.1 AV                       | 54.0              | -23.9       | 1.00 H                | 360                        | 35.9                | -5.8                        |  |  |
| 3   | 8145.95                                             | 45.0 PK                       | 74.0              | -29.0       | 2.00 H                | 26                         | 37.2                | 7.8                         |  |  |
| 4   | 8145.95                                             | 34.6 AV                       | 54.0              | -19.4       | 2.00 H                | 26                         | 26.8                | 7.8                         |  |  |
| 5   | #14400.25                                           | 54.2 PK                       | 74.0              | -19.8       | 2.00 H                | 360                        | 39.8                | 14.4                        |  |  |
| 6   | #14400.25                                           | 40.7 AV                       | 54.0              | -13.3       | 2.00 H                | 360                        | 26.3                | 14.4                        |  |  |

## ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

| NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |
|-----|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|
| 1   | 4812.25     | 40.4 PK                       | 74.0              | -33.6       | 2.00 V                | 190                        | 39.4                | 1.0                         |
| 2   | 4812.25     | 30.1 AV                       | 54.0              | -23.9       | 2.00 V                | 190                        | 29.1                | 1.0                         |
| 3   | 9482.15     | 46.6 PK                       | 74.0              | -27.4       | 1.00 V                | 288                        | 36.4                | 10.2                        |
| 4   | 9482.15     | 37.8 AV                       | 54.0              | -16.2       | 1.00 V                | 288                        | 27.6                | 10.2                        |
| 5   | #14400.22   | 54.9 PK                       | 74.0              | -19.1       | 2.00 V                | 360                        | 40.5                | 14.4                        |
| 6   | #14400.22   | 40.5 AV                       | 54.0              | -13.5       | 2.00 V                | 360                        | 26.1                | 14.4                        |

### **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.

Report No.: RF181101E04A Page No. 19 / 41 Report Format Version: 6.1.1



 FREQUENCY RANGE
 18GHz ~ 40GHz
 DETECTOR FUNCTION
 Peak (PK) Average (AV)

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                             |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |  |  |
| 1   | 19550.00                                            | 34.6 PK                       | 74.0              | -39.4       | 3.20 H                | 195                        | 50.4                | -15.8                       |  |  |
| 2   | 19550.00                                            | 21.6 AV                       | 54.0              | -32.4       | 3.20 H                | 195                        | 37.4                | -15.8                       |  |  |
| 3   | #24850.00                                           | 34.9 PK                       | 74.0              | -39.1       | 1.62 H                | 183                        | 46.1                | -11.2                       |  |  |
| 4   | #24850.00                                           | 22.9 AV                       | 54.0              | -31.1       | 1.62 H                | 183                        | 34.1                | -11.2                       |  |  |
| 5   | #29560.00                                           | 48.3 PK                       | 74.0              | -25.7       | 1.76 H                | 283                        | 58.7                | -10.4                       |  |  |
| 6   | #29560.00                                           | 36.5 AV                       | 54.0              | -17.5       | 1.76 H                | 283                        | 46.9                | -10.4                       |  |  |
| -0  | #23300.00                                           | 30.3 AV                       | 34.0              | -17.5       | 1.70 П                | 203                        | 40.9                | -10.4                       |  |  |

## ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

| NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |
|-----|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|
| 1   | 20120.00    | 41.9 PK                       | 74.0              | -32.1       | 1.53 V                | 321                        | 56.9                | -15.0                       |
| 2   | 20120.00    | 27.7 AV                       | 54.0              | -26.3       | 1.53 V                | 321                        | 42.7                | -15.0                       |
| 3   | #21550.00   | 36.8 PK                       | 74.0              | -37.2       | 1.35 V                | 263                        | 50.1                | -13.3                       |
| 4   | #21550.00   | 24.3 AV                       | 54.0              | -29.7       | 1.35 V                | 263                        | 37.6                | -13.3                       |
| 5   | #26280.00   | 44.8 PK                       | 74.0              | -29.2       | 1.46 V                | 168                        | 55.9                | -11.1                       |
| 6   | #26280.00   | 32.9 AV                       | 54.0              | -21.1       | 1.46 V                | 168                        | 44.0                | -11.1                       |

### **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.

Report No.: RF181101E04A Page No. 20 / 41 Report Format Version: 6.1.1



| FREQUENCY RANGE 40GHz ~ 100GHz | DETECTOR FUNCTION | Peak (PK) |
|--------------------------------|-------------------|-----------|
|--------------------------------|-------------------|-----------|

|     | ANTENNA POLARITY: HORIZONTAL |                          |                                      |                         |                         |           |  |  |  |
|-----|------------------------------|--------------------------|--------------------------------------|-------------------------|-------------------------|-----------|--|--|--|
| NO. | Frequency<br>(GHz)           | SG<br>Value<br>(dBm/MHz) | Transmitter<br>Antenna Gain<br>(dBi) | EIRP Level<br>(dBm/MHz) | EIRP Limit<br>(dBm/MHz) | PASS/FAIL |  |  |  |
| 1   | 76.453                       | -7.889                   | 23.50                                | 15.611 PK               | 55                      | PASS      |  |  |  |
|     |                              | ANTENN                   | A POLARITY: V                        | ERTICAL                 |                         |           |  |  |  |
| NO. | Frequency<br>(GHz)           | SG<br>Value<br>(dBm/MHz) | Transmitter<br>Antenna Gain<br>(dBi) | EIRP Level<br>(dBm/MHz) | EIRP Limit<br>(dBm/MHz) | PASS/FAIL |  |  |  |
| 1   | 76.453                       | -21.207                  | 23.50                                | 2.293 PK                | 55                      | PASS      |  |  |  |

1. The measured power level is converted to EIRP using the equation:

EIRP = SG Value + Transmitter Antenna Gain

where:

D is the measurement distance

 $\lambda$  is the wavelength

\*Measurements made at 1.8 meter distance.

