SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

SAR TEST REPORT

For

Datecs Ltd.

Zettle Terminal

Test Model: Zettle Terminal

Prepared for Address	:	Datecs Ltd. 4 Datecs Street, Sofia 1592, Bulgaria
Prepared by Address	:	Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Tel	:	(86)755-82591330
Fax	:	(86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	April 06, 2021
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	April 06, 2021~May 25, 2021
Date of Report	:	June 09, 2021

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 185

Report No.: LCS210402039AEB SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL

	SAR TEST REPORT			
Report Reference No	LCS210402039AEB			
Date Of Issue:	June 09, 2021			
Testing Laboratory Name:	Shenzhen LCS Compliance Testing	Laboratory Ltd.		
Address	101, 201 Bldg A & 301 Bldg C, Juji Ir Yabianxueziwei, Shajing Street, Baoar 518000, China			
Testing Location/ Procedure :	Full application of Harmonised standa	rds ∎		
	Partial application of Harmonised standards			
	Other standard testing method \Box			
Applicant's Name:	Datecs Ltd.			
Address:	4 Datecs Street, Sofia 1592, Bulgaria			
Test Specification:				
Standard	IEEE Std C95.1, 2019& IEEE Std 152	8 TM -2013&FCC Part 2.1093		
Test Report Form No	LCSEMC-1.0			
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.			
Master TRF:	Dated 2014-09			
This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp	ng Laboratory Ltd. All rights reserve ed in whole or in part for non-commer g Laboratory Ltd. is acknowledged as co bliance Testing Laboratory Ltd. takes n esulting from the reader's interpretation	cial purposes as long as the opyright owner and source of noresponsibility for and wil		
Test Item Description:	Zettle Terminal			
Trade Mark	Zettle Terminal			
Model/Type Reference:	Zettle Terminal			
	WCDMA Band II/IV/V;			
Operation Frequency	LTE Band2/4/5/712/13/14//17/25/26/4	1/66/71;		
	WLAN2.4G, WLAN5.2G,5.3G,5.5G,5	SRD5.8G;		
Modulation Type:	Refer to page 7			
Ratings:	For AC Adapter Input:100-240V~, 50/ Output:5V-2.4A; 9V-2A; 12V-1.5	A; 15V=1.2A		
Domit	DC 3.8V by Rechargeable Li-ion Poly	mer Battery, 2400mAh		
Result:	Positive			

Ping Li

Supervisea by: Jin Wang

Gnino Limoz

Ping Li/ File administrators

Jin Wang/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

SAR -- TEST REPORT

٦

Test Report No. :	LCS210402039AEB	June 09, 2021 Date of issue

Test Model	: Zettle Terminal
EUT	: Zettle Terminal
Applicant	: Datecs Ltd.
Address	: 4 Datecs Street, Sofia 1592, Bulgaria
Telephone	
Fax.	: /
Manufacturer	: Datecs Ltd.
Address	: 4 Datecs Street, Sofia 1592, Bulgaria
Telephone	
Fax	: /
Factory	
	: 4 Datecs Street, Sofia 1592, Bulgaria
Telephone	
Fax	• /
1 ил	- /

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: YRW-ZPPTERMINAL	Report No.: LCS210402039AEB

Revison History

Revision	Issue Date	Revisions	Revised By
000	June 09, 2021	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 185

<u>SHENZ</u>	HEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: YRW-ZPPTERMINAL	Report No.: LCS210402039AEB
	TABLE (OF CONTENTS	
1. TES	T STANDARDS AND TEST DESCRIPTION	••••••	6
1.1.	Test Standards		6
1.2.			
1.3.	GENERAL REMARKS		
1.4.			
1.5.	STATEMENT OF COMPLIANCE		
2. TES	T ENVIRONMENT		9
2.1.	TEST FACILITY		9
2.2.	ENVIRONMENTAL CONDITIONS		
2.3.			
2.4.	EQUIPMENTS USED DURING THE TEST		
3. SAR	MEASUREMENTS SYSTEM CONFIGURATION		
3.1.	SAR MEASUREMENT SET-UP		11
3.1.	OPENSAR E-FIELD PROBE SYSTEM		
3.3.			
3.4.	Device Holder		
3.5.	SCANNING PROCEDURE		
3.6.	DATA STORAGE AND EVALUATION		
3.7.	POSITION OF THE WIRELESS DEVICE IN RELATION TO TH		
3.8. 3.9.	TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BOD TISSUE EQUIVALENT LIQUID PROPERTIES		
	System Check		
	SAR MEASUREMENT PROCEDURE		
	Power Reduction		
3.13.	POWER DRIFT		
4. TES	T CONDITIONS AND RESULTS		
4.1	Conducted Power Results		28
4.2	TRANSMIT ANTENNAS AND SAR MEASUREMENT POSIT		
4.3	SAR MEASUREMENT RESULTS		
4.4	SIMULTANEOUS TX SAR CONSIDERATIONS		
4.5	SAR MEASUREMENT VARIABILITY		
4.6	GENERAL DESCRIPTION OF TEST PROCEDURES		
4.7 4.8	MEASUREMENT UNCERTAINTY (450MHZ-6GHZ) System Check Results		
4.8 4.9	SAR TEST GRAPH RESULTS		
5. ALI	BRATION CERTIFICATES		
5.1	PROBE-EPGO324 CALIBRATION CERTIFICATE		
5.2	SID750DIPOLE CALIBRATION CERITICATE		
5.3 5.4	SID835DIPOLE CALIBRATION CERITICATE SID1800 DIPOLE CALIBRATION CERTIFICATE		
5.4 5.5	SID1000 DIPOLE CALIBRATION CERTIFICATE		
5.6	SID2450 Dipole Calibration Ceriticate		
5.7	SID2600 DIPOLE CALIBRATION CERITICATE		
5.8	SID5G-6G DIPOLE CALIBRATION CERITICATE		
6. SAR	SYSTEM PHOTOGRAPHS	••••••	
	TOGRAPHS OF THE TEST		
	PHOTOGRAPHS		
ð. EU I	. Г ПОТОЧКАТ ПЭ	•••••••••••••••••••••••••••••••••••••••	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 185

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

<u>IEEE Std C95.1, 2019</u>: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. <u>FCC Part 2.1093</u>:Radiofrequency Radiation Exposure Evaluation:Portable Devices

KDB447498 D01 General RF Exposure Guidance : Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04: Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz : SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB865664 D02 RF Exposure Reporting:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB248227 D01 802.11 Wi-Fi SAR: SAR Guidance For leee 802.11 (Wi-Fi) Transmitters

KDB941225 D01 3G SAR Procedures: 3G SAR Meaurement Procedures

KDB 941225 D06 Hotspot Mode: SAR Evaluation Procedures For Portable Devices With Wireless Router Capabilities

KDB 941225 D05 SAR for LTE Devices: SAR Evaluation Considerations For LTE Devices KDB616217 D04 SAR for laptop and tablets v01r02: SAR EVALUATION CONSIDERATIONS FOR LAPTOP, NOTEBOOK, NETBOOK AND TABLET COMPUTERS.

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	April 06, 2021
Testing commenced on	• •	April 06, 2021
Testing concluded on	:	May 25, 2021

1.4. Product Description

The Datecs Ltd.. Model: Zettle Terminal or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
Product Name:	Product Name: Zettle Terminal	
Test Model:	Zettle Terminal	
Additional Model No.:	1	
Hardware Version:	32.10.xx.xx	
Software Version:	Android FW 1.0.xx.xx/SP FW 3.0.xx.xx	
	For AC Adapter Input:100-240V~, 50/60Hz, 0.5A	
Power supply:	Output:5V-2.4A; 9V-2A; 12V-1.5A; 15V-1.2A	
	DC 3.8V by Rechargeable Li-ion Polymer Battery, 2400mAh	
Device category:	Portable Device	
Exposure category:	General population/uncontrolled environment	
EUT Type:	Prototype	
Hotspot:	Supported, power not reduced when Hotspot open	
VoIP	Supported	

The EUT is GSM,WCDMA,LTE,WLAN. the Zettle Terminal is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS class 12 for WCDMA Band II, Band IV, Band V, LTE Band 2, LTE Band 4, Band5, Band12, Band13, Band14, Band17, Band25, Band26, Band41,Band66,Band71 and WiFi2.4G, WiFi5.2G, WiFi5.3G, WiFi5.5G, SRD5.8G camera functions. For more information see the following datasheet

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 185

<u>IENZHEN LCS COMPLIANCE TESTIN</u>	NG LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB
Technical Characteristics	
UMTS	
Support Networks:	WCDMA RMC12.2K,HSDPA,HSUPA
Operation Band:	UMTS FDD Band II/IV/V
Modulation Type:	WCDMA: QPSK,16QAM; HSDPA/HSUPA: QPSK,16QAM
WCDMA Release Version:	Release 9
DC-HSUPA Release Version:	Not Supported
DC-1130FA Release version.	
	FPC Antenna
Antenna Description:	-0.59dBi (max.) For WCDMA Band II
	1.37dBi (max.) For WCDMA Band V
	0.22dBi (max.) For WCDMA Band IV
LTE	
Support Band:	LTE FDD band 2,4,5,7,12,13,14,17,25,26,41,66,71
Power Class:	Class 12
Modulation Type:	QPSK/16QAM
LTE Release Version:	Release 10
VoLTE	Not Support
	FPC Antenna
	-0.57dBi (max.) For E-UTRA Band 2
	0.07dBi (max.) For E-UTRA Band 4
	0.77dBi (max.) For E-UTRA Band 5
	-0.03dBi (max.) For E-UTRA Band 7
	0.15dBi (max.) For E-UTRA Band 12
Antenna Description:	-1.08dBi (max.) For E-UTRA Band 13
·	0dBi (max.) For E-UTRA Band 14
	0.15dBi (max.) For E-UTRA Band 17
	-0.59dBi (max.) For E-UTRA Band 25
	0.77dBi (max.) For E-UTRA Band 26
	-0.03dBi (max.) For E-UTRA Band 41
	0.41dBi (max.) For E-UTRA Band 66
	0.52dBi (max.) For E-UTRA Band 71
	0.520DI (IIIdX.) FUI E-01RA Dallu 71
WIFI 2.4G	
Supported Standards:	IEEE 802.11b/802.11g/802.11n(HT20,HT40)
Frequency Range:	2412MHz ~ 2462MHz
Channel Number:	11 Channel for 20MHz bandwidth(2412~2462MHz)
	7 Channel for 40MHz bandwidth(2422~2452MHz)
Type of Modulation:	802.11b: DSSS; 802.11g/n: OFDM
Channel separation:	1 5MHz
	5MHz EPC Antonno 1 0dBi(Max)
Antenna Description:	5MHz FPC Antenna, 1.0dBi(Max.)
Antenna Description: WIFI(5G)	FPC Antenna, 1.0dBi(Max.)
Antenna Description: WIFI(5G)	FPC Antenna, 1.0dBi(Max.) 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz
Antenna Description: WIFI(5G)	FPC Antenna, 1.0dBi(Max.) 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz 4 Channels for 20MHz bandwidth(5180-5240MHz)
Antenna Description: WIFI(5G)	FPC Antenna, 1.0dBi(Max.) 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz
Antenna Description: WIFI(5G)	FPC Antenna, 1.0dBi(Max.) 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5260-5320MHz)
Antenna Description: WIFI(5G)	FPC Antenna, 1.0dBi(Max.) 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5260-5320MHz) 11 Channels for 20MHz bandwidth(5500-5700MHz)
Antenna Description: WIFI(5G)	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)
Antenna Description: WIFI(5G)	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 40MHz bandwidth(5190~5230MHz)
Antenna Description: WIFI(5G) Frequency Range:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 40MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)
Antenna Description: WIFI(5G) Frequency Range:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 40MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)
Antenna Description: WIFI(5G) Frequency Range:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5510-5670MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)
Antenna Description: WIFI(5G) Frequency Range:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 40MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)
Antenna Description: WIFI(5G) Frequency Range:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5510-5670MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)
Antenna Description: WIFI(5G) Frequency Range:	FPC Antenna, 1.0dBi(Max.) 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5260-5320MHz) 11 Channels for 20MHz bandwidth(5500-5700MHz) 5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 20MHz bandwidth(5190~5230MHz) 2 channels for 40MHz bandwidth(5270~5310MHz) 2 channels for 40MHz bandwidth(5510-5670MHz) 2 channels for 40MHz bandwidth(5510-5670MHz) 1 Channels for 40MHz bandwidth(5210-5670MHz) 2 channels for 40MHz bandwidth(5210-5670MHz) 1 Channels for 80MHz bandwidth(5210MHz)
Antenna Description: WIFI(5G) Frequency Range:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5210~5370MHz)5 Channels for 40MHz bandwidth(5755~5795MHz)1 Channels for 80MHz bandwidth(5210MHz)2 channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5230-5610MHz)
Antenna Description: WIFI(5G) Frequency Range: Channel Number:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 80MHz bandwidth(5210MHz)1 Channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5230-5610MHz)1 channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5530-5610MHz)
Antenna Description: WIFI(5G) Frequency Range: Channel Number:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)1 Channels for 80MHz bandwidth(5210MHz)1 channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5530-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)3 Channels for 80MHz bandwidth(5775MHz)3 802.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)
Antenna Description: WIFI(5G) Frequency Range: Channel Number:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5210~53795MHz)1 Channels for 80MHz bandwidth(5210MHz)1 channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5775MHz)802.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)5180-5240MHz: FPC Antenna, 2.62dBi(Max.)
Antenna Description: WIFI(5G) Frequency Range: Channel Number: Modulation Type:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5210-5670MHz)1 Channels for 80MHz bandwidth(5210MHz)1 channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5775MHz)802.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)5180-5240MHz: FPC Antenna, 2.62dBi(Max.)5260-5320MHz: FPC Antenna, 2.81dBi(Max.)
Antenna Description: WIFI(5G) Frequency Range: Channel Number: Modulation Type:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5210~53795MHz)1 Channels for 80MHz bandwidth(5210MHz)1 channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5775MHz)802.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)5180-5240MHz: FPC Antenna, 2.62dBi(Max.)
Antenna Description: WIFI(5G) Frequency Range: Channel Number: Modulation Type:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5210-5670MHz)1 Channels for 80MHz bandwidth(5210MHz)1 channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5775MHz)802.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)5180-5240MHz: FPC Antenna, 2.62dBi(Max.)5260-5320MHz: FPC Antenna, 2.81dBi(Max.)
Antenna Description: WIFI(5G) Frequency Range: Channel Number: Modulation Type: Antenna Description:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5270~5310MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5575~5795MHz)1 Channels for 80MHz bandwidth(5210MHz)1 channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5775MHz)802.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)5180-5240MHz: FPC Antenna, 2.62dBi(Max.)5260-5320MHz: FPC Antenna, 2.81dBi(Max.)5500-5700MHz: FPC Antenna, 3.11dBi(Max.)
Antenna Description: WIFI(5G) Frequency Range: Channel Number: Modulation Type: Antenna Description:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(510-5670MHz)5 Channels for 40MHz bandwidth(5210~5310MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5210~5310MHz)1 Channels for 80MHz bandwidth(5230-5610MHz)1 channels for 80MHz bandwidth(5230-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5530-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)3 02.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)5180-5240MHz: FPC Antenna, 2.62dBi(Max.)5260-5320MHz: FPC Antenna, 3.11dBi(Max.)5745-5825MHz: FPC Antenna, 4.22dBi(Max.)5745-5825MHz: FPC Antenna, 4.22dBi(Max.)
Channel separation: Antenna Description: WIFI(5G) Frequency Range: Channel Number: Modulation Type: Antenna Description: NFC Operating Frequency: Modulation Type:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5500-5700MHz)2 channels for 20MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(5100~5230MHz)2 channels for 40MHz bandwidth(510~5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5210MHz)1 Channels for 80MHz bandwidth(5290MHz)2 Channels for 80MHz bandwidth(5290MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5530-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)302.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)5180-5240MHz: FPC Antenna, 2.62dBi(Max.)5260-5320MHz: FPC Antenna, 2.81dBi(Max.)5500-5700MHz: FPC Antenna, 3.11dBi(Max.)5745-5825MHz: FPC Antenna, 4.22dBi(Max.)5745-5825MHz: FPC Antenna, 4.22dBi(Max.)
Antenna Description: WIFI(5G) Frequency Range: Channel Number: Modulation Type: Antenna Description: NFC Operating Frequency: Modulation Type:	FPC Antenna, 1.0dBi(Max.)5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz4 Channels for 20MHz bandwidth(5180-5240MHz)4 Channels for 20MHz bandwidth(5260-5320MHz)11 Channels for 20MHz bandwidth(5500-5700MHz)5 channels for 20MHz bandwidth(5745-5825MHz)2 channels for 40MHz bandwidth(5190~5230MHz)2 channels for 40MHz bandwidth(510~5020MHz)2 channels for 40MHz bandwidth(5210~5310MHz)5 Channels for 40MHz bandwidth(5510-5670MHz)2 channels for 40MHz bandwidth(5510-5670MHz)2 channels for 80MHz bandwidth(5210MHz)1 Channels for 80MHz bandwidth(5200MHz)2 Channels for 80MHz bandwidth(5200MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)1 channels for 80MHz bandwidth(5530-5610MHz)2 Channels for 80MHz bandwidth(5575~5795MHz)1 channels for 80MHz bandwidth(5530-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)2 Channels for 80MHz bandwidth(5530-5610MHz)3 channels for 80MHz bandwidth(5775MHz)802.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK)5180-5240MHz: FPC Antenna, 2.62dBi(Max.)5260-5320MHz: FPC Antenna, 3.11dBi(Max.)5745-5825MHz: FPC Antenna, 4.22dBi(Max.)5745-5825MHz: FPC Antenna, 4.22dBi(Max.)13.56MHzASK
Antenna Description: WIFI(5G) Frequency Range: Channel Number: Modulation Type: Antenna Description: NFC Operating Frequency:	FPC Antenna, 1.0dBi(Max.) 5180-5240MHz, 5260-5320MHz, 5500-5700MHz, 5745-5825MHz 4 Channels for 20MHz bandwidth(5180-5240MHz) 4 Channels for 20MHz bandwidth(5260-5320MHz) 11 Channels for 20MHz bandwidth(5500-5700MHz) 5 channels for 20MHz bandwidth(5745-5825MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) 2 channels for 40MHz bandwidth(510~5670MHz) 2 channels for 40MHz bandwidth(5510-5670MHz) 2 channels for 40MHz bandwidth(5510-5670MHz) 2 channels for 40MHz bandwidth(5510-5670MHz) 2 channels for 80MHz bandwidth(5510-5670MHz) 1 Channels for 80MHz bandwidth(5210MHz) 1 channels for 80MHz bandwidth(5530-5610MHz) 1 channels for 80MHz bandwidth(5530-5610MHz) 2 Channels for 80MHz bandwidth(5575MHz) 802.11a/n/ac: OFDM (256QAM,64QAM, 16QAM, QPSK, BPSK) 5180-5240MHz: FPC Antenna, 2.62dBi(Max.) 5260-5320MHz: FPC Antenna, 2.81dBi(Max.) 5500-5700MHz: FPC Antenna, 3.11dBi(Max.) 5745-5825MHz: FPC Antenna, 4.22dBi(Max.) 5745-5825MHz: FPC Antenna, 4.22dBi(Max.) 5745-5825MHz: FPC Antenna, 4.22dBi(Max.) 5745-5825MHz: FPC Antenna, 4.22dBi(Max.) 5745-5825MHz: FPC Antenna, 4.22dBi(Max.)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 185

