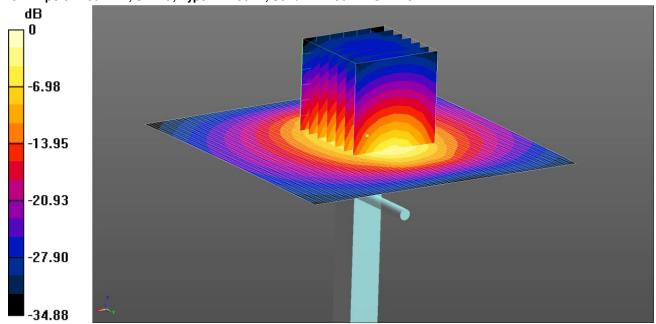
REPORT NO: UL-SAR-RP10488894JD04A V3.0 Issue Date: 24 May 2016

12.2. System Check Plots


This appendix contains the following system validation distribution scans.

Scan Reference Number	Title
001	System Performance Check 2450MHz Body 23 07 15
002	System Performance Check 2450MHz Body 17 08 15
003	System Performance Check 5250MHz Body 04 08 15
004	System Performance Check 5600MHz Body 04 08 15
005	System Performance Check 5750MHz Body 04 08 15

001: System Performance Check 2450MHz Body 23 07 15

Date: 23/07/2015

DUT: Dipole 2450 MHz; SN725; Type: D2450V2; Serial: D2450V2 - SN:725

Issue Date: 24 May 2016

0 dB = 18.2 W/kg = 12.59 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450MHz MSL Medium parameters used: f = 2450 MHz; σ = 1.956 S/m; ϵ_r = 50.972; ρ = 1000 kg/m³

Phantom section: Flat Section **DASY4** Configuration:

- Probe: EX3DV4 - SN3995; ConvF(7.4, 7.4, 7.4); Calibrated: 28/04/2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn450; Calibrated: 16/09/2014

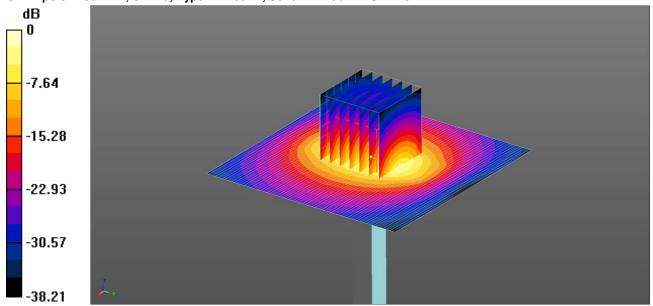
- Phantom: ELI v5.0; Type: QDOVA002AA;

-; SEMCAD X Version 14.6.10 (7164)

Configuration/d=10mm, Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.2 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.426 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 24.9 W/kg

SAR(1 g) = 12 W/kg; SAR(10 g) = 5.58 W/kgMaximum value of SAR (measured) = 18.3 W/kg Issue Date: 24 May 2016

002: System Performance Check 2450MHz Body 17 08 15

Date: 17/08/2015

DUT: Dipole 2450 MHz; SN725; Type: D2450V2; Serial: D2450V2 - SN:725

0 dB = 18.5 W/kg = 12.67 dBW/kg

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used: f = 2450 MHz; σ = 2.03 S/m; ϵ_r = 50.471; ρ = 1000 kg/m³

Phantom section: Flat Section **DASY4** Configuration:

- Probe: EX3DV4 - SN3995; ConvF(7.4, 7.4, 7.4); Calibrated: 28/04/2015;

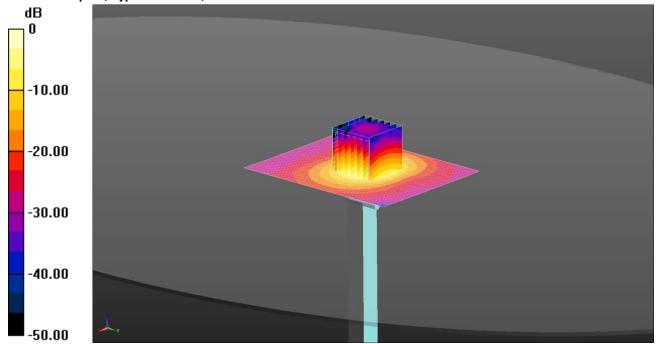
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 16/09/2014
- Phantom: ELI v5.0; Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7164)

Configuration/d=10mm, Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.5 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 73.464 V/m; Power Drift = 0.23 dB

Peak SAR (extrapolated) = 25.3 W/kg


SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.56 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Issue Date: 24 May 2016

003: System Performance Check 5250MHz Body 04 08 15 Date: 04/08/15

DUT: 5GHz Dipole; Type: D5GHzV2; Serial: SN 1016

0 dB = 15.6 W/kg = 11.93 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: 5200/5500/5800 MHz MSL Medium parameters used: f = 5250 MHz; $\sigma = 5.365$ S/m; $\epsilon_r = 47.626$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

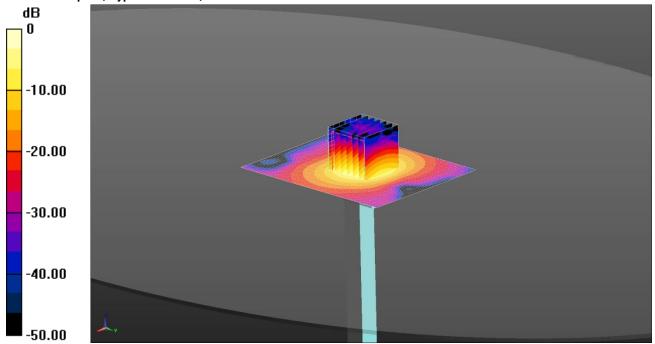
- Probe: EX3DV4 SN3814; ConvF(4.38, 4.38, 4.38); Calibrated: 18/09/14;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 20/02/15
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW 2/Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 15.7 W/kg