2. The far-field boundary is given in ANSI 63.10 as:

R far field =  $(2 * L^2) / \lambda$ 

L is the Largest Antenna Dimension of either the EUT antenna or measurement antenna, including the reflector

 $\lambda$  is the wavelength

| FREQUENCY (GHz) | L (m) | Lambda (m) | R (Far Field)<br>(m) |
|-----------------|-------|------------|----------------------|
| 76.453          | 0.058 | 0.00392    | 1.716                |

Report No.: RF181101E04A Page No. 21 / 41 Report Format Version: 6.1.1



| FREQUENCY RANGE 40GH | GHz ~ 100GHz | DETECTOR FUNCTION | Average (AV) |
|----------------------|--------------|-------------------|--------------|
|----------------------|--------------|-------------------|--------------|

|     | ANTENNA POLARITY: HORIZONTAL |                          |         |            |            |                              |                     |           |  |
|-----|------------------------------|--------------------------|---------|------------|------------|------------------------------|---------------------|-----------|--|
| NO. | Frequency<br>(GHz)           | SG<br>Value<br>(dBm/MHz) | Antenna |            | Randwidth. | Total EIRP<br>Power<br>(dBm) | EIRP Limit<br>(dBm) | PASS/FAIL |  |
| 2   | 76.453                       | -28.819                  | 23.5    | -5.319 AV  | 761.66     | 23.5                         | 50                  | PASS      |  |
|     |                              |                          |         | ANTENNA F  | POLARITY:  | VERTICAL                     |                     |           |  |
| NO. | Frequency<br>(GHz)           | SG<br>Value<br>(dBm/MHz) | Antenna |            | Randwidth  | Total EIRP<br>Power<br>(dBm) | EIRP Limit<br>(dBm) | PASS/FAIL |  |
| 2   | 76.453                       | -42.240                  | 23.5    | -18.740 AV | 761.66     | 10.08                        | 50                  | PASS      |  |

1.The measured power level is converted to EIRP using the equation:

EIRP = SG Value + Transmitter Antenna Gain

where:

D is the measurement distance

 $\lambda$  is the wavelength

- \*Measurements made at 1.8 meter distance.
- 2. Total EIRP power (dBm) = EIRP Level (dBm/MHz) + 10\*log(Occupied Bandeidth)(MHz)
- 3. The far-field boundary is given in ANSI 63.10 as:

R far field =  $(2 * L^2) / \lambda$ 

L is the Largest Antenna Dimension of either the EUT antenna or measurement antenna, including the reflector

 $\lambda$  is the wavelength

| FREQUENCY (GHz) | L (m) | Lambda (m) | R (Far Field)<br>(m) |
|-----------------|-------|------------|----------------------|
| 76.453          | 0.058 | 0.00392    | 1.716                |

Report No.: RF181101E04A Page No. 22 / 41 Report Format Version: 6.1.1



| FREQUENCY RANGE | 100GHz ~ 231GHz | DETECTOR FUNCTION | Average (AV) |
|-----------------|-----------------|-------------------|--------------|
|-----------------|-----------------|-------------------|--------------|

|     | ANTENNA POLARITY: HORIZONTAL |                           |                                   |                         |                              |                                    |           |  |  |  |
|-----|------------------------------|---------------------------|-----------------------------------|-------------------------|------------------------------|------------------------------------|-----------|--|--|--|
| NO. | Frequency<br>(GHz)           | Raw<br>Value<br>(dBm/MHz) | Receiver<br>Antenna<br>Gain (dBi) | EIRP Level<br>(dBm/MHz) | Power<br>Density<br>(pW/cm²) | Power<br>Density Limit<br>(pW/cm²) | PASS/FAIL |  |  |  |
| 1   | 152.52                       | -90.310                   | 22.7                              | -31.796                 | 0.585 AV                     | 600                                | PASS      |  |  |  |
| 2   | 230.77                       | -92.360                   | 22.9                              | -30.449                 | 0.797 AV                     | 1000                               | PASS      |  |  |  |
|     |                              |                           | ANTENNA P                         | OLARITY: VE             | RTICAL                       |                                    |           |  |  |  |
| NO. | Frequency<br>(GHz)           | Raw<br>Value<br>(dBm/MHz) | Receiver<br>Antenna<br>Gain (dBi) | EIRP Level<br>(dBm/MHz) | Power<br>Density<br>(pW/cm²) | Power<br>Density Limit<br>(pW/cm²) | PASS/FAIL |  |  |  |
| 1   | 152.57                       | -91.710                   | 22.7                              | -33.193                 | 0.424 AV                     | 600                                | PASS      |  |  |  |
| 2   | 230.92                       | -93.760                   | 22.9                              | -31.844                 | 0.578 AV                     | 1000                               | PASS      |  |  |  |

1.The measured power level is converted to EIRP using the equation:

EIRP = Raw Value - Receiver Antenna Gain +  $20*log(4*3.1416*D/\lambda)$ 

#### where:

D is the measurement distance

λ is the wavelength

\*Measurements made at 1.8 meter distance.