1.5. Statement of Compliance

The maximum of results of SAR found during testing for **Zettle Terminal** are follows:

<Highest Reported standalone SAR Summary>

•		Hotspot	Body-worn	
Classment	Frequency Band	(Report SAR _{1-g} (W/kg)	(Report SAR _{1-g} (W/kg)	
Class	Band	(Separation Distance 10mm)		
	WCDMA Band V	0.665	0.665	
	WCDMA Band IV	0.390	0.390	
	WCDMA Band II	0.703	0.703	
	LTE Band 2	0.794	0.794	
	LTE Band 4	0.752	0.752	
	LTE Band 5	0.766	0.766	
	LTE Band 7	0.280	0.280	
PCB	LTE Band 12	0.262	0.262	
PCB LTI	LTE Band 13	0.506	0.506	
	LTE Band 14	0.603	0.603	
	LTE Band 17	0.265	0.265	
	LTE Band 25	0.796	0.796	
	LTE Band 26	0.752	0.752	
	LTE Band 41	0.595	0.595	
	LTE Band 66	0.778	0.778	
	LTE Band 71	0.733	0.733	
DTS	WIFI2.4G	0.132	0.132	
	5.2GWLAN	0.212	0.212	
NII	5.3GWLAN	0.211	0.211	
INII	5.5GWLAN	0.254	0.254	
	5.8GWLAN	0.279	0.279	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Body-worn	PCE	1.075
(hotspot open)	NII	1.075

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 185

2.TEST ENVIRONMENT

2.1. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- Site Description
- EMC Lab.
- NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

FCC Limit (1g Tissue)							
	SAR (W/k	(g)					
EXPOSURE LIMITS	(General Population /	(Occupational /					
EXPOSORE LIMITS	Uncontrolled Exposure	Controlled Exposure					
	Environment)	Environment)					
Spatial Average(averaged over the whole body)	0.08	0.4					
Spatial Peak(averaged over any 1 g of	1.6	8.0					
tissue)	1.6	8.0					
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0					

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB							
2.4	4. Equipments Used durir	ng the Test					
Item	Equipment	Cal Date	Due Date				
1	PC	Lenovo	G5005	MY42081102	N/A	N/A	
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A	
3	Signal Generator	Agilent	E4438C	MY49072627	2020-06-11	2021-06-10	
4	Multimeter	Keithley	MiltiMeter 2000	4059164	2020-11-15	2021-11-14	
5	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2020-11-15	2021-11-14	
6	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2020-11-22	2021-11-21	
7	E-Field PROBE	MVG	SSE2	SN 31/17 EPGO324	2020-10-07	2021-10-06	
8	DIPOLE 750	SATIMO	SID 750	SN 07/14 DIP 0G750-302	2018-10-01	2021-09-3	
9	DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	2018-10-01	2021-09-3	
10	DIPOLE 1800	SATIMO	SID 1800	SN 07/14 DIP 1G800-301	2018-10-01	2021-09-3	
11	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2018-09-24	2021-09-2	
12	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2018-10-01	2021-09-3	
13	DIPOLE 2600	SATIMO	SID 2600	SN 38/18 DIP 2G600-468	2018-09-24	2021-09-2	
14	DIPOLE 5000-6000	MVG	SWG5500	SN 49/16 WGA 43	2018-09-24	2021-09-2	
15	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2020-11-15	2021-11-1	
16	SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2020-11-15	2021-11-1	
17	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2020-11-15	2021-11-1	
18	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A	
19	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A	
20	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A	
21	Liquid measurement Kit	HP	85033D	3423A03482	2020-11-15	2021-11-1	
22	Power meter	Agilent	E4419B	MY45104493	2020-06-11	2021-06-1	
23	Power meter	Agilent	E4419B	MY45100308	2020-11-22	2021-11-2	
24	Power sensor	Agilent	E9301H	MY41495616	2020-11-22	2021-11-2	
25	Power sensor	Agilent	E9301H	MY41495234	2020-06-11	2021-06-1	
26	Directional Coupler	MCLI/USA	4426-20	03746	2020-06-11	2021-06-1	

Note:

- Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 10 of 185

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

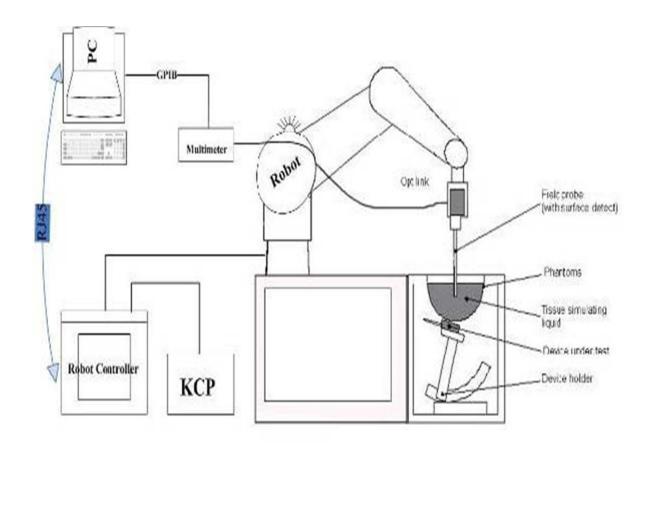
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

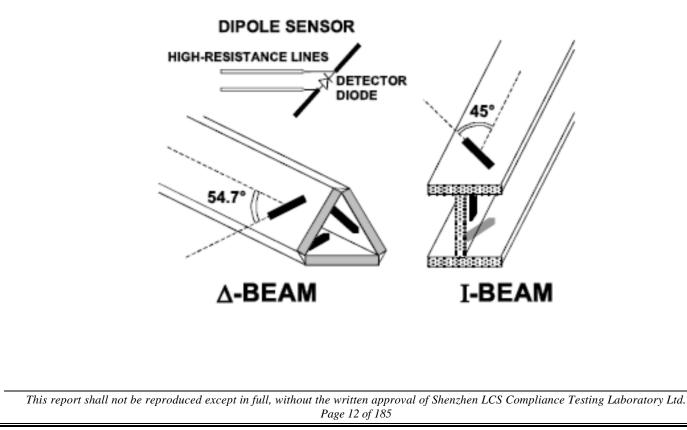
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 185

3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)


CalibrationISO/IEC 17025 calibration service available.

Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 185

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$		
	$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$		
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$		
	$\begin{array}{c} \mbox{graded} \\ \mbox{grid} \end{array} \begin{array}{ l l l l l l l l l l l l l l l l l l l$		\leq 4 mm	$\begin{array}{l} 3-4 \text{ GHz:} \leq 3 \text{ mm} \\ 4-5 \text{ GHz:} \leq 2.5 \text{ mm} \\ 5-6 \text{ GHz:} \leq 2 \text{ mm} \end{array}$		
			$\leq 1.5 \cdot \Delta z_{Zoc}$	m(n-1) mm		
Minimum zoom scan volume x, y, z			\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: YRW-ZPPTERMINAL	Report No.: LCS210402039AEB
SHENERIEN EES COMPENNOE LESTING ENDORMORI EID		Report No.: EC5210402057/IEB

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion fac	tor ConvFi
- Diode compres	sion point Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{array}{rll} E-\text{fieldprobes}: & E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}} \\ & H-\text{fieldprobes}: & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \\ \\ \text{With Vi} & = \text{compensated signal of channel i} & (i = x, y, z) \\ & \text{Normi} & = \text{sensor sensitivity of channel i} & (i = x, y, z) \\ & & [mV/(V/m)2] \text{ for E-field Probes} \\ & \text{ConvF} & = \text{sensitivity enhancement in solution} \\ & \text{aij} & = \text{sensor sensitivity factors for H-field probes} \end{array}$$

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 185 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

- f = carrier frequency [GHz]
 - = electric field strength of channel i in V/m
- Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR

Ei

R = local specific absorption rate in mW/g Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

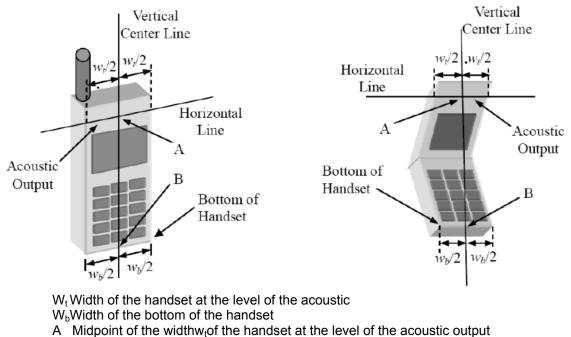
 ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

