12.4. Calibration Certificate for E-Field Probe

This sub-section contains Cal Certificates for E-Field Probes, and is not included in the total number of pages for this report.

42545 05/2017

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL RFI UK Client

091

S

hedded MinCaree

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-3995_May17

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3995

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

May 4, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP SN: 104778		04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91 SN: 103244		04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator SN: S5277 (20x)		07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	7-0-
Approved by:	Katja Pokovic	Technical Manager	for the
This calibration certificate	e shall not be reproduced except in ful	l without written approval of the laborato	Issued: May 4, 2017 ory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

Glossary:

NORMx,y,z

TSL

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

he recognition of calibration certificates tissue simulating liquid sensitivity in free space

ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3995_May17

Probe EX3DV4

SN:3995

Manufactured: Calibrated: January 21, 2014 May 4, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.36	0.53	± 10.1 %
DCP (mV) ^B	100.0	103.1	101.4	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	142.5	±3.8 %
		Y	0.0	0.0	1.0		137.0	
		Z	0.0	0.0	1.0		139.3	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	61.16	456.2	35.69	24.44	1.767	5.021	1.33	0.381	1.008
Y	40.27	294.2	34.36	13.96	1.445	4.947	1.586	0.181	1.003
Z	50.36	371.2	34.94	17.62	1.39	4.994	0.867	0.332	1.003

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

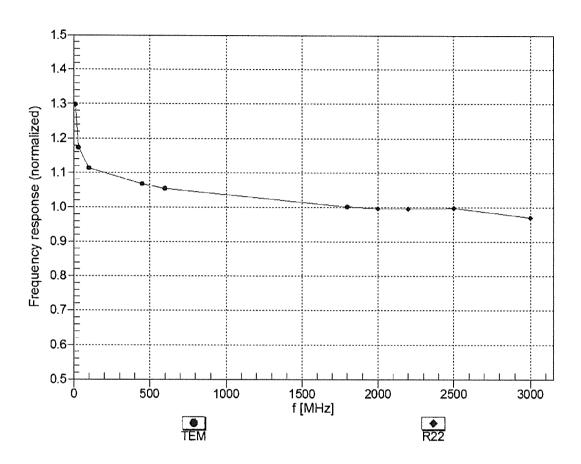
^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.57	10.57	10.57	0.60	0.80	± 12.0 %
835	41.5	0.90	10.16	10.16	10.16	0.54	0.80	± 12.0 %
900	41.5	0.97	10.10	10.10	10.10	0.49	0.82	± 12.0 %
1450	40.5	1.20	8.95	8.95	8.95	0.39	0.80	± 12.0 %
1750	40.1	1.37	8.62	8.62	8.62	0.37	0.80	± 12.0 %
1900	40.0	1.40	8.37	8.37	8.37	0.34	0.80	± 12.0 %
2100	39.8	1.49	8.53	8.53	8.53	0.33	0.80	± 12.0 %
2300	39.5	1.67	7.90	7.90	7.90	0.35	0.80	± 12.0 %
2450	39.2	1.80	7.60	7.60	7.60	0.36	0.80	± 12.0 %
2600	39.0	1.96	7.30	7.30	7.30	0.41	0.85	± 12.0 %
3500	37.9	2.91	7.13	7.13	7.13	0.28	1.20	± 13.1 %
5250	35.9	4.71	5.38	5.38	5.38	0.35	1.80	± 13.1 %
5600	35.5	5.07	5.02	5.02	5.02	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.30	5.30	5.30	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

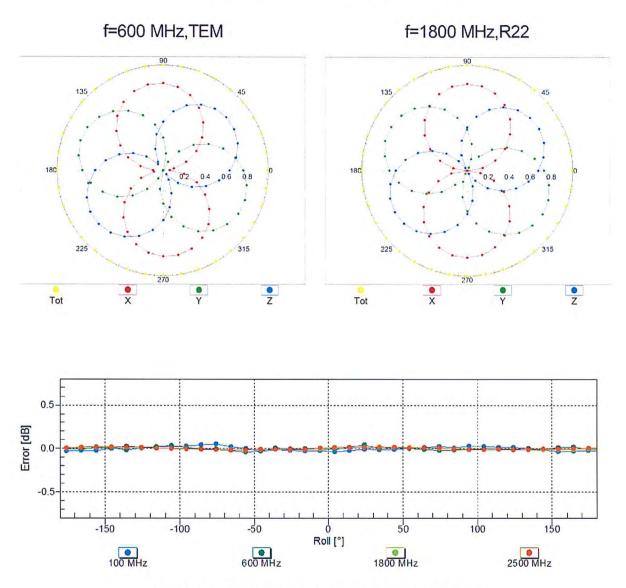
⁶ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

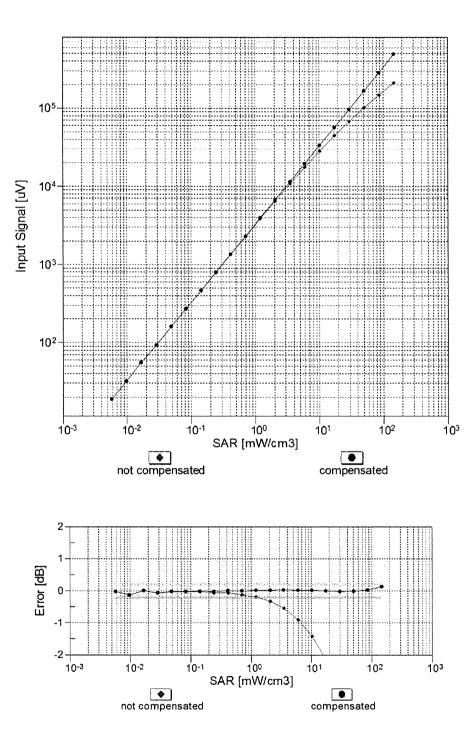

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.33	10.33	10.33	0.48	0.80	± 12.0 %
835	55.2	0.97	10.09	10.09	10.09	0.49	0.80	± 12.0 %
900	55.0	1.05	9.81	9.81	9.81	0.43	0.85	± 12.0 %
1450	54.0	1.30	8.74	8.74	8.74	0.44	0.80	± 12.0 %
1750	53.4	1.49	8.31	8.31	8.31	0.31	0.96	± 12.0 %
1900	53.3	1.52	8.04	8.04	8.04	0.45	0.80	± 12.0 %
2100	53.2	1.62	8.58	8.58	8.58	0.40	0.84	± 12.0 %
2300	52.9	1.81	7.84	7.84	7.84	0.37	0.85	± 12.0 %
2450	52.7	1.95	7.76	7.76	7.76	0.36	0.88	± 12.0 %
2600	52.5	2.16	7.45	7.45	7.45	0.25	0.99	± 12.0 %
3500	51.3	3.31	6.69	6.69	6.69	0.30	1.20	± 13.1 %
5250	48.9	5.36	4.97	4.97	4.97	0.40	1.90	± 13.1 %
5600	48.5	5.77	4.40	4.40	4.40	0.45	1.90	± 13.1 %
5750	48.3	5.94	4.59	4.59	4.59	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

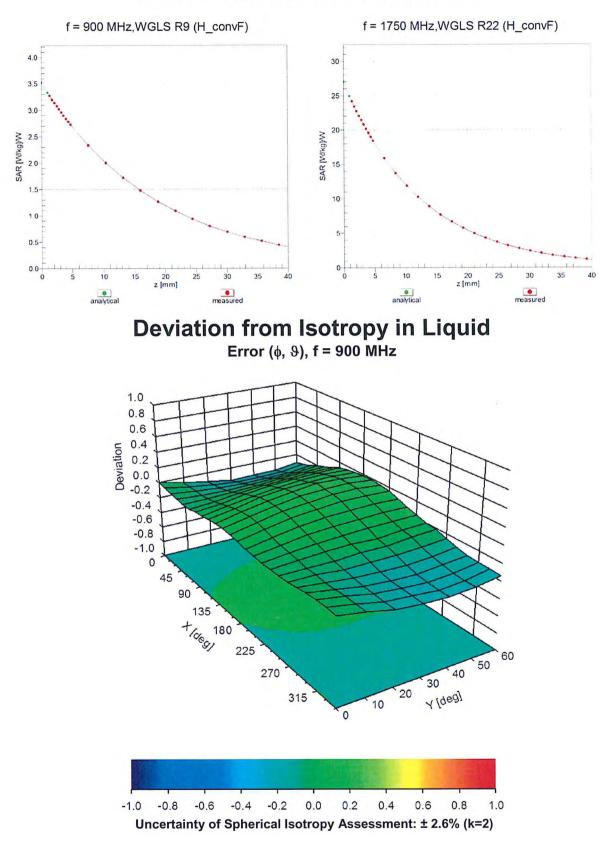
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


⁶ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-45.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	142.5	± 3.8 %
		Y	0.00	0.00	1.00		137.0	
10010-	SAR Validation (Square, 100ms, 10ms)	Z X	0.00	0.00 73.94	1.00 15.57	10.00	139.3	
CAA	SAR Validation (Square, Tooms, Toms)		5.40	73.94	15.57	10.00	20.0	± 9.6 %
		Y	3.17	67.24	11.75		20.0	
10011-		Z	3.66	69.35	12.90	0.00	20.0	
CAB	UMTS-FDD (WCDMA)	×	1.25	70.50	17.31	0.00	150.0	±9.6 %
		Y	1.08	68.77	16.16		150.0	
10010		Z	1.19	70.29	17.06	0.44	150.0	1000
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	×	1.29	65.26	16.27	0.41	150.0	± 9.6 %
		Y	1.20	64.32	15.40		150.0	
10010		Z	1.23	64.88	15.95	4.40	150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	×	5.06	66.78	17.21	1.46	150.0	± 9.6 %
		Y	4.76	66.67	16.82		150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z X	4.91 31.99	66.75 100.54	17.07 25.94	9.39	150.0	± 9.6 %
DAC	GSM-FDD (IDMA, GWSK)					9.39	50.0	± 9.0 %
·····		Y	7.46	78.38	17.54		50.0	
40000		Z	19.66	92.26	22.51	0.57	50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	25.13	96.97	24.98	9.57	50.0	± 9.6 %
		Y	6.75	76.84	16.99		50.0	
10004		Z	15.50	88.92	21.53	0.50	50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	×	100.00	113.78	27.53	6.56	60.0	± 9.6 %
		Y	7.84	80.38	16.93		60.0	
40005		Z	100.00	110.98	25.68	10.57	60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	16.43	105.17	40.20	12.57	50.0	± 9.6 %
·····		Y	4.40	67.61	22.73		50.0	
40000		Z	11.64	96.48	36.90	0.50	50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	17.49	102.11	35.15	9.56	60.0	± 9.6 %
		Y	8.50	86.01	28.77		60.0	
40007		Z	13.92	98.50	34.03	4.00	60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	112.80	26.29	4.80	80.0	± 9.6 %
		Y	18.73	90.50	19.08		80.0	
10028-	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	Z X	100.00 100.00	110.13 113.24	24.52 25.77	3.55	80.0 100.0	± 9.6 %
DAC				10===		ļ	400-	
		Y	100.00	107.58	22.51	ļ	100.0	
40000		Z	100.00	110.65	24.07	7.00	100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	10.94	91.56	30.40	7.80	80.0	± 9.6 %
		Y	5.89	79.06	25.12	 	80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	8.33 100.00	87.10 112.19	28.84 26.32	5.30	80.0 70.0	± 9.6 %
CAA		Y	5.79	77.42	15.28		70.0	
			100.00	109.22	24.40	+	70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	114.92	25.14	1.88	100.0	± 9.6 %
		Y	100.00	106.97	21.04	1	100.0	
		Z	100.00	111.11	22.97	+	100.0	<u> </u>

