

TEST REPORT Number Composition of document	RADIO 119405-638393I-Cr2014-01-20 46 pages
Standards	ETSI EN 301 839-1 V1.2.1 (Limited program) ETSI EN 301 839-2 V1.3.1 (Limited program) FCC RULES PART 95I (Limited program) FCC RULES PART 15 (Limited program) FCC RULES PART 2 (Limited program) IC RADIO STANDARDS RSS-243 (Limited program) Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance) (Limited program)
Issued to	SORIN CRM Parc d'affaires NOVEOS 4, Avenue Réaumur 92140 Clamart Cedex , FRANCE
Apparatus under test Trade mark Manufacturer Type Serial number	Syndeli RF V2 implantable cardioverter defibrillator SORIN Group SORIN BIOMEDICA CRM INTENSIA SONR — CRT-D 184 F48AG003
Test date	From February 26 th to March 6 th , 2013
Tests performed by	Julien BOUTAUD & Laurent DENEUX
Test site	Fontenay Aux Roses & Ecuelles
File issued on	January 20th, 2014

Written by : Julien BOUTAUD & Laurent DENEUX Tests operator

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified, the decision of conformity takes into account the uncertainly of measures.

LCIE Laboratoire Central des Industries Electriques Une société de Bureau Veritas 33. av du Général LeclercBP 892266 Fontenay-aux-Roses cedexFrance

Tél : +33 1 40 95 60 60 Fax : +33 1 40 95 86 56 contact@lcie.fr www.lcie.fr Société par Actions Simplifiée au capital de 15 745 984 € RCS Nanterre B 408 363 174

1.	TEST PROGRAM	3
2.	EQUIPMENT DESCRIPTION	5
3.	FREQUENCY ERROR & FREQUENCY STABILITY	8
4.	EFFECTIVE RADIATED POWER, MAXIMUM TRANSMITTER POWER & ANTENNA POWER	9
5.	EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	11
6. INTEN	SPURIOUS EMISSIONS OF TRANSMITTER & TOLERANCE OF UNWANTED EMISSION SITY	12
7.	UNWANTED RADIATION	17
8.	RECEIVER SPURIOUS RADIATION & SECONDARY RADIATED EMISSION	19
9.	RADIATION EMISSIONS	22
10.	TEST EQUIPMENT LIST	
11.	UNCERTAINTIES CHART	25
12.	ANNEX 1 (GRAPHS)	26
13.	ANNEX 2 (FLUID DATA SHEET MSL 450)	45

1. TEST PROGRAM

References

Standards :

ETSI EN 301 839-1 V1.3.1 ETSI EN 301 839-2 V1.2.1 ERC Recommendation 70-03 FCC RULES PART 95I FCC RULES PART 15 FCC RULES PART 2 IC RADIO STANDARDS RSS-243 Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance)

Transmitter requirement: Clause (ETSI EN 301 839-1) **TEST RESULT - Comments** Clause (FCC PART 95I) Clause (RSS 243) Clause (Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance)) **Test Description** EN § 8.1 - Frequency error PASS (Remark 1) PASS (Remark 1) FCC § 95.627 (e) - Frequency stability FCC § 2.1055 - Measurements required: Frequency stability PASS (Remark 1) RSS § 3.3 – Frequency stability PASS (Remark 1) Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of PASS (Remark 1) Certification Ordinance) - Tolerance of frequency EN § 8.3 - Effective radiated power of the fundamental emission PASS FCC § 95.639 (f) - Maximum transmitter power PASS FCC § 2.1046 - Measurements required: RF power output PASS **RSS § 5.4** – Maximum transmitter power PASS Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of PASS Certification Ordinance) - Antenna gain EN § 8.2 – Emission bandwidth PASS (Remark 1) FCC § 95.633 (e) - Emission bandwidth PASS (Remark 1) FCC § 2.1049 - Measurements required: Occupied bandwidth PASS (Remark 1) RSS § 3.2 - Occupied bandwidth PASS (Remark 1) Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of PASS (Remark 1) Certification Ordinance) – Tolerance of occupied bandwidth EN § 8.5 - Frequency stability under low voltage conditions N/A (EUT hermetically sealed: See last paragraph in clause 5.2.2 of ETSI EN 301 839-1 V1.3.1) PASS EN § 8.4 – Spurious emissions of transmitter Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of PASS Certification Ordinance) - Tolerance of unwanted emission intensity FCC § 95.635 (d) - Unwanted radiation PASS FCC § 2.1053 - Measurements required: Field strength of spurious radiation PASS PASS RSS § 3.4 - Unwanted radiation Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of PASS Certification Ordinance) - Limit of secondary radiated emission 15.207 - Conducted emission N/A (Equipment powered by battery) FCC § 2.1047 – Measurements required: Modulation characteristics PASS (please refer to §2.1 Equipment information p.5) FCC § 2.1057 - Frequency spectrum to be investigated PASS (see §2.1 Equipment information p.5)

Page 4

Receiver requirement:	
Clause (ETSI EN 301 839–1)	TEST RESULT -
Clause (FCC PART 15) (only for 400MHz receiver)	Comments
Clause (FCC PART 95I)	
Clause (RSS 243-243)	
Test Description	
EN § 9.1 – Spurious radiation of receivers	PASS
FCC § 2.1053 – Measurements required: Field strength of spurious radiation	PASS
FCC § 15.109 – Radiated emissions	PASS
RSS § 3.5 – Radiated emissions	PASS
EN § 10.1 – Monitoring system threshold power level	N/A
FCC § 95.627 (a)(3) – Monitoring system threshold power level	N/A
RSS § 5.7.1 – Monitoring system threshold power level	N/A
EN § 10.2 – Monitoring system bandwidth	N/A
FCC § 95.627 (a)(1) – Monitoring system bandwidth	N/A
RSS § 5.7.2 – Monitoring system bandwidth	N/A
EN § 10.3.1.1 & 10.3.3.1 – Scan cycle time	N/A
FCC § 95.627 (a)(2) – Scan cycle time	N/A
RSS § 5.7.3 – Scan cycle time	N/A
EN § 10.3.1.2 & 10.3.3.2 – Minimum channel monitoring period	N/A
FCC § 95.627 (a)(2) – Minimum channel monitoring period	N/A
RSS § 5.7.4 – Minimum channel monitoring period	N/A
EN § 10.4 – Channel access	N/A
FCC § 95.627 (a)(4) – Channel access	N/A
RSS § 5.7.5 – Channel access	N/A
EN § 10.5 – Discontinuation of MICS session	N/A
95.627 (a)(4) – Discontinuation of MICS session	N/A
RSS § 5.7.6 – Discontinuation of MICS session	N/A
Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification	
Ordinance) – Transmission suspension function due to interruption of communications	N/A
EN § 10.6 – Use of pre-scanned alternate channel	N/A
FCC § 95.627 (a)(5) – Use of pre-scanned alternate channel	N/A
RSS § 5.7.7 – Use of pre-scanned alternate channel	N/A