3.7. Position of the wireless device in relation to the phantom

General considerations

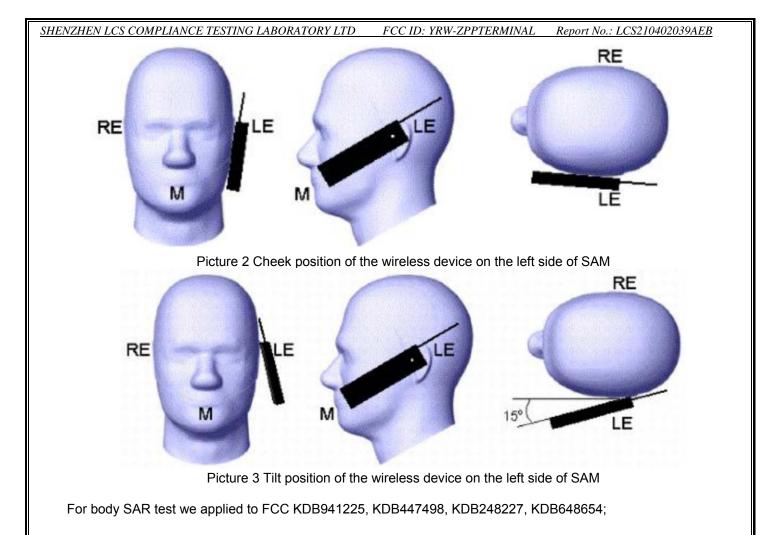
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770}$$
 or $P_{(\text{pwe})} = H^2_{\text{tot}}.37.7$

Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2

E_{tot}=total electric field strength in V/m


H_{tot}=total magnetic field strength in A/m

B Midpoint of the width w_b of the bottom of the handset

Picture 1-a Typical "fixed" case handset Picture 1-b Typical "clam-shell" case handset

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 185

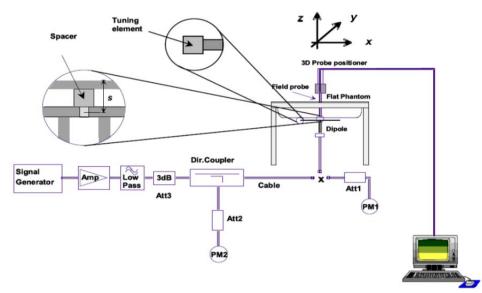
3.8. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

	The composition of the tissue simulating liquid													
Ingredient	750	ЛНz	8351	ИНz	1800 MHz		1900 MHz		2450MHz		2600MHz		5000MHz	
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.3	41.45	52.5	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65.5	78.6
Preventol	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Triton X- 100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7

Target Frequency	Не	ad	В	Body		
(MHz)	٤r	$\sigma(S/m)$	ε _r	σ(S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800-2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5800	35.3	5.27	48.2	6.00		

3.9. Tissue equivalent liquid properties


Dielectric Performance of Head and Body Tissue Simulating Liquid

Test Eng	Test Engineer: Jenny Wu								
Tissue	Measured	Target	t Tissue		Measure	Liquid			
Туре	Frequency (MHz)	σ	٤ _r	σ	Dev.	٤ _r	Dev.	Temp.	Test Data
750B	750	0.96	55.50	0.94	-2.08%	55.33	-0.31%	23.0	04/06/2021
835B	835	0.97	55.20	0.95	-2.06%	55.72	0.94%	22.2	04/09/2021
1800B	1800	1.52	53.30	1.55	1.97%	53.64	0.64%	24.2	04/12/2021
1900B	1900	1.52	53.30	1.54	1.32%	52.43	-1.63%	23.7	04/16/2021
2450B	2450	1.95	52.70	1.97	1.03%	53.22	0.99%	24.6	04/19/2021
2600B	2600	2.16	52.50	2.13	-1.39%	52.31	-0.36%	22.1	04/23/2021
5200B	5200	5.30	49.00	5.25	-0.94%	48.80	-0.41%	23.8	05/10/2021
5800B	5800	6.00	48.20	6.05	0.83%	48.46	0.54%	24.3	05/25/2021

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID750 SN 07/14 DIP 0G750-302 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm) Imaginary Impedance (ohm)		Delta (ohm)
2018-10-01	-34.80		50.7		1.6	
2019-10-01	-34.35	-1.29	51.2	0.5	1.5	-0.1
2020-10-01	-34.42	-1.09	51.3	0.4	1.5	-0.1

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-24.49		54.9		2.8	
2019-10-01	-24.17	-1.31	54.5	-0.4	2.6	-0.2
2020-10-01	-24.20	-1.18	54.2	-0.7	2.5	-0.3

SID1800 SN 30/14 DIP 1G800-301 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-20.26		43.1		6.9	
2019-10-01	-20.13	-0.64	42.9	-0.2	6.7	-0.2
2020-10-01	-20.15	-0.54	42.8	-0.3	6.6	-0.3

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-01	-26.43		50.5		4.7	
2019-09-01	-26.33	-0.38	50.2	-0.3	4.5	-0.2
2020-10-01	-26.40	-0.11	50.1	-0.4	4.6	-0.1

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Impedance	
2018-10-01	-25.59		44.7		-1.1	
2019-10-01	-25.68	0.35	44.8	0.1	-1.0	0.1
2020-10-01	-25.70	0.43	44.5	-0.2	-1.1	0.0

SID2600 SN 38/18 DIP 2G600-468 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-29.14		49.2		3.4	
2019-09-24	-29.12	-0.07	49.1	-0.1	3.2	-0.2
2020-09-24	-29.10	-0.07	49.2	0.0	3.3	-0.1

SID5200 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-8.59		19.38		13.50	
2019-09-24	-8.62	0.35	19.25	-0.13	13.47	-0.03
2020-09-24	-8.63	0.47	19.26	-0.12	13.45	-0.05

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 185 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

SID5400 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-10.58		77.13		1.81	
2019-09-24	-10.55	0.28	77.15	0.02	1.74	-0.07
2020-09-24	-10.54	0.09	77.12	-0.03	1.08	-0.01

SID5600 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-13.39		30.95		7.75	
2019-09-24	-13.35	0.30	30.91	-0.04	7.72	-0.03
2020-09-24	-13.34	0.07	30.92	-0.03	7.70	-0.05

SID5800 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-11.37		54.79		25.47	
2019-09-24	-11.42	0.44	54.68	-0.11	25.26	-0.21
2020-09-24	-11.44	0.62	54.80	0.10	25.28	-0.19

	r				1			Difference			
Mixture	Frequency	Power	SAR _{1g}	SAR _{10g}	Drift	SAR _{1g}	arget SAR _{10g}		percentage	Liquid	Date
Туре	(MHz)	i owei	(W/kg)	(W/kg)	(%)	(W/kg)	(W/kg)	1g	10g	Temp	Date
		100 mW	0.843	0.541		/					
Body	750	Normalize	8.43	5.41	1.69	8.77	5.78	-3.88%	-6.40%	23.0	04/06/2021
		to 1 Watt	0.45	5.41							
		100 mW	0.973	0.622							
Body 835	Normalize	9.73	6.22	-0.99	9.90	6.39	-1.72%	-2.66%	22.2	04/09/2021	
		to 1 Watt		-							
Body 1800	100 mW	3.782	1.998	0.00	00.00	00.05	0.400/	0.040/	24.2	04/12/2021	
	Normalize	37.82	19.98	2.38	39.03	20.65	-3.10%	-3.24%			
		to 1 Watt 100 mW	4.206	2.082							
Body 1900	Normalize	4.200		-4.21	1 40.91	21.40	2.81%	-2.71%	23.7	04/16/2021	
	to 1 Watt	42.06	20.82	-4.21	40.31	21.40	2.0170	-2.7170	25.7		
		100 mW	5.237	2.403							
Body	2450	Normalize			3.69	54.65	24.58	-4.17%	-2.24%	24.6	04/19/2021
,		to 1 Watt	52.37	24.03		000					
		100 mW	5.511	2.458							
Body	2600	Normalize	55.11	24.58	3.25	54.14	24.13	1.79%	1.86%	22.1	04/23/2021
		to 1 Watt	55.11								
		100 mW	15.311	5.796							
Body	5200	Normalize	153.11	57.96	0.88	159.09	56.13	-3.76%	3.26%	23.8	05/10/2021
		to 1 Watt									
		100 mW	18.189	6.099				/			
Body	5800	Normalize	181.89	60.99	1.01	177.77	61.06	2.32%	-0.11%	24.3	05/25/2021
	to 1 Watt										

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 185

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously

Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 4. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 4.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.11.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

1) Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 185 configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set

Sub-set	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Table 2: Subtests for UMTS Release 5 HSDPA

Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15*\beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

Table 3: Sub-Test 5 Setup for Release 6 HSUPA

Sub- set	βc	β_{d}	β _d (SF)	β _c /β _d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 *\beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: ßed can not be set directly; it is set by Absolute Grant Value.

3.11.4 LTE Test Configuration

QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.8 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

QPSK with 50% RB allocation

The procedures required for 1 RB allocation in section 4.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.9

QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in sections 4.2.1 and 4.2.2 are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

3.11.5 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 185 b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands

c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement. 4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the

ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions . a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition

established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures.

6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 185

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: YRW-ZPPTERMINAL	Report No.: LCS210402039AEB
SHEREN ECS COMI EMICE LESTING ENBORMORI ELD		Report No.: LC5210+0205711LD

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.

a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

- d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

TEST CONDITIONS AND RESULTS 4.

4.1 Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

HSDPA Setup Configuration:

C.

- The EUT was connected to Base Station E5515C referred to the Setup Configuration. а
- The RF path losses were compensated into the measurements. b.
 - A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (β_c and β_d) and parameters were set according to each i
 - Specific sub-test in the following table, C10.1.4, guoted from the TS 34.121 ii.
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded. d.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βα	βa	βd (SF)	βε/βα	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
	For the HS-D	PUCCH DOW	er mask redi	irrement test in cl	2000 5 20 5 /	a and the Lmo	
	Magnitude (E	EVM) with H in clause 5.	S-DPCCH te	est in clause 5.13. _K and $\Delta_{NACK} = 30/2$	1A, and HSDF	PA EVM with ph	ase
Note 3:	Magnitude (E discontinuity with $\beta_{hs} = 2$ CM = 1 for β	EVM) with H in clause 5. $4/15 * \beta_c$. $_{\beta_d} = 12/15$, MPR is base	S-DPCCH te 13.1AA, Δ_{ACI} $\beta_{hs}/\beta_c=24/15$ ed on the rela	est in clause 5.13. $_{\rm K}$ and $\Delta_{\rm NACK} = 30/$ 5. For all other con- ative CM difference	1A, and HSDF 15 with β_{hs} = 3 mbinations of E	PA EVM with ph 30/15 * β_c , and OPDCH, DPCCI	ase d ∆cqi = 24/15 H and HS-

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station R&S CMU200 referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

- in the following table, C11.1.3, quoted from the TS 34.121
- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Sub- test	βc	βa	βd (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1	: Δаск, 4	ANACK and	d Δ _{CQI} =	= 30/15 v	ith $eta_{\scriptscriptstyle hs}$	= 30/15 *	β_c .						
Note 2							her combinatio CM difference		DPDCH, [OPCCH,	HS- DPC	CH, E-D	PDCH
Note 3				-			during the more TFC (TF1,						by
Note 4				-			during the more the more the more the term of term						by

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

General Note

1. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.

3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

Conducted Power Measurement Results(WCDMA Band II/IV/V)

		Conducte	a Power	weasuren	ient Resu		IA Band I	/1v/v)			
	band	WCDMA	Band II res	ult (dBm)	WCDMA	Band IV res	ult (dBm)	WCDMA	Band V res	ult (dBm)	
Item	Danu	Chann	Channel/Frequency(MHz)			Channel/Frequency(MHz)			Channel/Frequency(MHz)		
nem	aub toot	9262/	9400/	9538/	1312/	1413/	1513/	4132/	4182/	4233/	
	sub-test	1852.4	1880	1907.6	1712.4	1732.6	1752.6	826.4	836.4	846.6	
	12.2kbps	23.19	23.49	23.17	23.12	23.32	23.23	22.79	22.82	22.73	
RMC	64kbps	23.05	23.14	23.13	22.17	23.14	23.14	21.74	21.52	21.52	
	144kbps	23.12	23.20	23.12	22.26	23.11	23.18	21.78	21.64	21.61	
	384kbps	23.15	23.22	23.10	22.22	23.15	23.08	21.47	21.72	21.54	
	Sub –Test 1	22.72	22.60	22.65	22.39	22.53	22.63	22.48	22.83	22.71	
HSDPA	Sub –Test 2	22.64	22.59	22.62	22.60	22.68	22.42	22.60	22.72	22.59	
	Sub –Test 3	22.54	22.58	22.62	22.65	22.75	22.48	22.48	22.73	22.47	
	Sub –Test 4	22.53	22.61	22.62	22.48	22.61	22.43	22.65	22.62	22.74	
	Sub –Test 1	22.73	22.70	22.56	22.51	22.70	22.58	22.43	22.72	22.54	
	Sub –Test 2	22.48	22.44	22.41	22.51	22.83	22.66	22.54	22.58	22.54	
HSUPA	Sub –Test 3	22.60	22.57	22.60	22.52	22.49	22.38	22.40	22.65	22.44	
	Sub –Test 4	22.34	22.46	22.47	22.41	22.55	22.53	21.47	21.74	21.40	
	Sub –Test 5	21.52	21.58	21.67	23.15	23.52	23.34	21.70	20.90	21.63	