Configuration/d=10mm, Pin=100mW 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 38.89 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 29.1 W/kg


SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.1 W/kgMaximum value of SAR (measured) = 15.6 W/kg

UL VS Ltd Report. No.: 3.0 004: System Performance Check 5600MHz Body 04 08 15

Issue Date: 24 May 2016

Date: 04/08/15

DUT: 5GHz Dipole; Type: D5GHzV2; Serial: SN 1016

0 dB = 16.6 W/kg = 12.20 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: 5200/5500/5800 MHz MSL Medium parameters used: f = 5600 MHz; σ = 5.91 S/m; $ε_r = 46.746$; ρ = 1000 kg/m³

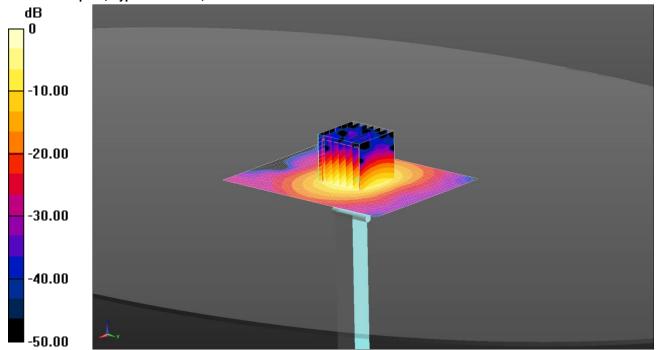
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(3.79, 3.79, 3.79); Calibrated: 18/09/14;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 20/02/15
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW 2 2/Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 16.7 W/kg

Configuration/d=10mm, Pin=100mW 2 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 37.48 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.19 W/kgMaximum value of SAR (measured) = 16.6 W/kg Issue Date: 24 May 2016

005: System Performance Check 5750MHz Body 04 08 15 Date: 04/08/15

DUT: 5GHz Dipole; Type: D5GHzV2; Serial: SN 1016

0 dB = 15.4 W/kg = 11.88 dBW/kg

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: 5200/5500/5800 MHz MSL Medium parameters used: f = 5750 MHz; $\sigma = 6.15$ S/m; $\epsilon_r = 46.442$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(4.06, 4.06, 4.06); Calibrated: 18/09/14;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 20/02/15
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW 2/Area Scan (71x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 16.0 W/kg

Configuration/d=10mm, Pin=100mW 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 35.59 V/m; Power Drift = 0.04 dB

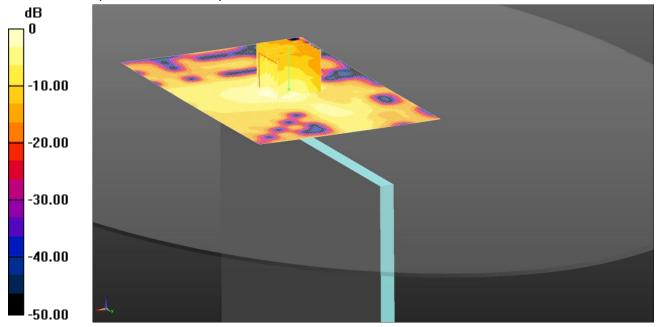
Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 7.22 W/kg; SAR(10 g) = 2.03 W/kgMaximum value of SAR (measured) = 15.4 W/kg

UL VS Ltd Report. No.: 3.0 REPORT NO: UL-SAR-RP10488894JD04A V3.0 Issue Date: 24 May 2016

12.3. SAR Test Plots

This appendix contains the following system validation distribution scans.


Scan Reference Number	Title
001	Bottom Of EUT Facing Phantom Wi-Fi 2.4GHz 802.11b CH6
002	Bottom of EUT Facing Phantom Bluetooth CH39
003	Bottom Of EUT Facing Phantom Wi-Fi 5.2GHz 802 11n HT40 Ant 1 CH46
004	Bottom Of EUT Facing Phantom Wi-Fi 5.3GHz 802 11a Ant 1 CH52
005	Bottom Of EUT Facing Phantom Wi-Fi 5.5GHz 802 11a Ant 1 CH136
006	Bottom Of EUT Facing Phantom Wi-Fi 5.8GHz 802 11a Ant 1 CH157

Issue Date: 24 May 2016

001: Bottom Of EUT Facing Phantom Wi-Fi 2.4GHz 802.11b CH6

Date: 23/07/2015

Host DUT: A1458; Sleeve: Infinea TAB; Sleeve contains FCC ID: YRWDATECSBT301

0 dB = 0.0344 W/kg = -14.63 dBW/kg

Communication System: UID 0, WLAN 802.11 (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2.4 GHz MSL Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.936$ S/m; $\epsilon_r = 51.01$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3995; ConvF(7.4, 7.4, 7.4); Calibrated: 28/04/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 16/09/2014
- Phantom: ELI v5.0; Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7164)

Configuration/Bottom of EUT Facing Phantom/Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0361 W/kg

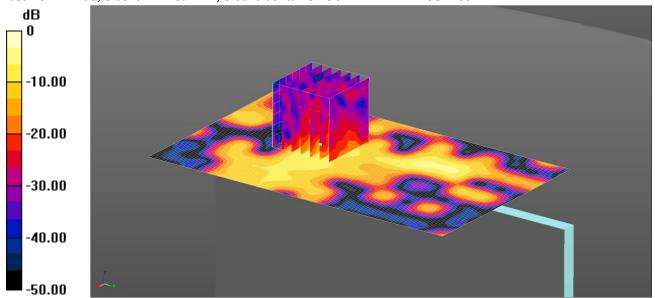
Configuration/Bottom of EUT Facing Phantom/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 3.904 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.0730 W/kg

SAR(1 g) = 0.032 W/kg; SAR(10 g) = 0.014 W/kg


Maximum value of SAR (measured) = 0.0344 W/kg

Note: SAR level measured is very low as equivalent to noise floor.