2. The far-field boundary is given in ANSI 63.10 as:

R far field =  $(2 * L^2) / \lambda$ 

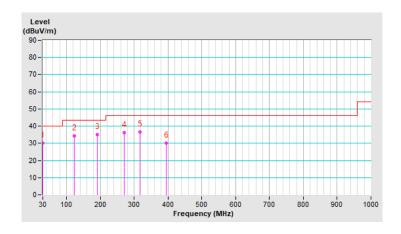
L is the Largest Antenna Dimension of measurement antenna, including the reflector

 $\lambda$  is the wavelength

| FREQUENCY (GHz) | <b>L (m)</b> | Lambda (m) | R (Far Field)<br>(m) |
|-----------------|--------------|------------|----------------------|
| 76.453          | 0.03         | 0.00392    | 0.459                |

Report No.: RF181101E04A Page No. 23 / 41 Report Format Version: 6.1.1



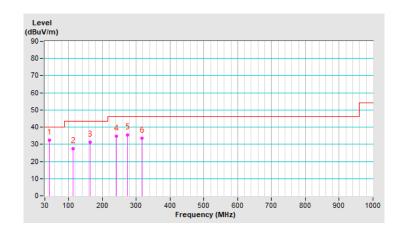

### **Below 1GHz Data**

| FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR FUNCTION | Quasi-Peak (QP) |
|-----------------|-------------|-------------------|-----------------|
|-----------------|-------------|-------------------|-----------------|

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                             |  |  |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|--|--|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |  |  |  |  |
| 1   | 30.48                                               | 30.2 QP                       | 40.0              | -9.8        | 1.00 H                | 307                        | 44.4                | -14.2                       |  |  |  |  |
| 2   | 122.93                                              | 34.1 QP                       | 43.5              | -9.4        | 2.00 H                | 97                         | 48.7                | -14.6                       |  |  |  |  |
| 3   | 190.66                                              | 35.2 QP                       | 43.5              | -8.3        | 2.00 H                | 269                        | 50.9                | -15.7                       |  |  |  |  |
| 4   | 269.83                                              | 36.2 QP                       | 46.0              | -9.8        | 1.00 H                | 135                        | 49.3                | -13.1                       |  |  |  |  |
| 5   | 317.73                                              | 36.6 QP                       | 46.0              | -9.4        | 1.00 H                | 141                        | 48.2                | -11.6                       |  |  |  |  |
| 6   | 393.82                                              | 30.0 QP                       | 46.0              | -16.0       | 1.00 H                | 139                        | 39.8                | -9.8                        |  |  |  |  |

## **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.






| FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR FUNCTION | Quasi-Peak (QP) |
|-----------------|-------------|-------------------|-----------------|
|-----------------|-------------|-------------------|-----------------|

|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |             |                       |                            |                     |                             |  |  |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|--|--|--|
| NO. | FREQ. (MHz)                                       | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |  |  |  |
| 1   | 44.19                                             | 32.3 QP                       | 40.0              | -7.7        | 1.00 V                | 0                          | 45.1                | -12.8                       |  |  |  |
| 2   | 113.52                                            | 27.4 QP                       | 43.5              | -16.1       | 1.00 V                | 211                        | 42.9                | -15.5                       |  |  |  |
| 3   | 164.66                                            | 31.3 QP                       | 43.5              | -12.2       | 1.00 V                | 158                        | 44.2                | -12.9                       |  |  |  |
| 4   | 240.73                                            | 34.8 QP                       | 46.0              | -11.2       | 1.00 V                | 58                         | 49.0                | -14.2                       |  |  |  |
| 5   | 274.12                                            | 35.4 QP                       | 46.0              | -10.6       | 2.00 V                | 196                        | 48.3                | -12.9                       |  |  |  |
| 6   | 317.80                                            | 33.4 QP                       | 46.0              | -12.6       | 2.00 V                | 167                        | 45.0                | -11.6                       |  |  |  |

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





### 4.1.8 Test Results (Mode 2)

#### **Above 1GHz Data**

| FREQUENCY RANGE | 1GHz ~ 18GHz | DETECTOR FUNCTION | Peak (PK)<br>Average (AV) |
|-----------------|--------------|-------------------|---------------------------|
|-----------------|--------------|-------------------|---------------------------|

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                             |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |  |  |
| 1   | 3834.75                                             | 38.3 PK                       | 74.0              | -35.7       | 1.00 H                | 0                          | 39.2                | -0.9                        |  |  |
| 2   | 3834.75                                             | 30.7 AV                       | 54.0              | -23.3       | 1.00 H                | 0                          | 31.6                | -0.9                        |  |  |
| 3   | #7783.00                                            | 44.8 PK                       | 74.0              | -29.2       | 2.00 H                | 360                        | 37.4                | 7.4                         |  |  |
| 4   | #7783.00                                            | 32.4 AV                       | 54.0              | -21.6       | 2.00 H                | 360                        | 25.0                | 7.4                         |  |  |
| 5   | 11455.00                                            | 49.8 PK                       | 74.0              | -24.2       | 1.00 H                | 16                         | 36.9                | 12.9                        |  |  |
| 6   | 11455.00                                            | 36.6 AV                       | 54.0              | -17.4       | 1.00 H                | 16                         | 23.7                | 12.9                        |  |  |
|     |                                                     |                               |                   |             |                       |                            |                     |                             |  |  |

### ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

| NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |
|-----|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|
| 1   | #5564.50    | 40.0 PK                       | 74.0              | -34.0       | 2.00 V                | 10                         | 38.4                | 1.6                         |
| 2   | #5564.50    | 32.6 AV                       | 54.0              | -21.4       | 2.00 V                | 10                         | 31.0                | 1.6                         |
| 3   | 10695.95    | 48.7 PK                       | 74.0              | -25.3       | 2.00 V                | 354                        | 36.1                | 12.6                        |
| 4   | 10695.95    | 37.6 AV                       | 54.0              | -16.4       | 2.00 V                | 354                        | 25.0                | 12.6                        |
| 5   | #14399.98   | 55.2 PK                       | 74.0              | -18.8       | 1.50 V                | 37                         | 40.8                | 14.4                        |
| 6   | #14399.98   | 44.6 AV                       | 54.0              | -9.4        | 1.50 V                | 37                         | 30.2                | 14.4                        |

### **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.

Report No.: RF181101E04A Page No. 26 / 41 Report Format Version: 6.1.1



 FREQUENCY RANGE
 18GHz ~ 40GHz
 DETECTOR FUNCTION
 Peak (PK) Average (AV)

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                             |  |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|--|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |  |  |  |
| 1   | 19450.00                                            | 33.6 PK                       | 74.0              | -40.4       | 3.10 H                | 210                        | 49.4                | -15.8                       |  |  |  |
| 2   | 19450.00                                            | 20.8 AV                       | 54.0              | -33.2       | 3.10 H                | 210                        | 36.6                | -15.8                       |  |  |  |
| 3   | #24650.00                                           | 35.1 PK                       | 74.0              | -38.9       | 1.82 H                | 215                        | 46.5                | -11.4                       |  |  |  |
| 4   | #24650.00                                           | 23.1 AV                       | 54.0              | -30.9       | 1.82 H                | 215                        | 34.5                | -11.4                       |  |  |  |
| 5   | #29150.00                                           | 49.2 PK                       | 74.0              | -24.8       | 1.61 H                | 258                        | 60.3                | -11.1                       |  |  |  |
| 6   | #29150.00                                           | 37.3 AV                       | 54.0              | -16.7       | 1.61 H                | 258                        | 48.4                | -11.1                       |  |  |  |

## ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

| NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |
|-----|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|
| 1   | 20065.00    | 42.3 PK                       | 74.0              | -31.7       | 1.40 V                | 301                        | 57.3                | -15.0                       |
| 2   | 20065.00    | 28.2 AV                       | 54.0              | -25.8       | 1.40 V                | 301                        | 43.2                | -15.0                       |
| 3   | #21825.00   | 37.6 PK                       | 74.0              | -36.4       | 1.45 V                | 218                        | 51.3                | -13.7                       |
| 4   | #21825.00   | 25.6 AV                       | 54.0              | -28.4       | 1.45 V                | 218                        | 39.3                | -13.7                       |
| 5   | #26780.00   | 45.6 PK                       | 74.0              | -28.4       | 1.42 V                | 153                        | 56.2                | -10.6                       |
| 6   | #26780.00   | 33.6 AV                       | 54.0              | -20.4       | 1.42 V                | 153                        | 44.2                | -10.6                       |

### **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.

Report No.: RF181101E04A Page No. 27 / 41 Report Format Version: 6.1.1



| FREQUENCY RANGE 40GHz ~ 100GHz | DETECTOR FUNCTION | Peak (PK) |
|--------------------------------|-------------------|-----------|
|--------------------------------|-------------------|-----------|

|     | ANTENNA POLARITY: HORIZONTAL |                          |                                      |                         |                         |           |  |
|-----|------------------------------|--------------------------|--------------------------------------|-------------------------|-------------------------|-----------|--|
| NO. | Frequency<br>(GHz)           | SG<br>Value<br>(dBm/MHz) | Transmitter<br>Antenna Gain<br>(dBi) | EIRP Level<br>(dBm/MHz) | EIRP Limit<br>(dBm/MHz) | PASS/FAIL |  |
| 1   | 79                           | -6.900                   | 23.80                                | 16.900 PK               | 55                      | PASS      |  |
|     |                              | ANTENN                   | A POLARITY: V                        | ERTICAL                 |                         |           |  |
| NO. | Frequency<br>(GHz)           | SG<br>Value<br>(dBm/MHz) | Transmitter<br>Antenna Gain<br>(dBi) | EIRP Level<br>(dBm/MHz) | EIRP Limit<br>(dBm/MHz) | PASS/FAIL |  |
| 1   | 79                           | -17.147                  | 23.80                                | 6.653 PK                | 55                      | PASS      |  |

1. The measured power level is converted to EIRP using the equation:

EIRP = SG Value + Transmitter Antenna Gain

where:

D is the measurement distance

 $\lambda$  is the wavelength

\*Measurements made at 1.8 meter distance.

2. The far-field boundary is given in ANSI 63.10 as:

R far field =  $(2 * L^2) / \lambda$ 

L is the Largest Antenna Dimension of either the EUT antenna or measurement antenna, including the reflector

 $\lambda$  is the wavelength

| FREQUENCY (GHz) | L (m) | Lambda (m) | R (Far Field)<br>(m) |
|-----------------|-------|------------|----------------------|
| 79              | 0.058 | 0.0038     | 1.771                |