PASS: EUT complies with standard's requirement FAIL: EUT does not comply with standard's requirement N/A: Not Applicable N/P: Test Not Performed

Remark 1:

The major difference between SORIN INTENSIA SONR — CRT-D 184 & SORIN PARADYM RF sonR — CRT-D model 9770 is the radiated header. Electronic & radio parts are exactly the same between the two models. So, tests results for SORIN INTENSIA SONR — CRT-D 184 are retrieved from SORIN PARADYM RF sonR — CRT-D model 9770 (FCC ID YSGCRTDSONR9770 IC: 10270A-CRTDSON9770 Japanese Logo: 207-CR9770) in test report N°112624-622708-A-Cr2012-10-22.

<u>**Remark 2**</u>: The equipment is: - transmitter and receiver at 400MHz - only receiver at 2400 MHz.

2. EQUIPMENT DESCRIPTION

2.1. HARDWARE IDENTIFICATION

Equipment under test (EUT):

INTENSIA SONR GRT-D 184 WED-DDDRV SNI F48AG003 (M) SNI F48AG003 (M) SORIMGROUP

The EUT is housed in a single cabinet that cannot be readily opened because the enclosure is hermetically sealed.

Auxiliary equipment used for testing:

-Human torso simulator

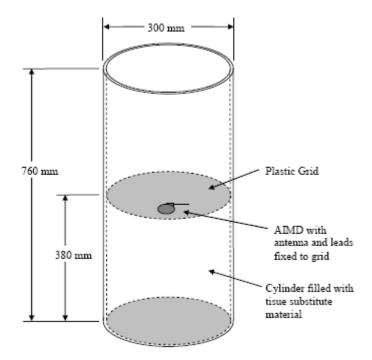
-Fluid corresponding to human tissue characteristics at that frequency.

- -Lead IS-1 BI (reference S BFT6 43868)
- -Lead IS-1 BI (reference S BJF5 00257)
- -Lead SonR(reference P555D)

Equipment information:

- External antenna connector: No
- Frequency band allocated: 402MHz to 405MHz
- Frequency used for test: -Fmin: 402,15MHz
 - -Fnom: 403,65MHz
 - -Fmax: 404,85MHz
- Modulation: 2 FSK
- Data rate: 200kb/s
- Number of channel: 10
- Antenna type: Integral
- Equipment intended for use as a mobile station
- Equipment designed for continuous operation
- Stand By mode: No

Page 6


2.2. RUNNING MODE

The EUT is set in the following modes during tests: -Permanent emission with modulation -Permanent emission without modulation -Permanent reception

2.3. EQUIPEMENT SET UP AND TESTING CONFIGURATION

Equipment (ULP-AMIs) intended to be implanted in a human body shall be tested in a simulated man constructed as follows in order to simulate operation of the ULP-AMI under actual operation conditions as shown in figure A.2 of EN 301 489-1.

An appropriate simulator for testing ULP-AMI consists of a cylindrical acrylic container with an outside diameter of 300 mm, a sidewall thickness of 6 mm, and a fluid-filled height of 760 mm. It shall be filled with a material that is sufficiently fluid that it will flow around the AIMD without any voids. The dielectric and conductivity properties of this material shall match the dielectric and conductivity properties of human muscle tissue at 403,5 MHz (conductivity = 0,93 and relative permittivity = 57,2). Simple saline solutions do not meet the dielectric and conductivity requirements for use as a substitute for human tissue. All emissions measurements will be made using the above specification with the tissue substitute material at a nominal temperature between 22 °C and 38 °C.

For the testing, the equipment under test (EUT) was suspended in a Plexiglas torso simulator as specified above. The simulator used was constructed in accordance with FCC 95.627(g)(3)(i), EN 301 839-1 (A.113) and EN 301 489-27 annex B.

During the test, the EUT was centred vertically in Plexiglas cylinder. The torso simulator was filled with a fluid formulated is in accordance with the specification by using tissue material corresponding to human tissue characteristics at that frequency. The fluid temperature was maintained between 20° to 25° C. There is also the reference for simulator fluid (see annex 2).

Page 7

2.4. EQUIPEMENT LABELLING

2.5. EQUIPMENT MODIFICATIONS

No equipment modification has been necessary during testing.

3. FREQUENCY ERROR & FREQUENCY STABILITY

3.1. TEST CONDITIONS

Test performed by	: Stéphane PHOUDIAH
Date of test	: 2012/03/27
Ambient temperature	: 24°C
Relative humidity	: 32%

3.2. TEST SETUP

FCC 95.627(e) RSS 243 §3.3 ETSI EN 301 839-1 §8.1 Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance)

The test is performed on EUT in permanent emission without modulation mode. For measurement under normal and extreme test conditions, the Equipment Under Test is installed in the climatic chamber. A test fixture is created to perform the measurement.

3.3. RESULTS

Frequency: Fmin

Temperature	Tmin	Tnom	Tmax
Power voltage: Vnom			
Frequency (MHz)	402,1506	402,1474	402,1482
Frequency Drift (ppm)	1,49	-6,46	-4,47

Frequency: Fnom

Temperature	Tmin	Tnom	Tmax
Power voltage: Vnom			
Frequency (MHz)	403,6514	403,6532	403,6518
Frequency Drift (ppm)	3,47	7,92	4,46

Frequency: Fmax

Temperature	Tmin Tnom		Tmax
Power voltage: Vnom			
Frequency (MHz)	404,8516	404,8529	404,8494
Frequency Drift (ppm)	3,95	7,16	-1,48

See graphics in annex 1

Result: PASS Limit: $\rightarrow \pm 100 \text{ ppm}$

4. EFFECTIVE RADIATED POWER, MAXIMUM TRANSMITTER POWER & ANTENNA POWER

4.1. TEST CONDITIONS

Test performed by
Date of test: Julien BOUTAUD & Laurent DENEUX
: 2013/02/27 and 2013/03/04Ambient temperature
Relative humidity: 21°C
: 36%

4.2. TEST SETUP

FCC 95.639(f) RSS 243 §5.4 ETSI EN 301 839-1 §8.3 Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance)

The test is performed on EUT in permanent emission without modulation mode on vertically and horizontally position. The setup is 1.5m above the ground reference plane on a wooden table. Distance between measuring antenna and the EUT is 3 meters. The measuring antenna is in vertical and then in horizontal polarization. Measurement bandwidth was 100kHz.Continuous linear turntable azimuth search was performed with 360 degrees range.