002: Bottom of EUT Facing Phantom Bluetooth CH39

Date: 18/08/2015

Host DUT: A1458; Sleeve: Infinea TAB; Sleeve contains FCC ID: YRWDATECSBT301

Issue Date: 24 May 2016

0 dB = 0.0288 W/kg = -15.41 dBW/kg

Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz; Duty Cycle: 1:1

Medium: 2450 MHz MSL Medium parameters used (interpolated): f = 2441 MHz; σ = 2.017 S/m; ϵ_r = 50.499; ρ = 1000 kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(7.4, 7.4, 7.4); Calibrated: 28/04/2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn450; Calibrated: 16/09/2014

- Phantom: ELI v5.0; Type: QDOVA002AA;

-; SEMCAD X Version 14.6.10 (7164)

Configuration/Bottom of EUT Facing Phantom - Middle 2/Area Scan (81x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0288 W/kg

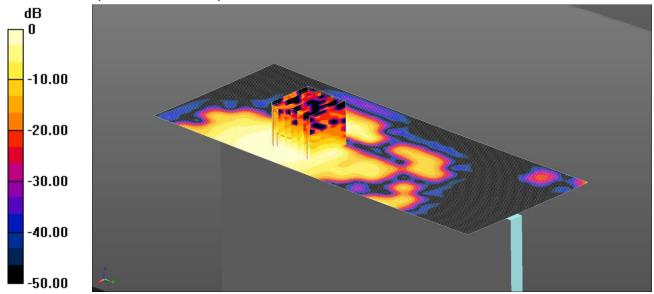
Configuration/Bottom of EUT Facing Phantom - Middle 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.176 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.0260 W/kg

SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.0045 W/kg Maximum value of SAR (measured) = 0.0187 W/kg


Note: SAR level measured is very low as equivalent to noise floor.

Issue Date: 24 May 2016

003: Bottom Of EUT Facing Phantom Wi-Fi 5.2GHz 802 11n HT40 Ant 1 CH46

Date: 05/08/15

Host DUT: A1458; Sleeve: Infinea TAB; Sleeve contains FCC ID: YRWDATECSBT301

0 dB = 0.149 W/kg = -8.27 dBW/kg

Communication System: UID 0, WLAN 802.11 (0); Frequency: 5230 MHz; Duty Cycle: 1:1

Medium: 5200/5500/5800 MHz MSL Medium parameters used (interpolated): f = 5230 MHz; $\sigma = 5.325$ S/m; $\varepsilon_r = 47.672$; $\rho = 5.325$ S/m; $\varepsilon_r = 47.672$; ε_r 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(4.38, 4.38, 4.38); Calibrated: 18/09/14;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 20/02/15
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7331)

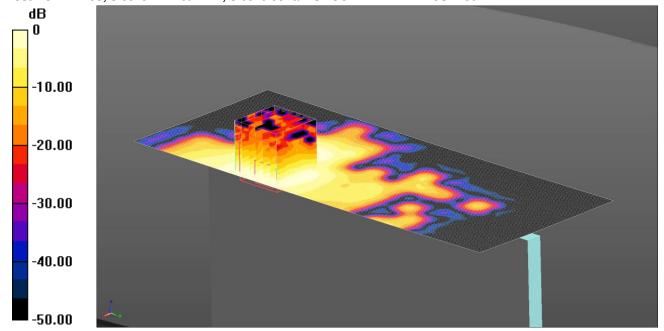
Configuration/Bottom of EUT Facing Phantom 2/Area Scan (81x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.169 W/kg

Configuration/Bottom of EUT Facing Phantom 2/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.070 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.134 W/kg; SAR(10 g) = 0.048 W/kg


Maximum value of SAR (measured) = 0.149 W/kg

Note: SAR level measured is very low as equivalent to noise floor.

REPORT NO: UL-SAR-RP10488894JD04A V3.0 Issue Date: 24 May 2016

004: Bottom Of EUT Facing Phantom Wi-Fi 5.3GHz 802 11a Ant 1 CH52 Date: 05/08/15

Host DUT: A1458; Sleeve: Infinea TAB; Sleeve contains FCC ID: YRWDATECSBT301

0 dB = 0.237 W/kg = -6.25 dBW/kg

Communication System: UID 0, WLAN 802.11 (0); Frequency: 5260 MHz; Duty Cycle: 1:1

Medium: 5200/5500/5800 MHz MSL Medium parameters used (interpolated): f = 5260 MHz; $\sigma = 5.379$ S/m; $\epsilon_r = 47.606$; $\rho = 5.379$ S/m; $\epsilon_r = 47.606$; ϵ_r 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

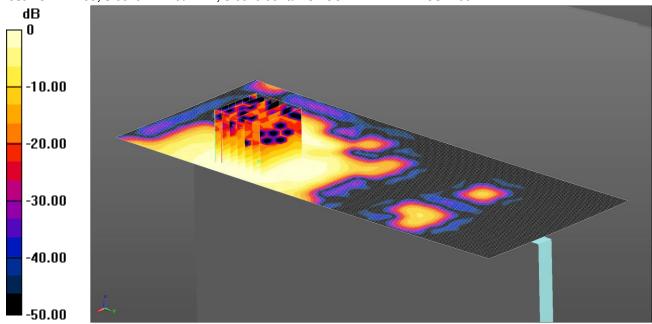
- Probe: EX3DV4 - SN3814; ConvF(4.18, 4.18, 4.18); Calibrated: 18/09/14;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 20/02/15
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Bottom of EUT Facing Phantom 2/Area Scan (81x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.247 W/kg

Configuration/Bottom of EUT Facing Phantom 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.528 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 0.576 W/kg

SAR(1 g) = 0.193 W/kg; SAR(10 g) = 0.086 W/kgMaximum value of SAR (measured) = 0.237 W/kg