Note: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD	FCC ID: YRW-ZPPTERMINAL	Report No.: LCS210402039AEB

mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 185

TE Band2 BW	Frequency	RR Co	nfiguration	Average Po	wer [dRm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
(11112)	(11112)	1	0	23.14	22.19
		1	3	23.07	22.18
		1	5	23.07	22.09
	1850.7	3	0	23.02	21.93
		3	2	23.00	21.92
		3	3	23.04	21.89
		6	0	21.91	20.87
		1	0	21.97	20.82
		1	3	22.09	21.00
		1	5	22.10	20.88
1.4	1880.0	3	0	21.97	20.79
		3	2	21.93	20.80
		3	3	22.00	20.80
		6	0	20.92	19.94
		1	0	22.34	21.60
		1	3	22.32	21.80
	4000.0	1	5	22.37	21.61
	1909.3	3	0	22.36	21.23
		3	2 3	22.33 22.27	21.26 21.18
		<u> </u>	0	22.27	21.18
		<u> </u>	0	21.39	20.32
		1	7	22.85	22.32
		1	14	22.63	22.03
	1851.5	8	0	21.97	21.07
	1001.0	8	4	21.98	21.06
		8	7	21.71	20.78
		15	0	21.87	20.88
		1	0	21.76	20.71
		1	7	21.95	20.91
		1	14	22.12	21.05
3	1880.0	8	0	20.80	19.83
		8	4	20.76	19.85
		8	7	20.92	19.97
		15	0	20.87	19.83
		1	0	22.25	21.20
		1	7	22.30	21.32
		1	14	22.52	21.37
	1908.5	8	0	21.25	20.29
		8	4	21.28	20.30
		8	7	21.48	20.49
	++	15	0	21.32	20.32
		<u> </u>	12	23.32 22.85	22.30 21.86
		1	24	22.85	21.86
	1852.5	12	0	22.09	21.23
	1002.0	12	6	22.09	21.07
		12	13	21.48	21.03
		25	0	21.72	20.73
_		1	0	21.72	20.95
5		1	12	22.12	21.20
		1	24	22.18	21.26
	1880.0	12	0	20.75	19.83
		12	6	20.75	19.84
		12	13	21.09	20.20
		25	0	20.96	19.92
	1907.5	1	0	22.23	21.31
	1901.5	1	12	22.27	21.29

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 185

		1	24	22.15	21.14
		12	0	21.19	20.21
	-	12	6	21.21	20.21
	-	12	13	21.34	20.40
	-	25	0	21.32	20.37
		1	0	23.24	22.46
	-	1	24	22.04	21.52
	-	1	49	20.62	20.11
	1855.0	25	0	21.79	20.76
	1000.0	25	12	21.80	20.77
	-	25	25	20.80	19.71
	-	50	0	21.34	20.29
		1	0	21.45	20.67
	-	1	24	21.84	20.86
	-	1	49	21.97	21.14
10	1880.0	25	0	20.50	19.60
10	1000.0	25	12	20.52	19.60
		25	25	20.32	20.21
		50	0	21.03	19.91
		1	0	21.03	20.89
		1	24	22.00	20.89
		1	49	21.95	19.94
	1905.0	25	49 0	20.87	19.94
	1905.0	25	12	20.87	19.90
		25	25	20.88	20.04
	-	50	0	20.94	20.04
		<u> </u>	0	23.02	20.21
	-	1	37	21.02	22.31
	-	1	74	21.02	20.42
	1857.5	37	0	20.85	20.03
	1007.0	37	18	20.83	20.85
	-	37	38	20.85	20.85
	-	75			19.79
			0	20.85 20.91	20.03
		<u> </u>	37	20.91	20.03
		1	74	20.86	19.86
15	1880.0	37	0	22.42	21.72
10	1000.0	37	18	20.74	20.81
		<u> </u>	38	20.75	20.77
		75	0	20.77	20.78
		1	0	22.08	20.98
		1	37	22.08	20.98
		<u> </u>	74	22.04	20.98
	1902.5	37	0	21.06	20.02
	1902.3	37	18	20.83	20.86
		37	38	20.83	20.82
		75	0	20.86	19.90
		1	0	20.84	22.09
		1	49	23.10	22.09
		1	99	21.02	20.00
	1860.0	50	99 0	21.84	20.43
	1000.0	<u> </u>	25	21.04	20.08
		<u> </u>	<u>25</u> 50	19.66	20.09
		<u> </u>	50 0	20.39	18.58
20					
		1	0	20.67	19.72
		1	49	20.40	19.58
	1000.0	1	99	22.08	21.30
	1880.0	50	0	20.16	19.12
		50 50	25 50	20.15 21.00	19.09 20.00
				2110	

SHENZ	ZHEN LCS COMPLIANCE TESTING LAB	ORATORY LTD F	FCC ID: YRW-ZPPTER	MINAL Report No	: LCS210402039AEB
		1	0	22.41	21.44
		1	49	22.72	21.67
		1	99	20.66	19.80
	1900.0	50	0	20.79	19.88
		50	25	20.79	19.86
		50	50	20.86	19.96
		100	0	20.85	19.81

LTE Band4

BW	Frequency	RB Co	nfiguration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
· · · · · ·		1	0	22.03	21.18
		1	3	21.98	21.22
		1	5	21.97	21.17
	1710.7	3	0	22.08	21.05
		3	2	22.13	21.02
		3	3	21.96	20.91
		6	0	20.94	20.05
		1	0	19.59	18.72
		1	3	19.63	18.73
		1	5	19.66	18.74
1.4	1732.5	3	0	19.56	18.49
	1102.0	3	2	19.57	18.47
	_	3	3	19.65	18.50
		6	0	18.54	17.57
		1	0	21.89	20.82
	_	1	3	21.89	20.82
	-	1	5	21.85	20.89
	1754.0	3	0		20.60
	1754.3	3		21.78 21.77	
	_		2 3		20.63
	_	3		21.75	20.61
		6	0	20.62	19.64
	_	1	0	22.07	21.26
	_	1	7	21.97	21.10
		1	14	21.81	21.04
	1711.5	8	0	21.08	20.18
		8	4	21.08	20.14
		8	7	20.99	20.09
		15	0	20.96	19.97
		1	0	19.66	18.79
		1	7	19.76	18.90
		1	14	19.67	18.79
3	1732.5	8	0	18.65	17.69
		8	4	18.65	17.74
		8	7	18.75	17.77
		15	0	18.67	17.63
		1	0	21.90	20.75
		1	7	21.90	20.78
		1	14	21.76	20.66
	1753.5	8	0	20.80	19.85
		8	4	20.80	19.85
		8	7	20.77	19.80
		15	0	20.79	19.74
		1	0	22.27	21.24
		1	12	22.07	21.03
		1	24	21.53	20.46
5	1712.0	12	0	21.03	20.40
Ŭ		12	6	21.00	20.10
		12	13	20.95	19.91
		25	0	20.95	19.91
		20	U	20.91	19.90

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 185

		1	0	19.73	19.06
		1	12	19.99	19.31
		1	24	19.86	19.09
	1732.5	12	0	18.60	17.72
		12	6	18.60	17.73
		12	13	18.75	17.78
		25	0	18.69	17.71
		1	0	22.13	21.09
	-	1	12	22.06	21.03
		1	24	21.90	21.05
	1752.5	12	0	20.94	19.96
	11.52.5	12	6	20.94	19.90
	-	12	13	20.94	19.98
	-	25	0	20.82	19.89
		1	0	20.92	21.53
	-	1	24	21.57	21.55
	-	1		21.57	19.56
	1715.0		49		
	1715.0	25	0	20.90	19.97
		25	12	20.91	19.96
		25	25	20.30	19.43
		50	0	20.71	19.74
		1	0	19.94	19.13
		1	24	20.85	20.05
4.0	(======	1	49	19.17	18.42
10	1732.5	25	0	18.57	17.63
		25	12	18.57	17.65
		25	25	18.95	18.05
		50	0	18.78	17.75
		1	0	21.79	20.62
		1	24	21.76	20.67
		1	49	21.41	20.58
	1750.0	25	0	20.61	19.68
		25	12	20.60	19.63
	_	25	25	20.94	19.92
		50	0	20.82	19.89
	_	1	0	21.83	21.02
	_	1	37	20.75	19.93
	_	1	74	20.10	19.33
	1717.5	37	0	20.05	20.06
	_	37	18	20.06	20.07
		37	38	20.06	20.06
		75	0	20.06	19.09
		1	0	19.87	19.27
		1	37	21.08	20.55
		1	74	19.39	18.90
15	1732.5	37	0	18.78	18.78
		37	18	18.76	18.77
		37	38	18.79	18.76
		75	0	18.79	17.87
		1	0	20.51	19.41
	T T	1	37	21.13	20.03
	T T	1	74	21.58	20.43
	1747.5	37	0	20.42	20.42
	ļ Ē	37	18	20.39	20.38
	l f	37	38	20.39	20.38
	j t	75	0	20.38	19.37
	1 1	1	0	21.68	20.78
	l t	1	49	20.35	19.42
20	1720.0	1	99	20.93	19.77
		50	0	20.40	19.40
	1 –	50	25	20.37	19.43

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 185

SHENZHEN LCS COMPLIANC	ORATORY LTD F	CC ID: YRW-ZPPTER	MINAL Report No.:	LCS210402039AEB	
		50	50	18.94	17.97
	-	100	0	19.64	18.65
		1	0	19.91	19.14
		1	49	21.66	21.13
		1	99	18.81	18.09
	1732.5	50	0	18.59	17.76
		50	25	18.59	17.76
		50	50	19.13	18.06
		100	0	18.94	17.89
		1	0	19.61	18.79
		1	49	19.15	18.26
		1	99	21.34	20.36
	1745.0	50	0	19.55	18.62
		50	25	19.57	18.59
		50	50	20.38	19.44
		100	0	20.06	19.12

LTE Band5 BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	21.55	20.73
		1	3	21.51	20.75
		1	5	21.60	20.75
824.7	824.7	3	0	21.51	20.44
		3	2	21.54	20.41
		3	3	21.53	20.44
		6	0	20.55	19.58
		1	0	22.41	21.46
		1	3	22.37	21.43
		1	5	22.36	21.47
1.4	836.5	3	0	22.34	21.30
		3	2	22.33	21.25
		3	3	22.33	21.26
		6	0	21.34	20.32
		1	0	21.82	20.39
		1	3	21.70	20.30
		1	5	21.71	20.39
	848.3	3	0	21.64	20.59
		3	2	21.63	20.63
		3	3		20.38
		6	0	21.50 20.58	19.55
		1	0	21.51	20.75
825.5	1	7	21.74	21.13	
		1	14	21.73	20.92
	825.5	8	0	20.43	19.52
		8	4	20.44	19.51
		8	7	20.54	19.58
		15	0	20.54	19.56
		1	0	22.41	21.51
		1	7	21.98	21.32
3		1	14	22.25	21.37
	836.5	8	0	21.40	20.45
		8	4	21.44	20.43
		8	7	21.32	20.44
		15	0	21.49	20.39
		1	0	21.84	20.72
847.		1	7	21.23	20.04
	847.5	1	14	21.03	20.01
		8	0	20.80	19.80
		8	4	20.81	19.76

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 185

SHENZHEN LCS COM	APLIANCE TESTING LAB	SORATORY LTD	FCC ID: YRW-ZPPTER	RMINAL Report No.:	: LCS210402039AEB
		8	7	20.62	19.73
		15	0	20.74	19.77
		1	0	21.74	20.65
		1	12	22.67	21.70
		1	24	22.20	21.13
	826.5	12	0	20.58	19.64
		12	6	20.57	19.62
		12	13	20.78	19.90
		25	0	20.78	19.82
		1	0	22.44	21.71
		1	12	22.02	21.37
		1	24	21.95	21.10
5	836.5	12	0	21.42	20.52
		12	6	21.42	20.46
		12	13	21.29	20.34
		25	0	21.41	20.40
		1	0	22.08	21.01
		1	12	21.91	20.97
		1	24	20.31	19.41
	846.5	12	0	20.95	19.98
		12	6	20.95	19.98
		12	13	20.54	19.67
		25	0	20.74	19.98
		1	0	21.75	20.96
		1	24	23.78	22.99
		1	49	22.11	21.27
	829.0	25	0	20.77	19.69
		25	12	20.76	19.70
		25	25	21.12	20.20
		50	0	20.95	19.95
		1	0	22.44	21.59
		1	24	21.93	20.94
		1	49	21.61	20.51
10	836.5	25	0	21.49	20.50
		25	12	21.49	20.53
		25	25	21.23	20.30
		50	0	21.48	20.44
		1	0	22.64	21.84
		1	24	23.22	22.64
		1	49	20.92	20.33
	844.0	25	0	21.34	20.32
		25	12	21.35	20.31
		25	25	21.08	20.23
		50	0	21.23	20.18

ITE	Band	7
	Danu	

BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	21.49	20.68
		1	12	21.65	20.72
		1	24	20.69	20.91
5	2502.5	12	0	20.76	19.79
		12	6	20.60	19.54
		12	13	20.76	19.79
5		25	0	20.69	19.70
25		1	0	23.84	23.00
		1	12	23.36	22.55
	2535.0	1	24	22.96	22.24
		12	0	22.56	21.10
		12	6	22.12	21.56

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 185

		12	13	22.57	21.58
		25	0	22.38	21.36
		1	0	22.71	21.56
		1	12	22.37	21.74
		1	24	22.53	21.43
	2567.5	12	0	21.44	20.62
		12	6	21.53	20.60
	-				
		12	13	21.55	20.43
		25	0	21.49	20.48
		1	0	21.76	21.03
		1	24	21.70	20.67
		1	49	21.43	20.89
	2505.0	25	0	20.51	19.52
		25	12	20.54	19.51
		25	25	20.50	19.63
		50	0	20.58	19.64
		1	0	22.55	22.40
		1	24	24.25	23.39
		1	49	23.19	20.00
10	2535.0	25	<u> </u>	22.81	21.77
10	2000.0	25 25	12		
				22.81	20.94
		25	25	22.00	21.76
		50	0	22.36	21.42
		1	0	22.35	21.76
		1	24	22.56	21.51
		1	49	22.78	21.37
	2565.0	25	0	21.71	20.77
		25	12	21.44	20.77
		25	25	21.76	20.46
		50	0	21.64	20.60
		1	0	21.73	20.81
	2507.5	1	37	21.49	21.63
		1	74	22.36	20.77
		37	0	21.62	20.77
	2507.5	37	18		
	-			20.59	20.79
		37	38	21.25	21.64
		75	0	20.80	19.79
		1	0	24.13	21.48
		1	37	23.24	22.54
		1	74	22.17	23.48
15	2535.0	37	0	21.46	22.60
		37	18	22.54	21.50
	T T	37	38	23.49	23.49
		75	0	22.28	21.28
		1	0	22.20	21.62
		1	37	22.65	21.17
		1	74	22.26	21.16
	2562.5	37	0	21.15	21.10
	2002.0	37	18	21.16	21.22
		37	38	21.10	21.00
		75	0	21.54	20.56
		1	0	21.12	21.07
		1	49	23.56	19.88
		1	99	22.37	22.65
	2510.0	50	0	20.56	20.70
20	l I	50	25	20.60	19.68
		50	50	21.73	19.71
		100	0	21.10	20.21
		1	0	21.90	21.06
	2535.0	1	49	23.37	22.86
	2535.0			_0.0.	-2.00