The substitution method is used to obtain the effective isotropic radiated power and effective radiated power. (KDB 412172 D01 Determining ERP and EIRP)

Page 10

4.3. RESULTS

Maximum values for both polarizations:

Frequency (MHz)	Generator (dBm)	Cables loss (dB)	Attenuator (dB)	Antenna Gain (dBi)	ERP (dBm)	ERP (µW)	EIRP (dBm)	EIRP (µW)
Fmin	-21.4	1,6	10	-8.2	-43.34	0,046	-41,2	0,076
Fnom	-20.3	1,7	10	-8.17	-42.21	0,06	-40,07	0,098
Fmax	-21.6	1,8	10	-8.15	-43.53	0,044	-41,39	0,072

Result: PASS

Limit: \rightarrow 25µW or -16dBm

5. EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

5.1. TEST CONDITIONS

Test performed by	: Stéphane PHOUDIAH
Date of test	: 2012/03/28
Ambient temperature	: 25°C
Relative humidity	: 30%

5.2. TEST SETUP

FCC 95.633(e) RSS 243 §3.2 ETSI EN 301 839-1 §8.2 Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance)

The test is performed on EUT in permanent emission with modulation. the Equipment Under Test is installed in the climatic chamber. A test fixture is created to perform the measurement. RBW was 3kHz and VBW was 10kHz. The Emission Bandwidth is measured 20dB below the peak power.

5.3. RESULTS

Frequency (MHz)	Emission Bandwidth (kHz)	Occupied Bandwidth (kHz)
Fmin	208	205,33
Fnom	206,9	206,95
Fmax	206,9	215,03

See graphics in annex 1

Result: PASS

Limit: → Shall not exceed 300kHz

Page 12

6. SPURIOUS EMISSIONS OF TRANSMITTER & TOLERANCE OF UNWANTED EMISSION INTENSITY

6.1. TEST CONDITIONS

Test performed by: Julien BOUTAUD and Laurent DENEUXDate of test: 2013/03/05 and 2013/02/26Ambient temperature: 21°CRelative humidity: 36%

6.2. TEST SETUP

ETSI EN 301 839-1 §8.2

Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance)

The test is performed on EUT in permanent emission with modulation mode.

Method of measurement

Effective Radiated Power, cabinet radiation

Effective Radiated Power, cabinet and antenna radiation

Qualification measurements on an open test site (25MHz to 1000MHz):

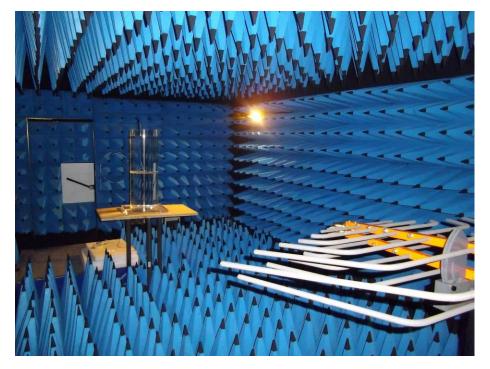
The setup is 1.5m above the ground reference plane.

Distance between measuring antenna and the EUT is 10meters for frequency 25MHz to 1000MHz.

Test is performed in horizontal (H) and vertical (V) polarization with a bilog antenna. Measurement bandwidth was 100kHz.Continuous linear turntable azimuth search was performed with 360 degrees range. Vertical search was performed between 1m and 4m with the measuring antenna.

The Substitution Method is applied on the maximum values observed during the azimuth and vertical search in order to obtain the spurious radiated emission.

Qualification measurements in full anechoic chamber (1GHz to 4GHz):


The setup is 1.5m above the ground reference plane.

Distance between measuring antenna and the EUT is 3meters for frequency 1GHz to 4GHz.

Test is performed in horizontal (H) and vertical (V) polarization with a logperiodic antenna. Measurement bandwidth was 1MHz.Continuous linear turntable azimuth search was performed with 360 degrees range.

The Normalized Site Attenuation (NSA) is added to the maximum values observed during the azimuth search in order to obtain the spurious radiated emission.

Test Set up for measurements in full anechoic chamber

Page 14

Test Set up for measurements on an open test site

Page 15

6.3. RESULTS

Characterization on open test site (25MHz to 1000MHz):

Vertical antenna

Operating				
Frequency (MHz)	Measure E.R.P (dBm)	Limit (dBm)		
32	-65	-36		
34.7	-65	-36		
36	-68	-36		
40.3	-66	-36		
44	-71	-36		
48	-68	-54		
56	-69	-54		
62.6	-63	-54		
67.1	-70	-54		
72	-72	-54		
76.3	-73	-36		
81.2	-69	-36		
123.1	-67	-36		
130	-65	-36		
137.3	-65	-36		
144	-66	-36		
153.6	-66	-36		
160	-63	-36		
180.5	-67	-54		
188.3	-65	-54		
198	-62	-54		
203.7	-66	-54		
206.9	-63	-54		
245.1	-64	-36		

Page 16

Horizontal antenna

Operating				
Frequency (MHz)	Measure E.R.P (dBm)	Limit (dBm)		
32	-68	-36		
34.7	-66	-36		
51.4	-64	-54		
72	-70	-54		
110.9	-66	-54		
144	-65	-36		
153.6	-66	-36		
192	-66	-54		

Characterization in full anechoic chamber (1000MHz to 4GHz):

No spurious observed

Result: PASS

ETSI EN 301 839-1 §8.2 Limit: → 25MHz to 47MHz: -36dBm (operating)/ -57dBm (Standby) 47MHz to 74MHz: -54dBm (operating)/ -57dBm (Standby) 74MHz to 87,5MHz: -36dBm (operating)/ -57dBm (Standby) 87,5MHz to 118MHz: -54dBm (operating)/ -57dBm (Standby) 118MHz to 174MHz: -36dBm (operating)/ -57dBm (Standby) 174MHz to 230MHz: -54dBm (operating)/ -57dBm (Standby) 230MHz to 470MHz: -36dBm (operating)/ -57dBm (Standby) 470MHz to 862MHz: -54dBm (operating)/ -57dBm (Standby) 862MHz to 1GHz: -36dBm (operating)/ -57dBm (Standby) 1GHz to 4GHz: -30dBm (operating)/ -47dBm (Standby)

Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance) Limit: → -36dBm (operating)

See graphics in annex 1

7. UNWANTED RADIATION

7.1. TEST CONDITIONS

Test performed by: Laurent DENEUXDate of test: 2012/02/26Ambient temperature: 17Relative humidity: 51

7.2. TEST SETUP

FCC 95.635(d) RSS 243 §3.4

The test is performed on EUT in permanent emission with modulation mode.