94JD04A V3.0 Issue Date: 24 May 2016

005: Bottom Of EUT Facing Phantom Wi-Fi 5.5GHz 802 11a Ant 1 CH136 Date: 05/08/15

Host DUT: A1458; Sleeve: Infinea TAB; Sleeve contains FCC ID: YRWDATECSBT301

0 dB = 0.248 W/kg = -6.06 dBW/kg

Communication System: UID 0, WLAN 802.11 (0); Frequency: 5680 MHz; Duty Cycle: 1:1

Medium: 5200/5500/5800 MHz MSL Medium parameters used (interpolated): f = 5680 MHz; $\sigma = 6.029$ S/m; $\epsilon_r = 46.557$; $\rho = 1000$ kg/m³

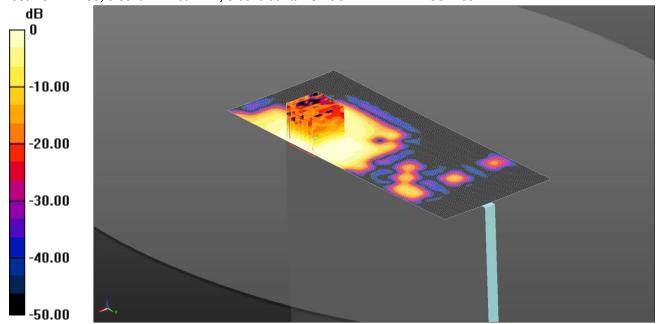
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(4.06, 4.06, 4.06); Calibrated: 18/09/14;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 20/02/15
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Bottom of EUT Facing Phantom 2/Area Scan (81x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.239 W/kg

Configuration/Bottom of EUT Facing Phantom 2/Zoom Scan (7x7x12) (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 5.594 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.707 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.094 W/kg Maximum value of SAR (measured) = 0.248 W/kg REPORT NO: UL-SAR-RP10488894JD04A V3.0 Issue Date: 24 May 2016

006: Bottom Of EUT Facing Phantom Wi-Fi 5.8GHz 802 11a Ant 1 CH157 Date: 06/08/15

Host DUT: A1458; Sleeve: Infinea TAB; Sleeve contains FCC ID: YRWDATECSBT301

0 dB = 0.204 W/kg = -6.90 dBW/kg

Communication System: UID 0, WLAN 802.11 (0); Frequency: 5785 MHz; Duty Cycle: 1:1

Medium: 5200/5500/5800 MHz MSL Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 6.185$ S/m; $\varepsilon_r = 46.298$; $\rho = 6.185$ S/m; $\varepsilon_r = 46.298$; ε_r 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(4.06, 4.06, 4.06); Calibrated: 18/09/14;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 20/02/15
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA;
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Bottom of EUT Facing Phantom 2/Area Scan (81x201x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.200 W/kg

Configuration/Bottom of EUT Facing Phantom 2/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.513 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.497 W/kg

SAR(1 g) = 0.175 W/kg; SAR(10 g) = 0.075 W/kg

Maximum value of SAR (measured) = 0.204 W/kg

REPORT NO: UL-SAR-RP10488894JD04A V3.0 Issue Date: 24 May 2016

12.4. Calibration Certificate for E-Field Probe

This sub-section contains Cal Certificates for E-Field Probes, and is not included in the total number of pages for this report.

Page 52 of 54

AZ545

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Cheeke

Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL RFI UK Certificate No: EX3-3995_Apr15

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3995

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: April 28, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name
Function
Signature

Laboratory Technician

Mreen
Caleey

Approved by:

Katja Pokovic
Technical Manager

Issued: April 28, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3995_Apr15 Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3995_Apr15 Page 2 of 11

Probe EX3DV4

SN:3995

Manufactured: January 21, 2014 Calibrated: April 28, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3995_Apr15

April 28, 2015 EX3DV4-SN:3995

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3995

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2	
Norm (μV/(V/m) ²) ^A	0.51	0.37	0.55	± 10.1 %	
DCP (mV) ^B	102.0	102.8	103.8		

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [□] (k=2)
0	CW	×	0.0	0.0	1.0	0.00	140.6	±3.0 %
		Y	0.0	0.0	1.0		139.6	
		Z	0.0	0.0	1.0		140.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3995

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	10.86	10.86	10.86	0.17	1.90	± 13.3 %
750	41.9	0.89	10.05	10.05	10.05	0.24	1.27	± 12.0 %
835	41.5	0.90	9.60	9.60	9.60	0.19	1.52	± 12.0 %
900	41.5	0.97	9.39	9.39	9.39	0.26	1.32	± 12.0 %
1450	40.5	1.20	8.63	8.63	8.63	0.23	1.20	± 12.0 %
1750	40.1	1.37	8.15	8.15	8.15	0.35	0.84	± 12.0 %
1900	40.0	1.40	7.95	7.95	7.95	0.30	0.80	± 12.0 %
2100	39.8	1.49	8.10	8.10	8.10	0.32	0.80	± 12.0 %
2300	39.5	1.67	7.53	7.53	7.53	0.34	0.81	± 12.0 %
2450	39.2	1.80	7.24	7.24	7.24	0.35	0.83	± 12.0 %
2600	39.0	1.96	7.05	7.05	7.05	0.43	0.80	± 12.0 %
3700	37.7	3.12	6.77	6.77	6.77	0.35	1.22	± 13.1 %
5250	35.9	4.71	5.29	5.29	5.29	0.30	1.80	± 13.1 %
5600	35.5	5.07	4.81	4.81	4.81	0.35	1.80	± 13.1 %
5750	35.4	5.22	5.12	5.12	5.12	0.40	1.80	± 13.1 %

Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Certificate No: EX3-3995_Apr15