Certificate No: EX3-3995_May17

May 4, 2017

Y 100.00 113.50 22.99 100.0 10033 EEE 802.15.1 Bluetooth (PI/4-DQPSK, CAA X 15.60 95.46 25.89 5.30 70.0 ± 9.6 %. CAA DH1) Y 4.37 75.09 17.20 70.0 10034 EEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) X 6.00 85.35 21.74 1.88 100.0 ± 9.6 %. CAA DH3) Y 2.232 71.59 14.83 100.0 ± 9.6 %. CAA DH5) Y 1.88 70.70 19.16 100.0 ± 9.6 %. CAA DH5) Y 1.89 70.74 14.44 1000.0 ± 9.6 %. CAA DH5) Y 1.89 77.59 17.92 70.0 ± 9.6 %. CAA DH5) X 2.0.18 99.75 27.22 5.30 70.0 ± 9.6 %. CAA Y 2.88 70.22 ± 9.6 %. 70.0 ± 9.6 %. CAA	10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	122.28	27.21	1.17	100.0	±9.6 %
CAA FEB 802.15.1 Bluetooth (PI/4-DQPSK, X) X 15.60 95.46 25.89 5.30 70.0 ± 9.6 % CAA DH1) Y 4.37 75.59 27.73 770.0 ± 9.6 % CAA DH1 Y 4.37 75.59 27.73 770.0 ± 9.6 % CAA DH3 Y 2.32 71.59 14.83 100.0 ± 9.6 % CAA DH3 Y 2.32 71.59 14.83 100.0 ± 9.6 % CAA DH3 Y 2.32 71.59 14.83 100.0 ± 9.6 % CAA DH5 Y 1.89 70.74 14.44 100.0 ± 9.6 % CAA DH5 Y 2.88 76.30 17.95 100.0 ± 9.6 % CAA X 2.18 9.75 27.22 5.30 70.0 ± 9.6 % CAA Y 2.18 79.40 1.843 100.0 ± 9.6 % CAA EEE 80		······································	Y	100.00	113 50	22.89		100.0	
10033 IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) X 15.60 95.46 25.89 5.30 70.0 ± 9.6 % 70.0 10034 IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) X 6.00 85.35 21.74 1.88 100.0 ± 9.6 % 70.0 10034 IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) X 6.00 85.35 21.74 1.88 100.0 ± 9.6 % 70.0 10035 IEEE 802.15.1 Bluetooth (PI/4-DQPSK, CAA X 3.74 80.30 19.94 1.17 100.0 ± 9.6 % CAA DH5) Y 1.89 70.74 14.44 100.0 ± 9.6 % CAA DH5) Y 1.89 70.74 14.44 100.0 ± 9.6 % CAA DH5) X 2.289 76.69 17.82 70.0 10036 IEEE 802.15.1 Bluetooth (8-DPSK, DH1) X 2.18 70.24 14.84 100.0 100.0 10038 IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 3.86 79.24 18.43 100.0									
Z 9.50 87.75 22.73 70.0 CAA DH3) Y 6.00 85.35 21.74 1.88 100.0 ± 9.6 % CAA DH3 Y 2.32 71.59 14.83 100.0 ± 9.6 % CAA DH5 EEE 802.15.1 Bluetooth (Pl/4-DQPSK, X 3.74 80.307 19.16 100.0 ± 9.6 % CAA DH5 Y 1.89 70.74 14.44 100.0 ± 9.6 % CAA DH5 Y 1.89 70.75 2.722 5.30 70.0 ± 9.6 % CAA Y 2.18 70.65 17.82 70.0 ± 9.6 % CAA Y 2.18 70.24 14.84 100.0 ± 9.6 % CAA Y 2.18 70.24 14.84 100.0 ± 9.6 % CAA Y 2.18 70.24 18.83 100.0 ± 9.6 % CAA Y 2.18 70.24 18.83 100.0							5.30		± 9.6 %
1003- DH3 IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) X 6.00 85.35 21.74 1.88 100.0 ± 9.6 % CAA DH3 Y 2.32 71.59 14.83 100.0 100.0 CAA DH3 Y 2.32 71.59 14.83 100.0 100.0 1003- IEEE 802.15.1 Bluetooth (PI/4-DQPSK, CAA X 3.74 80.30 19.94 1.17 100.0 ± 9.6 % CAA DH5 TO0 Z 2.89 76.89 17.95 100.0 ± 9.6 % CAA Y 4.80 76.56 17.82 70.0 ± 9.6 % CAA Y 4.80 76.56 17.82 70.0 ± 9.6 % CAA Y 2.18 70.92 14.84 100.0 ± 9.6 % CAA Y 2.18 70.92 14.83 100.0 ± 9.6 % CAA Y 1.90 71.05 14.86 100.0 ± 9.6 % CAA Y <td></td> <td></td> <td>Y</td> <td>4.37</td> <td>75.09</td> <td>17.20</td> <td></td> <td>70.0</td> <td></td>			Y	4.37	75.09	17.20		70.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				9.50	87.75	22.73		70.0	
Z 4.13 80.07 19.16 100.0 CAA DH5 X 3.74 80.30 19.94 1.17 100.0 ± 9.6 % CAA PH5 Y 1.89 76.90 17.95 100.0 10036 CAA Y 4.80 76.50 17.95 100.0 10036 Y 4.80 76.56 17.82 70.0 ± 9.6 % CAA Y 4.80 76.56 17.82 70.0 ± 9.6 % 10037 IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 5.73 84.74 21.49 1.88 100.0 ± 9.6 % CAA Y 2.18 70.92 14.54 100.0 ± 9.6 % 10038- CAA Y 1.90 71.05 14.69 100.0 ± 9.6 % CAA Y 1.90 71.05 14.69 100.0 ± 9.6 % CAB Y 2.95 77.47 18.28 100.0 15.00 ± 9.6 %							1.88		± 9.6 %
1003- DA IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DHS) X 3.74 80.30 19.94 1.17 100.0 ± 9.6 % CAA DHS Y 1.89 70.74 14.44 100.0 CAA Z 2.89 76.90 17.75 100.0 ± 9.6 % CAA Y 4.80 76.56 17.82 70.0 ± 9.6 % 10037- CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 5.73 84.74 21.49 1.88 100.0 ± 9.6 % CAA Y 2.18 70.92 14.54 100.0 ± 9.6 % CAA Y 2.18 70.92 14.54 100.0 ± 9.6 % CAA Y 2.95 77.47 18.28 100.0 ± 9.6 % CAA Y 2.95 77.44 19.03 0.00 ± 9.6 % CAA Y 2.53 77.28 17.38 150.0 ± 9.6 % CAB DOPSK, Halfrate) Y 6.10 76.40									
CAA DH5) Y 18.9 70.74 14.44 100.0 IO336- CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH1) X 20.18 99.75 27.22 5.30 70.0 ±9.6 % CAA Y 4.80 76.56 17.82 70.0 ±9.6 % 10037- IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 5.73 84.74 21.49 1.88 100.0 ±9.6 % CAA Y 2.18 70.24 1.88 100.0 ±9.6 % CAA Y 2.18 70.24 1.83 100.0 ±9.6 % CAA Y 2.18 70.24 1.454 100.0 ±9.6 % CAA Y 1.90 71.05 14.69 100.0 ±9.6 % CAA Y 1.90 71.05 14.69 100.0 ±9.6 % CAB Z 2.95 77.44 19.03 0.00 150.0 ±9.6 % CAB Z 2.86 78.69 18.81									
Z 2.89 76.90 17.95 100.0 CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH1) X 20.18 99.75 27.22 5.30 70.0 ±9.6 % CAA Y 4.80 76.56 17.82 70.0 ±9.6 % 10037- IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 5.73 84.74 21.49 1.88 100.0 ±9.6 % CAA Y 2.18 70.92 14.54 100.0 ±9.6 % CAA Y 2.18 70.25 14.58 100.0 ±9.6 % CAA Y 1.90 71.05 14.68 100.0 ±9.6 % CAA Z 2.95 77.44 19.03 0.00 150.0 ±9.6 % <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.17</td> <td></td> <td>± 9.6 %</td>							1.17		± 9.6 %
10036- CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH1) X 20.18 99.76 27.22 5.30 70.0 ± 9.6 % CAA Y 4.80 76.56 17.82 70.0 10037- CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 5.73 84.74 21.49 1.88 100.0 ± 9.6 % CAA Y 2.18 70.92 14.54 100.0 ± 9.6 % CAA Y 2.18 70.92 14.54 100.0 ± 9.6 % CAA Y 2.18 70.92 14.54 100.0 ± 9.6 % CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH5) X 3.86 81.03 20.30 1.17 100.0 ± 9.6 % CAA Y 2.95 77.47 18.28 100.0 ± 9.6 % CAB Y 2.23 77.28 17.38 150.0 ± 9.6 % CAB Y 6.10 76.40 15.64 50.0 ± 9.6 % CAB DQPSK, Halfrate)									
CAA Y 4.80 76.56 17.82 100 20.8 10037- IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 5.73 84.74 21.49 1.88 100.0 ±9.6 % CAA Y 2.18 70.92 14.54 100.0 ±9.6 % CAA Y 1.90 71.05 14.69 100.0 ±9.6 % CAA Y 2.95 77.47 18.28 100.0 ±9.6 % CAB Y 2.53 77.47 18.28 100.0 ±9.6 % CAB Y 2.53 77.47 18.28 100.0 ±9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 10042-									
z 11.77 91.17 23.88 70.0 CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 5.73 84.74 21.49 1.88 100.0 ± 9.6 % CAA Y 2.18 70.92 14.54 100.0 ± 9.6 % 10038- IEEE 802.15.1 Bluetooth (8-DPSK, DH5) X 3.86 81.03 20.30 1.17 100.0 ± 9.6 % CAA Y 1.90 71.05 14.69 100.0 100.0 10039- CDMA2000 (1xRTT, RC1) X 2.73 77.44 19.00 0.00 150.0 ± 9.6 % 10042- CAB CDMA2000 (1xRTT, RC1) X 2.73 77.44 19.00 0.00 150.0 ± 9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 ± 9.6 % CAB DQPSK, Halfrate) Y 0.00 101.49 0.74 0.00 150.0 ± 9.6 % CAB DECT (TDD, TDMA/FDM, GFSK, Fuill X 10.77		IEEE 802.15.1 Bluetooth (8-DPSK, DH1)					5.30		± 9.6 %
10037- CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH3) X 5.73 84.74 21.49 1.88 100.0 ± 9.6 % CAA Y 2.18 70.92 14.54 100.0 100.0 IEEE 802.15.1 Bluetooth (8-DPSK, DH5) X 3.86 79.24 18.83 100.0 ± 9.6 % CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH5) X 3.86 79.24 18.83 100.0 ± 9.6 % CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH5) X 3.86 79.24 14.69 100.0 ± 9.6 % CAA IEEE 802.01 (1xRTT, RC1) X 2.73 77.47 18.28 100.0 150.0 ± 9.6 % CAB Y 2.53 77.28 17.38 150.0 150.0 ± 9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 ± 9.6 % CAB IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 97.13 0.01 150.0 ± 9.6 % CAA IS-01/EIA/TIA-553 FDD (FDMA, FM									
CAA Y 2.18 Product Product <td>10007</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	10007								
Z 3.86 79.24 18.83 100.0 CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH5) X 3.86 81.03 20.30 1.17 100.0 ± 9.6 % CAA Y 1.90 71.05 14.69 100.0 ± 9.6 % 10039- CAB CDMA2000 (1xRTT, RC1) X 2.73 77.44 19.03 0.00 150.0 ± 9.6 % 10042- CAB IS-54 / IS-136 FDD (TDMA/FDM, PI/4- X 95.24 112.23 27.00 7.78 50.0 ± 9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 ± 9.6 % 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 10149 0.74 0.00 150.0 ± 9.6 % 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 10149 0.74 0.00 150.0 ± 9.6 % 10048- CAA DECT (TDD, TDMA/FDM, GFSK, Full X 10.77 83.17 22.40 13.80 25.0 19.6 % <td< td=""><td></td><td>IEEE 802.15.1 Bluetooth (8-DPSK, DH3)</td><td></td><td></td><td></td><td></td><td>1.88</td><td></td><td>± 9.6 %</td></td<>		IEEE 802.15.1 Bluetooth (8-DPSK, DH3)					1.88		± 9.6 %
10038- CAA IEEE 802.15.1 Bluetooth (8-DPSK, DH5) X 3.86 81.03 20.30 1.17 100.0 ± 9.6 % 10039- CAB CDMA2000 (1xRTT, RC1) X 2.95 77.47 18.28 100.0 CAB Y 2.95 77.47 18.28 100.0 150.0 ± 9.6 % CAB Y 2.53 77.28 17.38 150.0 ± 9.6 % CAB Y 2.53 77.28 17.38 150.0 ± 9.6 % CAB DQPSK, Halfrate) Z 2.66 76.69 18.81 150.0 ± 9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 ± 9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 ± 9.6 % 10044- IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % CAA Slot, 24) Y 6.08 72.05 16.67 25.0 ± 9.6 % CAA Slot, 12) Y 6.08 77.467	·····								
CAA Y 1.90 71.05 14.69 100.0 100.0 10039- CAB CDMA2000 (1xRTT, RC1) X 2.73 77.44 19.03 0.00 150.0 ± 9.6 % CAB Y 2.53 77.28 17.38 150.0 ± 9.6 % CAB Y 2.53 77.28 17.38 150.0 ± 9.6 % CAB DQPSK, Halfrate) Y 2.53 77.28 17.38 150.0 CAB DQPSK, Halfrate) Y 2.54 112.23 27.20 7.78 50.0 ± 9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 10044- IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % CAA DECT (TDD, TDMA/FDM, GFSK, Full X 10.77 83.17 22.40 13.80 25.0 ± 9.6 % CAA Slot, 12 Y 6.23 74.67 16.45 40.0	10000								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		IEEE 802.15.1 Bluetooth (8-DPSK, DH5)					1.17		± 9.6 %
10039- CAB CDMA2000 (1xRTT, RC1) X 2.73 77.44 19.03 0.00 150.0 ± 9.6 % CAB Y 2.53 77.28 17.38 150.0 ± 9.6 % CAB Z 2.86 78.69 18.81 150.0 ± 9.6 % DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 ± 9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 ± 9.6 % CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 ± 9.6 % 10044- IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 ± 9.6 % CAA DECT (TDD, TDMA/FDM, GFSK, Full X 10.77 83.17 22.40 13.80 25.0 ± 9.6 % CAA Slot, 24) Y 6.08 72.05 16.67 25.0 ± 9.6 % CAA Slot, 12) Y 6.23 74.67 18.64 40.0									
CAB Y 2.53 77.28 17.38 16.00 20.00 10042- CAB IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate) X 95.24 112.23 27.20 7.78 50.0 ± 9.6 % 10042- CAB IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate) X 95.24 112.23 27.20 7.78 50.0 ± 9.6 % 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % CAA DECT (TDD, TDMA/FDM, GFSK, Full X 10.77 83.17 22.40 13.80 25.0 ± 9.6 % CAA Slot, 24) Y 6.08 72.05 16.67 25.0 ± 9.6 % CAA Slot, 12) Y 6.23 74.67 16.45 40.0 ± 9.6 % CAA Slot, 12) Y 6.84 77.01 18.53 50.0	40000								
Z 2.86 78.69 18.81 150.0 10042- CAB IS-54 / IS-136 FDD (TDMA/FDM, PI/4- CAB X 95.24 112.23 27.20 7.78 50.0 ± 9.6 % 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) Y 6.10 76.40 15.64 50.0 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % 10048- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % 10048- CAA DECT (TDD, TDMA/FDM, GFSK, Full X 10.77 83.17 22.40 13.80 25.0 ± 9.6 % 10049- CAA Slot, 24) Y 6.84 78.28 19.54 25.0 ± 9.6 % 10049- CAA Slot, 12) Y 6.23 74.67 16.45 40.0 ± 9.6 % 10056- CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 %		CDMA2000 (1xRTT, RC1)					0.00		± 9.6 %
10042- CAB IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate) X 95.24 112.23 27.20 7.78 50.0 ± 9.6 % 0044- CAA DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % 10048- CAA DECT (TDD, TDMA/FDM, GFSK, Full X 10.07 83.17 22.40 13.80 25.0 ± 9.6 % 10049- CAA Slot, 24) Y 6.08 72.05 16.67 25.0 ± 9.6 % 10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double X 13.71 87.73 22.56 10.79 40.0 ± 9.6 % CAA Slot, 12) Y 6.23 74.67 16.45 40.0 10.0 ± 9.6 % CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[</td></td<>									[
CAB DQPSK, Halfrate) Y 6.10 76.40 15.64 50.0 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % 10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % 10048- CAA DECT (TDD, TDMA/FDM, GFSK, Full X 10.77 83.17 22.40 13.80 25.0 ± 9.6 % 10048- CAA Slot, 24) Y 6.08 72.05 16.67 25.0 ± 9.6 % 10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) X 13.71 87.73 22.56 10.79 40.0 ± 9.6 % CAA Slot, 12) Y 6.23 74.67 16.45 40.0 40.0 ± 9.6 % CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % 10056- CAA EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) X 7.90 85.18	10010								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)					7.78		± 9.6 %
10044- CAA IS-91/EIA/TIA-553 FDD (FDMA, FM) X 0.00 101.49 0.74 0.00 150.0 ± 9.6 % Y 0.00 97.13 0.01 150.0 150.0 150.0 10048- CAA DECT (TDD, TDMA/FDM, GFSK, Full X 10.77 83.17 22.40 13.80 25.0 ± 9.6 % 10048- CAA Slot, 24) Y 6.08 72.05 16.67 25.0 10.6 % CAA Slot, 24) Y 6.08 77.32 21.66 10.79 40.0 ± 9.6 % 10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double X 13.71 87.73 22.56 10.79 40.0 ± 9.6 % CAA Slot, 12 Y 6.23 74.67 16.45 40.0 40.0 ± 9.6 % CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>							-		
CAA Y 0.00 97.13 0.01 150.0 1.000 <th1.000< th=""> <th1.000< th=""> <th1.000< th=""></th1.000<></th1.000<></th1.000<>	10011								
Z 0.00 102.88 0.27 150.0 10048- CAA DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) X 10.77 83.17 22.40 13.80 25.0 ± 9.6 % Z 8.45 78.28 19.54 25.0 25.0 19.6 % 10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) Y 6.08 72.05 16.67 25.0 10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) Y 6.23 74.67 16.45 40.0 ± 9.6 % CAA Slot, 12) Y 6.23 74.67 16.45 40.0 ± 9.6 % 10056- CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % 10058- DAC Z 10.88 85.42 22.42 50.0 100.0 ± 9.6 % 10058- DAC Y 4.66 75.26 22.96 100.0 ± 9.6 % 10059- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 1.42 67.12 17.14		IS-91/EIA/TIA-553 FDD (FDMA, FM)					0.00		± 9.6 %
10048- CAA DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) X 10.77 83.17 22.40 13.80 25.0 ± 9.6 % CAA Slot, 24) Y 6.08 72.05 16.67 25.0 10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) Z 8.45 78.28 19.54 25.0 10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) X 13.71 87.73 22.56 10.79 40.0 ± 9.6 % 10056- CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % 10056- CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % 10058- DAC EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) X 7.90 85.18 27.35 6.55 100.0 ± 9.6 % 10059- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 1.42 67.12 17.14 0.61 110.0 ± 9.6 % 10060- CAB Hbps) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
CAA Slot, 24) Y 6.08 72.05 16.00 20.0									
Z 8.45 78.28 19.54 25.0 10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) X 13.71 87.73 22.56 10.79 40.0 ± 9.6 % Y 6.23 74.67 16.45 40.0 40.0 ± 9.6 % 10056- CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % 10056- CAA Y 6.84 77.01 18.53 50.0 ± 9.6 % 10058- DAC EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) X 7.90 85.18 27.35 6.55 100.0 ± 9.6 % 10059- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 1.42 67.12 17.14 0.61 110.0 ± 9.6 % 10060- CAB Y 1.25 65.30 15.79 110.0 ± 9.6 % Y 1.25 65.30 15.79 110.0 ± 9.6 % Mbps) Y 4.73 89.10 22.44 110.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13.80</td> <td></td> <td>± 9.6 %</td>							13.80		± 9.6 %
10049- CAA DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) X 13.71 87.73 22.56 10.79 40.0 ± 9.6 % Y 6.23 74.67 16.45 40.0			t					25.0	
CAA Slot, 12) Y 6.23 74.67 16.45 40.0 10056- CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % CAA Y 6.84 77.01 18.53 50.0 ± 9.6 % CAA Y 6.84 77.01 18.53 50.0 ± 9.6 % CAA Y 6.84 77.01 18.53 50.0 ± 9.6 % CAA Y 6.84 77.01 18.53 50.0 ± 9.6 % CAA Y 4.66 75.26 22.42 50.0 ± 9.6 % 10058- DAC EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) X 7.90 85.18 27.35 6.55 100.0 ± 9.6 % 10059- IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 1.42 67.12 17.14 0.61 110.0 ± 9.6 % CAB Mbps) Y 1.25 65.30 15.79 110.0 ± 9.6 % Y 1.25 65.30 15.79 110.0 ± 9.6 % 100.0 132.71	10010								
Z 9.71 81.86 19.55 40.0 10056- CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % 2 Y 6.84 77.01 18.53 50.0 ± 9.6 % 2 10.88 85.42 22.42 50.0 50.0 10058- DAC EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) X 7.90 85.18 27.35 6.55 100.0 ± 9.6 % DAC Y 4.66 75.26 22.96 100.0 ± 9.6 % 10059- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 X 1.42 67.12 17.14 0.61 110.0 ± 9.6 % 10060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 100.00 132.71 34.04 1.30 110.0 ± 9.6 % 10060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 100.00 132.71 34.04 1.30 110.0 ± 9.6 %							10.79	40.0	±9.6 %
10056- CAA UMTS-TDD (TD-SCDMA, 1.28 Mcps) X 12.93 88.35 24.21 9.03 50.0 ± 9.6 % A Y 6.84 77.01 18.53 50.0 50.0 I Z 10.88 85.42 22.42 50.0 50.0 I I I I III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII									
CAA Y 6.84 77.01 18.53 50.0 10058- DAC EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) X 7.90 85.18 27.35 6.55 100.0 ± 9.6 % 10059- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) Y 4.66 75.26 22.96 100.0 2 6.07 81.00 25.78 100.0 ± 9.6 % 10059- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) X 1.42 67.12 17.14 0.61 110.0 ± 9.6 % 2 1.31 66.34 16.63 110.0 ± 9.6 % 2 1.31 66.34 16.63 110.0 ± 9.6 % 2 Y 4.73 89.10 22.44 110.0	40050								
Z 10.88 85.42 22.42 50.0 10058- DAC EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) X 7.90 85.18 27.35 6.55 100.0 ± 9.6 % AC Y 4.66 75.26 22.96 100.0 ± 9.6 % Image: Comparison of the system of th		UMIS-TDD (TD-SCDMA, 1.28 Mcps)					9.03		±9.6 %
10058- DAC EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) X 7.90 85.18 27.35 6.55 100.0 ± 9.6 % AC Y 4.66 75.26 22.96 100.0 ± 100.0 ± 9.6 % Image: Constraint of the state									
DAC Product of the structure	40050								
Z 6.07 81.00 25.78 100.0 10059- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) X 1.42 67.12 17.14 0.61 110.0 ± 9.6 % V 1.25 65.30 15.79 110.0 ± 100.0 I0060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 100.00 132.71 34.04 1.30 110.0 ± 9.6 % 10060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 100.00 132.71 34.04 1.30 110.0 ± 9.6 % V 4.73 89.10 22.44 110.0 ± 9.6 %		EUGE-FDD (TDMA, 8PSK, TN 0-1-2-3)					6.55		±9.6 %
10059- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) X 1.42 67.12 17.14 0.61 110.0 ± 9.6 % Y 1.25 65.30 15.79 110.0 ± 10.0 ± 9.6 % I0060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 100.00 132.71 34.04 1.30 110.0 ± 9.6 % I0060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 100.00 132.71 34.04 1.30 110.0 ± 9.6 %									
CAB Mbps) Y 1.25 65.30 15.79 110.0 10060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 X 100.00 132.71 34.04 1.30 110.0 10060- CAB Y 4.73 89.10 22.44 110.0	10050								
Z 1.31 66.34 16.63 110.0 10060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) X 100.00 132.71 34.04 1.30 110.0 ± 9.6 % V 4.73 89.10 22.44 110.0							0.61		± 9.6 %
10060- CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) X 100.00 132.71 34.04 1.30 110.0 ± 9.6 % V 4.73 89.10 22.44 110.0 ± 9.6 %									
CAB Mbps) Y 4.73 89.10 22.44 110.0	40000								
							1.30		± 9.6 %
								110.0	
			Z	100.00	133.44	33.99			