Report No.: RF181101E04A Page No. 28 / 41 Report Format Version: 6.1.1



| FREQUENCY RANGE 40GH | GHz ~ 100GHz | DETECTOR FUNCTION | Average (AV) |
|----------------------|--------------|-------------------|--------------|
|----------------------|--------------|-------------------|--------------|

|     | ANTENNA POLARITY: HORIZONTAL |                          |         |                         |            |                              |                     |           |
|-----|------------------------------|--------------------------|---------|-------------------------|------------|------------------------------|---------------------|-----------|
| NO. | Frequency<br>(GHz)           | SG<br>Value<br>(dBm/MHz) | Antenna | EIRP Level<br>(dBm/MHz) | Randwidth. | Total EIRP<br>Power<br>(dBm) | EIRP Limit<br>(dBm) | PASS/FAIL |
| 2   | 79                           | -28.578                  | 23.8    | -4.778 AV               | 3935.4     | 31.17                        | 50                  | PASS      |
|     |                              |                          |         | ANTENNA F               | POLARITY:  | VERTICAL                     |                     |           |
| NO. | Frequency<br>(GHz)           | SG<br>Value<br>(dBm/MHz) | Antenna |                         | Randwidth  | Total EIRP<br>Power<br>(dBm) |                     | PASS/FAIL |
| 2   | 79                           | -39.102                  | 23.8    | -15.302 AV              | 3935.4     | 20.65                        | 50                  | PASS      |

1.The measured power level is converted to EIRP using the equation:

EIRP = SG Value + Transmitter Antenna Gain

where:

D is the measurement distance

 $\lambda$  is the wavelength

- \*Measurements made at 1.8 meter distance.
- 2. Total EIRP power (dBm) = EIRP Level (dBm/MHz) + 10\*log(Occupied Bandeidth)(MHz)
- 3. The far-field boundary is given in ANSI 63.10 as:

R far field =  $(2 * L^2) / \lambda$ 

L is the Largest Antenna Dimension of either the EUT antenna or measurement antenna, including the reflector

 $\lambda$  is the wavelength

| FREQUENCY (GHz) | L (m) | Lambda (m) | R (Far Field)<br>(m) |
|-----------------|-------|------------|----------------------|
| 79              | 0.058 | 0.0038     | 1.771                |

Report No.: RF181101E04A Page No. 29 / 41 Report Format Version: 6.1.1



FREQUENCY RANGE 100GHz ~ 231GHz DETECTOR FUNCTION Average (AV)

|     | ANTENNA POLARITY: HORIZONTAL |                           |                                                   |             |                              |                                    |           |  |
|-----|------------------------------|---------------------------|---------------------------------------------------|-------------|------------------------------|------------------------------------|-----------|--|
| NO. | Frequency<br>(GHz)           | Raw<br>Value<br>(dBm/MHz) | Receiver Antenna Gain (dBi)  EIRP Level (dBm/MHz) |             | Power<br>Density<br>(pW/cm²) | Power<br>Density Limit<br>(pW/cm²) | PASS/FAIL |  |
| 1   | 152.34                       | -90.410                   | 22.7                                              | -31.906     | 0.57 AV                      | 600                                | PASS      |  |
| 2   | 230.39                       | -92.700                   | 22.9                                              | -30.803     | 0.735 AV                     | 1000                               | PASS      |  |
|     |                              |                           | ANTENNA P                                         | OLARITY: VE | RTICAL                       |                                    |           |  |
| NO. | Frequency<br>(GHz)           | Raw<br>Value<br>(dBm/MHz) | Receiver Antenna Gain (dBi)  EIRP Level (dBm/MHz) |             | Power<br>Density<br>(pW/cm²) | Power<br>Density Limit<br>(pW/cm²) | PASS/FAIL |  |
| 1   | 152.16                       | -91.880                   | 22.7                                              | -33.387     | 0.405 AV                     | 600                                | PASS      |  |
| 2   | 230.59                       | -94.060                   | 22.9                                              | -32.156     | 0.538 AV                     | 1000                               | PASS      |  |

### **REMARKS:**

1. The measured power level is converted to EIRP using the equation:

EIRP = Raw Value - Receiver Antenna Gain + 20\*log(4\*3.1416\*D/λ)

#### where:

D is the measurement distance

λ is the wavelength

\*Measurements made at 1.8 meter distance.

2. The far-field boundary is given in ANSI 63.10 as:

R far field =  $(2 * L^2) / \lambda$ 

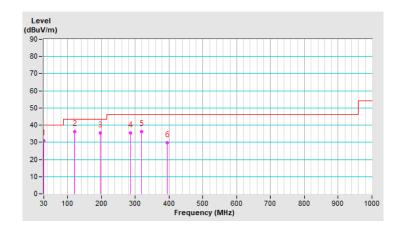
L is the Largest Antenna Dimension of measurement antenna, including the reflector

 $\lambda$  is the wavelength

| FREQUENCY (GHz) | L (m) | Lambda (m) | R (Far Field)<br>(m) |
|-----------------|-------|------------|----------------------|
| 79              | 0.03  | 0.0038     | 0.474                |

Report No.: RF181101E04A Page No. 30 / 41 Report Format Version: 6.1.1



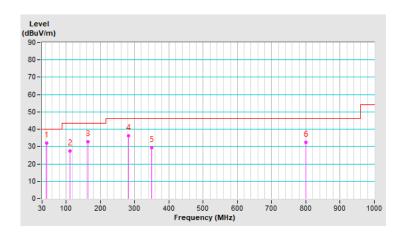

## **Below 1GHz Data**

| FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR FUNCTION | Quasi-Peak (QP) |
|-----------------|-------------|-------------------|-----------------|
|-----------------|-------------|-------------------|-----------------|

| ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |             |                               |                   |             |                       |                            |                     |                             |
|-----------------------------------------------------|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|
| NO.                                                 | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |
| 1                                                   | 30.24       | 30.8 QP                       | 40.0              | -9.2        | 1.00 H                | 0                          | 44.9                | -14.1                       |
| 2                                                   | 120.89      | 36.2 QP                       | 43.5              | -7.3        | 3.00 H                | 109                        | 50.9                | -14.7                       |
| 3                                                   | 195.89      | 35.5 QP                       | 43.5              | -8.0        | 2.00 H                | 258                        | 51.5                | -16.0                       |
| 4                                                   | 285.47      | 35.4 QP                       | 46.0              | -10.6       | 1.00 H                | 132                        | 47.9                | -12.5                       |
| 5                                                   | 318.79      | 36.3 QP                       | 46.0              | -9.7        | 1.00 H                | 136                        | 47.9                | -11.6                       |
| 6                                                   | 393.92      | 29.6 QP                       | 46.0              | -16.4       | 1.00 H                | 139                        | 39.4                | -9.8                        |

#### **REMARKS:**

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.






| FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR FUNCTION | Quasi-Peak (QP) |
|-----------------|-------------|-------------------|-----------------|
|-----------------|-------------|-------------------|-----------------|

|     |             | ANTENN                        | IA POLARIT        | Y & TEST DI | STANCE: VE            | RTICAL AT                  | 3 M                 |                             |
|-----|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|
| NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) |
| 1   | 44.16       | 32.1 QP                       | 40.0              | -7.9        | 1.00 V                | 360                        | 44.9                | -12.8                       |
| 2   | 111.55      | 27.5 QP                       | 43.5              | -16.0       | 1.00 V                | 238                        | 43.2                | -15.7                       |
| 3   | 163.57      | 32.7 QP                       | 43.5              | -10.8       | 1.00 V                | 157                        | 45.6                | -12.9                       |
| 4   | 282.39      | 36.2 QP                       | 46.0              | -9.8        | 2.00 V                | 193                        | 48.8                | -12.6                       |
| 5   | 350.12      | 29.5 QP                       | 46.0              | -16.5       | 1.00 V                | 161                        | 40.4                | -10.9                       |
| 6   | 800.01      | 32.4 QP                       | 46.0              | -13.6       | 1.00 V                | 197                        | 34.8                | -2.4                        |

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





### 4.2 Modulation characteristics Measurement

In addition to the reporting requirements of FCC 2.1047, the following information shall be provided, as per the applicable modulation type:

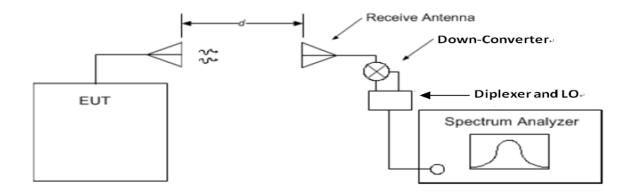
### Mode 1:

Modulation type: FMCW
 Modulation profile: Saw tooth
 Start frequency: 76.050 MHz

Sweep BW (maximum): 766.5 MHz
 Sweep rate (typical): 49.97 MHz/uS
 Sweep time (typical): 15.34 uS

#### Mode 2:

Modulation type: FMCW
 Modulation profile: Saw tooth
 Start frequency: 77.025 MHz


Sweep BW (maximum): 3949.4 MHz
 Sweep rate (typical): 50.79 MHz/uS
 Sweep time (typical): 77.76 uS

Report No.: RF181101E04A Page No. 33 / 41 Report Format Version: 6.1.1



## 4.3 Occupied Bandwidth Measurement

### 4.3.1 Test Setup



#### 4.3.2 Test Instruments

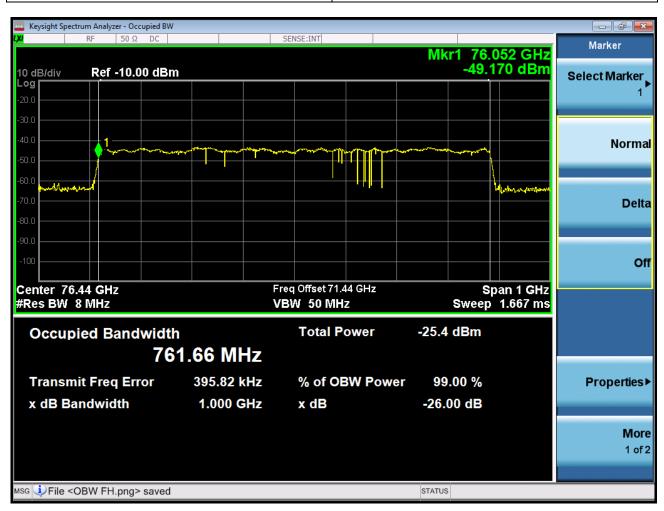
Refer to section 4.1.2 to get information of above instrument.

#### 4.3.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to sampling. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean power of a given emission.

### 4.3.4 Deviation from Test Standard

No deviation.


## 4.3.5 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.



### 4.3.6 Test Results (Mode 1)

| Frequency Range (GHz) | Occupied Bandwidth (MHz) |
|-----------------------|--------------------------|
| 76.050~76.820         | 761.66                   |





### 4.3.7 Test Results (Mode 2)

| Frequency Range (GHz) | Occupied Bandwidth (MHz) |
|-----------------------|--------------------------|
| 77~81                 | 3935.4                   |





## 4.4 Frequency Stability Measurement

#### 4.4.1 Limits of Conducted Emission Measurement

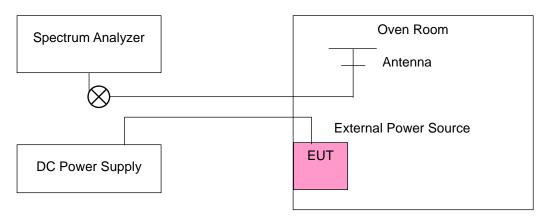
Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation.