SHENZHEN LCS COMPLIANCE TESTING LAI	BORATORY LTD F	FCC ID: YRW-ZPPTER	MINAL Report No.:	LCS210402039AEB
	50	0	23.08	22.10
	50	25	23.11	20.68
	50	50	21.70	22.12
	100	0	22.46	21.45
	1	0	22.02	21.41
	1	49	22.17	21.09
	1	99	22.42	21.26
2560	50	0	21.45	20.50
	50	25	21.39	20.49
	50	50	21.54	20.59
	100	0	21.50	20.54

LTE Band 12		RB Configuration		Average Power [dBm]		
BW	Frequency					
(MHz)	(MHz)	Size	Offset	QPSK	16QAM	
		1	0	23.29	22.45	
		1	3	23.37	22.47	
		1	5	23.30	22.47	
	699.7	3	0	23.20	22.14	
		3	2	23.19	22.15	
		3	3	23.23	22.13	
		6	0	22.22	21.19	
		1	0	22.93	21.90	
		1	3	23.06	22.09	
		1	5	22.96	21.88	
1.4	707.5	3	0	22.90	21.92	
		3	2	22.91	21.91	
		3	3	22.91	21.84	
		6	0	22.01	21.01	
		1	0	22.84	22.14	
		1	3	22.94	22.22	
		1	5	22.92	22.13	
	715.3	3	0	22.82	21.68	
	110.0	3	2	22.79	21.68	
		3	3	22.83	21.00	
		6	0	22.03	20.99	
		1	0	23.23	20.99	
	1	7	23.12	22.39		
		1	14	22.93	22.39	
	700 5					
	700.5	8	0	22.36	21.35	
	-	8	4	22.36	21.36	
		8	7	22.21	21.25	
		15	0	22.32	21.38	
		1	0	23.03	22.16	
		1	7	23.17	22.44	
_		1	14	23.11	22.19	
3	707.5	8	0	22.05	20.94	
		8	4	22.04	20.99	
		8	7	21.88	20.84	
		15	0	22.01	20.87	
		1	0	22.86	21.86	
		1	7	22.48	21.55	
		1	14	22.92	22.21	
	714.5	8	0	21.95	20.97	
		8	4	21.97	20.99	
		8	7	21.99	20.97	
		15	0	21.98	20.86	
		1	0	23.40	22.35	
5	701.5	1	12	23.21	22.20	
		1	24	22.74	21.76	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 185

SHENZHEN LCS COMPLIANCE TESTING	LABORATORY LTD	FCC ID: YRW-ZPPTER	MINAL Report No.	: LCS210402039AEB
	12	0	22.38	21.38
	12	6	22.39	21.39
	12	13	22.26	21.27
	25	0	22.29	21.22
	1	0	23.16	22.14
	1	12	23.26	22.36
	1	24	23.48	22.37
707.5	12	0	21.97	20.96
	12	6	21.97	20.99
	12	13	21.96	20.91
	25	0	22.11	21.02
	1	0	23.10	22.11
	1	12	22.44	21.44
	1	24	22.81	21.65
713.5	12	0	22.06	21.06
	12	6	22.04	21.07
	12	13	21.94	20.86
	25	0	22.15	21.09
	1	0	23.58	22.86
	1	24	22.84	22.02
	1	49	22.91	22.07
704	25	0	22.34	21.38
	25	12	22.34	21.39
	25	25	21.96	21.03
	50	0	22.30	21.22
	1	0	23.48	22.76
	1	24	23.09	22.38
	1	49	23.20	22.49
10 707.5	25	0	22.13	21.16
	25	12	22.13	21.16
	25	25	22.05	21.10
	50	0	21.99	21.07
	1	0	23.13	22.26
	1	24	24.62	23.77
	1	49	21.09	20.28
711.0	25	0	21.99	21.27
	25	12	22.00	21.29
	25	25	22.05	20.90
	50	0	21.93	20.97

BW	Frequency		iguration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	22.45	21.83
		1	12	22.59	21.90
		1	24	22.38	21.61
	779.5	12	0	21.42	20.62
		12	6	21.42	20.55
		12	13	21.49	20.63
		25	0	21.60	20.60
		1	0	22.58	21.64
5		1	12	22.40	21.58
		1	24	21.63	20.98
	782	12	0	21.59	20.65
		12	6	21.58	20.66
		12	13	21.48	20.51
		25	0	21.65	20.70
		1	0	22.55	21.63
	784.5	1	12	21.79	21.04
		1	24	22.41	21.48

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YR					MINAL Report No.:	LCS210402039AEB
			12	0	21.57	20.59
			12	6	21.59	20.59
			12	13	21.52	20.54
			25	0	21.59	20.64
			1	0	22.89	22.22
			1	24	22.60	22.02
			1	49	21.79	20.69
		782	25	0	21.76	20.86
			25	12	21.75	20.86
			25	25	21.54	20.50
			50	0	22.00	21.01
			1	0	22.79	22.25
			1	24	22.77	22.13
			1	49	21.73	20.55
	10	782	25	0	21.75	20.84
			25	12	21.75	20.85
			25	25	21.53	20.51
			50	0	21.98	21.00
			1	0	22.76	22.27
			1	24	22.79	22.13
			1	49	21.80	20.76
		782	25	0	21.75	20.84
			25	12	21.76	20.87
			25	25	21.55	20.53
			50	0	22.00	21.00

BW	Frequency		figuration	Average Po	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	22.84	21.58
		1	12	24.92	23.61
		1	24	22.85	21.90
	709.5	12	0	21.62	20.50
		12	6	21.68	20.46
		12	13	21.83	20.95
		25	0	21.96	20.90
		1	0	23.01	21.86
		1	12	23.17	22.37
		1	24	22.12	21.28
5	793	12	0	21.92	21.03
		12	6	21.93	20.99
		12	13	22.14	21.21
		25	0	22.16	21.25
		1	0	23.24	22.28
		1	12	23.60	22.60
		1	24	23.64	22.70
	795.5	12	0	22.30	21.36
		12	6	22.32	21.35
		12	13	22.71	21.71
		25	0	22.53	21.53
		1	0	22.94	22.48
		1	24	24.48	23.96
		1	49	21.79	20.96
	793	25	0	22.00	21.11
10		25	12	22.03	21.12
10		25	25	22.41	21.35
		50	0	22.30	21.31
		1	0	22.95	22.54
	793	1	24	24.47	23.97
		1	49	21.89	21.02

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD			CC ID: YRW-ZPPTER	MINAL Report No.:	LCS210402039AEB
		25	0	22.01	21.12
		25	12	22.00	21.10
		25	25	22.44	21.39
		50	0	22.28	21.32
		1	0	22.94	22.48
		1	24	24.47	24.01
	793	1	49	21.77	20.87
		25	0	21.99	21.12
		25	12	22.03	21.10
		25	25	22.39	21.41
		50	0	22.29	21.31

BW	Frequency	RB Con	figuration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	23.26	22.50
		1	12	23.24	22.59
		1	24	23.29	22.69
	706.5	12	0	21.99	21.07
		12	6	22.00	21.10
		12	13	21.83	20.95
		25	0	21.95	20.88
		1	0	23.12	21.77
		1	12	24.31	22.62
		1	24	22.76	21.97
5	710	12	0	21.96	20.94
		12	6	21.95	20.93
		12	13	21.86	20.98
		25	0	21.78	20.86
		1	0	22.93	21.77
		1	12	22.36	21.24
		1	24	22.33	21.19
	713.5	12	0	21.82	20.81
		12	6	21.84	20.82
		12	13	21.71	20.69
		25	0	21.76	21.06
		1	0	23.12	22.35
		1	24	23.44	22.59
		1	49	22.82	22.13
	709	25	0	22.00	20.96
		25	12	22.03	20.95
		25	25	22.04	21.12
		50	0	21.92	20.87
		1	0	23.32	22.50
		1	24	24.69	23.92
		1	49	21.75	20.93
10	710	25	0	21.90	20.87
		25	12	21.86	20.90
		25	25	21.90	20.98
		50	0	21.90	20.81
		1	0	23.03	22.22
		1	24	24.42	23.82
		1	49	21.31	20.00
	711	25	0	21.86	21.15
		25	12	21.88	21.12
		25	25	21.98	20.77
	T E	50	0	21.83	20.97

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 185

(MHz)	(MHz) 1850.7	Size 1 1	Offset 0	QPSK	16QAM
	1850.7	-	0	00.05	
	1850.7	1	•	20.65	19.88
	1850.7	1	3	20.45	19.56
	1850.7	1	5	20.61	19.69
		3	0	20.36	19.3
		3	2	20.45	19.29
		3	3	20.27	19.12
		6	0	19.45	18.51
		1	0	20.37	19.51
		1	3	20.45	19.69
		1	5	20.58	19.86
1.4	1882.5	3	0	20.39	19.3
		3	2	20.28	19.21
		3	3	20.29	19.04
		6	0	19.37	18.52
		1	0	18.67	18.8
	-	1	3	18.54	18.71
	-	1	5	18.81	19.03
	1914.3	3	0	18.57	18.36
		3	2	18.38	18.62
	-	3	3	18.59	18.64
	-	6	0	18.4	18.49
		1	0	20.19	19.18
	-	1	7	20.13	19.09
	-	1	14	20.41	19.36
	1851.5	8	0	19.38	18.52
	1001.0	8	4	19.49	18
	-	8	7	19.48	18.62
	-	15	0	19.25	18.36
		1	0	20.17	10.00
	-	1	7	20.29	19.05
	-	1	14	20.29	19.03
3	1882.5	8	0	19.34	19.34
5	1002.5	8	4	19.34	18.38
	-	8	7	19.33	18.58
	-	15	0	19.33	18.38
		1	0	19.40	18.76
	-	1	7	19.96	18.44
	-	1	14	20.04	18.26
	1913.5	8	0	19.54	18.68
	1913.0	8	4	19.54	18.68
	-	8	7	19.51	18.64
	-	<u> </u>	0	19.69	18.68
		15	0	20	19.04
	-	1	12	20	19.02
		<u> </u>			
	1050 5		24	20.31	18.47
	1852.5	12	0	19.35	18.16
		12	6	19.42	18.16
		12	13	19.08	18.33
		25	0	19.24	18.24
-		1	0	20.33	19.22
5		1	12	20.36	19.14
		1	24	20.34	19.13
	1882.5	12	0	19.28	18.46
		12	6	19.3	18.23
		12	13	19.25	18.35
	ļ	25	0	19.36	18.24
		1	0	18.8	17.84
	1912.5	<u>1</u> 1	12 24	18.72 18.58	17.95 18.08

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 185

		12	0	18.09	17.25
		12	6	18.03	17.2
	-	12	13	19.12	18.44
	-	25	0	19.16	18.31
		1	0	20.39	10.01
	-	1	24	19.94	17.5
	-	1	49	18.3	19.32
	1855.0	25	0	19.16	19.32
	1655.0	25	12	19.10	18.22
	-				
	-	25	25	19.07 19.17	18.06 18.14
		50	0		
	-	1	0	20.09	19.33
	-	1	24	19.94	19.2
40	1000 5	1	49	20.85	19.38
10	1882.5	25	0	19.32	18.25
	-	25	12	19.3	18.52
		25	25	19.28	18.45
		50	0	19.33	18.3
		1	0	18.96	18.21
		1	24	19.88	18.15
		1	49	18.96	18.18
	1910.0	25	0	19.24	18.38
		25	12	18.18	18.38
		25	25	19.23	18.33
		50	0	18.34	17.46
		1	0	17.77	19.29
		1	37	20.22	18.02
		1	74	19.5	18.7
	1857.5	37	0	18.95	19.25
		37	18	18.38	17.97
		37	38	19.62	18.36
	-	75	0	19.3	18.16
		1	0	19.66	19.77
		1	37	20.46	18.62
	-	1	74	19.61	18.94
15	1882.5	37	0	18.7	19.4
		37	18	18.68	18.69
	-	37	38	19.2	18.68
	-	75	0	19.43	18.4
		1	0	18.66	17.95
		1	37	19.62	17.53
		1	74	18.33	18.82
	1907.5	37	0	19.01	17.46
	1901.0	37	18	17.45	17.40
		37	38	17.45	18.99
		<u>37</u> 75	0	18.16	18.99
	+				
		1	0	21.33	19.77
		1	49	24.02	19.99
	4000.0	1	99	21.28	22.96
	1860.0	50	0	20.14	20.92
		50	25	21.84	19.06
		50	50	21.86	20.93
		100	0	20.96	19.96
20		1	0	23.41	20.92
		1	49	21.51	21.89
		1	99	22.44	20.77
	1882.5	50	0	21.53	20.56
	I [50	25	21.89	20.89
	I [50	50	21.56	20.56
	ļ Ī	100	0	21.72	20.66
	1905.0	1	0	21.43	20.19

SHENZHEN LCS COMPLIANCE TESTING LAB	ORATORY LTD	FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEE		
	1	49	22.15	21.15
	1	99	24.03	23.00
	50	0	20.50	19.60
	50	25	20.51	19.60
	50	50	22.45	21.46
	100	0	21.46	20.41