Method of measurement

Effective Radiated Power, cabinet radiation Seffective Radiated Power, cabinet and antenna radiation

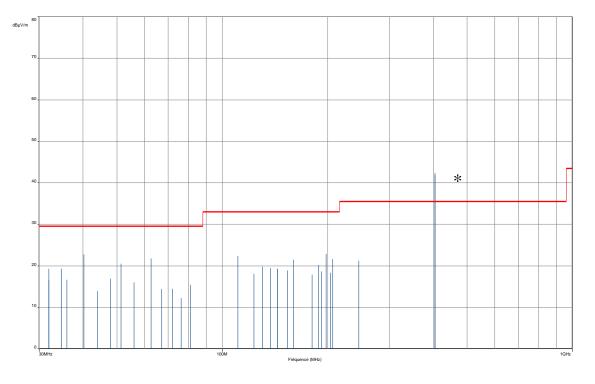
The setup is 1.5m above the ground reference plane.

Distance between measuring antenna and the EUT is 10 meters for frequency 30MHz to 25GHz.

Test is performed in horizontal (H) and vertical (V) polarization with a bilog antenna below 1GHz and with a horn antenna above 1GHz. Measurement bandwidth was 100kHz below 1GHz and 1MHz above 1GHz.Continuous linear turntable azimuth search was performed with 360 degrees range. Vertical and horizontal search was performed between 1m and 4m with the measuring antenna.

Page 18

7.3. RESULTS


Out-Of-Band Emissions

Characterization on open test site (30MHz to 25GHz):

Fcc Part.15 CLASS B

SORIN IMPLANT MODEL : INTENSIA SonR – CRT-D 184 – VVED-DDRV 400 Tx

Quasi peak measurement

Limit level

* Transmitter frequency

Remark: During the Scan, no unwanted emission has been detected in the frequency range 1 GHz to 25 GHz.

Result: PASS

Limit: → 30MHz to 88MHz: 29.5dBµV/m at 10m (20log (100µV/m) + 20 log (3m/10m)) 88MHz to 216MHz: 33dBµV/m at 10m (20log (150µV/m) + 20 log (3m/10m)) 216MHz to 960MHz: 35.5dBµV/m at 10m (20log (200µV/m) + 20 log (3m/10m)) Above 960MHz: 43.5dBµV/m at 10m (20log (500µV/m) + 20 log (3m/10m))

Page 19

8. RECEIVER SPURIOUS RADIATION & SECONDARY RADIATED EMISSION

8.1. TEST CONDITIONS

Test performed by: Julien BOUTAUD and Laurent DENEUXDate of test: 2013/03/05 and 2013/02/26Ambient temperature: 21°CRelative humidity: 36%

8.2. TEST SETUP

ETSI EN 301 839-1 §9.1 Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance)

The test is performed on EUT in reception mode.

Method of measurement

Effective Radiated Power, cabinet radiation

Effective Radiated Power, cabinet and antenna radiation

Qualification measurements on an open test site (25MHz to 1000MHz):

The setup is 1.5m above the ground reference plane.

Distance between measuring antenna and the EUT is 10 meters for frequency 25MHz to 1000MHz.

Test is performed in horizontal (H) and vertical (V) polarization with a bilog antenna. Measurement bandwidth was 100kHz.Continuous linear turntable azimuth search was performed with 360 degrees range. Vertical search was performed between 1m and 4m with the measuring antenna.

The Substitution Method is applied on the maximum values observed during the azimuth and vertical search in order to obtain the spurious radiated emission.

Qualification measurements in full anechoic chamber (1GHz to 4GHz):

The setup is 1.5m above the ground reference plane.

Distance between measuring antenna and the EUT is 3meters for frequency 1GHz to 4GHz.

Test is performed in horizontal (H) and vertical (V) polarization with a logperiodic antenna. Measurement bandwidth was 100kHz.Continuous linear turntable azimuth search was performed with 360 degrees range.

The Normalized Site Attenuation (NSA) is added to the maximum values observed during the azimuth search in order to obtain the spurious radiated emission.

Page 20

8.3. RESULTS

Characterization on open test site (25MHz to 1000MHz):

Vertical antenna

Operating				
Frequency (MHz)	Measure E.R.P (dBm)	Limit (dBm)		
32	-65	-57		
34.7	-65	-57		
36	-68	-57		
40.3	-66	-57		
44	-71	-57		
48	-72	-57		
56	-69	-57		
62.6	-71	-57		
67.1	-70	-57		
76.3	-73	-57		
123.1	-67	-57		
130	-65	-57		
137.3	-65	-57		
160	-63	-57		
188.3	-65	-57		
198	-72	-57		
245.1	-64	-57		

Page 21

Horizontal antenna

Operating				
Frequency (MHz)	Measure E.R.P (dBm)	Limit (dBm)		
32	-69	-57		
34.7	-70	-57		
51.4	-67	-57		
72	-64	-57		
144	-65	-57		
153.6	-63	-57		

Characterization in full anechoic chamber (1GHz to 4GHz):

No spurious observed

Limit: → -57dBm below 1000 MHz -47dBm above 1000 MHz

Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance) Limit: → -54dBm

Result: PASS

See graphics in annex 1

9. RADIATION EMISSIONS

9.1. TEST CONDITIONS

Test performed by	: Laurent DENEUX
Date of test	: 2012/02/26
Ambient temperature	: 17°c
Relative humidity	: 50%

9.2. TEST SETUP

FCC 15.109 RSS 243 §3.5

The test is performed on EUT in reception mode.

Method of measurement

Effective Radiated Power, cabinet radiation

Effective Radiated Power, cabinet and antenna radiation

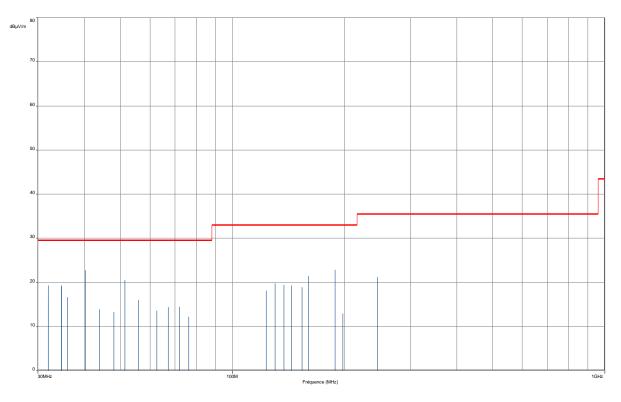
Qualification measurements on an open test site (30MHz to 25GHz):

The setup is 1.5m above the ground reference plane.