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

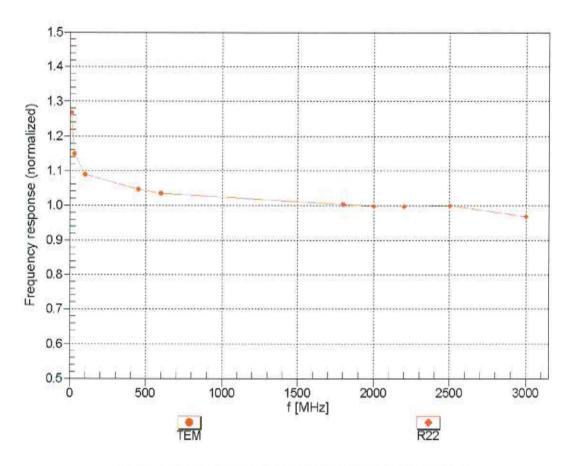
the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3995

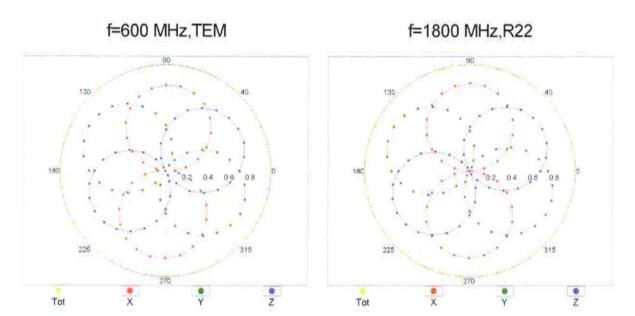
Calibration Parameter Determined in Body Tissue Simulating Media

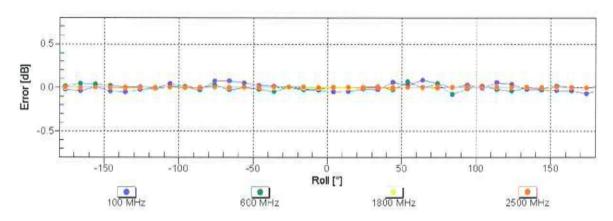
f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	11.20	11.20	11.20	0.09	1.30	± 13.3 %
750	55.5	0.96	9.86	9.86	9.86	0.36	1.04	± 12.0 %
835	55.2	0.97	9.66	9.66	9.66	0.39	0.98	± 12.0 %
900	55.0	1.05	9.32	9.32	9.32	0.31	1.16	± 12.0 %
1450	54.0	1.30	8.35	8.35	8.35	0.32	0.95	± 12.0 %
1750	53.4	1.49	7.97	7.97	7.97	0.37	0.80	± 12.0 %
1900	53.3	1.52	7.72	7.72	7.72	0.37	0.80	± 12.0 %
2100	53.2	1.62	8.04	8.04	8.04	0.42	0.81	± 12.0 %
2300	52.9	1.81	7.48	7.48	7.48	0.36	0.80	± 12.0 %
2450	52.7	1.95	7.40	7.40	7.40	0.24	0.80	± 12.0 %
2600	52.5	2.16	7.10	7.10	7.10	0.20	0.80	± 12.0 %
3700	51.0	3.55	6.40	6.40	6.40	0.36	1.28	± 13.1 %
5250	48.9	5.36	4.70	4.70	4.70	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.17	4.17	4.17	0.45	1.90	± 13.1 %
5750	48.3	5.94	4.49	4.49	4.49	0.50	1.90	± 13.1 %


 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

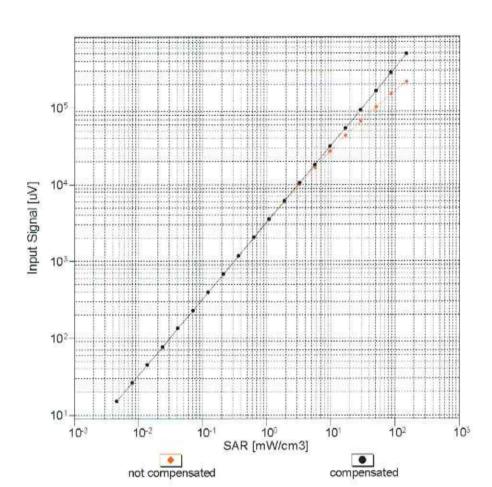
Certificate No: EX3-3995_Apr15

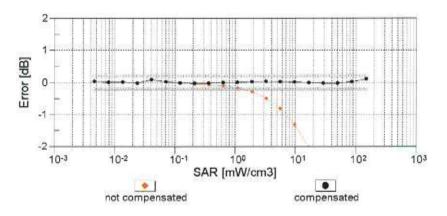
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

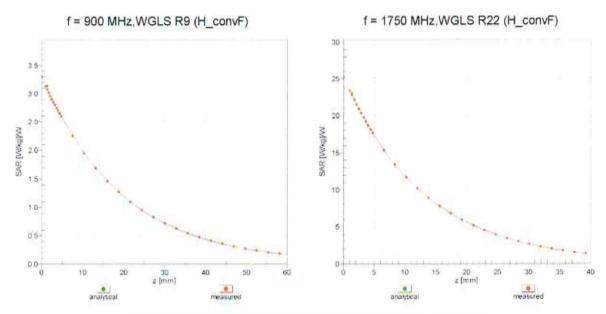

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3995

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	134
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

A2077

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL RFI UK

Certificate No: EX3-3814_Sep14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3814

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

September 18, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: EX3-3814_Sep14

ID	Cal Date (Certificate No.)	Scheduled Calibration
GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
ID	Check Date (in house)	Scheduled Check
US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700	GB41293874 03-Apr-14 (No. 217-01911) MY41498087 03-Apr-14 (No. 217-01911) SN: S5054 (3c) 03-Apr-14 (No. 217-01915) SN: S5277 (20x) 03-Apr-14 (No. 217-01919) SN: S5129 (30b) 03-Apr-14 (No. 217-01920) SN: 3013 30-Dec-13 (No. ES3-3013_Dec13) SN: 660 13-Dec-13 (No. DAE4-660_Dec13) ID Check Date (in house) US3642U01700 4-Aug-99 (in house check Apr-13)