BW	Frequency		nfiguration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
	, , , , , , , , , , , , , , , , , , ,	1	0	22.78	22.04
		1	3	22.85	22.08
		1	5	22.78	21.92
	814.7	3	0	22.80	21.84
		3	2	22.78	21.85
		3	3	22.78	21.81
		6	0	22.01	21.00
		1	0	22.98	22.13
		1	3	23.01	22.32
		1	5	23.02	22.26
1.4	831.5	3	0	22.96	22.01
		3	2	22.95	21.96
		3	3	22.96	21.95
		6	0	21.95	20.90
		1	0	22.72	21.94
		1	3	22.57	21.85
		1	5	22.68	21.86
	848.3	3	0	23.00	21.80
		3	2	22.87	21.80
		3	3	22.72	21.57
		6	0	21.68	20.90
		1	0	22.87	22.13
		1	7	23.00	22.12
		1	14	22.81	21.94
	815.5	8	0	21.92	21.04
	-	8	4	21.96	20.95
		8	7	21.80	20.72
		15	0	21.90	20.88
		1	0	22.99	22.20
		1	7	23.08	22.32
		1	14	23.04	22.22
3	831.5	8	0	22.04	21.00
U		8	4	21.96	21.00
		8	7	22.09	21.05
		15	0	22.05	21.05
		1	0	23.13	22.19
		1	7	22.26	21.35
		1	14	22.62	21.65
	847.5	8	0	21.88	20.96
		8	4	21.92	20.99
		8	7	21.76	20.84
		15	0	21.82	20.96
		1	0	22.83	21.84
		1	12	22.93	22.04
		1	24	21.64	20.80
	816.5	12	0	21.79	20.88
5		12	6	21.79	20.88
		12	13	21.68	20.88
		25	0	21.00	20.75
	021 5		0		
	831.5	1	U	23.04	22.30

		1	12	23.18	22.49
		<u> </u>		23.18	22.49
			24		
		12	0	22.06	21.09
		12	6	22.07	21.10
		12	13	22.13	21.23
		25	0	22.14	21.11
		1	0	23.17	22.14
		1	12	23.09	22.12
		1	24	21.61	20.61
	846.5	12	0	22.10	21.18
		12	6	22.09	21.18
		12	13	22.04	21.01
		25	0	21.94	20.93
		1	0	23.08	22.24
		1	24	22.24	21.43
		1	49	21.76	20.76
	819.0	25	0	21.83	20.81
		25	12	21.84	20.78
		25	25	21.18	20.27
		50	0	21.84	20.87
		1	0	23.05	22.36
		1	24	24.05	23.42
		1	49	22.02	21.13
10	831.5	25	0	22.04	21.10
	001.0	25	12	22.03	21.02
		25	25	22.28	21.36
		50	0	22.13	21.00
		1	0	23.76	21.10
		1	24	24.55	22.93
		1	49	22.00	23.72
	844.0	25	49 0	22.00	21.12
	044.0	25	12	22.39	21.20
		25	25	22.11	21.30
		50	0	22.21	21.18
		1	0	23.10	22.33
		1	37	20.64	19.95
		1	74	24.36	23.31
	821.5	37	0	21.94	21.94
		37	18	21.94	21.95
		37	38	21.94	21.95
		75	0	21.95	20.99
		1	0	23.17	22.54
		1	37	25.25	24.57
		1	74	21.83	20.93
15	831.5	37	0	22.29	22.30
		37	18	22.34	22.32
		37	38	22.32	22.31
		75	0	22.32	21.35
		1	0	23.83	22.66
		1	37	22.76	21.85
		1	74	23.43	21.90
	841.5	37	0	22.46	21.30
		37	18	22.40	22.47
		37	38	22.47	22.47
		51	50	22.71	22.40

BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
5	2498.5	1	0	21.06	20.24

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 185

		1	12	21.45	19.76
		1	24	20.65	20.59
		12	0	19.83	18.83
		12	6	20.31	19.32
		12	13	20.32	19.28
		25	0	19.99	19.07
		1	0	23.58	22.92
		1	12	23.57	22.89
		1	24	23.56	22.75
	2593.0	12	0	22.54	21.60
		12	6	22.61	21.68
		12	13	22.52	21.57
		25	0	22.59	21.51
		1	0	22.06	21.18
		1	12	22.22	21.18
		1	24	22.07	21.33
	2687.5	12	0	21.07	20.16
		12	6	21.19	20.08
	ļ Ē	12	13	21.17	20.16
	ļ Ē	25	0	21.13	20.14
		1	0	20.71	19.65
	ļ Ē	1	24	21.27	19.12
	ļ Ē	1	49	20.18	20.54
	2501.0	25	0	19.47	19.10
		25	12	20.16	18.53
		25	25	20.15	19.10
		50	0	19.64	18.71
		1	0	23.52	22.14
	2593.0	1	24	23.59	22.45
		1	49	23.07	22.54
10		25	0	22.42	21.65
		25	12	22.65	21.50
		25	25	22.43	21.50
		50	0	22.54	21.59
		1	0	22.03	20.88
		1	24	21.95	20.93
		1	49	22.00	20.97
	2685.0	25	0	21.21	20.12
		25	12	21.18	20.21
		25	25	21.14	20.21
		50	0	21.05	20.13
		1	0	20.02	19.57
		1	37	19.44	18.19
		1	74	20.62	18.98
	2503.5	37	0	18.21	18.98
		37	18	18.76	19.57
		37	38	18.98	18.21
	[[75	0	19.23	18.33
		1	0	22.02	21.16
	ļ Ī	1	37	22.64	21.86
15		1	74	23.43	22.50
10	2593.0	37	0	21.83	22.51
	ļ Ī	37	18	22.53	21.84
	ļ Ī	37	38	21.20	21.18
		75	0	22.33	21.40
		1	0	21.85	20.96
		1	37	21.26	20.40
	2682.5	1	74	21.79	20.92
	2002.3	37	0	20.89	20.94
		37	18	20.98	20.40
	1 F	37	38	20.39	20.97

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 185

<u>SHENZHEN LC</u>	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD				MINAL Report No	: LCS210402039AEB
			75	0	21.23	20.19
			1	0	21.20	19.44
			1	49	21.27	19.98
			1	99	20.53	20.44
		2506.0	50	0	19.91	18.77
			50	25	18.96	18.84
			50	50	19.86	17.99
			100	0	19.37	18.48
			1	0	22.30	22.59
		2593.0	1	49	23.56	21.58
20	h		1	99	22.45	21.41
20)		50	0	21.98	21.01
			50	25	22.01	21.50
			50	50	22.46	20.99
			100	0	22.28	21.18
			1	0	21.43	20.41
			1	49	22.43	21.13
			1	99	22.31	21.35
		2680.0	50	0	21.71	20.79
			50	25	21.16	20.79
			50	50	21.74	20.29
			100	0	21.47	20.53

BW	Frequency	RB Con	figuration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	23.37	22.45
		1	3	23.40	22.62
		1	5	23.39	22.49
	1710.7	3	0	23.38	22.29
		3	2	23.36	22.37
		3	3	23.39	22.36
		6	0	22.35	21.36
		1	0	23.03	21.87
		1	3	22.97	21.80
		1	5	22.90	21.72
1.4	1755.0	3	0	22.78	21.69
		3	2	22.79	21.68
		3	3	22.87	21.68
		6	0	21.75	20.76
		1	0	23.32	22.46
		1	3	23.29	22.57
		1	5	23.35	22.53
	1779.3	3	0	23.38	22.26
		3	2	23.29	22.21
		3	3	23.34	22.22
		6	0	22.28	21.35
		1	0	23.44	22.53
	•	1	7	23.37	22.45
		1	14	23.27	22.32
	1711.5	8	0	22.28	21.41
	1711.5	8	4	22.38	21.41
		8	7	22.38	21.45
		15	0	22.38	21.35
		10	0	22.38	22.05
3		1	7	22.91	22.03
J		1	14	22.89	22.10
	1755.0	8	0	22.89	21.90
	1700.0	8	4	21.85	20.80
		8	7	21.75	20.75
		15	0	21.79	20.82
	1770 5	1	0	23.41	22.53
	1778.5	1	7	23.36	22.45
		1	14	23.36	22.48

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 185

	IANCE TESTING LABO		FCC ID: YRW-ZPPTER		
		8	0	22.39	21.40
		8	4	22.34	21.37
	-	8	7	22.39	21.37
		15	0	22.36	21.34
	-	1	0	23.46	22.44
	-	1	12	23.09	22.60
		1	24	23.68	22.13
	1712.5	12	0	22.42	21.17
		12	6	22.15	21.48
		12	13	22.43	21.48
		25	0	22.29	21.36
		1	0	23.07	22.27
		1	12	22.97	22.38
		1	24	22.68	22.03
5	1755.0	12	0	21.96	20.84
		12	6	21.77	21.09
		12	13	21.76	20.85
		25	0	21.87	20.88
		1	0	23.36	22.46
		1	12	23.45	22.48
		1	24	23.48	22.62
	1777.5	12	0	22.43	21.45
	[12	6	22.43	21.42
	[12	13	22.41	21.45
		25	0	22.40	21.47
		1	0	22.70	22.16
		1	24	23.01	21.99
		1	49	22.87	21.82
	1715.0	25	0	22.21	21.25
		25	12	21.76	20.92
		25	25	22.20	21.26
		50	0	22.01	21.02
		1	0	21.48	20.74
	1755.0	1	24	23.68	21.99
		1	49	22.81	22.88
10		25	0	21.43	20.54
		25	12	21.45	20.53
		25	25	22.09	21.22
	-	50	0	21.84	20.79
		1	0	23.21	22.13
	-	1	24	22.39	21.35
		1	49	23.85	22.84
	1775.0	25	0	22.50	21.38
		25	12	22.05	20.96
	-	25	25	22.08	20.97
		50	0	22.00	20.97
		<u></u>	0	22.62	21.27
		1	37	22.02	21.74
		1	74	23.74	22.80
	1717 5	37	0		20.76
	1717.5			20.78	
		<u>37</u> 37	18 38	<u>22.78</u> 21.74	21.72 22.78
		75	0	21.61	20.64
		1	0	23.37	21.28
		1	37	21.85	22.82
<i>.</i> –		1	74	22.76	22.16
15	1755.0	37	0	22.19	22.78
		37	18	21.30	22.16
		37	38	22.78	21.30
		75	0	21.65	20.63
		1	0	23.32	22.22
	l [1	37	23.66	22.63
	l [1	74	23.19	22.35
	1772.5	37	0	22.61	22.69
	l [37	18	22.31	22.21
	l [37	38	22.25	22.29
	l l	75	0	22.19	21.13
		-	0	22.25	21.22

SHENZHEN LCS COMPLIANCE TESTING LAB	ORATORY LTD F	FCC ID: YRW-ZPPTER	MINAL Report No.:	LCS210402039AEB
	1	49	21.51	22.43
	1	99	23.18	20.49
	50	0	21.78	20.85
	50	25	21.78	19.63
	50	50	20.59	20.83
	100	0	21.32	20.32
	1	0	23.32	23.03
	1	49	22.61	20.75
	1	99	21.77	21.84
1755.0	50	0	20.99	21.29
	50	25	20.97	20.01
	50	50	22.26	20.05
	100	0	21.49	20.47
	1	0	22.71	21.78
	1	49	23.00	22.19
	1	99	23.21	22.81
1770.0	50	0	22.35	21.39
	50	25	21.91	20.92
	50	50	21.89	20.95
	100	0	22.18	21.11

BW	Frequency	RB Con	figuration	Average P	ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	25.32	24.39
		1	12	25.30	24.44
		1	24	25.11	24.17
	665.5	12	0	24.17	23.19
		12	6	24.17	23.21
		12	13	24.07	23.08
		25	0	24.16	23.18
		1	0	23.44	22.82
		1	12	23.08	22.61
		1	24	23.18	22.38
5	680.5	12	0	22.13	20.98
		12	6	22.12	21.24
		12	13	21.97	21.26
		25	0	22.09	21.05
		1	0	23.67	22.62
		1	12	23.57	22.42
		1	24	23.67	22.50
	695.5	12	0	22.37	21.33
		12	6	22.35	21.36
		12	13	22.38	21.37
		25	0	22.42	21.39
		1	0	24.78	23.28
		1	24	24.16	24.41
		1	49	25.20	24.11
	668.0	25	0	24.06	22.55
		25	12	24.07	23.02
		25	25	23.58	23.04
		50	0	23.86	22.84
		1	0	23.66	22.05
		1	24	22.89	22.86
		1	49	23.05	22.30
10	680.5	25	0	21.87	20.92
		25	12	22.30	21.28
		25	25	22.28	21.29
		50	0	22.17	21.06
		1	0	23.16	22.15
		1	24	23.18	22.02
		1	49	23.48	22.37
	693	25	0	22.17	21.16
		25	12	22.27	21.10
		25	25	22.16	21.32
		50	0	22.10	21.32

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 185

SHE	ENZHEN LCS COMPL	IANCE TESTING LAB	ORATORY LTD	FCC ID: YRW-ZPPTER	MINAL Report No.	: LCS210402039AEB
			1	0	24.27	24.33
			1	37	25.06	23.54
			1	74	23.52	24.28
		670.5	37	0	24.37	23.54
			37	18	23.72	22.75
			37	38	22.73	22.42
			75	0	23.36	22.10
			1	0	23.89	23.17
			1	37	22.89	22.15
			1	74	22.84	23.15
	15	680.5	37	0	23.22	22.13
			37	18	22.10	22.16
			37	38	22.10	21.07
			75	0	21.95	21.98
			1	0	23.03	21.73
			1	37	23.29	22.23
			1	74	22.83	22.22
		690.5	37	0	21.94	21.96
			37	18	22.26	21.77
			37	38	21.77	21.08
			75	0	21.99	24.33
			1	0	24.00	22.04
			1	49	25.36	24.28
			1	99	23.14	23.03
		673.0	50	0	22.26	21.28
			50	25	23.57	22.58
			50	50	23.57	22.55
			100	0	23.40	22.43
			1	0	23.07	23.14
			1	49	23.09	22.90
			1	99	23.71	22.33
	20	683.0	50	0	21.85	21.23
			50	25	22.11	21.22
			50	50	22.09	20.85
			100	0	21.92	20.90
			1	0	22.78	22.30
			1	49	23.08	22.43
			1	99	22.82	22.10
		688.0	50	0	21.93	20.72
			50	25	21.78	20.71
			50	50	21.79	21.04
			100	0	21.92	20.98