Distance between measuring antenna and the EUT is 10 meters for frequency 30MHz to 25GHz.

Test is performed in horizontal (H) and vertical (V) polarization with a bilog antenna below 1GHz and with 2 horn antenna above 1GHz. Measurement bandwidth was 100kHz below 1GHz and 1MHz above 1GHz.Continuous linear turntable azimuth search was performed with 360 degrees range. Vertical and horizontal search was performed between 1m and 4m with the measuring antenna.

Page 23


9.3. RESULTS

Characterization on open test site (30MHz to 25GHz):

Fcc Part.15 CLASS B

SORIN IMPLANT MODEL : INTENSIA SonR – CRT-D 184 – VVED-DDRV 400 Rx

Quasi peak measurement

Limit level

Remark: During the Scan, no radiated emission has been detected in the frequency range 1 GHz to 25 GHz.

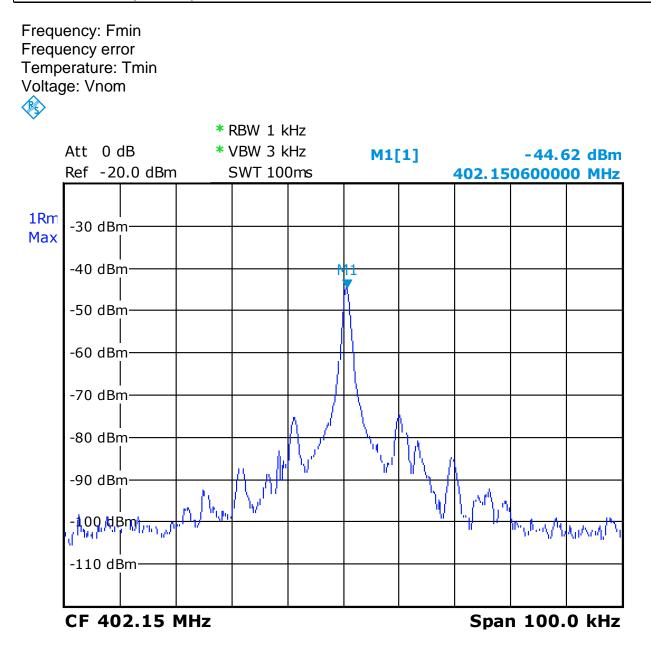
Result: PASS

Limit: → 30MHz to 88MHz: 29.5dBµV/m at 10m (20log (100µV/m) + 20 log (3m/10m)) 88MHz to 216MHz: 33dBµV/m at 10m (20log (150µV/m) + 20 log (3m/10m)) 216MHz to 960MHz: 35.5dBµV/m at 10m (20log (200µV/m) + 20 log (3m/10m)) Above 960MHz: 43.5dBµV/m at 10m (20log (500µV/m) + 20 log (3m/10m))

Page 24

10. Test Equipment List

Test	Apparatus	Trade Mark	Туре	Registration number
Test	Effective Radiated Power Of The Fundamental			
x	Full anechoic chamber	SIEPEL	S36	D3044019
X	Logperiodic antenna	AMPLIFIER RESEARCH	ATR80M6G	C2040149
X	EMI Test Receiver	ROHDE & SCHWARZ	ESMI	A2642009
X	Signal Generator	ROHDE & SCHWARZ SMIQ03b		A5442039
X	Substitution Cable	-	CNJ01	A5329393
X	Substitution Cable		CNS1E 04	A5329434
X	Dipole Antenna	SCHWARZBECK	VHAP	C2040020
X	Dipole Antenna	SCHWARZBECK	UHAP	C2040022
		Emissions & Unwanted Radiati	Q	GEOROGEE
X	Full anechoic chamber	SIEPEL	S36	D3044019
X	EMI Test Receiver	ROHDE & SCHWARZ	ESMI	A2642009
X	Preamplifier	BONN Elektronik	BLNA 3018-8F30S	A7080053
Х	Horn Antenna	A.H. SYSTEMS	SAS-571	C2042041
X	Logperiodic antenna	AMPLIFIER RESEARCH	ATR80M6G	C2040149
Х	Open test site	LCIE	-	F2000400
Х	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	A2642017
Х	Bilog antenna	CHASE	CBL 6112A	C2040040
Х	Dipole	ROHDE & SCHWARZ	HUF-Z1	C2040011
Х	Logperiodic antenna	ROHDE & SCHWARZ	HL 023 A2	C2040001
Х	Horn antenna	EMCO	3115	C2042016
Х	Horn antenna	AH SYSTEMS	SAS-572	C2042026
Х	Signal Generator	ROHDE & SCHWARZ	SMY02	A5442014
	Receiver Spurious E	missions & Radiated Emission	3	
Х	Full anechoic chamber	SIEPEL	S36	D3044019
Х	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	A2642017
Х	Preamplifier	BONN Elektronik	BLNA 3018-8F30S	A7080053
Х	Horn Antenna	A.H. SYSTEMS	SAS-571	C2042041
Х	Logperiodic antenna	AMPLIFIER RESEARCH	ATR80M6G	C2040149
Х	Open test site	LCIE	-	F2000400
Х	Bilog antenna	CHASE	CBL 6112A	C2040040
Х	Dipole	ROHDE & SCHWARZ	HUF-Z1	C2040011
Х	Logperiodic antenna	ROHDE & SCHWARZ	HL 023 A2	C2040001
Х	Horn antenna	EMV	3115	C2040023
Х	Horn antenna	EMCO	3115	C2042016
Х	Signal Generator	ROHDE & SCHWARZ	SMY02	A5442014
Х	Horn antenna	AH SYSTEMS	SAS-572	C2042026
	Emission Bandwidth, Occupied Bandv		n-Band Emissions	
Х	Antenna	KATHREIN	-	-
X	Climatic Chamber	SECASI Technologies	SLT-34	D1024029
Х	Spectrum Analyser	ROHDE & SCHWARZ	FSL	A4060032
		ror & Frequency stability		
X	Spectrum Analyser	ROHDE & SCHWARZ	FSL	A4060032
X	Antenna	KATHREIN	-	-
Х	Climatic Chamber	SECASI Technologies	SLT-34	D1024029