10061			7.40	00.00	05 70	0.04	440.0	
10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	7.40	92.33	25.78	2.04	110.0	± 9.6 %
		Y	2.52	75.60	19.24		110.0	
		Z	4.46	85.24	23.33		110.0	
10062-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6	X	4.85	66.78	16.68	0.49	100.0	± 9.6 %
CAB	Mbps)					00		- 0.0 /0
		Y	4.58	66.77	16.41	·····	100.0	
		Z	4.71	66.80	16.58		100.0	
10063-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9	X	4.87	66.90	16.79	0.72	100.0	± 9.6 %
CAB	Mbps)							
		Y	4.59	66.82	16.46		100.0	
		Z	4.73	66.88	16.66		100.0	
10064-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12	X	5.21	67.20	17.02	0.86	100.0	± 9.6 %
CAB	Mbps)							
		Y	4.84	67.01	16.64		100.0	
		Z	5.02	67.13	16.87		100.0	
10065-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18	X	5.08	67.14	17.12	1.21	100.0	± 9.6 %
CAB	Mbps)							1
10066		Y	4.71	66.86	16.67		100.0	
		Z	4.89	67.04	16.95		100.0	
10066-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24	X	5.11	67.20	17.29	1.46	100.0	± 9.6 %
CAB	Mbps)	+			10.70			
		Y	4.73	66.84	16.78		100.0	
40007		Z	4.92	67.06	17.10	0.04	100.0	1000
10067-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36	X	5.39	67.25	17.67	2.04	100.0	± 9.6 %
CAB	Mbps)	Y	5.01	67.02	17.18		100.0	
		Z	5.20	67.02	17.18		100.0	
10068-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	5.50	67.17	17.49	2.55	100.0	± 9.6 %
CAB	Mbps)	^	5.50	07.52	17.90	2.55	100.0	1 9.0 %
UAD		Y	5.05	66.97	17.31		100.0	
		Z	5.27	67.29	17.72		100.0	
10069-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54	X	5.57	67.42	18.13	2.67	100.0	± 9.6 %
CAB	Mbps)		0.01	01.12	10.10	2.07	100.0	
		Y	5.13	66.99	17.48		100.0	
		Z	5.35	67.27	17.91		100.0	
10071-	IEEE 802.11g WiFi 2.4 GHz	X	5.17	66.91	17.52	1.99	100.0	± 9.6 %
CAB	(DSSS/OFDM, 9 Mbps)							
		Y	4.86	66.71	17.05		100.0	
		Z	5.01	66.84	17.35	1	100.0	
10072-	IEEE 802.11g WiFi 2.4 GHz	X	5.19	67.37	17.77	2.30	100.0	± 9.6 %
CAB	(DSSS/OFDM, 12 Mbps)							
		Y	4.83	66.97	17.20		100.0	
		Z	5.01	67.21	17.56		100.0	
10073-	IEEE 802.11g WiFi 2.4 GHz	Х	5.28	67.59	18.11	2.83	100.0	± 9.6 %
CAB	(DSSS/OFDM, 18 Mbps)							
		Y	4.90	67.13	17.47	ļ	100.0	
		Z	5.08	67.40	17.87		100.0	L
10074-	IEEE 802.11g WiFi 2.4 GHz	X	5.28	67.55	18.30	3.30	100.0	± 9.6 %
CAB	(DSSS/OFDM, 24 Mbps)				1	ļ		ļ
		Y	4.91	67.08	17.60	ļ	100.0	
		Z	5.08	67.33	18.02		100.0	1
10075-	IEEE 802.11g WiFi 2.4 GHz	X	5.38	67.90	18.71	3.82	90.0	± 9.6 %
CAB	(DSSS/OFDM, 36 Mbps)	<u> </u>			1	ļ	+	<u> </u>
		Y	4.96	67.17	17.85		90.0	
		Z	5.15	67.54	18.36	4.45	90.0	1
10076-	IEEE 802.11g WiFi 2.4 GHz	X	5.37	67.62	18.78	4.15	90.0	± 9.6 %
CAB	(DSSS/OFDM, 48 Mbps)	<u> </u>			17.00	<u> </u>		
		Y	5.00	67.05	17.99	<u> </u>	90.0	
40077		Z	5.15	67.33	18.47	4.00	90.0	
10077-	IEEE 802.11g WiFi 2.4 GHz	X	5.39	67.69	18.87	4.30	90.0	± 9.6 %
CAB	(DSSS/OFDM, 54 Mbps)	+ ~	E 04	67.44	10.00			
		Y	5.04	67.14	18.09	<u> </u>	90.0	+
		Z	5.18	67.41	18.56	1	90.0	1

10081- CAB	CDMA2000 (1xRTT, RC3)	X	1.20	70.49	15.91	0.00	150.0	± 9.6 %
		Y	0.91	68.09	13.26	1	150.0	
		Z	1.11	70.11	15.04		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	1.34	61.03	6.46	4.77	80.0	± 9.6 %
		Y	0.80	58.60	4.19		80.0	
		Z	1.00	60.00	5.29		80.0	1
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	113.83	27.58	6.56	60.0	± 9.6 %
		Y	7.67	80.10	16.85		60.0	
		Z	100.00	111.01	25.72		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.99	68.82	16.72	0.00	150.0	± 9.6 %
		Y	1.93	69.21	16.39		150.0	
		Z	1.96	69.13	16.65		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.95	68.81	16.71	0.00	150.0	± 9.6 %
		Y	1.88	69.15	16.36		150.0	
10000		Z	1.93	69.11	16.64	L	150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	17.48	102.05	35.12	9.56	60.0	± 9.6 %
		Y	8.52	86.03	28.76		60.0	
40400		Z	13.95	98.50	34.01		60.0	
10100- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.52	72.01	17.58	0.00	150.0	± 9.6 %
		Y	3.17	71.09	17.18		150.0	
10101		Z	3.38	71.77	17.47		150.0	
10101- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.45	68.30	16.46	0.00	150.0	± 9.6 %
		Y	3.21	67.87	16.15		150.0	
······		Z	3.34	68.17	16.35		150.0	
10102- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.55	68.18	16.51	0.00	150.0	± 9.6 %
		Y	3.32	67.88	16.26		150.0	
		Z	3.44	68.08	16.41		150.0	
10103- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	7.69	76.76	20.54	3.98	65.0	± 9.6 %
		Y	6.00	73.73	19.00		65.0	
		Z	7.12	76.41	20.34		65.0	
10104- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	7.83	75.77	21.03	3.98	65.0	± 9.6 %
		Y	6.24	72.71	19.35		65.0	
		Z	6.97	74.56	20.45		65.0	
10105- CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	7.24	74.23	20.67	3.98	65.0	± 9.6 %
		Y	5.97	71.78	19.24		65.0	
10/		Z	6.88	74.22	20.61		65.0	
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.09	71.12	17.40	0.00	150.0	± 9.6 %
		Y	2.75	70.36	17.03		150.0	
		Z	2.94	70.94	17.30		150.0	
10109- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.12	68.16	16.44	0.00	150.0	± 9.6 %
		Y	2.87	67.88	16.11		150.0	
1011-		Z	3.00	68.09	16.32		150.0	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.54	70.18	17.12	0.00	150.0	± 9.6 %
		Y	2.22	69.58	16.64		150.0	
10		Z	2.40	70.11	17.01		150.0	
10111- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.85	68.97	16.87	0.00	150.0	± 9.6 %
		Y	2.67	69.44	16.67		150.0	
		Z	2.76	69.17	16.79		150.0	

10112-	LTE-FDD (SC-FDMA, 100% RB, 10	X	3.24	68.04	16.44	0.00	150.0	± 9.6 %
CAD	MHz, 64-QAM)							
		Y	3.00	67.92	16.17		150.0	
10113-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	Z X	3.12	68.02	16.34	0.00	150.0	
CAD	64-QAM)		3.00	68.98	16.94	0.00	150.0	± 9.6 %
		Y	2.83	69.61	16.81		150.0	
10114-	IEEE 802.11n (HT Greenfield, 13.5	Z X	2.91	69.23	16.87	0.00	150.0	
CAB	Mbps, BPSK)		5.25	67.30	16.57	0.00	150.0	± 9.6 %
		Y Z	5.05	67.36	16.51		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.16 5.62	67.38 67.58	16.56 16.71	0.00	150.0 150.0	± 9.6 %
		Y	5.30	67.41	16.53		150.0	
		Z	5.47	67.54	16.65		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.38	67.57	16.63	0.00	150.0	± 9.6 %
		Y	5.14	67.54	16.53		150.0	
		Z	5.27	67.59	16.60		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.26	67.32	16.60	0.00	150.0	± 9.6 %
		Y	5.03	67.27	16.48		150.0	
		Z	5.14	67.28	16.53		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.69	67.74	16.80	0.00	150.0	± 9.6 %
		Y	5.37	67.57	16.62		150.0	
10119-	IEEE 902 11p (UT Mixed 125 Mbps 64	Z	5.55	67.73	16.75	0.00	150.0	
CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.35	67.51	16.61	0.00	150.0	± 9.6 %
		<u>Y</u>	5.12	67.51	16.52		150.0	
10140-	LTE-FDD (SC-FDMA, 100% RB, 15	ZX	5.24 3.60	67.53 68.18	16.58 16.43	0.00	150.0 150.0	± 9.6 %
CAC	MHz, 16-QAM)		3.35	67.87	16.43	0.00	150.0	± 9.0 %
		Z	3.35	68.09	16.33	<u> </u>	150.0	
10141-	LTE-FDD (SC-FDMA, 100% RB, 15	X	3.71	68.20	16.56	0.00	150.0	± 9.6 %
CAC	MHz, 64-QAM)	Y	3.48	68.03	16.36		150.0	20.0 /0
		Z	3.60	68.15	16.48		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.33	70.34	17.06	0.00	150.0	± 9.6 %
		Y	2.03	69.97	16.36		150.0	
	·····	Z	2.21	70.42	16.88		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.78	70.00	16.95	0.00	150.0	± 9.6 %
		Y	2.62	70.78	16.48		150.0	
		Z	2.70	70.40	16.79		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.55	67.76	15.42	0.00	150.0	± 9.6 %
		Y	2.19	67.22	14.23		150.0	
404.5		Z	2.40	67.73	15.02		150.0	
10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.77	69.54	15.30	0.00	150.0	± 9.6 %
		Y	1.12	64.95	11.11		150.0	ļ
10140		Z	1.51	68.10	13.76	0.00	150.0	+0.0%
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	3.83	74.67	16.69	0.00	150.0	± 9.6 %
		Y	1.41	63.12	8.93	<u> </u>	150.0	1
10147-	LTE-FDD (SC-FDMA, 100% RB, 1.4	Z X	2.08 5.43	67.13 79.64	12.23	0.00	150.0	+060/
CAD	MHz, 64-QAM)				18.77	0.00	150.0	± 9.6 %
		Y	1.56	64.10	9.55		150.0	ļ
		Z	2.53	69.59	13.50	L	150.0	1

10149-	LTE-FDD (SC-FDMA, 50% RB, 20 MHz,	X	3.13	68.22	16.48	0.00	150.0	± 9.6 %
CAC	16-QAM)							
		Y	2.89	67.96	16.16		150.0	
10150-	LTE-FDD (SC-FDMA, 50% RB, 20 MHz,	Z X	3.01	68.15	16.36	0.00	150.0	
CAC	64-QAM)		3.25	68.10	16.48	0.00	150.0	± 9.6 %
		Y	3.01	67.99	16.23		150.0	
		Z	3.13	68.08	16.38		150.0	
10151- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	8.33	79.37	21.66	3.98	65.0	± 9.6 %
		Y	6.24	75.78	19.83		65.0	
		Z	7.37	78.36	21.18		65.0	
10152- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	7.42	75.86	20.85	3.98	65.0	± 9.6 %
		Y	5.71	72.38	18.82		65.0	
		Z	6.51	74.51	20.15		65.0	
10153- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	7.78	76.64	21.53	3.98	65.0	± 9.6 %
		Y	6.13	73.54	19.70		65.0	
		Z	6.90	75.43	20.90		65.0	
10154- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.61	70.73	17.45	0.00	150.0	± 9.6 %
		Y	2.29	70.14	16.97		150.0	
		Z	2.47	70.62	17.31		150.0	
10155- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.85	68.97	16.88	0.00	150.0	± 9.6 %
		Y	2.68	69.47	16.70		150.0	
		Z	2.76	69.19	16.80		150.0	
10156- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.22	70.86	17.18	0.00	150.0	±9.6 %
		Y	1.90	70.30	16.19		150.0	
		Z	2.09	70.92	16.90		150.0	
10157- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.43	68.72	15.76	0.00	150.0	± 9.6 %
		Y	2.07	68.06	14.34		150.0	
		Z	2.29	68.73	15.30		150.0	
10158- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.01	69.03	16.98	0.00	150.0	± 9.6 %
		Y	2.84	69.71	16.87		150.0	
		Z	2.91	69.30	16.92		150.0	
10159- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.56	69.25	16.08	0.00	150.0	± 9.6 %
	······································	Y	2.20	68.68	14.69		150.0	
		Z	2.42	69.30	15.63		150.0	
10160- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.99	69.57	16.96	0.00	150.0	± 9.6 %
		Y	2.74	69.35	16.71		150.0	<u> </u>
		Z	2.88	69.59	16.90		150.0	
10161- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.14	68.01	16.45	0.00	150.0	± 9.6 %
		Y	2.91	68.00	16.16		150.0	
		Z	3.03	68.04	16.34		150.0	
10162- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.25	68.05	16.50	0.00	150.0	± 9.6 %
		Y	3.02	68.19	16.29		150.0	
1010-		Z	3.14	68.15	16.43		150.0	
10166- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	3.97	70.53	19.71	3.01	150.0	± 9.6 %
		Y	3.45	69.84	19.12		150.0	
10		Z	3.58	69.62	19.08		150.0	
10167- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.23	74.38	20.55	3.01	150.0	± 9.6 %
		Y	4.38	73.55	19.83		150.0	
		Z	4.47	72.80	19.66		150.0	
						·····		1

Certificate No: EX3-3995_May17

10168- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.82	76.68	21.84	3.01	150.0	± 9.6 %
		Y	5.18	77.16	21.78		150.0	
		Z	5.00	75.18	21.03		150.0	
10169- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.66	72.40	20.54	3.01	150.0	± 9.6 %
		Y	2.89	69.33	18.89		150.0	
		Z	2.99	69.53	19.08		150.0	
10170- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	6.16	81.71	23.91	3.01	150.0	± 9.6 %
		Y	4.55	78.18	22.41		150.0	
		Z	4.33	76.51	21.80		150.0	
10171- AAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	4.65	75.73	20.58	3.01	150.0	± 9.6 %
		Y	3.33	71.72	18.58		150.0	
		Z	3.45	71.76	18.79		150.0	
10172- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	20.64	103.32	31.42	6.02	65.0	± 9.6 %
		Y	5.75	81.65	23.52		65.0	
40470		Z	8.23	87.98	26.34		65.0	
10173- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	35.83	107.69	30.68	6.02	65.0	± 9.6 %
		Y	8.97	86.07	23.15		65.0	
		Z	16.08	95.56	26.81		65.0	
10174- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	21.36	97.61	27.30	6.02	65.0	± 9.6 %
		Y	4.80	75.99	19.17		65.0	
		Z	12.72	90.44	24.67		65.0	
10175- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	3.60	71.98	20.25	3.01	150.0	± 9.6 %
		Y	2.84	68.93	18.59		150.0	
		Z	2.95	69.20	18.82		150.0	
10176- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	6.17	81.74	23.92	3.01	150.0	± 9.6 %
		Y	4.56	78.22	22.42		150.0	
÷		Z	4.34	76.54	21.81		150.0	
10177- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.64	72.19	20.37	3.01	150.0	±9.6 %
		Y	2.87	69.11	18.70		150.0	
		Z	2.98	69.36	18.92		150.0	
10178- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	6.04	81.31	23.73	3.01	150.0	± 9.6 %
		Y	4.48	77.88	22.26		150.0	
		Z	4.28	76.27	21.67		150.0	
10179- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	5.31	78.46	22.06	3.01	150.0	± 9.6 %
		Y	3.84	74.58	20.26		150.0	
		Z	3.84	73.98	20.14		150.0	
10180- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	4.62	75.59	20.50	3.01	150.0	± 9.6 %
		Y	3.32	71.62	18.52		150.0	
		Z	3.44	71.68	18.73		150.0	
10181- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	3.63	72.17	20.36	3.01	150.0	± 9.6 %
		Y	2.87	69.09	18.69		150.0	
		Z	2.97	69.34	18.91		150.0	
10182- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	6.03	81.28	23.71	3.01	150.0	± 9.6 %
		Y	4.47	77.85	22.24		150.0	
		Z	4.27	76.24	21.66		150.0	
10183- AAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	4.61	75.56	20.49	3.01	150.0	±9.6 %
		Y	3.31	71.60	18.51		150.0	
		Z	3.43	71.65	18.72	T	150.0	

May 4, 2017

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.65	72.22	20.39	3.01	150.0	± 9.6 %
		Y	2.88	69.14	18.72		150.0	
		Z	2.99	69.39	18.94		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	×	6.06	81.37	23.76	3.01	150.0	± 9.6 %
		Y	4.50	77.96	22.29		150.0	
		Z	4.30	76.32	21.70		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	4.64	75.65	20.53	3.01	150.0	± 9.6 %
		Y	3.33	71.68	18.55		150.0	
		Z	3.45	71.73	18.76		150.0	
10187- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	3.65	72.27	20.44	3.01	150.0	± 9.6 %
		Y	2.89	69.22	18.80		150.0	
		Z	2.99	69.44	19.00		150.0	
10188- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	6.38	82.44	24.26	3.01	150.0	± 9.6 %
		Y	4.75	79.05	22.85		150.0	
		Z	4.46	77.10	22.12		150.0	
10189- AAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	4.79	76.27	20.88	3.01	150.0	± 9.6 %
		Y	3.43	72.25	18.90		150.0	
		Z	3.54	72.21	19.06		150.0	
10193- CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.69	66.75	16.38	0.00	150.0	± 9.6 %
		Y	4.46	66.94	16.25		150.0	
		Z	4.57	66.83	16.32		150.0	
10194- CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.88	67.12	16.49	0.00	150.0	± 9.6 %
		Y	4.62	67.21	16.37		150.0	
		Z	4.75	67.16	16.44		150.0	
10195- CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.92	67.13	16.50	0.00	150.0	± 9.6 %
		Y	4.65	67.24	16.39		150.0	
		Z	4.79	67.18	16.45		150.0	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.71	66.85	16.42	0.00	150.0	± 9.6 %
		Y	4.45	66.97	16.25		150.0	
		Z	4.58	66.90	16.34		150.0	
10197- CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.90	67.14	16.50	0.00	150.0	± 9.6 %
		Y	4.63	67.22	16.38		150.0	
		Z	4.76	67.18	16.45		150.0	
10198- CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.93	67.15	16.51	0.00	150.0	± 9.6 %
		Y	4.65	67.24	16.40		150.0	
		Ζ	4.79	67.20	16.46		150.0	
10219- CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.66	66.87	16.38	0.00	150.0	± 9.6 %
		Y	4.41	67.00	16.22		150.0	
		Z	4.53	66.92	16.31		150.0	
10220- CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.90	67.13	16.50	0.00	150.0	± 9.6 %
		Y	4.62	67.18	16.37		150.0	
		Z	4.76	67.15	16.44		150.0	
10221- CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.94	67.08	16.49	0.00	150.0	± 9.6 %
		Y	4.66	67.17	16.38		150.0	
		Z	4.80	67.12	16.44		150.0	
10222- CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.24	67.35	16.60	0.00	150.0	± 9.6 %
		Y	5.00	67.27	16.47		150.0	
		Z	5.11	67.29	16.53			

10223- CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.60	67.64	16.77	0.00	150.0	± 9.6 %
		Y	5.29	67.45	16.58		150.0	
		Z	5.41	67.44	16.62		150.0	
10224- CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.29	67.46	16.58	0.00	150.0	± 9.6 %
		Y	5.04	67.38	16.46		150.0	
		Z	5.16	67.41	16.51		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.98	66.53	15.92	0.00	150.0	± 9.6 %
		Y	2.77	66.71	15.45		150.0	
		Z	2.88	66.65	15.75		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	39.28	109.46	31.26	6.02	65.0	± 9.6 %
		Y	9.62	87.30	23.65		65.0	
		Z	17.34	96.95	27.33		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	27.90	102.03	28.64	6.02	65.0	± 9.6 %
		Y	8.73	84.63	22.17		65.0	
		Ζ	14.49	92.53	25.37		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	27.96	109.39	33.25	6.02	65.0	± 9.6 %
		Y	6.88	85.01	24.80		65.0	Ļ
40000		Z	12.92	96.51	29.18		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	35.99	107.76	30.71	6.02	65.0	± 9.6 %
		Y	9.04	86.18	23.20		65.0	
		Z	16.19	95.66	26.85		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	26.03	100.75	28.19	6.02	65.0	± 9.6 %
		Y	8.21	83.63	21.76	L	65.0	
		Z	13.62	91.44	24.96		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	26.15	107.98	32.77	6.02	65.0	± 9.6 %
		Y	6.58	84.12	24.40		65.0	
		Z	12.25	95.42	28.76		65.0	
10232- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	35.98	107.76	30.71	6.02	65.0	± 9.6 %
		Y	9.03	86.16	23.19		65.0	
		Z	16.17	95.64	26.84		65.0	
10233- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	26.03	100.76	28.20	6.02	65.0	± 9.6 %
	***	Y	8.20	83.61	21.75		65.0	
10234-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	Z X	13.60 24.43	91.43 106.47	24.95 32.23	6.02	65.0 65.0	± 9.6 %
CAC	QPSK)	Y	6.32	83.28	23.99		65.0	
		Z	0.32 11.65	94.32	23.99		65.0	<u> </u>
10235- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	36.11	107.84	30.73	6.02	65.0	± 9.6 %
		Y	9.03	86.18	23.20		65.0	1
		z	16.20	95.68	26.86	<u> </u>	65.0	1
10236- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	26.32	100.92	28.24	6.02	65.0	± 9.6 %
		Y	8.26	83.70	21.78	T	65.0	1
		Z	13.73	91.56	24.99		65.0	
10237- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	26.38	108.17	32.83	6.02	65.0	± 9.6 %
		Y	6.58	84.15	24.41		65.0	
		Z	12.30	95.52	28.79		65.0	
10238- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	Х	35.98	107.77	30.71	6.02	65.0	± 9.6 %
		Y	9.01	86.13	23.18		65.0	
		Z	16.14	95.63	26.84	1	65.0	1