<wlan 2.4ghz="" conducted="" power=""></wlan>							
Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)			
			1	16.34			
	4	2412	2	12.34			
	1		5.5	12.26			
			11	12.17			
			1	16.54			
	•	0.407	2	12.31			
IEEE 802.11b	6	2437	5.5	12.58			
			11	12.62			
			1	16.46			
		0.400	2	12.35			
	11	2462	5.5	12.19			
			11	12.21			
			6	14.92			
			9	13.59			
			12	13.39			
			18	13.36			
	1	2412	24	13.21			
			36	13.17			
			48	13.11			
			54	13.22			
			6	15.17			
		2437	9	14.26			
			12	14.25			
	6		18	14.24			
IEEE 802.11g			24	14.22			
			36	14.29			
			48	14.35			
			54	14.24			
			6	14.77			
			9	14.33			
			12	14.11			
			18	14.24			
	11	2462	24	14.35			
			36	14.33			
			48	14.31			
			54	14.31			
			MCS0	14.47			
			MCS0 MCS1	13.36			
			MCS1 MCS2	13.64			
			MCS2 MCS3	13.64			
	1	2412	MCS3	13.49			
			MCS4 MCS5	13.88			
			MCS6	13.88			
			MCS6	13.42			
-			MCS0	15.10			
IEEE 802.11n			MCS0 MCS1	15.10			
HT20			MCS1 MCS2	14.24			
11120			MCS2 MCS3	14.15			
	6	2437	MCS3	14.12			
			MCS4 MCS5				
				13.79			
			MCS6	13.95			
			MCS7	13.87			
			MCS0	14.55			
	11	2462	MCS1	14.35			
			MCS2	14.23			
			MCS3	14.19			

SHI	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD		Y LTD FCC ID: YRW	V-ZPPTERMINAL	Report No.: LCS210402039AEB
				MCS4	14.18
				MCS5	14.10
				MCS6	14.34
				MCS7	14.29
				MCS0	15.35
				MCS1	14.35
				MCS2	14.46
		3	2422	MCS3	14.11
		3	2422	MCS4	14.34
				MCS5	14.12
				MCS6	14.37
				MCS7	14.40
				MCS0	15.43
				MCS1	14.35
				MCS2	14.46
	IEEE 802.11n	6	2437	MCS3	14.51
	HT40	0	2437	MCS4	14.30
				MCS5	14.57
				MCS6	14.46
				MCS7	14.29
				MCS0	15.38
				MCS1	14.52
				MCS2	14.33
		0	0450	MCS3	14.18
		9	2452	MCS4	14.57
				MCS5	14.46
				MCS6	14.34
				MCS7	14.57

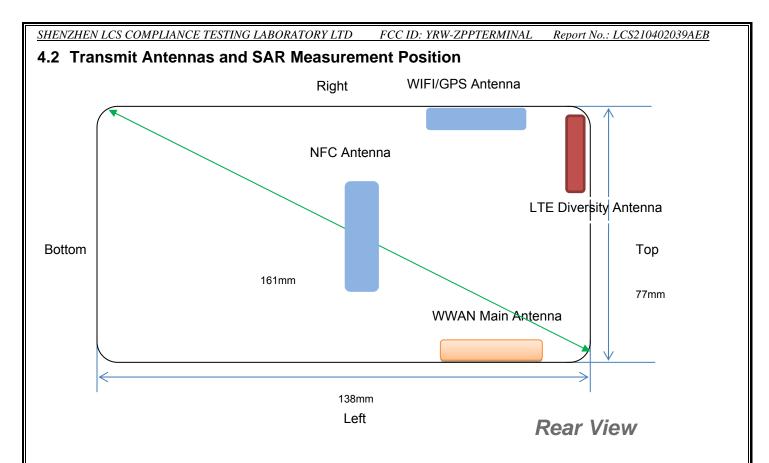
Mode	Channel	Frequency (MHz)	Conducted Output Power(dBm)					
	36	5180	14.98					
802.11a	40	5200	12.51					
	48	5240	12.30					
	36	5180	12.85					
802.11n(20MHz)	40	5200	12.89					
	48	5240	13.29					
900.11 p(40 MH=)	38	5190	13.35					
802.11n(40MHz)	46	5230	13.24					
	36	5180	13.82					
802.11ac(20MHz)	40	5200	13.81					
	48	5240	13.59					
902 11co(40MHz)	38	5190	13.79					
802.11ac(40MHz)	46	5230	13.54					
802.11ac(80MHz)	42	5210	13.81					

<WLAN 5.2GHz Conducted Power>

<WLAN 5.3GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Output Power(dBm)	
	52	5260	13.04	
802.11a	56	5280	12.95	
	64	5320	12.86	
	52	5260	14.36	
802.11n(20MHz)	56	5280	13.94	
	64	5320	13.63	
	52	5260	13.61	
802.11ac(20MHz)	56	5280	13.60	
	64	5320	13.66	
900 11p(40MU=)	54	5270	13.52	
802.11n(40MHz)	62	5310	13.55	
$902.11 \circ (40 \text{ MHz})$	54	5270	10.66	
802.11ac(40MHz)	62	5310	10.52	
802.11ac(80MHz)	58	5290	13.61	

<WLAN 5.5GHz Conducted Power>


Mode	Channel	Frequency (MHz)	Conducted Output Power(dBm)	
	100	5500	12.64	
802.11a	120	5600	12.85	
	140	5700	12.85	
	100	5500	11.88	
802.11n(20MHz)	120	5600	12.79	
	140	5700	12.44	
	100	5500	12.16	
802.11ac(20MHz)	120	5600	12.81	
	140	5700	13.11	
902.11 n (40 M H =)	149	5510	11.97	
802.11n(40MHz)	165	5670	12.85	
902 11co(40MHz)	149	5510	12.57	
802.11ac(40MHz)	165	5670	12.34	
802.11ac(80MHz)	122	5610	12.94	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 185

Mode	Channel	Frequency (MHz)	Conducted Output Power(dBm)					
	149	5745	8.98					
802.11a	157	5785	8.30					
	165	5825	9.68					
	149	5745	10.39					
802.11n(20MHz)	157	5785	10.34					
	165	5825	9.23					
902.11 m(40 MHz)	151	5755	10.72					
802.11n(40MHz)	159	5795	10.43					
	149	5745	13.82					
802.11ac(20MHz)	157	5785	13.81					
	165	5825	13.59					
	151	5755	13.79					
802.11ac(40MHz)	159	5795	13.54					
802.11ac(80MHz)	155	5775	7.81					

<WLAN 5.8GHz Conducted Power>

Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Antenna information:

WWAN Main Antenna	UMTS/LTE TX/RX
LTE Diversity antenna	Only RX
WLAN/GPS Antenna	WLAN TX/RX

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 161mm >160mm, it is considered as "Phablet" device.

2). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

Distance of The Antenna to the EUT surface and edge (mm)								
Antennas Front Bacl			Top Side	Bottom Side	Left Side Right Side			
WWAN	/	<5	<5	78	<5	69		
WLAN	/	<5	28	70	68	<5		

Positions for SAR tests; Hotspot mode								
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side		
WWAN	/	Yes	Yes	No	Yes	No		
WLAN	/	Yes	No	No	No	Yes		

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are \geq 9cm*5cm, the test distance is 10mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 185

4.3 SAR Measurement Results

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
UMTS	1:1
LTE	1:1
WLAN2450/5200/5800	1:1

4.4.1 SAR Results

SAR Values [WCDMA Ban	d V]
-----------------------	------

Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		m	easured / repo	rted SAR numb	(dBm) ers - Body (hot		, distance	10mm)		
4182	836.4	RMC*	Rear	22.82	23.00	-0.01	1.042	0.638	0.665	Plot 1
4182	836.4	RMC*	Left	22.82	23.00	1.05	1.042	0.403	0.420	
4182	836.4	RMC*	Тор	22.82	23.00	-1.40	1.042	0.311	0.324	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

SAR Values [WCDMA Band IV]

Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		m	easured / repo	orted SAR numb	ers - Body (hot	spot open	, distance	10mm)		
1413	1732.6	RMC*	Rear	23.32	23.50	-0.31	1.042	0.374	0.390	Plot 2
1413	1732.6	RMC*	Left	23.32	23.50	2.54	1.042	0.245	0.255	
1413	1732.6	RMC*	Тор	23.32	23.50	0.17	1.042	0.313	0.326	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

	SAR Values [WCDMA Band II]										
Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} rest Measured	ults(W/kg) Reporte d	Graph Results	
		me	easured / rep	orted SAR numl	pers - Body (ho	tspot open	, distance	10mm)			
9400	1880.0	RMC*	Rear	23.49	23.50	3.25	1.002	0.203	0.203		
9400	1880.0	RMC*	Left	23.49	23.50	-0.40	1.002	0.701	0.703	Plot 3	
9400	1880.0	RMC*	Тор	23.49	23.50	1.72	1.002	0.120	0.120		

Remark:

1. The value with black color is the maximum SAR Value of each test band.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

Cn. (18700 1 18700 1 18700 1 18700 1 18700 1 18700 1 Ch. (20300 1	Freq. (MHz) 1860.0 1860.0 1860.0 1860.0 1860.0	Channel Type (20M) 1RB 1RB 1RB 1RB 50%RB 50%RB 50%RB	Test Position asured / repo Rear Left Top Rear	F (23.10	Allowed Power (dBm) ers - Body (hot	Power Drift (%)	Scaling Factor	Measured	Reporte d	Graph Results
18700 1 18700 1 18700 1 18700 1 18700 1 Ch. (20300 1	1860.0 1860.0 1860.0 1860.0 1860.0	1RB 1RB 1RB 50%RB 50%RB	Rear Left Top	orted	23.10	ers - Body (ho	tenot onen				
18700 1 18700 1 18700 1 18700 1 18700 1 Ch. (20300 1	1860.0 1860.0 1860.0 1860.0 1860.0	1RB 1RB 1RB 50%RB 50%RB	Rear Left Top		23.10		ເລມບເບມອກ	. distance	10mm)		
18700 1 18700 1 18700 1 18700 1 18700 1 Ch. (20300 1	1860.0 1860.0 1860.0 1860.0 1860.0	1RB 1RB 50%RB 50%RB	Left Top			23.50	3.62	1.096	0.501	0.549	
18700 1 18700 1 18700 1 18700 1 Ch. (20300 1	1860.0 1860.0 1860.0 1860.0	1RB 50%RB 50%RB	Тор		23.10	23.50	-0.17	1.096	0.724	0.794	Plot 4
18700 1 18700 1 18700 1 Ch. (20300 1	1860.0 1860.0 1860.0	50%RB 50%RB			23.10	23.50	3.02	1.096	0.301	0.330	
18700 1 18700 1 Ch. (20300 1	1860.0 1860.0	50%RB			21.04	21.50	1.45	1.112	0.465	0.517	
18700 1 Ch. (20300 1	1860.0		Left		21.04	21.50	0.19	1.112	0.701	0.779	
Ch.			Тор		21.04	21.50	1.24	1.112	0.272	0.302	
20300 1	_		•	·	SAR Val	ues [LTE Ba	nd 41			_	
20300 1						Maximum	Powe		SAR _{1-q} res	ults(W//ka)	
20300 1	Freq.	Channel	Test		nducted	Allowed	r	Scaling		uns(Wing)	Grapi
	(MHz)	Туре (20М)	Position		Power (dBm)	Power	Drift	Factor	Measured	Reported	Resul
		()			(dBm)	(dBm)	(%)				
	4 7 4 7 7			orted		ers - Body (ho					
	1745.0	1RB	Rear		21.34	21.50	3.00	1.038	0.261	0.271	
	1745.0	1RB	Left		21.34	21.50	-0.95	1.038	0.725	0.752	Plot \$
	1745.0	1RB	Тор		21.34	21.50	2.15	1.038	0.314	0.326	
	1720.0	50%RB	Rear		20.40	20.50	0.39	1.023	0.202	0.207	
	1720.0	50%RB	Left		20.40	20.50	0.18	1.023	0.640	0.655	
20050 1	1720.0	50%RB	Тор		20.40	20.50	2.14	1.023	0.270	0.276	
					SAR Val	ues [LTE Ba	nd 5]				
		Channel		Con	ducted	Maximum	Power		SAR1-g res	ults(W/kg)	
Ch. Fre (MF	eq.	Type	Test Position	Po	ower IBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Grapi Resul
		me	asured / rep	orted	SAR numb	ers - Body (ho	tspot open	distance	10mm)		
20407	829.0	1RB	Rear		23.78	24.00	-1.32	1.052	0.728	0.766	Plot
	829.0	1RB	Left		23.78	24.00	0.32	1.052	0.142	0.149	
	829.0	1RB	Тор		23.78	24.00	1.24	1.052	0.125	0.131	
	836.5	50%RB	Rear		21.49	21.50	2.61	1.002	0.621	0.622	
	836.5	50%RB	Left		21.49	21.50	2.38	1.002	0.110	0.110	
20525	836.5	50%RB	Тор		21.49	21.50	2.19	1.002	0.091	0.091	
·					SAR Val	ues [LTE Ba	nd 71				
					Conduc	Maximum	_		SAR1-g res	sults(W/ka)	
	Freq.	Channel Type	Test		ted	Allowed	Power Drift	Scaling	<u></u>		Grap
011. ((MHz)	(20M)	Position		Power	Power	(%)	Factor	Measured	Reported	Resul
					(dBm)	(dBm)		diatanaa	10,000,000		. <u> </u>
0850 2	2510.0	1RB	asured / repo Rear	Sned	23.56	<u>ers - Body (ho</u> 24.00	1.78 -1.78	<u>, distance</u> 1.107	0.253	0.280	Plot
	2510.0 2510.0	1RB	Left	-+	23.56	24.00	3.51	1.107	0.255	0.183	101
	2510.0	1RB	Тор		23.56	24.00	3.68	1.107	0.105	0.183	
	2535.0	50%RB	Rear		23.50	23.50	3.08	1.094	0.200	0.221	
	2535.0 2535.0	50%RB	Left	-+	23.11	23.50	2.08	1.094	0.223	0.244	
	2535.0	50%RB	Тор		23.11	23.50	1.31	1.094	0.123	0.135	
Remark:		00 /01 CD	TOP		20.11	20.00	1.01	1.034	0.105	0.115	