Page 25

11. UNCERTAINTIES CHART

	Measurement uncertainties (k=2) ±x(dB) / (Hz)	Limit for uncertainties ±y(dB)
TRANSMITTER REQUIREMENTS		
Frequency Error	±2.10 ⁻⁸ Hz	±1.10 ⁻⁷ Hz
Modulation Bandwidth	± 100 kHz	-
Effective Radiated Power	±3.9 dB	±6 dB
Adjacent Channel Power	±1.6 dB	±3 dB
Spurious emissions		
 Frequency < 1000 MHz 	±3.9 dB	±6 dB
 Frequency > 1000 MHz 	±3.1 dB	
Conducted power	±0.6 dB	±1.5 dB
Spectral density in conduction	±0.6 dB	±1.5 dB
Spurious emissions in conduction	±1.6 dB	±3 dB
Temperature	±0.5°C	±1°C
Humidity	±2.5 %	±5 %
RECEIVER REQUIREMENTS		
Spurious emissions		
 Frequency < 1000 MHz 	±3.9 dB	±6 dB
 Frequency > 1000 MHz 	±3.1 dB	
Spurious emissions in conduction	±0.6 dB	±3 dB

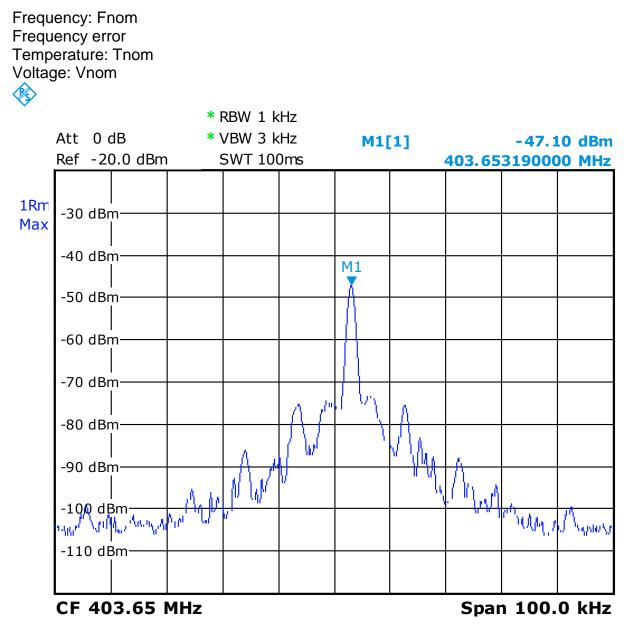
12. ANNEX 1 (GRAPHS)

Date: 30.MAR.2012 11:13:29

Frequency: Fmin Frequency error Temperature: Tnom Voltage: Vnom ¢\$ * RBW 1 kHz Att 0 dB * VBW 3 kHz M1[1] -46.92 dBm Ref -20.0 dBm SWT 100ms 402.147410000 MHz 1Rm -30 dBm-Max -40 dBm-Μ1 K. -50 dBm--60 dBm--70 dBm--80 dBm -90 dBm -Mi phal M -100 dBm ትላይ -110 dBm-Span 100.0 kHz CF 402.15 MHz

Date: 30.MAR.2012 14:35:10

Frequency: Fmin Frequency error Temperature: Tmax Voltage: Vnom × * RBW 1 kHz Att 0 dB * VBW 3 kHz -46.25 dBm M1[1] Ref -20.0 dBm SWT 100ms 402.148200000 MHz 1Rm -30 dBm-Max -40 dBm-M1 ň -50 dBm--60 dBm--70 dBm-Л -80 dBm -90 dBm-Dr. B. Marthan Marthan -100,dBm "Իկուդ "Իսպիս հեռևոր -110 dBm-Span 100.0 kHz CF 402.15 MHz


Date: 30.MAR.2012 17:00:43

Frequency: Fnom Frequency error Temperature: Tmin Voltage: Vnom × * RBW 1 kHz Att 0 dB * VBW 3 kHz M1[1] -45.73 dBm Ref -20.0 dBm SWT 100ms 403.651400000 MHz 1Rm -30 dBm-Max -40 dBm-41 -50 dBm--60 dBm--70 dBm--80 dBm--90 dBm e^{2} J. W. W. hu M -100 dBmalampia gana ahah n Ay mi^{lles}adi You A. for Late 14/1. -110 dBm-Span 100.0 kHz CF 403.65 MHz

Date: 30.MAR.2012 11:12:05

Date: 30.MAR.2012 14:39:41

Frequency: Fnom Frequency error Temperature: Tmax Voltage: Vnom ¢\$ * RBW 1 kHz Att 0 dB * VBW 3 kHz M1[1] -47.11 dBm Ref -20.0 dBm SWT 100ms 403.651800000 MHz 1Rm -30 dBm-Max -40 dBm-Μ1 -50 dBm--60 dBm--70 dBm--80 dBm -90 dBm -100 dBm -110 dBm-Span 100.0 kHz CF 403.65 MHz

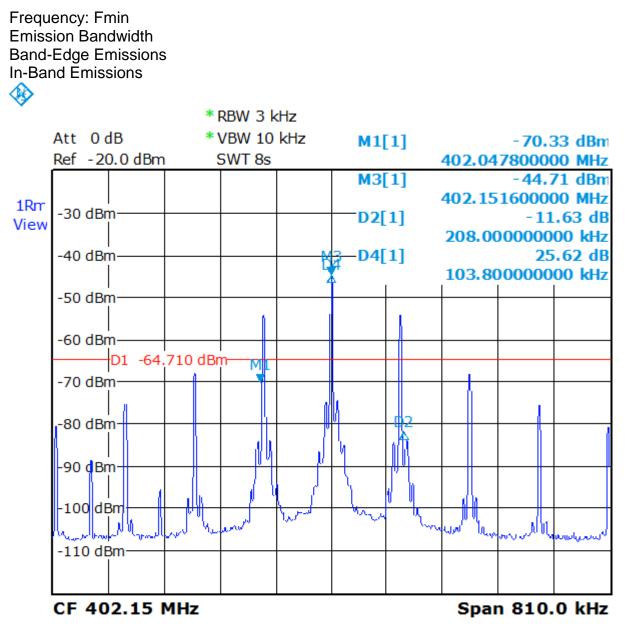
Date: 30.MAR.2012 16:58:50

Frequency: Fmax Frequency error Temperature: Tmin Voltage: Vnom ¢\$ * RBW 1 kHz Att 0 dB * VBW 3 kHz M1[1] -46.39 dBm Ref -20.0 dBm SWT 100ms 404.85160000 MHz 1Rm -30 dBm-Max -40 dBm-Μ1 -50 dBm--60 dBm--70 dBm--80 dBm ωA -90 dBm--100 d.Bm -110 dBm-Span 100.0 kHz CF 404.85 MHz