10239- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	26.02	100.77	28.20	6.02	65.0	± 9.6 %
	5	Y	8.17	83.58	21.74		65.0	1
		Z	13.57	91.41	24.95		65.0	
10240- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	×	26.28	108.11	32.81	6.02	65.0	± 9.6 %
		Y	6.56	84.12	24.40		65.0	
		Z	12.26	95.47	28.77		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	10.97	84.80	26.61	6.98	65.0	± 9.6 %
		Y	7.99	80.29	24.00		65.0	
		Z	8.95	81.93	25.17		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	9.31	81.24	25.11	6.98	65.0	± 9.6 %
·····		Y	7.18	78.20	23.07		65.0	
		Z	8.67	81.25	24.81		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	7.44	78.00	24.65	6.98	65.0	± 9.6 %
		Y	5.95	75.28	22.73		65.0	
40044		Z	6.93	77.89	24.35		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	8.44	79.18	20.38	3.98	65.0	± 9.6 %
		Y	4.37	69.56	14.35		65.0	
		Z	5.92	74.11	17.43		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	8.31	78.69	20.15	3.98	65.0	± 9.6 %
		Y	4.31	69.18	14.13		65.0	
		Z	5.83	73.65	17.19		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	8.08	81.50	21.28	3.98	65.0	± 9.6 %
		Y	4.07	71.68	15.80		65.0	
		Z	6.12	77.90	19.29		65.0	
10247- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	6.81	76.45	19.97	3.98	65.0	± 9.6 %
		Y	4.49	70.63	16.06		65.0	
		Z	5.63	74.15	18.47		65.0	
10248- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	6.82	75.97	19.77	3.98	65.0	± 9.6 %
		Y	4.50	70.25	15.88		65.0	
		Z	5.62	73.69	18.27		65.0	
10249- CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	9.02	83.38	22.58	3.98	65.0	± 9.6 %
		Y	5.24	75.56	18.43		65.0	
·····		Z	7.39	81.08	21.32		65.0	
10250- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	7.64	78.26	21.91	3.98	65.0	± 9.6 %
		Y	5.70	74.27	19.47		65.0	
		Z	6.63	76.76	21.05		65.0	
10251- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	7.25	76.14	20.77	3.98	65.0	± 9.6 %
		Y	5.41	72.29	18.26		65.0	
1.0.0		Z	6.31	74.74	19.90		65.0	
10252- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	8.89	82.38	22.84	3.98	65.0	± 9.6 %
		Y	6.08	77.28	20.25		65.0	
		Z	7.68	81.06	22.18		65.0	
10253- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	×	7.20	75.23	20.64	3.98	65.0	± 9.6 %
		Y	5.63	72.02	18.61		65.0	
100-		Z	6.36	73.97	19.92		65.0	
10254- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	7.57	76.01	21.27	3.98	65.0	± 9.6 %
		Y	6.00	73.03	19.37		65.0	
		Z	6.73	74.84	20.60		65.0	
			· · · · · · · · · · · · · · · · · · ·			L		1

Certificate No: EX3-3995_May17

10255- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	8.00	78.90	21.73	3.98	65.0	± 9.6 %
UNU	QPSK)	Y	6.04	75.38	10.04		65.0	
		Z			19.84		65.0	
10256-	LTE-TDD (SC-FDMA, 100% RB, 1.4		7.07	77.86	21.21	2.00	65.0	+06%
CAA	MHz, 16-QAM)		7.25	76.53	18.52	3.98	65.0	± 9.6 %
		Y	3.34	65.99	11.60		65.0	
40057		Z	4.66	70.46	14.89		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	7.10	75.85	18.17	3.98	65.0	±9.6 %
		Y	3.30	65.61	11.34		65.0	
		Z	4.58	69.92	14.56		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	6.82	78.54	19.58	3.98	65.0	± 9.6 %
		Y	3.09	67.62	13.07		65.0	
	· · · · · · · · · · · · · · · · · · ·	Z	4.69	73.57	16.79		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	7.13	77.05	20.63	3.98	65.0	± 9.6 %
		Y	4.95	71.99	17.30		65.0	
		Z	6.02	75.13	19.41		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	7.16	76.82	20.56	3.98	65.0	± 9.6 %
		Y	4.99	71.81	17.22		65.0	
		Z	6.05	74.88	19.32		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	8.57	82.27	22.48	3.98	65.0	± 9.6 %
*******	· · · · · · · · · · · · · · · · · · ·	Y	5.40	75.73	18.96		65.0	
	······································	Z	7.17	80.34	21.43		65.0	
10262- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	7.63	78.22	21.87	3.98	65.0	± 9.6 %
		Y	5.68	74.20	19.41		65.0	
		Z	6.62	76.71	21.01		65.0	
10263- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	7.24	76.14	20.77	3.98	65.0	± 9.6 %
		Y	5.40	72.27	18.25		65.0	
		z	6.30	74.72	19.90		65.0	
10264- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	8.82	82.22	22.77	3.98	65.0	± 9.6 %
		Y	6.03	77.10	20.15	1	65.0	
· · · · · ·		Z	7.61	80.89	22.09		65.0	
10265- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	7.41	75.86	20.86	3.98	65.0	± 9.6 %
		Y	5.71	72.38	18.82	l	65.0	
		Z	6.51	74.51	20.15	1	65.0	
10266- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	7.78	76.63	21.53	3.98	65.0	± 9.6 %
		Y	6.13	73.52	19.69		65.0	······
		Z	6.90	75.42	20.89		65.0	
10267- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	8.32	79.33	21.65	3.98	65.0	± 9.6 %
		Y	6.23	75.74	19.82	1	65.0	
		Z	7.36	78.33	21.17	1	65.0	1
10268- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	7.93	75.48	21.05	3.98	65.0	± 9.6 %
		Y	6.42	72.74	19.48		65.0	
		Z	7.10	74.37	20.50	l	65.0	
10269- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	7.85	75.05	20.95	3.98	65.0	± 9.6 %
		Y	6.43	72.45	19.41		65.0	
		Z	7.07	73.98	20.40		65.0	
10270- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	7.95	76.77	20.79	3.98	65.0	± 9.6 %
		Y	6.34	74.10	19.38		65.0	
		Z	7.13	75.87	20.37		65.0	

Certificate No: EX3-3995_May17

May 4, 2017

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.72	66.88	15.83	0.00	150.0	±9.6 %
		Y	2.60	67.27	15.49		150.0	
		Z	2.67	67.13	15.74		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.85	69.83	16.89	0.00	150.0	± 9.6 %
i		Y	1.66	69.15	16.22		150.0	
		Z	1.78	69.83	16.74		150.0	
10277- CAA	PHS (QPSK)	X	3.86	65.67	11.12	9.03	50.0	± 9.6 %
		Y	2.75	62.27	7.95		50.0	
		Ζ	3.03	63.39	9.04		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	7.58	77.72	19.12	9.03	50.0	± 9.6 %
		Y	3.97	67.31	12.69		50.0	
		Ζ	5.25	72.09	15.77		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	7.76	77.97	19.24	9.03	50.0	± 9.6 %
		Y	4.04	67.48	12.81		50.0	
40000		Z	5.38	72.34	15.91		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	2.07	73.15	17.03	0.00	150.0	± 9.6 %
		Y	1.55	70.66	14.41		150.0	
40004	CDM42000 D02 0055 5 115 1	Z	1.95	73.11	16.33	0.00	150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	1.17	70.10	15.72	0.00	150.0	± 9.6 %
·····		Y	0.89	67.75	13.08		150.0	
40000		Z	1.07	69.70	14.84		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	1.75	77.30	19.23	0.00	150.0	± 9.6 %
		Y	1.78	77.90	17.75		150.0	
		Z	1.91	79.06	19.15		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	×	3.10	86.71	23.19	0.00	150.0	± 9.6 %
		Y	17.60	109.93	27.82		150.0	
		Z	5.30	94.75	24.93		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	8.66	81.50	23.03	9.03	50.0	± 9.6 %
		Y	7.12	76.78	19.24		50.0	
		Z	8.01	80.20	21.71		50.0	
10297- AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.11	71.24	17.47	0.00	150.0	± 9.6 %
		Y	2.76	70.50	17.11		150.0	
		Z	2.96	71.06	17.37		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	×	2.04	70.85	16.54	0.00	150.0	± 9.6 %
	······································	Y	1.56	68.73	14.22	ļ	150.0	
40000		Z	1.87	70.50	15.81		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	4.24	75.80	17.91	0.00	150.0	± 9.6 %
		Y	2.19	67.59	12.32		150.0	
40000		Z	2.80	70.49	14.73		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.86	69.19	14.36	0.00	150.0	± 9.6 %
		Y	1.60	63.39	9.54	<u> </u>	150.0	
10204		Z	2.02	65.50	11.67	ļ	150.0	
10301- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	5.17	66.21	18.04	4.17	50.0	± 9.6 %
·····		Y	4.50	65.21	17.18	ļ	50.0	
40000		Z	4.85	65.78	17.67	L	50.0	
10302- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.70	67.03	18.87	4.96	50.0	± 9.6 %
		Y	5.11	66.28	18.09		50.0	
		Z	5.40	66.71	18.56		50.0	

10303-	IEEE 802.16e WiMAX (31:15, 5ms,	X	5.49	66.90	18.85	4.96	50.0	± 9.6 %
AAA	10MHz, 64QAM, PUSC)			05.00	17.01			
		Y Z	4.88	65.99	17.94		50.0	
10304-	IEEE 802.16e WiMAX (29:18, 5ms,	$\frac{2}{X}$	<u>5.17</u> 5.22	66.45 66.49	18.46 18.18	4.17	50.0 50.0	± 9.6 %
<u>AAA</u>	10MHz, 64QAM, PUSC)					4.17	:	± 9.0 %
		Y	4.68	65.87	17.47		50.0	
		Z	4.94	66.18	17.87		50.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	5.58	71.70	22.19	6.02	35.0	± 9.6 %
		Y	4.78	69.56	20.08		35.0	
		Z	5.06	70.34	21.15		35.0	
10306- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	5.50	68.98	20.86	6.02	35.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.86	67.65	19.37		35.0	
		Z	5.11	68.15	20.14		35.0	
10307- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	5.52	69.66	21.06	6.02	35.0	±9.6 %
•		Y	4.79	67.95	19.39		35.0	
		Z	5.07	68.61	20.24		35.0	
10308- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	5.51	69.96	21.25	6.02	35.0	± 9.6 %
		Y	4.80	68.25	19.57		35.0	
		Z	5.07	68.92	20.44		35.0	
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	5.53	68.41	20.37	6.02	35.0	± 9.6 %
		Y	4.89	67.77	19.47		35.0	
		Z	5.18	68.42	20.30		35.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	5.48	69.20	20.90	6.02	35.0	± 9.6 %
		Y	4.83	67.81	19.39		35.0	
		Z	5.08	68.33	20.16		35.0	
10311- AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.48	70.49	17.07	0.00	150.0	± 9.6 %
		Y	3.14	69.74	16.73		150.0	
		Z	3.34	70.27	16.96		150.0	
10313- AAA	iDEN 1:3	Х	5.58	75.42	17.11	6.99	70.0	± 9.6 %
		Y	3.21	69.50	14.24		70.0	
		Z	4.17	72.70	15.76		70.0	
10314- AAA	iDEN 1:6	X	7.19	81.48	21.94	10.00	30.0	± 9.6 %
		Y	4.15	73.82	18.58		30.0	
		Z	5.39	78.09	20.47		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.17	65.00	16.18	0.17	150.0	±9.6 %
		Y	1.11	64.40	15.52		150.0	
***		Z	1.13	64.78	15.95		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	4.75	66.80	16.47	0.17	150.0	± 9.6 %
		Y	4.48	66.79	16.22		150.0	
		Z	4.62	66.83	16.38		150.0	
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.75	66.80	16.47	0.17	150.0	± 9.6 %
		Y	4.48	66.79	16.22		150.0	
		Z	4.62	66.83	16.38		150.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.89	67.18	16.48	0.00	150.0	± 9.6 %
		Y	4.59	67.21	16.34		150.0	
		Z	4.74	67.21	16.43		150.0	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.51	67.19	16.52	0.00	150.0	± 9.6 %
		Y	5.25	67.12	16.37		150.0	
		Z	5.41	67.29	16.52		150.0	

10402-	IEEE 802.11ac WiFi (80MHz, 64-QAM,	X	5.81	67.75	16.64	0.00	150.0	± 9.6 %
AAC	99pc duty cycle)							
		Y	5.56	67.60	16.49		150.0	
10403-	CDMA2000 (1xEV-DO, Rev. 0)	ZX	5.68 2.07	67.67 73.15	16.56		150.0	± 9.6 %
AAB	CDIVIA2000 (1xev-DO, Rev. 0)				17.03	0.00	115.0	± 9.6 %
		Y	1.55	70.66	14.41		115.0	
		Z	1.95	73.11	16.33		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	2.07	73.15	17.03	0.00	115.0	±9.6 %
·		Y	1.55	70.66	14.41		115.0	
		Z	1.95	73.11	16.33		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	122.22	31.05	0.00	100.0	± 9.6 %
		Y	100.00	114.69	26.70		100.0	
		Z	100.00	121.06	29.93		100.0	
10410- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	117.77	29.13	3.23	80.0	±9.6 %
		Y	5.02	79.21	17.06		80.0	
		Z	22.16	97.73	23.31		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.05	63.78	15.51	0.00	150.0	± 9.6 %
		Y	1.03	63.70	15.16		150.0	
		Z	1.04	63.83	15.42		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.69	66.79	16.42	0.00	150.0	± 9.6 %
		Y	4.46	66.95	16.32		150.0	
		Z	4.57	66.87	16.38		150.0	
10417- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.69	66.79	16.42	0.00	150.0	±9.6 %
		Y	4.46	66.95	16.32		150.0	
		Z	4.57	66.87	16.38		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.68	66.93	16.43	0.00	150.0	± 9.6 %
		Y	4.45	67.15	16.36		150.0	
		Z	4.57	67.04	16.40		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.70	66.89	16.44	0.00	150.0	± 9.6 %
		Y	4.47	67.08	16.35		150.0	
		Z	4.59	66.98	16.40		150.0	
10422- AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.82	66.89	16.44	0.00	150.0	± 9.6 %
		Y	4.58	67.06	16.35		150.0	
		Z	4.70	66.97	16.41	[150.0	
10423- AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.03	67.27	16.58	0.00	150.0	± 9.6 %
		Y	4.72	67.33	16.45		150.0	
		Z	4.88	67.30	16.52		150.0	
10424- AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.94	67.21	16.55	0.00	150.0	± 9.6 %
		Y	4.65	67.29	16.43		150.0	
		Z	4.80	67.25	16.50		150.0	
10425- AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.49	67.46	16.65	0.00	150.0	± 9.6 %
		Y	5.24	67.45	16.55		150.0	
		Z	5.37	67.49	16.62		150.0	
10426- AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.50	67.50	16.67	0.00	150.0	± 9.6 %
		Y	5.25	67.50	16.57	1	150.0	
		Z	5.38	67.51	16.62	1	150.0	i