#### 4.4.2 Test Instruments

| DESCRIPTION & MANUFACTURER                                                                  | MODEL NO.            | SERIAL NO.  | CALIBRATED DATE | CALIBRATED<br>UNTIL |
|---------------------------------------------------------------------------------------------|----------------------|-------------|-----------------|---------------------|
| N9029AV10-DC9 - 75-110<br>GHz VDI Standard<br>Downconverter with 9VDC<br>supply<br>Keysight | SA Extension<br>WR10 | SAX 378     | CoC             | CoC                 |
| *Horn Antenna<br>(75~110GHz)<br>OML                                                         | M10RH                | 110215-1    | Oct. 17, 2017   | Oct. 16, 2020       |
| Spectrum Analyzer<br>Keysight                                                               | N9030A               | MY54490679  | July 17, 2019   | July 16, 2020       |
| DC Power Supply<br>Topward                                                                  | 6603D                | 795558      | NA              | NA                  |
| Temperature & Humidity<br>Chamber<br>Giant Force                                            | GTH-150-40-SP-AR     | MAA0812-008 | Jan. 16, 2020   | Jan. 15, 2021       |
| True RMS Clamp Meter FLUKE                                                                  | 325                  | 31130711WS  | May 21, 2019    | May 20, 2020        |

## NOTE:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. \*The calibration interval of the above test instruments is 36 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Certificate of Conformance (CoC) which is issued by manufacturer states that the product meets the specification.
- 4. The test was performed in Oven room 2.
- 5. Tested Date: May 12, 2020


### 4.4.3 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- e. Repeat step (d) with the temperature chamber set to the next desired temperature until measurements down to the lowest specified temperature have been completed.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

Report No.: RF181101E04A Page No. 37 / 41 Report Format Version: 6.1.1



## 4.4.4 Test Setup



## 4.4.5 Test Results (Mode 1)

|                   | Frequency Stability Versus Temp.              |          |          |               |          |          |               |          |          |               |          |          |               |
|-------------------|-----------------------------------------------|----------|----------|---------------|----------|----------|---------------|----------|----------|---------------|----------|----------|---------------|
|                   | Operating Frequency: 76453 MHz                |          |          |               |          |          |               |          |          |               |          |          |               |
|                   | Power 0 Minute 2 Minutes 5 Minutes 10 Minutes |          |          |               |          |          |               |          |          |               |          |          |               |
| <b>TEMP.</b> (°C) | Supply<br>(Vdc)                               | FL(MHz)  | FH(MHz)  | Pass/<br>Fail |
| 50                | 12                                            | 76051.82 | 76813.86 | Pass          | 76051.78 | 76813.88 | Pass          | 76051.79 | 76813.91 | Pass          | 76051.83 | 76813.89 | Pass          |
| 40                | 12                                            | 76052.16 | 76813.89 | Pass          | 76052.17 | 76813.86 | Pass          | 76052.16 | 76813.86 | Pass          | 76052.18 | 76813.83 | Pass          |
| 30                | 12                                            | 76051.65 | 76813.96 | Pass          | 76051.61 | 76813.97 | Pass          | 76051.63 | 76813.96 | Pass          | 76051.66 | 76813.95 | Pass          |
| 20                | 12                                            | 76051.74 | 76813.41 | Pass          | 76051.73 | 76813.43 | Pass          | 76051.70 | 76813.38 | Pass          | 76051.77 | 76813.39 | Pass          |
| 10                | 12                                            | 76051.76 | 76813.68 | Pass          | 76051.78 | 76813.74 | Pass          | 76051.72 | 76813.74 | Pass          | 76051.78 | 76813.68 | Pass          |
| 0                 | 12                                            | 76051.92 | 76813.36 | Pass          | 76051.92 | 76813.40 | Pass          | 76051.91 | 76813.36 | Pass          | 76051.92 | 76813.43 | Pass          |
| -10               | 12                                            | 76052.17 | 76813.69 | Pass          | 76052.21 | 76813.71 | Pass          | 76052.15 | 76813.67 | Pass          | 76052.15 | 76813.67 | Pass          |
| -20               | 12                                            | 76051.79 | 76813.32 | Pass          | 76051.78 | 76813.34 | Pass          | 76051.77 | 76813.36 | Pass          | 76051.78 | 76813.34 | Pass          |

|                      | Frequency Stability Versus Voltage            |          |                                                                                          |               |          |          |               |          |          |               |          |          |               |
|----------------------|-----------------------------------------------|----------|------------------------------------------------------------------------------------------|---------------|----------|----------|---------------|----------|----------|---------------|----------|----------|---------------|
|                      | Operating Frequency: 76453 MHz                |          |                                                                                          |               |          |          |               |          |          |               |          |          |               |
|                      | Power 0 Minute 2 Minutes 5 Minutes 10 Minutes |          |                                                                                          |               |          |          |               |          |          |               |          |          |               |
| <b>TEMP</b> .<br>(℃) | Supply<br>(Vdc)                               | FL(MHz)  | FH(MHz)                                                                                  | Pass/<br>Fail | FL(MHz)  | FH(MHz)  | Pass/<br>Fail | FL(MHz)  | FH(MHz)  | Pass/<br>Fail | FL(MHz)  | FH(MHz)  | Pass/<br>Fail |
|                      | 13.8                                          | 76051.73 | 76813.42                                                                                 | Pass          | 76051.74 | 76813.44 | Pass          | 76051.70 | 76813.39 | Pass          | 76051.76 | 76813.39 | Pass          |
| 20                   | 12                                            | 76051.74 | 0051.74 76813.41 Pass 76051.73 76813.43 Pass 76051.70 76813.38 Pass 76051.77 76813.39 Pa |               |          |          |               |          |          |               | Pass     |          |               |
|                      | 10.2                                          | 76051.73 | 76813.43                                                                                 | Pass          | 76051.73 | 76813.43 | Pass          | 76051.71 | 76813.37 | Pass          | 76051.76 | 76813.37 | Pass          |