Date: 30.MAR.2012 11:09:31

Frequency: Fmax Frequency error Temperature: Tnom Voltage: Vnom ¢\$ * RBW 1 kHz Att 0 dB * VBW 3 kHz M1[1] -46.46 dBm Ref -20.0 dBm SWT 100ms 404.852990000 MHz 1Rm -30 dBm-Max -40 dBm-M1 -50 dBm--60 dBm--70 dBm--80 dBm łŀ. -90 dBm had -100 dBm -110 dBm-Span 100.0 kHz CF 404.85 MHz

Date: 30.MAR.2012 14:42:13



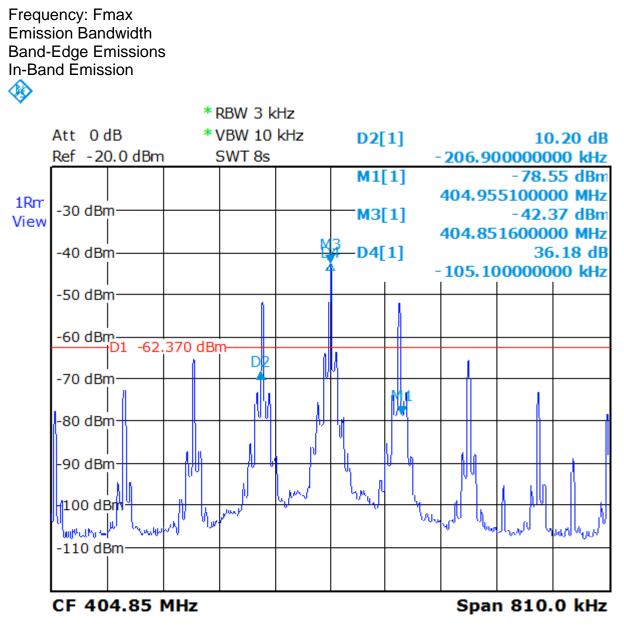
Frequency: Fmax Frequency error Temperature: Tmax Voltage: Vnom ¢\$ * RBW 1 kHz Att 0 dB * VBW 3 kHz M1[1] -46.80 dBm Ref -20.0 dBm SWT 100ms 404.849400000 MHz 1Rm -30 dBm-Max -40 dBm-M1 -50 dBm--60 dBm--70 dBm--80 dBm -90 dBm ብ 100 dBm -110 dBm-Span 100.0 kHz CF 404.85 MHz