10427-	IEEE 802.11n (HT Greenfield, 150 Mbps,	X	5.53	67.53	16.68	0.00	150.0	± 9.6 %
AAA	64-QAM)							
······		Y	5.25	67.41	16.53		150.0	
		Z	5.39	67.50	16.62		150.0	
10430- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.46	70.69	18.50	0.00	150.0	±9.6 %
		Y	4.61	73.48	19.28		150.0	
		Z	4.39	71.40	18.59		150.0	
10431- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.43	67.40	16.53	0.00	150.0	±9.6 %
		Y	4.12	67.60	16.31		150.0	
		Z	4.28	67.50	16.44		150.0	
10432- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.72	67.27	16.53	0.00	150.0	±9.6 %
		Y	4.42	67.40	16.39		150.0	
		Z	4.57	67.33	16.47		150.0	
10433- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.95	67.26	16.58	0.00	150.0	±9.6 %
		Y	4.67	67.33	16.45		150.0	
		Z	4.81	67.29	16.52		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.58	71.55	18.56	0.00	150.0	±9.6 %
		Y	4.90	74.96	19.41		150.0	
		Z	4.55	72.45	18.66		150.0	
10435- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	117.58	29.04	3.23	80.0	± 9.6 %
		Y	4.81	78.60	16.81		80.0	
		Z	20.24	96.46	22.92		80.0	
10447- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.77	67.57	16.14	0.00	150.0	± 9.6 %
		Y	3.41	67.71	15.53		150.0	
		Z	3.60	67.70	15.92		150.0	
10448- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.25	67.18	16.39	0.00	150.0	± 9.6 %
		Y	3.97	67.40	16.18		150.0	
		Z	4.12	67.29	16.31		150.0	
10449- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	4.50	67.10	16.44	0.00	150.0	± 9.6 %
		Y	4.25	67.24	16.30		150.0	
		Z	4.38	67.17	16.38		150.0	
10450- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.68	67.02	16.44	0.00	150.0	± 9.6 %
	walkananan karkanana karkanan ing sa	Y	4.45	67.12	16.32		150.0	
~~~~~		Z	4.57	67.07	16.39		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.71	67.93	15.94	0.00	150.0	± 9.6 %
		Y	3.27	67.77	15.01	1	150.0	
		Z	3.52	67.99	15.61		150.0	
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.35	68.09	16.82	0.00	150.0	± 9.6 %
		Y	6.16	68.05	16.73		150.0	
		Z	6.23	68.02	16.75		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.87	65.42	16.16	0.00	150.0	± 9.6 %
		Y	3.77	65.64 65.50	16.04		150.0 150.0	
10458-		Z X	3.81		16.10	0.00		+060/
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)		3.52	67.16	15.44	0.00	150.0	± 9.6 %
		<u>Y</u>	3.02	66.73	14.09		150.0	
40450		Z	3.34	67.30	15.04		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	4.58	65.08	15.98	0.00	150.0	±9.6 %
		Y	4.22	65.65	15.48		150.0	
		Z	4.47	65.63	15.95		150.0	

Certificate No: EX3-3995_May17

10460- AAA	UMTS-FDD (WCDMA, AMR)	Х	1.11	71.86	18.51	0.00	150.0	± 9.6 %
		Y Z	0.98 1.07	70.25 71.85	17.39 18.34		150.0 150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	121.18	30.78	3.29	80.0	± 9.6 %
		Y	2.23	71.56	15.29		80.0	
		Ζ	12.85	93.28	22.94		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	11.24	82.63	17.46	3.23	80.0	± 9.6 %
		Y	0.93	60.00	7.19		80.0	
		Ζ	1.32	62.27	9.17		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.94	71.07	13.26	3.23	80.0	± 9.6 %
		Y	0.95	60.00	6.72		80.0	
40404		Z	1.06	60.04	7.63	0.00	80.0	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	118.91	29.58	3.23	80.0	± 9.6 %
		Y	1.73	68.44	13.51		80.0	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	Z X	8.33 7.37	86.70	20.44	2.00	80.0	
AAA	QAM, UL Subframe=2,3,4,7,8,9)			78.20	16.05	3.23	80.0	± 9.6 %
*****		Y	0.93	60.00	7.13		80.0	
10466-		Z	1.24	61.71	8.84	0.00	80.0	1000
AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	3.28	69.20	12.52	3.23	80.0	± 9.6 %
		Y	0.96	60.00	6.68		80.0	
10467- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Z X	1.05 100.00	60.00 119.13	7.56 29.67	3.23	80.0 80.0	± 9.6 %
MAD	QF3K, 0L 3001ane=2,3,4,7,8,9)	Y	1.79	68.87	13.71		80.0	
		Z	9.31	88.16	20.89		80.0	
10468- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	8.08	79.17	16.37	3.23	80.0	± 9.6 %
		Y	0.93	60.00	7.15		80.0	
		Z	1.26	61.84	8.92		80.0	
10469- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	3.29	69.26	12.54	3.23	80.0	± 9.6 %
****		Y	0.96	60.00	6.68	1	80.0	
		Z	1.05	60.00	7.56	1	80.0	
10470- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	119.15	29.67	3.23	80.0	± 9.6 %
		Y	1.79	68.85	13.70		80.0	
		Z	9.32	88.18	20.89		80.0	
10471- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	7.99	79.04	16.32	3.23	80.0	± 9.6 %
		Y	0.93	60.00	7.14		80.0	
10.1=2		Z	1.25	61.80	8.89		80.0	
10472- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	3.27	69.18	12.50	3.23	80.0	± 9.6 %
		Y	0.95	60.00	6.67		80.0	
40.475		Z	1.05	60.00	7.55		80.0	
10473- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	119.12	29.66	3.23	80.0	± 9.6 %
		Y	1.78	68.83	13.68		80.0	
40474		Z	9.28	88.11	20.86		80.0	
10474- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	7.90	78.94	16.29	3.23	80.0	± 9.6 %
		Y	0.93	60.00	7.14	ļ	80.0	
10175		Z	1.25	61.78	8.88		80.0	
10475- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	3.25	69.14	12.48	3.23	80.0	± 9.6 %
		Y	0.95	60.00	6.67		80.0	
		Z	1.05	60.00	7.55	1	80.0	

10477-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-	X	7.35	78.16	16.02	3.23	80.0	±9.6 %
AAB	QAM, UL Subframe=2,3,4,7,8,9)							
		Y	0.93	60.00	7.12		80.0	
10470		Z	1.23	61.66	8.80	0.00	80.0	
10478- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	3.22	69.02	12.43	3.23	80.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	0.96	60.00	6.66		80.0	
40.470		Z	1.05	60.00	7.54		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.97	86.70	23.54	3.23	80.0	± 9.6 %
		Y	3.64	74.16	17.40		80.0	
40400		Z	5.38	79.43	20.20		80.0	0.0.01
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	10.26	83.96	21.03	3.23	80.0	± 9.6 %
		Y	2.66	67.19	12.80		80.0	
40404		Z	4.72	73.86	16.51		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	8.75	81.11	19.77	3.23	80.0	± 9.6 %
		<u>Y</u>	2.24	64.96	11.48		80.0	
10400		Z	3.95	71.14	15.13	0.00	80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.60	76.11	18.85	2.23	80.0	± 9.6 %
		Y	1.97	65.76	13.00		80.0	
		Z	3.29	72.25	16.73		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.61	77.91	19.25	2.23	80.0	± 9.6 %
		Y	2.17	63.90	11.33		80.0	
		Z	3.64	70.04	15.19		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.25	76.88	18.90	2.23	80.0	± 9.6 %
		Y	2.14	63.55	11.16		80.0	
		Z	3.52	69.38	14.93		80.0	
10485- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.81	76.73	19.74	2.23	80.0	± 9.6 %
		Y	2.53	68.69	15.42		80.0	
		Z	3.71	73.89	18.27		80.0	
10486- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.18	71.63	17.49	2.23	80.0	± 9.6 %
		Y	2.57	65.98	13.65		80.0	
		Z	3.44	69.65	16.12		80.0	
10487- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.17	71.23	17.32	2.23	80.0	± 9.6 %
		Y	2.58	65.73	13.52		80.0	
		Ζ	3.43	69.26	15.95		80.0	
10488- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.91	75.40	19.67	2.23	80.0	± 9.6 %
		Y	3.05	69.54	16.74		80.0	ļ
		Z	3.99	73.22	18.67		80.0	
10489- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	4.30	70.77	18.02	2.23	80.0	± 9.6 %
		Y	3.19	67.46	15.85		80.0	
		Z	3.74	69.49	17.23	<u> </u>	80.0	ļ
10490- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.38	70.49	17.93	2.23	80.0	± 9.6 %
		Y	3.28	67.40	15.84	ļ	80.0	
		Z	3.83	69.31	17.18	<u> </u>	80.0	
10491- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.89	73.27	18.94	2.23	80.0	± 9.6 %
		Y	3.41	68.95	16.75		80.0	
		Z	4.15	71.63	18.18		80.0	
10492- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.58	69.83	17.86	2.23	80.0	± 9.6 %
AAB			3.61	67.25	16.19	1	80.0	1
		Y Z	3.01	07.20	1 10.19		00.0	

May 4, 2017

40.400		1						
10493- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.64	69.64	17.80	2.23	80.0	± 9.6 %
		Y	3.67	67.18	16.18		80.0	
		Z	4.14	68.64	17.20		80.0	
10494- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.45	75.14	19.48	2.23	80.0	±9.6 %
		Y	3.60	69.94	17.04		80.0	
		Z	4.53	73.15	18.63		80.0	
10495- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.66	70.37	18.07	2.23	80.0	± 9.6 %
		Y	3.63	67.52	16.37		80.0	
		Z	4.12	69.19	17.43		80.0	
10496- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.71	69.99	17.96	2.23	80.0	± 9.6 %
		Y	3.72	67.38	16.36		80.0	
****		Z	4.19	68.90	17.35		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.67	73.00	16.98	2.23	80.0	±9.6 %
		Y	1.37	61.77	9.96		80.0	
		Z	2.36	67.87	14.00		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.90	67.19	13.71	2.23	80.0	±9.6 %
		Y	1.35	60.00	8.01		80.0	
		Z	1.86	62.64	10.60		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.85	66.64	13.34	2.23	80.0	± 9.6 %
		Y	1.36	60.00	7.87		80.0	
		Z	1.81	62.12	10.20		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.70	75.63	19.53	2.23	80.0	± 9.6 %
		Y	2.73	68.98	15.94		80.0	
		Z	3.76	73.30	18.33	L	80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.23	71.19	17.65	2.23	80.0	± 9.6 %
		Y	2.86	66.77	14.58		80.0	
		Z	3.58	69.63	16.57		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.27	70.98	17.53	2.23	80.0	± 9.6 %
		Y	2.90	66.66	14.48		80.0	
		Z	3.64	69.47	16.45		80.0	
10503- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.85	75.19	19.58	2.23	80.0	±9.6 %
		Y	3.02	69.36	16.65		80.0	
		Z	3.94	73.03	18.58		80.0	
10504- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.28	70.69	17.97	2.23	80.0	± 9.6 %
		Y	3.17	67.36	15.79		80.0	
		Z	3.72	69.41	17.18		80.0	
10505- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.36	70.40	17.88	2.23	80.0	± 9.6 %
		Y	3.27	67.30	15.78	L	80.0	
10.505		Z	3.81	69.22	17.13	l	80.0	
10506- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.40	74.99	19.41	2.23	80.0	±9.6 %
		<u>Y</u>	3.57	69.81	16.97		80.0	
		Z	4.49	73.01	18.56		80.0	
10507- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.64	70.31	18.04	2.23	80.0	±9.6 %
		Y	3.61	67.45	16.33		80.0	
		Z						

10508- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.69	69.92	17.92	2.23	80.0	± 9.6 %
		Y	3.71	67.31	16.31		80.0	
		Z	4.18	68.84	17.31		80.0	
10509- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.50	73.15	18.71	2.23	80.0	± 9.6 %
		Y	4.02	69.31	16.85		80.0	
		Z	4.76	71.65	18.04		80.0	
10510- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.10	69.91	17.94	2.23	80.0	± 9.6 %
		Y	4.12	67.45	16.52		80.0	
		Z	4.58	68.85	17.39		80.0	
10511- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	5.12	69.57	17.85	2.23	80.0	± 9.6 %
		Y	4.20	67.31	16.51		80.0	
		Z	4.63	68.59	17.32		80.0	
10512- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.96	75.15	19.32	2.23	80.0	± 9.6 %
		Y	4.06	70.23	17.07		80.0	
		Z	5.02	73.25	18.52		80.0	
10513- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.02	70.36	18.10	2.23	80.0	± 9.6 %
		Y	4.00	67.57	16.56		80.0	
		Z	4.48	69.16	17.50		80.0	
10514- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.99	69.81	17.94	2.23	80.0	± 9.6 %
		Y	4.05	67.30	16.51		80.0	
		Z	4.49	68.72	17.38		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	1.02	64.05	15.63	0.00	150.0	± 9.6 %
		Y	1.00	63.92	15.25		150.0	
40540		Z	1.00	64.10	15.54		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.93	79.01	21.99	0.00	150.0	± 9.6 %
		Y Z	0.68	73.21 78.68	19.21 21.72		150.0 150.0	
10517-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	0.90	66.99	16.87	0.00	150.0	± 9.6 %
AAA	Mbps, 99pc duty cycle)	Ŷ	0.86	66.15	16.14	0.00	150.0	1 9.0 %
		Z	0.88	66.91	16.72	·	150.0	
10518- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.69	66.87	16.41	0.00	150.0	± 9.6 %
		Y	4.45	67.05	16.31		150.0	
		Z	4.57	66.95	16.36		150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.90	67.15	16.54	0.00	150.0	± 9.6 %
		Y	4.61	67.23	16.40		150.0	
		Z	4.76	67.18	16.47		150.0	
10520- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.76	67.15	16.48	0.00	150.0	± 9.6 %
		Y	4.47	67.19	16.33		150.0	ļ
		Z	4.61	67.16	16.41	0.00	150.0	
40004	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24	X	4.69	67.16	16.47	0.00	150.0	± 9.6 %
10521- AAA	Mbps, 99pc duty cycle)		A 40	6740				1
	Mbps, 99pc duty cycle)	Y	4.40	67.18	16.32		150.0	
AAA		Z	4.55	67.17	16.40	0.00	150.0	+96%
	Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)					0.00		± 9.6 %

Certificate No: EX3-3995_May17

May 4, 2017

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.61	67.05	16.37	0.00	150.0	± 9.6 %
AAA	Mbps, 99pc duty cycle)		4.01	07.05	10.57	0.00	150.0	I 9.0 %
		Y	4.37	67.24	16.31		150.0	
		Z	4.49	67.13	16.34		150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.69	67.09	16.49	0.00	150.0	± 9.6 %
		Y	4.40	67.23	16.39		150.0	
		Z	4.55	67.16	16.45		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.64	66.13	16.08	0.00	150.0	±9.6 %
		Y	4.42	66.33	16.01		150.0	
40500		Z	4.53	66.22	16.04		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.85	66.54	16.22	0.00	150.0	± 9.6 %
		Y Z	4.56	66.64	16.13		150.0	
10527-	IEEE 802.11ac WiFi (20MHz, MCS2,	X	<u>4.71</u> 4.76	66.60 66.52	16.19 16.18	0.00	150.0	± 9.6 %
AAA	99pc duty cycle)	Y	4.70			0.00		I 9.0 %
		Z		66.62	16.08		150.0	
10528-	IEEE 802.11ac WiFi (20MHz, MCS3,	X	<u>4.63</u> 4.78	66.57 66.54	16.14 16.22	0.00	150.0 150.0	± 9.6 %
AAA	99pc duty cycle)	Y	4.78	66.63	16.22	0.00		± 9.0 %
		Z	4.51	66.58	16.11		150.0 150.0	
10529-	IEEE 802.11ac WiFi (20MHz, MCS4,	X	4.03	66.54	16.22	0.00	150.0	± 9.6 %
AAA	99pc duty cycle)	Y	4.70	66.63	16.11	0.00	150.0	1 9.0 %
		Z	4.65	66.58	16.17		150.0	
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.79	66.69	16.25	0.00	150.0	± 9.6 %
		Y	4.48	66.69	16.10		150.0	
		Z	4.64	66.70	16.19		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.64	66.57	16.20	0.00	150.0	± 9.6 %
		Y	4.36	66.56	16.04		150.0	
		Z	4.50	66.56	16.13		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.80	66.56	16.20	0.00	150.0	± 9.6 %
		Y	4.52	66.70	16.11		150.0	
		Z	4.66	66.63	16.16		150.0	
10534- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.29	66.65	16.24	0.00	150.0	± 9.6 %
		Y	5.05	66.62	16.13		150.0	
	1555 442	Z	5.16	66.64	16.18		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.36	66.79	16.29	0.00	150.0	± 9.6 %
		Y	5.10	66.77	16.20		150.0	
10536-		Z	5.23	66.80	16.26	0.00	150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.23	66.79	16.28	0.00	150.0	± 9.6 %
		Y	4.98	66.77	16.18		150.0	
10537-	IEEE 802.11ac WiFi (40MHz, MCS3,	Z X	5.10 5.29	66.78	16.23	0.00	150.0	1000
AAA	99pc duty cycle)			66.76	16.26	0.00	150.0	± 9.6 %
		Y Z	<u>5.04</u> 5.16	66.72	16.16		150.0	
10538- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.40	66.74 66.81	16.21 16.33	0.00	150.0 150.0	± 9.6 %
		Y	5.11	66.70	16.19		150.0	
		Z	5.25	66.75	16.25		150.0	
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.30	66.77	16.32	0.00	150.0	± 9.6 %
		Y	5.04	66.68	16.19		150.0	
******		Z	5.18	66.76	16.28		150.0	

10541-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	5.29	66.69	16.28	0.00	150.0	± 9.6 %
AAA	99pc duty cycle)		0.20	00.00	10.20	0.00	100.0	1 3.0 %
		Y	5.03	66.60	16.14		150.0	
		Ζ	5.15	66.64	16.21		150.0	
10542- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.43	66.71	16.30	0.00	150.0	± 9.6 %
		Y	5.18	66.68	16.19		150.0	
*****		Z	5.31	66.69	16.25		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.52	66.73	16.32	0.00	150.0	± 9.6 %
		Y	5.24	66.69	16.22		150.0	
40544			5.38	66.72	16.28		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.57	66.76	16.22	0.00	150.0	±9.6 %
		<u>  Y</u>	5.38	66.71	16.11		150.0	
10545-		Z	5.47	66.74	16.17	0.00	150.0	1000
AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.77	67.14	16.35	0.00	150.0	±9.6 %
		Y	5.54	67.08	16.25		150.0	
10546-	IEEE 802.11ac WiFi (80MHz, MCS2,	Z	5.65	67.12	16.30	0.00	150.0	+000
AAA	99pc duty cycle)	X	5.66	67.04	16.32	0.00	150.0	± 9.6 %
		Y	5.41	66.85	16.15		150.0	
10547-		Z	5.54	66.96	16.24	0.00	150.0	1000
AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.75	67.11	16.34	0.00	150.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.48	66.91	16.17		150.0	
40540		Z	5.61	66.99	16.24	0.00	150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.01	68.02	16.77	0.00	150.0	± 9.6 %
		Y	5.64	67.55	16.47		150.0	
40550		Z	5.82	67.82	16.63		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.68	66.99	16.30	0.00	150.0	±9.6 %
		Y Y	5.45	66.93	16.20	<b> </b>	150.0	
10551-	IEEE 802.11ac WiFi (80MHz, MCS7,	Z X	5.56 5.70	66.96 67.07	16.25	0.00	150.0 150.0	± 9.6 %
AAA	99pc duty cycle)	Y			16.30	0.00		±9.0 %
		Z	5.43	66.86	16.13 16.24		150.0	
10552-	IEEE 802.11ac WiFi (80MHz, MCS8,		<u>5.57</u> 5.60	67.01	16.24	0.00	150.0	± 9.6 %
AAA	99pc duty cycle)	Y		66.85	16.11	0.00	150.0	± 9.0 %
			5.39	66.81				
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	Z X	5.49 5.69	66.82 66.90	16.15 16.26	0.00	150.0 150.0	± 9.6 %
· • • •		Y	5.45	66.79	16.13		150.0	
		Z	5.57	66.85	16.20	<u> </u>	150.0	
10554- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.96	67.12	16.30	0.00	150.0	± 9.6 %
	······································	Y	5.78	67.03	16.18		150.0	
		Z	5.87	67.09	16.24		150.0	
10555- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.11	67.45	16.43	0.00	150.0	± 9.6 %
		Y	5.89	67.27	16.28		150.0	
		Z	5.99	67.37	16.36	1	150.0	
10556- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.12	67.46	16.44	0.00	150.0	± 9.6 %
		Y	5.91	67.34	16.31		150.0	
		Z	6.02	67.42	16.38	ļ	150.0	
10557- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.11	67.43	16.44	0.00	150.0	± 9.6 %
		Y	5.88	67.24	16.28		150.0	
		Z	5.99	67.34	16.36		150.0	

AAA         99pc duty cycle)         Y         5.91         67.25         16.33         150.0           10561         IEEE 1602.11ac WiFi (160MHz, MCS7, MAA         X         6.07         67.40         16.52         0.00         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.84         67.32         16.44         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.95         67.32         16.44         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.92         67.46         16.47         160.0         ± 9.6           AAA         99pc duty cycle)         Y         5.92         67.46         16.47         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.99         67.32         16.86         150.0         ± 9.6           AAA         99pc duty cycle)         Y         4.76         66.71         16.38         150.0         ± 9.6           AAA         99pc duty cycle)         Y         4.76         67.61         16.38         150.0         ± 9.6           AAA         OFDM, 12 Mips, 99pc duty cycle)         Y         4.76         67.41         16.	10558- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.17	67.61	16.54	0.00	150.0	± 9.6 %
IEEE 102.11ac WiFi (160MHz, MCS6, 99pc duly cycle)         X         6.16         67.46         16.45         0.00         150.0         ± 9.6           AAA         99pc duly cycle)         Y         5.91         67.25         16.33         150.0         ± 9.6           IEEE 1602.11ac WiFi (160MHz, MCS7, AAA         99pc duly cycle)         Y         5.84         67.21         16.35         0.00         150.0         ± 9.6           IEEE 1602.11ac WiFi (160MHz, MCS7, AAA         99pc duly cycle)         Y         5.84         67.21         16.35         0.00         150.0         ± 9.6           IEEE 1602.11ac WiFi (160MHz, MCS8, AAA         99pc duly cycle)         Y         5.95         67.32         16.44         150.0         ± 9.6           IEEE 1602.11ac WiFi (160MHz, MCS9, AAA         6.52         66.29         16.80         0.00         150.0         ± 9.6           ID564         IEEE 1602.11ac WiFi (160MHz, MCS9, AAA         65.52         66.99         16.84         16.50.0         ± 9.6           ID564         IEEE 1602.11ac WiFi (160MHz, MCS9, AAA         5.91         66.80         16.73         150.0         ± 9.6           ID564         IEEE 1602.11ac WiFi (160MHz, MCS9, AAA         5.51         67.01         16.38         150.0			Y	5.91	67.37	16.36		150.0	
10560         IEEE 1602.11ac WIFI (160MHz, MCS6, AAA         X         6.16         67.46         16.51         0.00         150.0         2.9.6           AAA         99pc duty cycle)         Y         5.91         67.25         16.33         150.0         1           10561         IEEE 1602.11ac WIFI (160MHz, MCS7, AAA         6.03         67.36         16.42         150.0         1         5.9.6         67.32         16.44         150.0         1         5.9.6         67.32         16.44         150.0         1         5.9.6         67.32         16.44         150.0         1         5.9.6         67.32         16.44         150.0         1         5.9.6         67.32         16.34         150.0         1         5.9.6         67.32         16.34         150.0         1         5.9.6         67.32         16.34         150.0         1         5.9.6         67.32         16.34         150.0         1         5.9.6         67.32         16.34         150.0         1         5.9.6         67.32         16.34         150.0         1         5.9.6         67.43         16.87         1         150.0         1         5.0.0         67.43         16.87         1         150.0         1         1.0.0 <td></td> <td></td> <td>Z</td> <td></td> <td></td> <td></td> <td></td> <td>150.0</td> <td>İ</td>			Z					150.0	İ
Image: constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec							0.00		±9.6 %
10561         IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle)         X         6.07         67.40         16.52         0.00         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.84         67.21         16.44         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.92         67.46         16.47         10.00         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.92         67.46         16.47         150.0         ± 9.6           10563-         IEEE 1602.11ac WiF1 (160MHz, MCS9, 99pc duty cycle)         X         6.52         68.29         16.30         0.00         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.99         67.32         16.48         150.0         ± 9.6           AAA         OFDM, 9 Mbps, 99pc duty cycle)         Y         4.76         67.01         16.38         160.0         150.0         ± 9.6           AAA         OFDM, 9 Mbps, 99pc duty cycle)         Y         4.76         67.43         16.71         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.43         16.71         150.0			Y	5.91	67.25	16.33		150.0	