Calibrated by:

Name
Function
Signature

Laboratory Technician

Signature

Street Claracter

Approved by:

Katja Pokovic
Technical Manager

Issued: September 18, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx.v.z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3814_Sep14 Page 2 of 11

Probe EX3DV4

SN:3814

Manufactured: September 2, 2011 Calibrated: September 18, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3814_Sep14 Page 3 of 11

September 18, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Basic Calibration Parameters

EX3DV4-SN:3814

Basic Calibration Para	Sensor X	Sensor Y	Sensor Z	Unc (k=2	
Norm (μV/(V/m) ²) ^A	0.53	0.48	0.45	± 10.1 %	
DCP (mV) ^B	97.6	94.6	101.5		

Modulation Calibration Parameters

DID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ⁻ (k=2)
0	CW	×	0.0	0.0	1.0	0.00	165.5	±3.5 %
0	CVV	Ÿ	0.0	0.0	1.0		164.0	
		7	0.0	0.0	1.0		155.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

EUncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2300	39.5	1.67	7.39	7.39	7.39	0.17	1.17	± 12.0 %
2450	39.2	1.80	6.95	6.95	6.95	0.19	1.34	± 12.0 %
2600	39.0	1.96	6.92	6.92	6.92	0.29	1.08	± 12.0 %
3700	37.7	3.12	6.42	6.42	6.42	0.20	2.03	± 13.1 %
5200	36.0	4.66	5.03	5.03	5.03	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.72	4.72	4.72	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.67	4.67	4.67	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.49	4.49	4.49	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.51	4.51	4.51	0.40	1.80	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Page 5 of 11

Certificate No: EX3-3814_Sep14

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

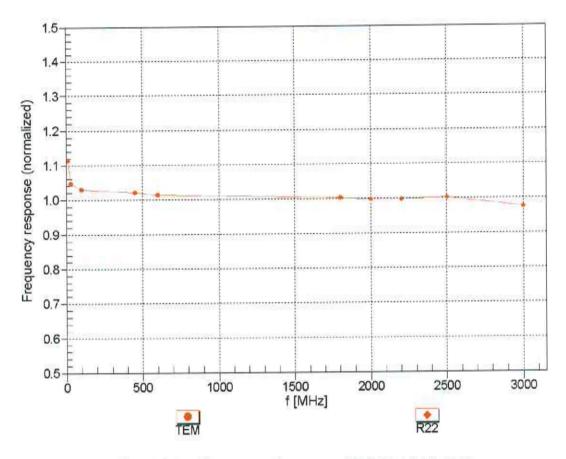
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Body Tissue Simulating Media

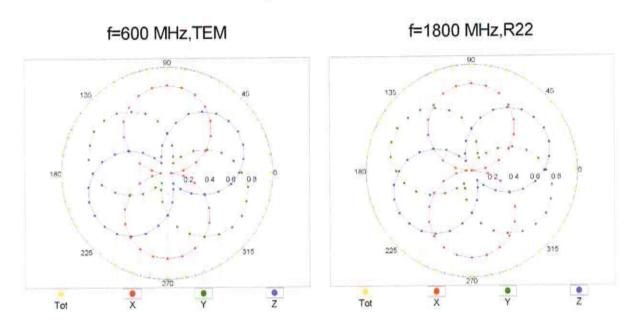
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2300	52.9	1.81	7.38	7.38	7.38	0.22	1.09	± 12.0 %
2450	52.7	1.95	7.07	7.07	7.07	0.38	0.80	± 12.0 %
2600	52.5	2.16	6.84	6.84	6.84	0.31	1.00	± 12.0 %
3700	51.0	3.55	6.27	6.27	6.27	0.22	2.14	± 13.1 %
5200	49.0	5.30	4.38	4.38	4.38	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.18	4.18	4.18	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.97	3.97	3.97	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.79	3.79	3.79	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.06	4.06	4.06	0.50	1.90	± 13.1 %

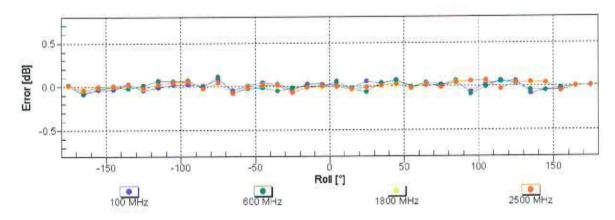
^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


Certificate No: EX3-3814_Sep14

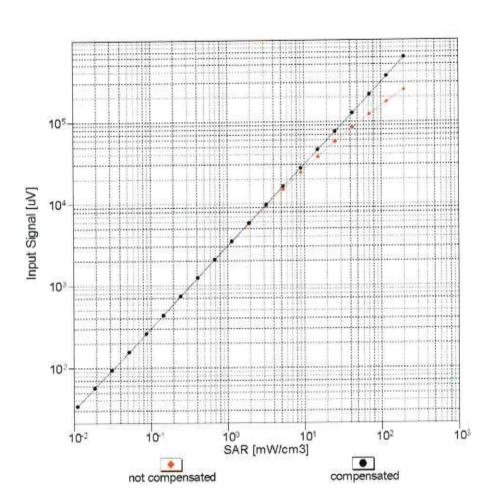
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

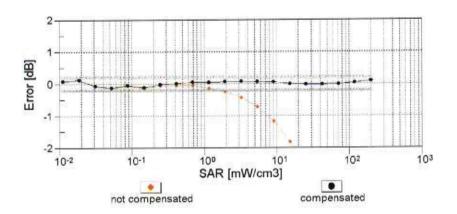
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