Date: 30.MAR.2012 16:52:33

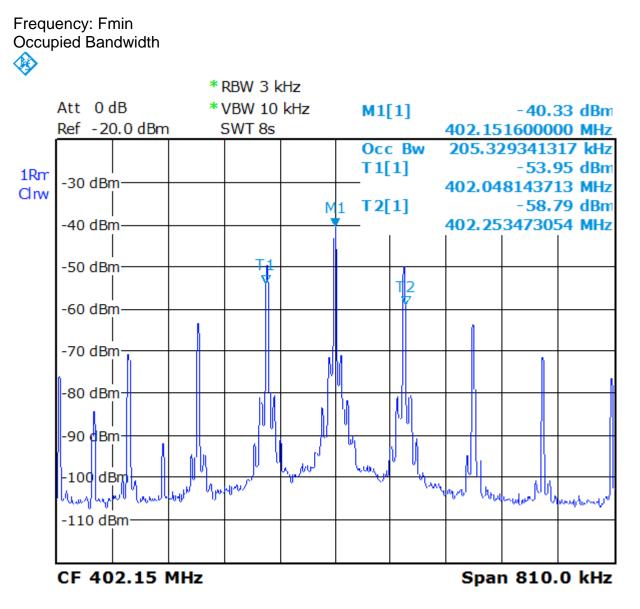


Page 35

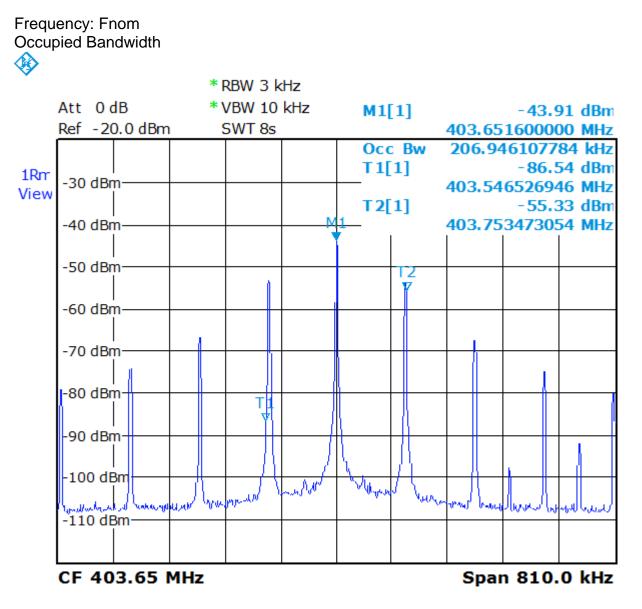
Date: 29.MAR.2012 09:35:41

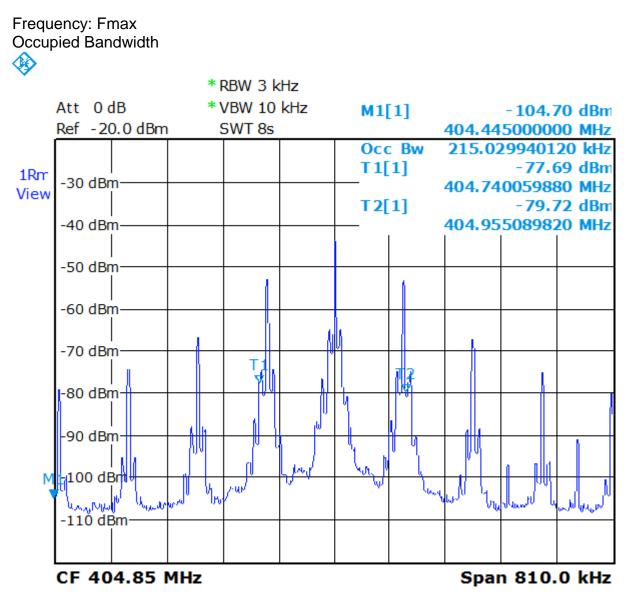


Date: 29.MAR.2012 09:44:31



Page 37


Date: 29.MAR.2012 09:58:08


Date: 29.MAR.2012 10:14:18

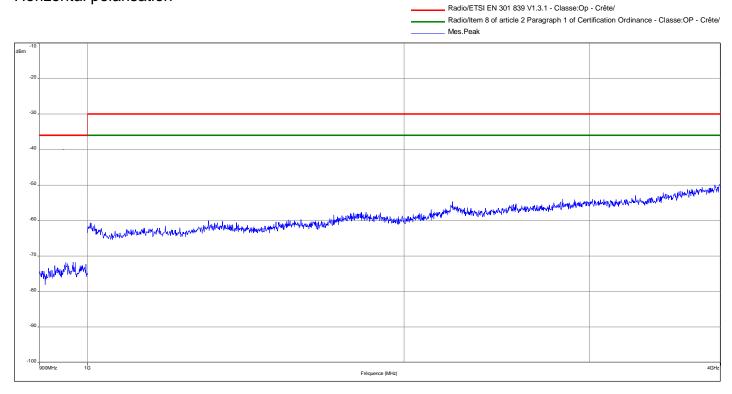
Date: 29.MAR.2012 10:09:43

Date: 29.MAR.2012 10:19:56

Page 41

Radio/ETSI EN 301 839 V1.3.1 - Classe:Op - Crête/

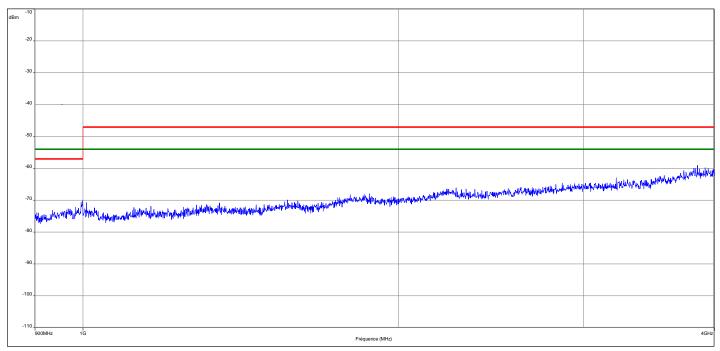
Radio/Item 8 of article 2 Paragraph 1 of Certification Ordinance - Classe:OP - Crête/


Spurious emissions Operating mode Vertical polarisation

			Mes.Peak	
-10 dBm				
-20 .				
-30				
-40				
-50.			. March 10	markensker warden and an and an and
-60		+almand_non_nand_non_nandman_nandman_nandman_nandman_nandman_nandman_nandman_nandman_nandman_	ngentellagennen an neurolaitenen an anna a da	
	Wagake Willow we have			
-80.				
-90				
-100 .	900MHz 1	3 Fréquence (MHz)	<u>.</u>	4GHz

Page 42

Spurious emissions Operating mode Horizontal polarisation

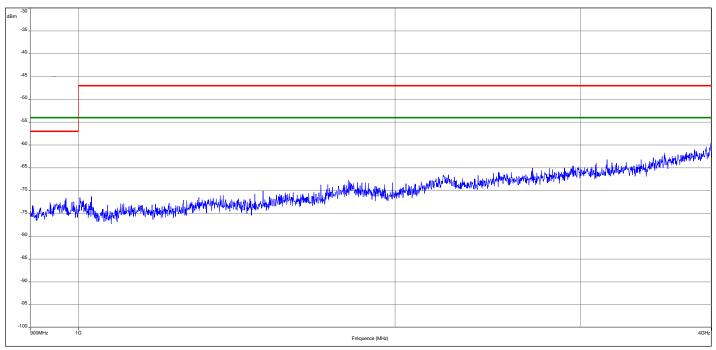


Page 43

Spurious emissions Receiver mode Vertical polarisation

Radio/ETSI EN 301 839 V1.3.1 - Classe:SB - Crête/

Radio/Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance) - Classe:SB - Crête/ __ Mes.Peak



Page 44

Spurious emissions Receiver mode Horizontal polarisation

Radio/ETSI EN 301 839 V1.3.1 - Classe:SB - Crête/

Radio/Specified low-power radio equipment (Item 8 of Article 2 Paragraph 1 of Certification Ordinance) - Classe:SB - Crête/
 Mes.Peak

13. ANNEX 2 (FLUID DATA SHEET MSL 450)

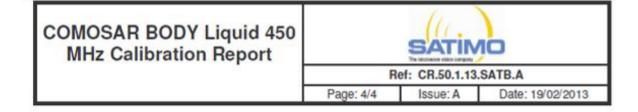
COMOSAR BODY Liquid 450 MHz Calibration Report Ref: CR.50.1.13.SATB.A Page: 3/4 Issue: A Date: 19/02/2013

PRODUCT DESCRIPTION

Components :

De-ionised water Sodium chloride 1,2 - Propanediol

CALIBRATION TEST EQUIPMENT


ТҮРЕ	IDENTIFICATION	DATE OF CALIBRATION
Vector Network Analyzer	HP8753D (SN: 5410A08882)	23/03/2011
Dielectric probe kit	SATIMO OCP (SN:SN1410OCPG35)	09/2012

FCC RECOMMENDED REFERENCE VALUES

Frequency (MHz)	Relative Dielectric Constant (ε _r)	Conductivity (σ) (S/m)
150	61.9	0.8
300	58.2	0.92
450	56.7	0.94
835	55.2	0.97
900	55	1.05
915	55	1.06
1450	54	1.3
1610	53.8	1.4
1800-2000	53.3	1.52
2450	52.7	1.95
3000	52	2.73
5800	48.2	6

Page 46

DIELECTRIC PARAMETERS MEASURED

Frequency (MHz)	Epsilon	Epsilon *	Sigma (S7m)	FCC Recommendations 3
400.00	56.54	41.41	0.92	Epsilon': -1.16%
+00.00	30.34	41.41	0.32	Epolor": 1.40 %
410.D0	56.54	40.86	0.93	Epsilon" -0.99 % Epsilon" -0.43 %
420.00	56.47	39.87	0.93	Epsion" -0.93 % Epsion" -0.62 %
430.00	56.21	39.55	0.94	Epsilon* -1 20 % Epsilon* 0.73 %
440.00	55.77	38.72	095	Epston': 1.62 % Epston'': 0.84 %
450.D0	55.84	37.95	0.95	Epsilon': 1.52% Epsilon": 0.93%
460.D0	55,98	37.84	0.97	Epsilon': 1.20 % Epsilon'' 2.80 %
470.00	55.81	37.04	0.97	Epsilon": 1 44 % Epsilon": 2.72 %
480.D0	55.69	36.87	0.98	Epision" -1.59 % Epision" -4.33 %
490.00	55.97	35.85	0.98	Epsilon': -1 02 % Epsilon": 3 43 %

Freq (MHz)	Parameters	Liquid Temp (°C)	Target Value	Measured Values	Deviation (%)	Limits (%)
450	Permittivity	21.0	56.7	55.84	-1.52	±5
	Conductivity (S/m)	21.0	0.94	0.95	0.93	±5