10561.         IEEE 1602.11ac WIFI (160MHz, MCS7, 99pc duty cycle)         X         6.07         67.40         16.52         0.00         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.84         67.21         16.35         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.92         67.46         16.47         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.92         67.46         16.47         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.99         67.32         16.44         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.99         67.32         16.36         150.0         ± 9.6           AAA         99pc duty cycle)         Y         5.99         67.32         16.36         150.0         ± 9.6           AAA         OFDM, 9 Mbps, 99pc duty cycle)         Y         4.76         67.01         16.38         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y			Z	6.03		16.42		150.0	
Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio			X				0.00		± 9.6 %
10562- AAA         IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle)         X         6.22         67.85         16.74         0.00         150.0         ± 9.6           10563- MAA         IEEE 1602.11ac WiFi (160MHz, MCS9, 98pc duty cycle)         X         6.52         66.29         16.36         150.0         ± 9.6           10564- MAA         98pc duty cycle)         Y         5.99         67.32         16.36         150.0         ± 9.6           10564- MAA         VF         5.99         67.32         16.36         150.0         ± 9.6           10564- MAA         VF         5.99         67.41         16.34         150.0         ± 9.6           AAA         OFDM, 9 Mbps, 99pc duty cycle)         Y         4.76         67.01         16.88         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.96         67.29         16.62         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.29         16.62         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc				5.84		16.35		150.0	
AAA         99pc duty cycle)         Y         5.92         67.46         16.47         150.0           10563- AAA         IEEE 1602.11ac WIFI (160MHz, MCS9, S9pc duty cycle)         X         6.52         68.29         16.90         0.00         150.0         ±9.6           AAA         S9pc duty cycle)         Y         5.99         67.32         16.36         150.0         ±9.6           AAA         OFDM, 9 Mps, 39pc duty cycle)         Y         4.96         66.94         16.73         150.0         ±9.6           AAA         OFDM, 9 Mps, 39pc duty cycle)         Y         4.76         66.94         16.88         150.0         ±9.6           AAA         OFDM, 12 Mbps, 39pc duty cycle)         Y         4.97         67.45         16.71         150.0         ±9.6           AAA         OFDM, 12 Mbps, 39pc duty cycle)         Y         4.97         67.43         16.87         0.46         150.0         ±9.6           AAA         OFDM, 12 Mbps, 39pc duty cycle)         Y         4.97         67.43         16.81         150.0         ±9.6           AAA         OFDM, 12 Mbps, 39pc duty cycle)         Y         4.80         67.72         16.51         150.0         ±9.6           AAA <t< td=""><td></td><td></td><td>Z</td><td>5.95</td><td>67.32</td><td>16.44</td><td></td><td>150.0</td><td></td></t<>			Z	5.95	67.32	16.44		150.0	
Z         6.07         77.69         16.62         150.0           AAA         ISEE 1602.11ac WiFi (160MHz, MCS9, Y         6.52         66.29         16.90         0.00         150.0         ± 9.6           AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.19         67.32         16.36         150.0         ± 9.6           10564-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.01         66.94         16.44         0.46         150.0         ± 9.6           AAA         OFDM, 9 Mbps, 99pc duty cycle)         Y         4.76         67.01         16.38         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           I0566-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.10         67.29         16.62         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.72         16.63         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y							0.00		± 9.6 %
10563- AAA         EEE 1602.11a CWFI (160MHz, MCS9, 99pc duty cycle)         X         6.52         68.29         16.90         0.00         150.0         ± 9.6           10564- AAA         OFDM, 9 Mbps, 99pc duty cycle)         Y         5.99         67.32         16.36         150.0         ± 9.6           10564- AAA         OFDM, 9 Mbps, 99pc duty cycle)         Y         4.76         67.01         16.38         150.0         ± 9.6           10565- AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.76         67.01         16.38         150.0         ± 9.6           10565- AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           10566- IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.10         67.30         16.70         0.46         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           AAA         OFDM, 48 Mbps, 99pc duty cycle)         Y         4.80         67.77         16.93         150.								150.0	
AAA         99pc duty cycle)         Y         5.99         67.32         16.36         150.0           10564- AAA         OFDM, 9 Mbps, 99pc duty cycle)         X         5.01         66.94         16.54         0.46         150.0         ± 9.6           10565- AAA         OFDM, 9 Mbps, 99pc duty cycle)         Y         4.76         67.01         16.38         150.0         ± 9.6           10565- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Z         4.89         66.99         16.48         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           AAA         OFDM, 24 Mbps, 99pc duty cycle)         Y         4.80         67.70         17.05         0.46         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.80         67.70         16.93         150.0         ± 9.6				6.07	67.69	16.62		150.0	
Z         6.31         68.00         16.73         150.0           AAA         OFDM, 9 Mbps, 99p duty cycle)         Y         5.01         66.94         16.54         0.46         150.0         ± 9.6           AAA         OFDM, 19 Mbps, 99p duty cycle)         Y         4.76         67.01         16.38         150.0           10565-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.28         67.43         16.87         0.46         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           I0566-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.10         67.30         16.70         0.46         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           I0567-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.10         67.01         17.05         0.46         150.0         ± 9.6           I0568-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.01         67.01         16.83         150.0         150.0         150.0         150.0         150.0							0.00	150.0	± 9.6 %
10564- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)         X         5.01         66.94         16.54         0.46         150.0         ± 9.6           ID565- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)         X         5.28         67.43         16.87         0.46         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         X         5.28         67.43         16.87         0.46         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.44         16.80         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           I0567-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.14         67.70         17.05         0.46         150.0         ± 9.6           I0568-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.01         67.01         16.44         0.46         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycl				5.99	67.32	16.36		150.0	
10564- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)         X         5.01         66.94         16.54         0.46         150.0         ± 9.6           10565- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)         X         5.28         67.43         16.87         0.46         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         X         5.28         67.43         16.87         0.46         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.44         16.80         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           10567-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.14         67.75         16.93         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.85         67.75         16.93         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.85	40501		Z		68.00				
Y         4.76         67.01         16.38         150.0           10565- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)         X         5.28         67.43         16.87         0.46         150.0         ± 9.6           AAA         OFDM, 12 Mbps, 99pc duty cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           I0566- IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.10         67.30         16.70         0.46         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           I0567- IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Y         4.80         67.72         16.93         150.0         ± 9.6           I0568- AAA         OFDM, 24 Mbps, 99pc duty cycle)         Y         4.85         67.75         16.93         150.0         ± 9.6           I0568- AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.85         67.70         16.98         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.87         67.06         16.38         150.0         ± 9.6           AAA         OFDM, 48 Mbps, 99		IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)		5.01	66.94	16.54	0.46		± 9.6 %
Z         4.89         66.99         16.48         150.0           AAA         OFDM, 12 Mbps, 99pc duly cycle)         Y         4.97         67.45         16.71         150.0         ± 9.6           10565-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.10         67.30         16.70         0.46         150.0         ± 9.6           10566-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.10         67.30         16.70         0.46         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duly cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           I0567-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.14         67.70         17.05         0.46         150.0         ± 9.6           AAA         OFDM, 24 Mbps, 99pc duly cycle)         Y         4.85         67.75         16.93         150.0         ± 9.6           10568-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.01         67.01         16.44         0.46         150.0         ± 9.6           10569-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.07         67.72         17.07         0.46         150.0         ± 9.6			Y	4.76	67.01	16.38	[	150.0	
10565- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)         X         5.28         67.43         16.87         0.46         150.0         ± 9.6           10566- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Z         5.12         67.45         16.71         150.0           10566- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Y         4.80         67.27         16.51         150.0           10567- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Z         4.96         67.29         16.51         150.0           10567- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Z         4.96         67.75         16.93         150.0           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.01         67.70         16.98         150.0           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.01         67.01         16.44         0.46         150.0         ±9.6           10569- I0569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.07         67.72         17.07         0.46         150.0         ±9.6           10570- AAA         OFDM, 48 Mbps, 99pc duty cycle)         Y         4.83         67.94         17.05         150				4.89		*****			
Z         5.12         67.44         16.80         150.0           10566- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.10         67.30         16.70         0.46         150.0         ± 9.6           10567- I0567- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)         Y         4.80         67.72         16.51         150.0         ± 9.6           10567- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)         Y         4.85         67.70         17.05         0.46         150.0         ± 9.6           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Y         4.85         67.70         16.98         150.0         ± 9.6           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.01         67.01         16.44         0.46         150.0         ± 9.6           10569- AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.69         66.96         16.21         150.0         ± 9.6           10569- AAA         OFDM, 48 Mbps, 99pc duty cycle)         Y         4.83         67.77         17.03         150.0         ± 9.6           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         5.12         67.55         17.00			X	5.28			0.46		± 9.6 %
Z         5.12         67.44         16.80         150.0           AAA         OFDM, 18 Mbps, 99pc duty cycle)         X         5.10         67.30         16.70         0.46         150.0         ± 9.6           AAA         OFDM, 18 Mbps, 99pc duty cycle)         Y         4.80         67.27         16.51         150.0         ± 9.6           10567-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.14         67.70         17.05         0.46         150.0         ± 9.6           AAA         OFDM, 24 Mbps, 99pc duty cycle)         Y         4.85         67.75         16.93         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.86         667.29         16.62         150.0         ± 9.6           10568-         IEEE 802.11g WiFi 2.4 GHz (DSSS-         X         5.01         67.01         16.44         0.46         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.69         66.96         16.21         150.0         ± 9.6           AAA         OFDM, 48 Mbps, 99pc duty cycle)         Y         4.83         67.77         17.03         150.0         ± 9.6           AAA         OFDM, 48 Mbps, 99pc du			Y	4.97	67.45	16.71		150.0	
10566- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)         X         5.10         67.30         16.70         0.46         150.0         ± 9.6           10567-         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Z         4.96         67.27         16.51         150.0         150.0           AAA         OFDM, 24 Mbps, 99pc duty cycle)         Y         4.85         67.75         16.93         150.0         150.0           AAA         OFDM, 24 Mbps, 99pc duty cycle)         Y         4.85         67.75         16.93         150.0         150.0           10568-         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Z         4.99         67.70         16.88         150.0         150.0         150.0         150.0         150.0         150.0           10568-         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         V         4.69         66.96         16.21         150.0         150.0         150.0         150.0         10569-         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         V         4.83         67.94         17.05         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0 <td< td=""><td></td><td></td><td>Z</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			Z						
Y         4.80         67.27         16.51         150.0           10567- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)         X         5.14         67.70         17.05         0.46         150.0         ±9.6           AAA         OFDM, 24 Mbps, 99pc duty cycle)         Y         4.85         67.70         17.05         0.46         150.0         ±9.6           10568- AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.85         67.70         16.98         150.0           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.01         67.01         16.44         0.46         150.0         ±9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.07         67.72         17.07         0.46         150.0         ±9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.07         67.72         17.07         0.46         150.0         ±9.6           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Y         4.83         67.94         17.05         150.0         ±9.6           10570- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1         X         5.12         67.55         16.97         <			X				0.46		± 9.6 %
Z         4.96         67.29         16.62         150.0           10567- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)         X         5.14         67.70         17.05         0.46         150.0         ± 9.6           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)         Y         4.85         67.70         16.93         150.0         ± 9.6           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)         Y         4.89         66.96         16.21         150.0         ± 9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)         Y         4.87         67.06         16.38         150.0         ± 9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Y         4.83         67.94         17.05         150.0         ± 9.6           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Y         4.84         67.73         16.94         150.0         ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1         X         5.12         67.55         17.00         0.46         150.0         ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 2         X         5.1			Y	4.80	67.27	16.51		150.0	
10567- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)         X         5.14         67.70         17.05         0.46         150.0         ± 9.6           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)         Y         4.85         67.70         16.93         150.0           10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.01         67.01         16.44         0.46         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.69         66.96         16.21         150.0         ± 9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AA         X         5.07         67.72         17.07         0.46         150.0         ± 9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.07         67.72         17.07         0.46         150.0         ± 9.6           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.12         67.55         17.00         0.46         150.0         ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1         X         1.31         66.03         16.61         0.46         130.0         ± 9.6           1									1
Y         4.85         67.75         16.93         150.0           IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         Z         4.99         67.70         16.98         150.0           0568- AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.69         66.96         16.21         150.0           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)         Y         4.69         66.96         16.21         150.0           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)         X         5.07         67.72         17.07         0.46         150.0         ± 9.6           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)         X         5.12         67.55         17.00         0.46         150.0         ± 9.6           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- AAA         X         5.12         67.55         17.00         0.46         150.0         ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1         X         1.31         66.03         16.61         0.46         130.0         ± 9.6           10571- AAA         Mbps, 90pc duty cycle)         Y         1.19         64.69         15.51         130.0         ± 9.6							0.46		± 9.6 %
IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)         X         5.01         67.01         16.44         0.46         150.0         ± 9.6           AAA         OFDM, 36 Mbps, 99pc duty cycle)         Y         4.69         66.96         16.21         150.0         ± 9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)         Y         4.69         66.96         16.21         150.0         ± 9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)         Y         4.83         67.94         17.05         150.0         ± 9.6           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)         Y         4.83         67.73         16.94         150.0         ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)         Y         4.84         67.73         16.94         150.0         ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 AAA         X         1.31         66.03         16.61         0.46         130.0         ± 9.6           10571- AAA         Mbps, 90pc duty cycle)         Y         1.19         64.69         15.51         130.0         ± 9.6           AAA <t< td=""><td></td><td></td><td>Y</td><td>4.85</td><td>67.75</td><td>16.93</td><td></td><td>150.0</td><td> </td></t<>			Y	4.85	67.75	16.93		150.0	