## 4.4.6 Test Results (Mode 2)

|                   |                                |          |          |               | Frequen  | cy Stabil | ity Ver       | sus Temp |          |               |          |          |               |
|-------------------|--------------------------------|----------|----------|---------------|----------|-----------|---------------|----------|----------|---------------|----------|----------|---------------|
|                   | Operating Frequency: 79000 MHz |          |          |               |          |           |               |          |          |               |          |          |               |
|                   | Power                          | 0        | Minute   |               | 2        | Minutes   |               | 5        | Minutes  |               | 10       | Minutes  |               |
| <b>TEMP</b> . (℃) | Supply<br>(Vdc)                | FL(MHz)  | FH(MHz)  | Pass/<br>Fail | FL(MHz)  | FH(MHz)   | Pass/<br>Fail | FL(MHz)  | FH(MHz)  | Pass/<br>Fail | FL(MHz)  | FH(MHz)  | Pass/<br>Fail |
| 50                | 12                             | 77015.81 | 80951.45 | Pass          | 77015.81 | 80951.45  | Pass          | 77015.82 | 80951.48 | Pass          | 77015.77 | 80951.45 | Pass          |
| 40                | 12                             | 77016.35 | 80951.16 | Pass          | 77016.35 | 80951.16  | Pass          | 77016.33 | 80951.14 | Pass          | 77016.33 | 80951.15 | Pass          |
| 30                | 12                             | 77016.37 | 80951.39 | Pass          | 77016.40 | 80951.41  | Pass          | 77016.37 | 80951.33 | Pass          | 77016.35 | 80951.35 | Pass          |
| 20                | 12                             | 77015.94 | 80951.57 | Pass          | 77015.96 | 80951.54  | Pass          | 77015.98 | 80951.59 | Pass          | 77015.96 | 80951.57 | Pass          |
| 10                | 12                             | 77016.17 | 80951.31 | Pass          | 77016.14 | 80951.34  | Pass          | 77016.14 | 80951.35 | Pass          | 77016.17 | 80951.34 | Pass          |
| 0                 | 12                             | 77015.89 | 80951.24 | Pass          | 77015.84 | 80951.22  | Pass          | 77015.85 | 80951.23 | Pass          | 77015.90 | 80951.23 | Pass          |
| -10               | 12                             | 77016.33 | 80951.52 | Pass          | 77016.33 | 80951.50  | Pass          | 77016.35 | 80951.48 | Pass          | 77016.29 | 80951.47 | Pass          |
| -20               | 12                             | 77016.25 | 80951.49 | Pass          | 77016.25 | 80951.54  | Pass          | 77016.21 | 80951.56 | Pass          | 77016.24 | 80951.50 | Pass          |

|                  | Frequency Stability Versus Voltage      |          |          |               |                                                                  |          |               |          |          |               |          |          |               |
|------------------|-----------------------------------------|----------|----------|---------------|------------------------------------------------------------------|----------|---------------|----------|----------|---------------|----------|----------|---------------|
|                  | Operating Frequency: 79000 MHz          |          |          |               |                                                                  |          |               |          |          |               |          |          |               |
|                  | 0 Minute 2 Minutes 5 Minutes 10 Minutes |          |          |               |                                                                  |          |               |          |          |               |          |          |               |
| <b>TEMP.</b> (℃) | Supply<br>(Vdc)                         | FL(MHz)  | FH(MHz)  | Pass/<br>Fail | FL(MHz)                                                          | FH(MHz)  | Pass/<br>Fail | FL(MHz)  | FH(MHz)  | Pass/<br>Fail | FL(MHz)  | FH(MHz)  | Pass/<br>Fail |
|                  | 13.8                                    | 77015.95 | 80951.57 | Pass          | 77015.95                                                         | 80951.54 | Pass          | 77015.97 | 80951.60 | Pass          | 77015.95 | 80951.58 | Pass          |
| 20               | 12                                      | 77015.94 | 80951.57 | Pass          | ss 77015.96 80951.54 Pass 77015.98 80951.59 Pass 77015.96 80951. |          |               |          |          |               | 80951.57 | Pass     |               |
|                  | 10.2                                    | 77015.95 | 80951.57 | Pass          | 77015.98                                                         | 80951.54 | Pass          | 77015.97 | 80951.59 | Pass          | 77015.94 | 80951.56 | Pass          |



| 5 Pictures of Test Arrangements                       |
|-------------------------------------------------------|
| Please refer to the attached file (Test Setup Photo). |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |



### Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <a href="mailto:service.adt@tw.bureauveritas.com">service.adt@tw.bureauveritas.com</a>
Web Site: <a href="mailto:www.bureauveritas-adt.com">www.bureauveritas-adt.com</a>

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF181101E04A Page No. 41 / 41 Report Format Version: 6.1.1