September 18, 2014 EX3DV4-SN:3814

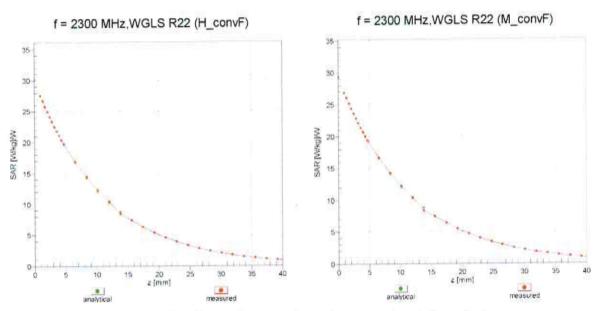

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

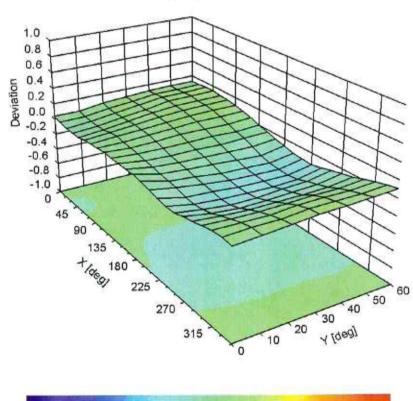
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

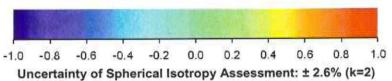

Receiving Pattern (ϕ), $\theta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-65.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

REPORT NO: UL-SAR-RP10488894JD04A V3.0 Issue Date: 24 May 2016

12.5. Calibration Certificate for Dipole

This sub-section contains Cal Certificates for Dipoles, and is not included in the total number of pages for this report.

Page 53 of 54 UL VS Ltd

A1322

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL RFI UK

Accreditation No.: SCS 108

Certificate No: D2450V2-725_Dec14

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 725

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

December 08, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M. Welses
Approved by:	Katja Pokovic	Technical Manager	12111

Issued: December 8, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-725_Dec14 Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-725_Dec14 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	557.5	5555

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-725_Dec14 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.2 \Omega + 9.5 j\Omega$
Return Loss	- 20.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.6 \Omega + 10.0 j\Omega$
Return Loss	- 20.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 16, 2002	

Certificate No: D2450V2-725_Dec14 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 725

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

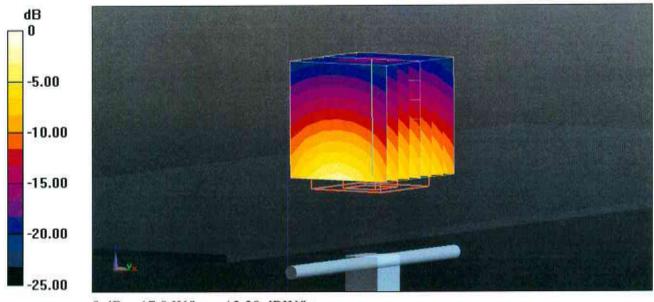
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

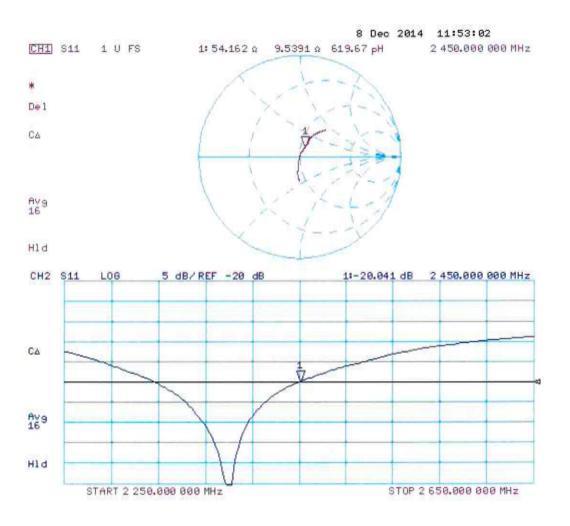
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.87 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.6 W/kg


SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.95 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 725

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

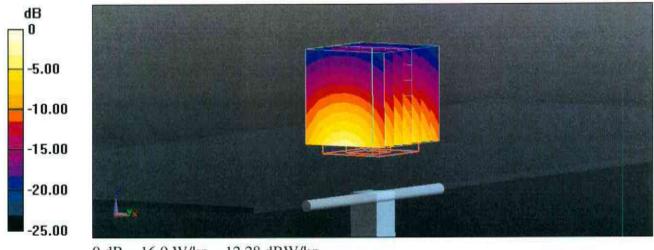
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

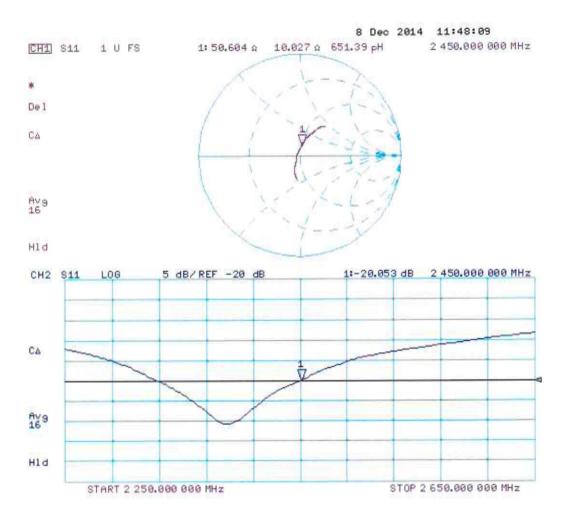
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.99 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 26.7 W/kg


SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.89 W/kg

Maximum value of SAR (measured) = 16.9 W/kg

0 dB = 16.9 W/kg = 12.28 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Cherce.