10568- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)         X         5.01         67.01         16.44         0.46         150.0         ± 9.6           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)         Y         4.69         66.96         16.21         150.0         150.0           10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)         X         5.07         67.72         17.07         0.46         150.0         ± 9.6           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)         Y         4.83         67.94         17.05         150.0         ± 9.6           0450- AAA         OFDM, 54 Mbps, 99pc duty cycle)         Y         4.84         67.73         16.94         150.0         ± 9.6           0450- AAA         OFDM, 54 Mbps, 99pc duty cycle)         Y         4.84         67.73         16.94         150.0         ± 9.6           0450- AAA         Mbps, 90pc duty cycle)         Y         1.31         66.03         16.61         0.46         130.0         ± 9.6           0451- AAA         Mbps, 90pc duty cycle)         Y         1.19         64.69         15.51         130.0         ± 9.6           04572- AAA									
Z         4.87         67.06         16.38         150.0           10569- AAA         OFDM, 48 Mbps, 99pc duty cycle)         X         5.07         67.72         17.07         0.46         150.0         ± 9.6           AAA         OFDM, 48 Mbps, 99pc duty cycle)         Y         4.83         67.94         17.05         150.0            0570- AAA         C         4.94         67.77         17.03         150.0             10570- AAA         DFDM, 54 Mbps, 99pc duty cycle)         Y         4.84         67.73         16.94         150.0          ± 9.6           AAA         OFDM, 54 Mbps, 99pc duty cycle)         Y         4.84         67.73         16.94         150.0          ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1         X         1.31         66.03         16.61         0.46         130.0         ± 9.6           10571- AAA         Mbps, 90pc duty cycle)         Y         1.19         64.69         15.51         130.0         ± 9.6           10572- AAA         Mbps, 90pc duty cycle)         Y         1.20         65.47         16.20         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)							0.46		± 9.6 %
Image: Constraint of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of			Y	4.69	66.96	16.21		150.0	
10569- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)         X         5.07         67.72         17.07         0.46         150.0         ± 9.6           AAA         Y         4.83         67.94         17.05         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0         150.0 <t< td=""><td></td><td></td><td>Z</td><td>4.87</td><td></td><td></td><td></td><td></td><td></td></t<>			Z	4.87					
Y         4.83         67.94         17.05         150.0           10570- AAA         IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)         X         5.12         67.55         17.00         0.46         150.0         ± 9.6           AAA         OFDM, 54 Mbps, 99pc duty cycle)         Y         4.84         67.73         16.94         150.0         ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)         X         1.31         66.03         16.61         0.46         130.0         ± 9.6           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)         X         1.31         66.03         16.61         0.46         130.0         ± 9.6           10572- AAA         Mbps, 90pc duty cycle)         Y         1.19         64.69         15.51         130.0         ± 9.6           10572- AAA         Mbps, 90pc duty cycle)         Y         1.20         65.29         15.89         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.20         65.29         15.89         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.83         83.27         22.27         130.0         ± 9.6							0.46		± 9.6 %
Image: constraint of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of			Y	4.83	67.94	17.05		150.0	
10570- AAA       IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)       X       5.12       67.55       17.00       0.46       150.0       ± 9.6         AAA       Y       4.84       67.73       16.94       150.0       10570-         IOFDM, 54 Mbps, 99pc duty cycle)       Z       4.98       67.62       16.97       150.0       10570-         10571- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 1       X       1.31       66.03       16.61       0.46       130.0       ± 9.6         AAA       Mbps, 90pc duty cycle)       Y       1.19       64.69       15.51       130.0       ± 9.6         AAA       Mbps, 90pc duty cycle)       Y       1.19       64.69       15.51       130.0       ± 9.6         10572- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 2       X       1.34       66.74       17.02       0.46       130.0       ± 9.6         10573- AAA       Mbps, 90pc duty cycle)       Y       1.20       65.29       15.89       130.0       10.0         10573- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5       X       13.02       114.66       31.93       0.46       130.0       ± 9.6         AAA       Mbps, 90pc duty cycle)       Y       1.83       <			Z	4.94	67.77				
Z         4.98         67.62         16.97         150.0           10571- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)         X         1.31         66.03         16.61         0.46         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.19         64.69         15.51         130.0         ± 9.6           IO572- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 2         X         1.34         66.74         17.02         0.46         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.20         65.29         15.89         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.20         65.29         15.89         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.20         65.29         15.89         130.0           10573- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5         X         13.02         114.66         31.93         0.46         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.83         83.27         22.27         130.0           10574- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 11         X <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.46</td> <td></td> <td>± 9.6 %</td>							0.46		± 9.6 %
10571- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)       X       1.31       66.03       16.61       0.46       130.0       ± 9.6         AAA       Mbps, 90pc duty cycle)       Y       1.19       64.69       15.51       130.0       ± 9.6         10572- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)       X       1.34       66.74       17.02       0.46       130.0       ± 9.6         10572- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)       X       1.34       66.74       17.02       0.46       130.0       ± 9.6         10573- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)       Y       1.20       65.29       15.89       130.0         10573- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)       X       13.02       114.66       31.93       0.46       130.0       ± 9.6         10574- AAA       Mbps, 90pc duty cycle)       Y       1.83       83.27       22.27       130.0         10574- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)       Y       1.86       74.73       20.80       0.46       130.0       ± 9.6         10574- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS,						16.94		150.0	
10571- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)       X       1.31       66.03       16.61       0.46       130.0       ± 9.6         AAA       Y       1.19       64.69       15.51       130.0       130.0         10572- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)       X       1.34       66.74       17.02       0.46       130.0       ± 9.6         10572- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 AAA       X       1.34       66.74       17.02       0.46       130.0       ± 9.6         10573- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5       X       1.302       114.66       31.93       0.46       130.0       ± 9.6         10573- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5       X       13.02       114.66       31.93       0.46       130.0       ± 9.6         10574- AAA       Mbps, 90pc duty cycle)       Y       1.83       83.27       22.27       130.0         10574- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 11       X       1.67       74.73       20.80       0.46       130.0       ± 9.6         10574- AAA       Mbps, 90pc duty cycle)       Y       1.36       71.52       19.07       130.0       130.0 </td <td></td> <td></td> <td>Z</td> <td>4.98</td> <td>67.62</td> <td>16.97</td> <td></td> <td>150.0</td> <td></td>			Z	4.98	67.62	16.97		150.0	
Z         1.23         65.47         16.20         130.0           10572- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)         X         1.34         66.74         17.02         0.46         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.20         65.29         15.89         130.0         ±         9.6           10573- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5         X         13.02         114.66         31.93         0.46         130.0         ±         9.6           10573- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5         X         13.02         114.66         31.93         0.46         130.0         ±         9.6           10574- AAA         Mbps, 90pc duty cycle)         Y         1.83         83.27         22.27         130.0           10574- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 11         X         1.67         74.73         20.80         0.46         130.0         ±         9.6           10574- AAA         Mbps, 90pc duty cycle)         Y         1.36         71.52         19.07         130.0							0.46		± 9.6 %
Z         1.23         65.47         16.20         130.0           10572- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)         X         1.34         66.74         17.02         0.46         130.0         ± 9.6           AAA         Mbps, 90pc duty cycle)         Y         1.20         65.29         15.89         130.0         ±         9.6           10573- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5         X         13.02         114.66         31.93         0.46         130.0         ±         9.6           10573- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5         X         13.02         114.66         31.93         0.46         130.0         ±         9.6           10574- AAA         Mbps, 90pc duty cycle)         Y         1.83         83.27         22.27         130.0           10574- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 11         X         1.67         74.73         20.80         0.46         130.0         ±         9.6           10574- AAA         Mbps, 90pc duty cycle)         Y         1.36         71.52         19.07         130.0				1.19	64.69	15.51		130.0	l
10572- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)       X       1.34       66.74       17.02       0.46       130.0       ± 9.6         AAA       Mbps, 90pc duty cycle)       Y       1.20       65.29       15.89       130.0         10573- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)       X       13.02       114.66       31.93       0.46       130.0       ± 9.6         10573- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)       X       13.02       114.66       31.93       0.46       130.0       ± 9.6         10574- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)       Y       1.83       83.27       22.27       130.0         10574- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)       Y       1.67       74.73       20.80       0.46       130.0       ± 9.6         10574- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)       Y       1.36       71.52       19.07       130.0			Z						1
Z         1.25         66.13         16.59         130.0           10573- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)         X         13.02         114.66         31.93         0.46         130.0         ± 9.6           AAA         Y         1.83         83.27         22.27         130.0           IO574- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)         X         1.67         74.73         20.80         0.46         130.0         ± 9.6           V         1.36         71.52         19.07         130.0         ±         ±         130.0         ±         9.6			X	1.34			0.46		± 9.6 %
Z         1.25         66.13         16.59         130.0           10573- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)         X         13.02         114.66         31.93         0.46         130.0         ± 9.6           V         1.83         83.27         22.27         130.0         ±         10574-           IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 AAA         Y         1.83         83.27         22.27         130.0           10574- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)         X         1.67         74.73         20.80         0.46         130.0         ± 9.6           V         1.36         71.52         19.07         130.0         ± 9.6				1.20	65.29	15.89		130.0	
10573- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)       X       13.02       114.66       31.93       0.46       130.0       ± 9.6         Y       1.83       83.27       22.27       130.0         Z       6.19       103.61       28.94       130.0         10574- AAA       IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)       X       1.67       74.73       20.80       0.46       130.0       ± 9.6         V       1.36       71.52       19.07       130.0       ± 9.6							1		
Y         1.83         83.27         22.27         130.0           Z         6.19         103.61         28.94         130.0           10574- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)         X         1.67         74.73         20.80         0.46         130.0         ± 9.6           Y         1.36         71.52         19.07         130.0         ± 9.6			X				0.46		± 9.6 %
Z         6.19         103.61         28.94         130.0           10574- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)         X         1.67         74.73         20.80         0.46         130.0         ± 9.6           Y         1.36         71.52         19.07         130.0         ± 9.6			Y	1.83	83.27	22.27		130.0	
10574- AAA         IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)         X         1.67         74.73         20.80         0.46         130.0         ± 9.6           Y         1.36         71.52         19.07         130.0         ± 9.6									<u> </u>
Y 1.36 71.52 19.07 130.0							0.46		± 9.6 %
			+ + +	1.36	71 52	19.07		120.0	
			z	1.50	73.38	20.14		130.0	

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-		4.00	CC 74	40.57	0.40	400.0	
AAA	OFDM, 6 Mbps, 90pc duty cycle)	X	4.80	66.71	16.57	0.46	130.0	± 9.6 %
		Y	4.53	66.69	16.31		130.0	
		Z	4.66	66.73	16.47		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.83	66.87	16.63	0.46	130.0	± 9.6 %
		Y	4.56	66.90	16.40		130.0	
		Z	4.69	66.90	16.54		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	5.06	67.20	16.81	0.46	130.0	± 9.6 %
		Y	4.73	67.15	16.55		130.0	
		Z	4.90	67.19	16.71		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	4.96	67.38	16.92	0.46	130.0	± 9.6 %
		Y	4.64	67.35	16.69		130.0	
		Z	4.80	67.36	16.82		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.73	66.73	16.27	0.46	130.0	± 9.6 %
		Y	4.38	66.44	15.87		130.0	
10500		Z	4.56	66.64	16.13	0.45	130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.77	66.70	16.27	0.46	130.0	± 9.6 %
*******		Y	4.42	66.49	15.89		130.0	
40504		Z	4.61	66.67	16.15		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.86	67.44	16.86	0.46	130.0	± 9.6 %
		Y	4.55	67.40	16.64		130.0	
40500		Z	4.70	67.40	16.76		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.68	66.48	16.07	0.46	130.0	± 9.6 %
		Y	4.31	66.16	15.62		130.0	
10-00		Z	4.50	66.40	15.92		130.0	
10583- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.80	66.71	16.57	0.46	130.0	± 9.6 %
		Y	4.53	66.69	16.31		130.0	
		Ζ	4.66	66.73	16.47		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.83	66.87	16.63	0.46	130.0	± 9.6 %
		Y	4.56	66.90	16.40		130.0	
		Z	4.69	66.90	16.54		130.0	
10585- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.06	67.20	16.81	0.46	130.0	± 9.6 %
		Y	4.73	67.15	16.55		130.0	
		Z	4.90	67.19	16.71		130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.96	67.38	16.92	0.46	130.0	± 9.6 %
		Y	4.64	67.35	16.69	ļ	130.0	
		Z	4.80	67.36	16.82		130.0	
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.73	66.73	16.27	0.46	130.0	± 9.6 %
		Y	4.38	66.44	15.87		130.0	
10555		Z	4.56	66.64	16.13		130.0	
10588- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.77	66.70	16.27	0.46	130.0	± 9.6 %
		Y	4.42	66.49	15.89	<u> </u>	130.0	
40500		Z	4.61	66.67	16.15	0.40	130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	4.86	67.44	16.86	0.46	130.0	± 9.6 %
		Y	4.55	67.40	16.64		130.0	
10500		Z	4.70	67.40	16.76		130.0	
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.68	66.48	16.07	0.46	130.0	± 9.6 %
		Y	4.31	66.16	15.62		130.0	
1		Z	4.50	66.40	15.92		130.0	

10591-	IEEE 802.11n (HT Mixed, 20MHz,		4.95	66.76	16.66	0.46	120.0	+06%
AAA	MCS0, 90pc duty cycle)		4.95	66.76	16.66	0.46	130.0	±9.6 %
		Y	4.68	66.78	16.43		130.0	
		Z	4.81	66.78	16.57		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.12	67.11	16.78	0.46	130.0	± 9.6 %
		Y	4.81	67.09	16.56		130.0	
		Z	4.97	67.12	16.70		130.0	
10593- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.05	67.06	16.69	0.46	130.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	<u>Y</u>	4.73	66.96	16.41		130.0	
10594-	IEEE 802.11n (HT Mixed, 20MHz,	ZX	4.89 5.10	67.03 67.21	16.58 16.83	0.46	130.0 130.0	1069/
AAA	MCS3, 90pc duty cycle)	Y	4.79			0.40		± 9.6 %
		Z	4.79	67.16 67.20	16.59 16.73		130.0	
10595-	IEEE 802.11n (HT Mixed, 20MHz,	X	5.08	67.18	16.73	0.46	130.0	± 9.6 %
AAA	MCS4, 90pc duty cycle)	Y	4.75	67.11	16.48	0.40	130.0	1 9.0 78
<u></u>		Z	4.91	67.15	16.63		130.0	
10596- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.01	67.17	16.73	0.46	130.0	± 9.6 %
		Y	4.68	67.07	16.47		130.0	
		Z	4.85	67.15	16.64		130.0	
10597- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.97	67.11	16.64	0.46	130.0	± 9.6 %
		Y	4.63	66.94	16.32		130.0	
		Z	4.80	67.06	16.52		130.0	
10598- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.95	67.37	16.91	0.46	130.0	± 9.6 %
		Y	4.63	67.23	16.63		130.0	
		Z	4.79	67.31	16.79		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.61	67.34	16.83	0.46	130.0	± 9.6 %
		<u>Y</u>	5.33	67.18	16.60		130.0	
10600-	IEEE 802.11n (HT Mixed, 40MHz,	ZX	<u>5.47</u> 5.79	67.28	16.74	0.40	130.0	
AAA	MCS1, 90pc duty cycle)	- ^ - Y	5.42	67.86	17.06	0.46	130.0	± 9.6 %
		Z	<u> </u>	67.48 67.63	16.72 16.89		130.0 130.0	
10601- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.65	67.55	16.92	0.46	130.0	± 9.6 %
		Y	5.34	67.32	16.66		130.0	
		Z	5.49	67.43	16.80		130.0	
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.74	67.54	16.84	0.46	130.0	± 9.6 %
		Y	5.45	67.40	16.61		130.0	
		Z	5.58	67.44	16.72		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.84	67.90	17.14	0.46	130.0	± 9.6 %
		<u> </u>	5.54	67.77	16.94		130.0	
40004		Z	5.66	67.76	17.01		130.0	
10604- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.61	67.31	16.84	0.46	130.0	± 9.6 %
		Y	5.41	67.40	16.74		130.0	
10605-	IEEE 802.11n (HT Mixed, 40MHz,	Z	5.47	67.25	16.75	0.40	130.0	
AAA	MCS6, 90pc duty cycle)	X	5.71	67.57	16.97	0.46	130.0	± 9.6 %
		Y Z	5.42	67.42	16.74		130.0	
10606-	IEEE 802.11n (HT Mixed, 40MHz,	×	5.57 5.50	67.54	16.89 16.61	0.46	130.0 130.0	± 9.6 %
AAA	MCS7, 90pc duty cycle)	Y	5.18	66.77	16.27	0.40	130.0	± 9.0 %
		Z	5.34	66.96	16.27		130.0	
			J.J4	1 00.90	10.47	L	1 130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4,78	66.08	16.28	0.46	130.0	± 9.6 %
AAA	90pc duty cycle)							
		Y	4.53	66.13	16.08		130.0	
40000		Z	4.65	66.12	16.20		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.00	66.51	16.44	0.46	130.0	± 9.6 %
		Y	4.68	66.48	16.23		130.0	
		Z	4.84	66.52	16.37		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.88	66.39	16.31	0.46	130.0	± 9.6 %
		Y	4.57	66.30	16.04		130.0	
10010		Z	4.73	66.38	16.21		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.94	66.54	16.46	0.46	130.0	± 9.6 %
		<u> </u>	4.62	66.49	16.22		130.0	
40044		Z	4.78	66.54	16.37		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.86	66.37	16.32	0.46	130.0	± 9.6 %
		Y	4.54	66.27	16.05		130.0	
10612-		Z	4.70	66.34	16.22		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	×	4.88	66.52	16.36	0.46	130.0	± 9.6 %
		<u>Y</u>	4.53	66.38	16.07		130.0	
		Z	4.71	66.50	16.26		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	4.89	66.44	16.27	0.46	130.0	± 9.6 %
		Y	4.52	66.21	15.93		130.0	
40044		Z	4.71	66.38	16.15		130.0	
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.82	66.63	16.50	0.46	130.0	± 9.6 %
		Y	4.50	66.50	16.23		130.0	
		<u>Z</u>	4.66	66.58	16.39		130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.86	66.18	16.10	0.46	130.0	± 9.6 %
		Y	4.52	66.05	15.79		130.0	
		Z	4.70	66.17	15.99		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.43	66.62	16.46	0.46	130.0	± 9.6 %
		Y	5.15	66.47	16.24		130.0	
		Z	5.29	66.57	16.37		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.49	66.72	16.47	0.46	130.0	± 9.6 %
		Y	5.21	66.61	16.29		130.0	
		Z	5.36	66.72	16.42		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.39	66.81	16.54	0.46	130.0	± 9.6 %
		Y	5.11	66.69	16.34	ļ	130.0	
		Z	5.25	66.75	16.45		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.41	66.63	16.38	0.46	130.0	± 9.6 %
		Y	5.11	66.43	16.14	<b> </b>	130.0	
10000		Z	5.26	66.55	16.29		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.52	66.72	16.48	0.46	130.0	± 9.6 %
		Y	5.19	66.45	16.20		130.0	
40004		Z	5.35	66.60	16.36	0.10	130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.50	66.80	16.63	0.46	130.0	± 9.6 %
		<u>Y</u>	5.22	66.66	16.44	<b> </b>	130.0	
10000		Z	5.35	66.73	16.54		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.50	66.90	16.67	0.46	130.0	± 9.6 %
		Y	5.21	66.75	16.48		130.0	
		Z	5.36	66.87	16.60		130.0	

Certificate No: EX3-3995_May17

AAA       90p         10624-       IEE         AAA       90p         10625-       IEE         AAA       90p         10626-       IEE         AAA       90p         10626-       IEE         AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10630-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p <th>EE 802.11ac WiFi (40MHz, MCS7, pc duty cycle) EE 802.11ac WiFi (40MHz, MCS8, pc duty cycle) EE 802.11ac WiFi (40MHz, MCS9, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle)</th> <th>X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X X Y Z X X</th> <th>5.39 5.09 5.24 5.57 5.28 5.43 5.95 5.47 5.78 5.69 5.47 5.58 5.93 5.68 5.81 5.75 5.47 5.75 5.47 5.68</th> <th>66.50 66.26 66.41 66.65 66.50 66.60 67.60 66.93 67.52 66.66 66.52 66.62 67.17 67.03 67.13 66.83 66.49</th> <th>$\begin{array}{c} 16.36\\ \hline 16.08\\ 16.25\\ \hline 16.49\\ \hline 16.27\\ \hline 16.41\\ \hline 17.01\\ \hline 16.54\\ \hline 16.92\\ \hline 16.40\\ \hline 16.20\\ \hline 16.32\\ \hline 16.60\\ \hline 16.42\\ \hline 16.53\\ \hline 16.37\\ \end{array}$</th> <th>0.46</th> <th>130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 13</th> <th>± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %</th>	EE 802.11ac WiFi (40MHz, MCS7, pc duty cycle) EE 802.11ac WiFi (40MHz, MCS8, pc duty cycle) EE 802.11ac WiFi (40MHz, MCS9, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle)	X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X X Y Z X X	5.39 5.09 5.24 5.57 5.28 5.43 5.95 5.47 5.78 5.69 5.47 5.58 5.93 5.68 5.81 5.75 5.47 5.75 5.47 5.68	66.50 66.26 66.41 66.65 66.50 66.60 67.60 66.93 67.52 66.66 66.52 66.62 67.17 67.03 67.13 66.83 66.49	$\begin{array}{c} 16.36\\ \hline 16.08\\ 16.25\\ \hline 16.49\\ \hline 16.27\\ \hline 16.41\\ \hline 17.01\\ \hline 16.54\\ \hline 16.92\\ \hline 16.40\\ \hline 16.20\\ \hline 16.32\\ \hline 16.60\\ \hline 16.42\\ \hline 16.53\\ \hline 16.37\\ \end{array}$	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 13	± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 % ± 9.6 %
AAA       90p         10625-       IEE         AAA       90p         10626-       IEE         AAA       90p         10626-       IEE         AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p	pc duty cycle) EE 802.11ac WiFi (40MHz, MCS9, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Z X Y Z X Y Z X Y Z X Y Z X Y Z Z X	5.24 5.57 5.28 5.43 5.95 5.47 5.78 5.69 5.47 5.58 5.93 5.68 5.93 5.68 5.81 5.75 5.47 5.47 5.62	66.41           66.65           66.50           66.60           67.60           66.93           67.52           66.66           66.52           66.62           67.17           67.03           67.13           66.83           66.49	16.25           16.49           16.27           16.41           17.01           16.54           16.92           16.40           16.20           16.32           16.60           16.42           16.53	0.46	130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0	± 9.6 %
AAA       90p         10625-       IEE         AAA       90p         10626-       IEE         AAA       90p         10626-       IEE         AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p	pc duty cycle) EE 802.11ac WiFi (40MHz, MCS9, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	X Y Z X Y Z X Y Z X Y Z X Y Z Z X	5.57 5.28 5.43 5.95 5.47 5.78 5.69 5.47 5.58 5.93 5.68 5.93 5.68 5.81 5.75 5.47 5.47 5.62	66.65           66.50           66.60           67.60           66.93           67.52           66.66           66.52           66.62           67.17           67.03           67.13           66.83           66.49	16.49           16.27           16.41           17.01           16.54           16.92           16.40           16.20           16.32           16.60           16.42           16.53           16.37	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA       90p         10625-       IEE         AAA       90p         10626-       IEE         AAA       90p         10626-       IEE         AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p	pc duty cycle) EE 802.11ac WiFi (40MHz, MCS9, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Y           Z           X           Y           Z           X           Y           Z           X           Y           Z           X           Y           Z           X           Y           Z           X           Y           Z           X           Y           Z           X           Y           Z           X           Y           Z           X	5.28 5.43 5.95 5.47 5.78 5.69 5.47 5.58 5.93 5.68 5.93 5.68 5.81 5.75 5.47 5.62	66.50 66.60 67.60 66.93 67.52 66.66 66.52 66.62 67.17 67.03 67.13 66.83 66.49	16.27           16.41           17.01           16.54           16.92           16.40           16.20           16.32           16.60           16.42           16.53           16.37	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA       90p         10626-       IEE         AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10631-       IEE         AAA       90p         10632-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Z X Y Z X Y Z X Y Z X Y Z Z	5.43 5.95 5.47 5.78 5.69 5.47 5.58 5.93 5.68 5.93 5.68 5.81 5.75 5.47 5.62	66.60 67.60 66.93 67.52 66.66 66.52 66.62 67.17 67.03 67.13 66.83 66.49	16.41 17.01 16.54 16.92 16.40 16.20 16.32 16.60 16.42 16.53 16.37	0.46	130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0           130.0	± 9.6 %
AAA       90p         10626-       IEE         AAA       90p         10627-       IEE         AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10632-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	X Y Z X Y Z X Y Z X Y Z Z	5.95 5.47 5.78 5.69 5.47 5.58 5.93 5.68 5.81 5.75 5.47 5.62	67.60 66.93 67.52 66.66 66.52 66.62 67.17 67.03 67.13 66.83 66.83	17.01 16.54 16.92 16.40 16.20 16.32 16.60 16.42 16.53 16.37	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA       90p         10626-       IEE         AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10631-       IEE         AAA       90p         10632-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	X Y Z X Y Z X Y Z X Y Z Z	5.95 5.47 5.78 5.69 5.47 5.58 5.93 5.68 5.81 5.75 5.47 5.62	67.60 66.93 67.52 66.66 66.52 66.62 67.17 67.03 67.13 66.83 66.83	17.01 16.54 16.92 16.40 16.20 16.32 16.60 16.42 16.53 16.37	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
10626-       IEE         10627-       IEE         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         AAA       90p<	EE 802.11ac WiFi (80MHz, MCS0, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Z X Y Z X Y Z X Y Z X Y Z	5.78 5.69 5.47 5.58 5.93 5.68 5.81 5.75 5.47 5.62	67.52 66.66 66.52 67.17 67.03 67.13 66.83 66.49	16.92 16.40 16.20 16.32 16.60 16.42 16.53 16.37	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         10634-       IEE         10634-       IEE<	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Z X Y Z X Y Z X Y Z X Y Z	5.78 5.69 5.47 5.58 5.93 5.68 5.81 5.75 5.47 5.62	67.52 66.66 66.52 67.17 67.03 67.13 66.83 66.49	16.92 16.40 16.20 16.32 16.60 16.42 16.53 16.37	0.46	130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA       90p         10627-       IEE         AAA       90p         10628-       IEE         AAA       90p         10628-       IEE         AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         10634-       IEE         10634-       IEE<	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS1, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	X Y Z X Y Z X Y Z Z	5.69 5.47 5.58 5.93 5.68 5.81 5.75 5.47 5.62	66.66 66.52 67.17 67.03 67.13 66.83 66.49	16.40 16.20 16.32 16.60 16.42 16.53 16.37	0.46	130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA         90p           10628- AAA         IEE 90p           10629- AAA         IEE 90p           10630- AAA         IEE 90p           10631- AAA         IEE 90p           10633- AAA         IEE 90p	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Z X Y Z X Y Z	5.58 5.93 5.68 5.81 5.75 5.47 5.62	66.62 67.17 67.03 67.13 66.83 66.49	16.32 16.60 16.42 16.53 16.37		130.0 130.0 130.0 130.0	
AAA         90p           10628-         IEE           AAA         90p           10629-         IEE           AAA         90p           10629-         IEE           AAA         90p           10630-         IEE           AAA         90p           10630-         IEE           AAA         90p           10631-         IEE           AAA         90p           10631-         IEE           AAA         90p           10633-         IEE           AAA         90p	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	X Y Z X Y Z	5.93 5.68 5.81 5.75 5.47 5.62	67.17 67.03 67.13 66.83 66.49	16.60 16.42 16.53 16.37		130.0 130.0 130.0	
AAA         90p           10628- AAA         IEE 90p           10629- AAA         IEE 90p           10630- AAA         IEE 90p           10631- AAA         IEE 90p           10633- AAA         IEE 90p	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS2, pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Y Z X Y Z	5.68 5.81 5.75 5.47 5.62	67.03 67.13 66.83 66.49	16.42 16.53 16.37		130.0 130.0	
AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10631-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO634-       IEE	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Z X Y Z	5.81 5.75 5.47 5.62	67.13 66.83 66.49	16.53 16.37	0.46	130.0	+06%
AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10631-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO634-       IEE	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	X Y Z	5.75 5.47 5.62	66.83 66.49	16.37	0.46		+060
AAA       90p         10629-       IEE         AAA       90p         10630-       IEE         AAA       90p         10631-       IEE         AAA       90p         10631-       IEE         AAA       90p         10631-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         10633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO633-       IEE         AAA       90p         IO634-       IEE	pc duty cycle) EE 802.11ac WiFi (80MHz, MCS3,	Y Z	5.47 5.62	66.49		0.46	120.0	+0c0/
AAA         90p           10630-         IEE           AAA         90p           10631-         IEE           AAA         90p           10631-         IEE           AAA         90p           10632-         IEE           AAA         90p           10632-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p		Z	5.62				130.0	± 9.6 %
AAA         90p           10630-         IEE           AAA         90p           10631-         IEE           AAA         90p           10631-         IEE           AAA         90p           10632-         IEE           AAA         90p           10632-         IEE           AAA         90p           10633-         IEE           AAA         90p					16.08		130.0	
AAA         90p           10630-         IEE           AAA         90p           10631-         IEE           AAA         90p           10631-         IEE           AAA         90p           10632-         IEE           AAA         90p           10632-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p		X	<b>F C 1</b>	66.72	16.26		130.0	
AAA         90p           10631-         IEE           AAA         90p           10632-         IEE           AAA         90p           10633-         IEE           AAA         90p			5.84	66.89	16.39	0.46	130.0	± 9.6 %
AAA         90p           10631-         IEE           AAA         90p           10632-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p           IO633-         IEE           AAA         90p		Y	5.54	66.58	16.11		130.0	
AAA         90p           10631-         IEE           AAA         90p           10632-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p           10633-         IEE           10633-         IEE           AAA         90p           10633-         IEE           AAA         90p           IO633-         IEE           AAA         90p		Z	5.69	66.77	16.28		130.0	
AAA 90p 10632- IEE AAA 90p 10633- IEE AAA 90p 10633- IEE AAA 90p 10634- IEE	EE 802.11ac WiFi (80MHz, MCS4, pc duty cycle)	X	6.32	68.50	17.20	0.46	130.0	± 9.6 %
AAA 90p 10632- IEE AAA 90p 10633- IEE AAA 90p 10633- IEE AAA 90p 10634- IEE		Y	5.80	67.56	16.61		130.0	
AAA 90p 10632- IEE AAA 90p 10633- IEE AAA 90p 10633- IEE AAA 90p 10634- IEE		Z	6.08	68.11	16.95		130.0	
AAA 90p 10633- IEE AAA 90p 10634- IEE	EE 802.11ac WiFi (80MHz, MCS5, pc duty cycle)	X	6.24	68.33	17.30	0.46	130.0	± 9.6 %
AAA 90p 10633- IEE AAA 90p 10634- IEE		Y	5.82	67.73	16.91		130.0	
AAA 90p 10633- IEE AAA 90p 10634- IEE		Z	6.02	68.04	17.10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	130.0	
AAA 90p 10634- IEE	EE 802.11ac WiFi (80MHz, MCS6, pc duty cycle)	X	5.92	67.28	16.79	0.46	130.0	± 9.6 %
AAA 90p 		Y	5.67	67.20	16.66		130.0	[
AAA 90p 10634- IEE		Z	5.78	67.21	16.71		130.0	
10634- IEE	EE 802.11ac WiFi (80MHz, MCS7, pc duty cycle)	X	5.85	67.08	16.52	0.46	130.0	± 9.6 %
		Y	5.54	66.71	16.23		130.0	
		Z	5.68	66.89	16.38		130.0	
	EE 802.11ac WiFi (80MHz, MCS8, pc duty cycle)	X	5.83	67.07	16.58	0.46	130.0	± 9.6 %
		Y	5.53	66.80	16.33		130.0	
		Z	5.67	66.93	16.46		130.0	
	EE 802.11ac WiFi (80MHz, MCS9, pc duty cycle)	X	5.71	66.41	15.99	0.46	130.0	± 9.6 %
		Y	5.38	65.97	15.62		130.0	
		Z	5.55	66.26	15.86		130.0	
	EE 1602.11ac WiFi (160MHz, MCS0, pc duty cycle)	X	6.09	67.04	16.49	0.46	130.0	± 9.6 %
		Y	5.89	66.86	16.27		130.0	
		Z	5.99	66.97	16.40		130.0	
	EE 1602.11ac WiFi (160MHz, MCS1,	X	6.26	67.43	16.65	0.46	130.0	±9.6 %
	pc duty cycle)	Y	6.01	67.17	16.41		130.0	
		Z	6.13	67.33	16.55		130.0	
	pc duty cycle)	X	6.26	67.39	16.61	0.46	130.0	± 9.6 %
				67.19	16.40		130.0	
	pc duty cycle) EE 1602.11ac WiFi (160MHz, MCS2,	Y	6.03	1 07.19				

10639- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.26	67.42	16.67	0.46	130.0	± 9.6 %
		Y	6.00	67.12	16.41		130.0	
		Z	6.12	67.28	16.55		130.0	
10640- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.28	67.48	16.65	0.46	130.0	± 9.6 %
		Y	5.98	67.06	16.32	******	130.0	
		Z	6.13	67.29	16.50		130.0	
10641- AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.28	67.23	16.54	0.46	130.0	± 9.6 %
		Y	6.04	67.02	16.32		130.0	
		Z	6.16	67.17	16.46		130.0	
10642- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.36	67.58	16.88	0.46	130.0	± 9.6 %
		Y	6.09	67.33	16.65		130.0	
		Z	6.22	67.46	16.77		130.0	
10643- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.18	67.24	16.62	0.46	130.0	± 9.6 %
		Y	5.92	66.95	16.34		130.0	
		Z	6.05	67.12	16.50		130.0	
10644- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.39	67.89	16.96	0.46	130.0	± 9.6 %
		Y	6.01	67.25	16.52		130.0	
		Z	6.21	67.63	16.78		130.0	
10645- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.72	68.40	17.16	0.46	130.0	± 9.6 %
		Y	6.11	67.20	16.45		130.0	
		Z	6.55	68.24	17.03		130.0	
10646- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	29.42	112.83	36.95	9.30	60.0	± 9.6 %
		Y	10.25	91.82	29.43		60.0	
		Z	21.98	108.36	35.43		60.0	
10647- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	28.52	112.91	37.11	9.30	60.0	± 9.6 %
		Y	9.40	90.67	29.15		60.0	
		Z	20.39	107.51	35.32		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.91	66.53	13.46	0.00	150.0	± 9.6 %
		Y	0.66	64.14	10.70		150.0	
		Z	0.80	65.69	12.34	[	150.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## TKE0189107

**Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Cheeped M Nore

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL RFI UK

Certificate No: ES3-3358_Jan19

Object	ES3DV3 - SN:3358
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date:	January 21, 2019
This calibration certificate doo	cuments the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the u	

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Fle
Approved by:	Katja Pokovic	Technical Manager	Able
This calibration cortificate	a shall not be reproduced event in fu	I without written approval of the laborator	Issued: January 26, 2019
I mis calibration certificate	shall not be reproduced except in tu	without written approval of the laborator	y.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage C
- Servizio svizzero di taratura S
- **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization $\phi$	φ rotation around probe axis
Polarization 9	$\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system **Connector Angle** 

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMX, v.z. Assessed for E-field polarization  $\vartheta = 0$  (f  $\leq 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$  (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### **Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.30	1.26	1.13	± 10.1 %
DCP (mV) ^B	106.9	104.6	106.3	

#### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	221.6	+ 3.5 %	±4.7 %
		Y	0.0	0.0	1.0		214.3		
		Y	0.0	0.0	1.0		201.8		

#### **Calibration Results for Modulation Response**

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	221.6	± 0.8	± 4.7 %
		Y	0.00	0.00	1.00	1	214.3	%	
		Z	0.00	0.00	1.00		201.8		
10352-	Pulse Waveform (200Hz, 10%)	X	15.00	89.03	22.97	10.00	60.0	± 1.5	± 9.6 %
AAA		Y	15.00	88.64	22.40		60.0	%	
	and the second second second second	Z	15.00	89.36	21.67		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	89.49	21.76	6.99	80.0	± 1.0	± 9.6 %
AAA		Y	15.00	88.82	21.07		80.0	%	
		Z	15.00	90.03	20.86		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	91.57	21.09	3.98	95.0	± 1.3	± 9.6 %
AAA		Y	15.00	90.12	20.02		95.0	%	
		Z	15.00	92.38	20.57		95.0		
10355- Pulse	Pulse Waveform (200Hz, 60%)	X	15.00	95.18	21.35	2.22	120.0	± 1.6	± 9.6 %
	· · · ·	Y	15.00	92.09	19.45		120.0	%	
		Z	15.00	95.94	20.90		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.87	63.92	10.72	0.00	150.0	± 2.3 %	± 9.6 %
AAA	and the second second second second second	Y	0.73	61.98	9.18		150.0		
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	Z	0.56	60.40	7.45		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.44	69.67	16.46	0.00	150.0	± 1.2	± 9.6 %
AAA		Y	2.25	68.24	15.61		150.0	%	
		Z	2.19	68.32	15.79		150.0		
10396-	64-QAM Waveform, 100 kHz	X	4.14	76.69	21.48	3.01	150.0	± 0.7	± 9.6 %
AAA		Y	2.92	70.02	18.52		150.0	%	
		Z	2.95	72.27	19.77		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.52	67.41	15.88	0.00	150.0	± 1.9	± 9.6 %
AAA	THE REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	Y	3.39	66.69	15.44		150.0	%	
		Z	3.35	66.72	15.51		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.86	65.75	15.53	0.00	150.0	± 3.8	±9.6 %
AAA		Y	4.77	65.38	15.31		150.0	%	
		Z	4.64	65.35	15.31		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	49.6	348.31	34.02	26.31	1.59	5.10	1.77	0.21	1.01
Y	48.6	347.47	35.01	26.29	1.40	5.10	0.31	0.43	1.01
Z	39.4	277.68	34.25	21.56	0.65	5.10	1.54	0.07	1.01

#### **Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	55.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

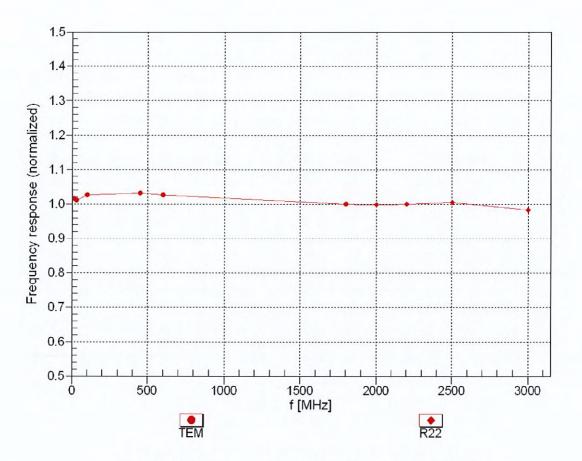
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	7.00	7.00	7.00	0.25	1.45	± 13.3 %
600	42.7	0.88	6.62	6.62	6.62	0.15	1.30	± 13.3 %
750	41.9	0.89	6.54	6.54	6.54	0.80	1.21	± 12.0 %
835	41.5	0.90	6.28	6.28	6.28	0.71	1.27	± 12.0 %
1450	40.5	1.20	5.58	5.58	5.58	0.80	1.08	± 12.0 %
1640	40.2	1.31	5.39	5.39	5.39	0.67	1.25	± 12.0 %
1750	40.1	1.37	5.43	5.43	5.43	0.44	1.57	± 12.0 %
1900	40.0	1.40	5.23	5.23	5.23	0.78	1.19	± 12.0 %
2100	39.8	1.49	5.17	5.17	5.17	0.69	1.30	± 12.0 %
2300	39.5	1.67	4.90	4.90	4.90	0.80	1.24	± 12.0 %
2450	39.2	1.80	4.64	4.64	4.64	0.80	1.32	± 12.0 %
2600	39.0	1.96	4.46	4.46	4.46	0.80	1.30	± 12.0 %
3500	37.9	2.91	4.21	4.21	4.21	0.85	1.35	± 13.1 %
3700	37.7	3.12	3.93	3.93	3.93	0.90	1.25	± 13.1 %

#### Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	7.08	7.08	7.08	0.13	1.45	± 13.3 %
600	56.1	0.95	6.76	6.76	6.76	0.14	1.30	± 13.3 %
750	55.5	0.96	6.35	6.35	6.35	0.55	1.45	± 12.0 %
835	55.2	0.97	6.20	6.20	6.20	0.51	1.50	± 12.0 %
1450	54.0	1.30	5.44	5.44	5.44	0.80	1.13	± 12.0 %
1640	53.7	1.42	5.30	5.30	5.30	0.80	1.23	± 12.0 %
1750	53.4	1.49	5.08	5.08	5.08	0.53	1.59	± 12.0 %
1900	53.3	1.52	4.85	4.85	4.85	0.68	1.37	± 12.0 %
2100	53.2	1.62	4.82	4.82	4.82	0.54	1.62	± 12.0 %
2300	52.9	1.81	4.58	4.58	4.58	0.80	1.27	± 12.0 %
2450	52.7	1.95	4.52	4.52	4.52	0.80	1.25	± 12.0 %
2600	52.5	2.16	4.36	4.36	4.36	0.80	1.20	± 12.0 %
3500	51.3	3.31	4.05	4.05	4.05	0.90	1.20	± 13.1 %
3700	51.0	3.55	3.96	3.96	3.96	0.85	1.20	± 13.1 %

#### Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ± 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^o Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)