Accreditation No.: SCS 0108

Certificate No: D5GHzV2-1016_Feb15

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL RFI UK

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1016

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

February 24, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe EX3DV4	SN: 3503	30-Dec-14 (No. EX3-3503_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sef Alam
Approved by:	Katja Pokovic	Technical Manager	All 115

Issued: February 25, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1016_Feb15

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1016_Feb15 Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

The following parameters and successions were specific	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		6.500

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		2000

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.9 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Feb15 Page 3 of 13

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

× 1	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	RATION	

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Feb15 Page 4 of 13

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

the following parameters and salesianisms were spe-	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	Service .	

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

, and the second	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	55005	

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Feb15

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	2008	

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Feb15

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	55.5 Ω - 3.6 jΩ	
Return Loss	- 24.2 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	57.7 Ω - 3.9 jΩ	
Return Loss	- 21.9 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$61.1 \Omega + 9.7 j\Omega$	
Return Loss	- 17.6 dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	55.5 Ω - 1.3 jΩ	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.7 Ω - 2.0 jΩ	
Return Loss	- 21.7 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	61.4 Ω + 11.4 jΩ
Return Loss	- 16.8 dB

General Antenna Parameters and Design

1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 14, 2003

Certificate No: D5GHzV2-1016 Feb15 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 23.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1016

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.94$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.45, 5.45, 5.45); Calibrated: 30.12.2014, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2014, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.92 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.70 V/m; Power Drift = -0.05 dB

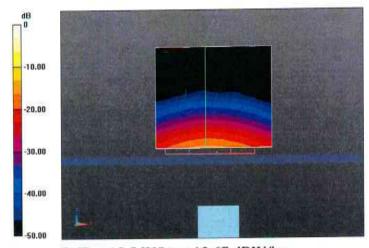
Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

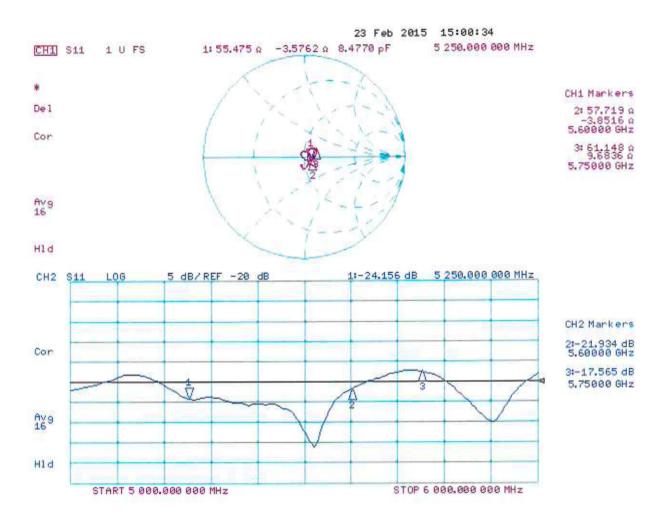
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 61.12 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 32.6 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.26 W/kg


Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1016 Feb15 Page 8 of 13

0 dB = 18.5 W/kg = 12.67 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.02.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1016

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.51$ S/m; $\epsilon_r = 48.4$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 47.7$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5750 MHz; $\sigma = 6.22$ S/m; $\epsilon_r = 47.5$; $\rho = 1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2014, ConvF(4.35, 4.35, 4.35);
 Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.41 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

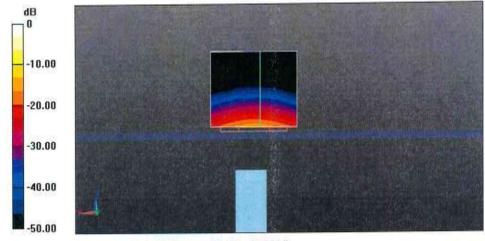
Reference Value = 57.26 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 34.3 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.15 W/kg

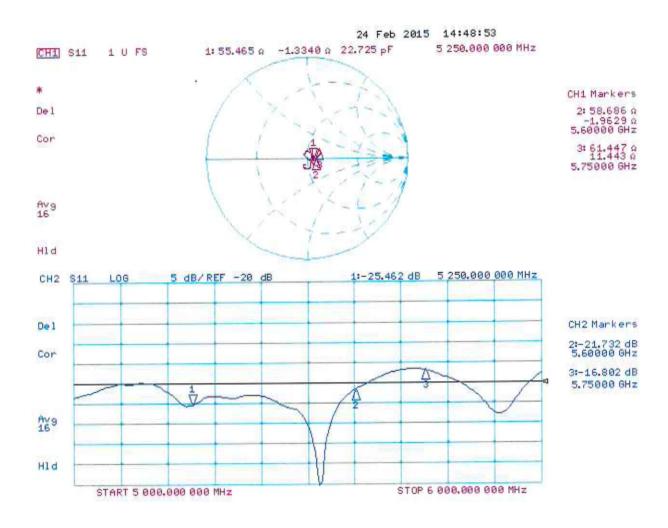
Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.77 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 34.2 W/kg


SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.06 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

Impedance Measurement Plot for Body TSL

12.6. Tissues-Equivalent Media Recipes

The body mixture consists of water, Polysorbate (Tween 20) and salt. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

Ingredient	Frequency 750/835/850/900 MHz
(% by weight)	Body
De-Ionized Water	71.30
Polysorbate 20	28.00
Salt	0.70

Ingredient	Frequency 1700/1800/1900 MHz
(% by weight)	Body
De-Ionized Water	71.50
Polysorbate 20	28.00
Salt	0.50

Ingredient	Frequency 2300/2450/2600 MHz
(% by weight)	Body
De-Ionized Water	71.70
Polysorbate 20	28.00
Salt	0.30

Stimulating Liquid for 3700 MHz to 5800 MHz are supplied and manufactured by SPEAG

Ingredient	Frequency
(% by weight)	3700 - 5800 MHz Body
De-Ionized Water	~78.00
Mineral Oil	~11.00
Emulsifiers	~9.00
Additives and Salt	~2.00