SAR Values [LTE Band 12]

				O/ III Tul						
Ch.	Freq. (MHz)	Channel Type	Test Position	Conduc ted	Maximum Allowed	Power Drift	Scaling Factor	SAR1-g res Measured	sults(W/kg) Reported	Graph Results
						1 0 01				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 185

<u>SHENZH</u>	IEN LCS CO	OMPLIANCE T	ESTING LABOR	ATORY LTD	FCC ID: YR	W-ZPPTE	RMINAL	Report No.: 1	LCS21040203	9AEB
		(20M)		Power	Power	(%)				
				(dBm)	(dBm)					
		me	asured / reporte	d SAR numb	ers - Body (hot	spot open	, distance	10mm)		
23130	711.0	1RB	Rear	24.62	25.00	-2.17	1.091	0.123	0.134	
23130	711.0	1RB	Left	24.62	25.00	-0.02	1.091	0.240	0.262	Plot 8
23130	711.0	1RB	Тор	24.62	25.00	2.15	1.091	0.210	0.229	
23060	704.0	50%RB	Rear	22.34	22.50	3.02	1.038	0.085	0.088	
23060	704.0	50%RB	Left	22.34	22.50	2.54	1.038	0.169	0.175	
23060	704.0	50%RB	Тор	22.34	22.50	1.09	1.038	0.142	0.147	
Domort										

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values [LTE Band 13]

		Channel		Conduc	Maximum	Power		SAR1-g res	sults(W/kg)	
Ch.	Freq. (MHz)	Type (20M)	Test Position	ted Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
		me	asured / reporte	d SAR numb	pers - Body (hot	spot open	, distance	10mm)		
23230	782.0	1RB	Rear	22.89	23.00	1.06	1.026	0.235	0.241	
23230	782.0	1RB	Left	22.89	23.00	-3.08	1.026	0.493	0.506	Plot 9
23230	782.0	1RB	Тор	22.89	23.00	3.05	1.026	0.305	0.313	
23230	782.0	50%RB	Rear	21.76	22.00	1.04	1.057	0.175	0.185	
23230	782.0	50%RB	Left	21.76	22.00	0.69	1.057	0.452	0.478	
23230	782.0	50%RB	Тор	21.76	22.00	2.58	1.057	0.275	0.291	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

				SAR Val	ues [LTE Dali	u 14j				
Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conduc ted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR1-g res	sults(W/kg) Reported	Graph Results
		me	asured / reporte	d SAR numb	oers - Body (hot	spot open	, distance	10mm)		
23330	793.0	1RB	Rear	24.48	24.50	-2.45	1.005	0.500	0.502	
23330	793.0	1RB	Left	24.48	24.50	2.46	1.005	0.600	0.603	Plot 10
23330	793.0	1RB	Тор	24.48	24.50	2.65	1.005	0.421	0.423	
23330	793.0	50%RB	Rear	22.44	22.50	3.65	1.014	0.305	0.309	
23330	793.0	50%RB	Left	22.44	22.50	0.87	1.014	0.287	0.291	
23330	793.0	50%RB	Тор	22.44	22.50	0.24	1.014	0.289	0.293	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values [LTE Band 17]

		Channel		Conduc	Maximum	Power		SAR1-g res	sults(W/kg)	
Ch.	Freq.	Туре	Test	ted	Allowed	Drift	Scaling		- · ·	Graph
••••	(MHz)	(20M)	Position	Power	Power	(%)	Factor	Measured	Reported	Results
		(20101)		(dBm)	(dBm)	(70)				
		me	asured / reporte	d SAR numb	pers - Body (hot	spot open	, distance	10mm)		
23790	710.0	1RB	Rear	24.69	25.00	-2.75	1.074	0.112	0.120	
23790	710.0	1RB	Left	24.69	25.00	-0.01	1.074	0.247	0.265	Plot 11
23790	710.0	1RB	Тор	24.69	25.00	3.61	1.074	0.203	0.218	
23780	709.0	50%RB	Rear	22.04	22.50	2.58	1.112	0.076	0.084	
23780	709.0	50%RB	Left	22.04	22.50	0.59	1.112	0.210	0.233	
23780	709.0	50%RB	Тор	22.04	22.50	1.65	1.112	0.174	0.193	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

				SAR Valu	ues [LTE Ban	d 25]				
Ch.	Freq. (MHz)	Channel Type	Test Position	Conduc ted Power	Maximum Allowed Power	Power Drift	Scaling Factor	SAR1-g res	sults(W/kg) Reported	Graph Results
	((20M)	1 Coldon	(dBm)	(dBm)	(%)	1 00101	mododiou	riopontou	rtoouno
		me	asured / reporte	d SAR numb	pers - Body (hot	spot open	, distance	10mm)		
26675	1905.0	1RB	Rear	24.03	24.50	-0.13	1.114	0.714	0.796	Plot 12
26675	1905.0	1RB	Left	24.03	24.50	3.49	1.114	0.426	0.475	
26675	1905.0	1RB	Тор	24.03	24.50	3.21	1.114	0.305	0.340	
26675	1905.0	50%RB	Rear	22.45	22.50	0.19	1.012	0.612	0.619	
26675	1905.0	50%RB	Left	22.45	22.50	3.28	1.012	0.320	0.324	
26675	1905.0	50%RB	Тор	22.45	22.50	2.52	1.012	0.271	0.274	
26675 26675 26675 26675	1905.0 1905.0 1905.0 1905.0	1RB 1RB 1RB 50%RB 50%RB	Rear Left Top Rear Left	24.03 24.03 24.03 22.45 22.45	24.50 24.50 24.50 22.50 22.50	-0.13 3.49 3.21 0.19 3.28	1.114 1.114 1.114 1.114 1.012 1.012	0.714 0.426 0.305 0.612 0.320	0.475 0.340 0.619 0.324	Plot

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

				SAR Val	ues [LTE Ban	nd 26]				
Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conduc ted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR1-g res	sults(W/kg) Reported	Graph Results
		me	asured / reporte	d SAR numb	ers - Body (hot	tspot open	, distance	10mm)		
26865	831.5	1RB	Rear	25.25	25.50	-0.21	1.059	0.710	0.752	Plot 13
26865	831.5	1RB	Left	25.25	25.50	0.16	1.059	0.423	0.448	
26865	831.5	1RB	Тор	25.25	25.50	2.58	1.059	0.203	0.215	
27033	841.5	50%RB	Rear	22.47	23.00	3.02	1.130	0.652	0.737	
27033	841.5	50%RB	Left	22.47	23.00	1.65	1.130	0.298	0.337	
27033	841.5	50%RB	Тор	22.47	23.00	0.96	1.130	0.156	0.176	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values [LTE Band 41]

				0						
	Freg.	Channel	Test	Conduc ted	Maximum Allowed	Power	Scaling	SAR1-g res	sults(W/kg)	Graph
Ch.	(MHz)	Туре (20М)	Position	Power	Power	Drift	Factor	Measured	Reported	Results
		(20101)		(dBm)	(dBm)	(%)				
		me	asured / reporte	d SAR numb	pers - Body (hot	tspot open	, distance	10mm)		
40620	2593.0	1RB	Rear	23.56	24.00	0.24	1.107	0.538	0.595	Plot 14
40620	2593.0	1RB	Left	23.56	24.00	3.65	1.107	0.360	0.398	
40620	2593.0	1RB	Тор	23.56	24.00	0.63	1.107	0.224	0.248	
40620	2593.0	50%RB	Rear	22.46	22.50	2.40	1.009	0.500	0.505	
40620	2593.0	50%RB	Left	22.46	22.50	4.85	1.009	0.312	0.315	
40620	2593.0	50%RB	Тор	22.46	22.50	0.22	1.009	0.201	0.203	
_										

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

				SAR Valu	ues [LTE Ban	d 66]				
Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conduc ted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR1-g res	sults(W/kg) Reported	Graph Results
		measu	red / reporte	d SAR numb	ers - Body (hot	spot open	, distance	10mm)		
132572	1770.0	1RB	Rear	23.32	23.50	-0.76	1.042	0.746	0.778	Plot 15
132572	1770.0	1RB	Left	23.32	23.50	3.58	1.042	0.353	0.368	
	•	•			•	•				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 185

2	SHENZHEN	VLCS COM	PLIANCE TEST	TING LABOR	ATORY LTD	FCC ID: YR	W-ZPPTE	RMINAL	Report No.: 1	LCS210402039	DAEB
	132572	1770.0	1RB	Тор	23.32	23.50	0.25	1.042	0.214	0.223	
	132572	1770.0	50%RB	Rear	22.35	22.50	1.20	1.035	0.501	0.519	
	132572	1770.0	50%RB	Left	22.35	22.50	0.03	1.035	0.275	0.285	
	132572	1770.0	50%RB	Тор	22.35	22.50	0.05	1.035	0.158	0.164	

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

Ch.	Freq. (MHz)	Channel Type (20M)	Test Position	Conduc ted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR1-g res	sults(W/kg) Reported	Graph Results
		measu	red / reporte	d SAR numb	pers - Body (hot	spot open	, distance	10mm)		
133322	673.0	1RB	Rear	25.36	25.50	2.65	1.033	0.710	0.733	Plot 16
133322	673.0	1RB	Left	25.36	25.50	1.36	1.033	0.562	0.580	
133322	673.0	1RB	Тор	25.36	25.50	3.65	1.033	0.385	0.398	
133322	673.0	50%RB	Rear	23.57	24.00	0.84	1.104	0.652	0.720	
133322	673.0	50%RB	Left	23.57	24.00	2.15	1.104	0.421	0.465	
133322	673.0	50%RB	Тор	23.57	24.00	3.60	1.104	0.203	0.224	
Deverantes										

SAR Values [LTE Band 71]

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values [WIFI2.4G]

Ch.	Freq. (MHz)	Service	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		n	neasured / repo	orted SAR numb	ers - Body (hot	spot open	, distance	10mm)		
6	2437.0	802.11b	Rear	16.54	17.00	-0.01	1.112	0.119	0.132	Plot 17
6	2437.0	802.11b	Right	16.54	17.00	3.65	1.112	0.075	0.083	

				SAR V	alues [WIFI5.2	2G]				
Ch.	Freq. (MHz)	Service	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		me	asured / repo	orted SAR numb	pers - Body (hot	spot open	, distance	10mm)		
36 36	5180.0	802.11a	Rea	r 14.98	15.00	-0.16	1.005	0.211	0.212	Plot 18
36	5180.0	802.11a	Righ	t 14.98	15.00	0.26	1.005	0.143	0.144	

				SAR V	alues [WIFI5.3	3G]				
Ch.	Freq. (MHz)	Service	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		mea	asured / repo	orted SAR numb	pers - Body (hot	spot open	, distance	10mm)		
52	5260.0	802.11n20) Rea	r 14.36	14.50	2.58	1.033	0.204	0.211	Plot 19
52	5260.0	802.11n20) Righ	it 14.36	14.50	0.85	1.033	0.112	0.116	

					SAR V	alues [WIFI5.	5G]				
		Freq.		Test	Conducted	Maximum Allowed	Power	Scaling	SAR _{1-g} res	ults(W/kg)	Graph
C	Ch.	(MHz)	Service	Position	Power (dBm)	Power (dBm)	Drift (%)	Factor	Measured	Reported	Results
			me	asured / repo	orted SAR numb	bers - Body (hot	spot open	, distance	10mm)	•	
14	40	5700.0	802.11a	Rea	r 12.85	13.00	1.11	1.035	0.245	0.254	Plot 20
14	40	5700.0	802.11a	Righ	it 12.85	13.00	1.47	1.035	0.109	0.113	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 185

SHENZ	ZHEN LCS C	OMPLIANC	E TESTI	VG LABO	ORATORY LTD	FCC ID: YR	W-ZPPTE	RMINAL	Report No.: L	CS210402039	DAEB
					SAR Va	alues [WIFI5.8	8G]				
Ch.	Freq. (MHz)	Service	Tes Posit		Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results
		I	measure	d / repo	orted SAR numb	oers - Body (hot	spot open	, distance	10mm)		
149	5745.0	802.1	1a	Rear	· 13.82	14.00	0.04	1.042	0.268	0.279	Plot 21
149	5745.0	802.1	1a	Right	t 13.82	14.00	3.63	1.042	0.165	0.172	

Remark:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

4.4.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01,simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit,SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1 + SAR_2)^{1.5}}{(SAR_1 + SAR_2)^{1.5}} < 0.04$$

(peak location separation,mm)

	Estimated stand alone SAR								
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)				
Bluetooth*	2450	Hotspot	/	10	/				
Bluetooth*	2450	Body-worn	1	10	/				

Remark:

- 1. Bluetooth*- Including Lower power Bluetooth
- 2. Maximum average power including tune-up tolerance;
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 4. Body as body use distance is 10mm from manufacturer declaration of user manual

4.4 Simultaneous TX SAR Considerations

4.5.1 Introduction

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna. The device has 3 antennas, WWAN main antenna and WWAN diversity antenna(RX only), WiFi-BT antenna supports 2.4Wi-Fi, 5.2GWi-Fi, 5.8GWi-Fi and BT. The 2 TX antennas can always transmit simultaneously. The work mode combination is showed as below table.

Application Simultaneous Transmission information:

Combination No.	Mode
1	WWAN+WIFI

4.5.2 Evaluation of Simultaneous SAR

Body Hotspot Exposure Conditions

			Sim	ultaneou	s transmi	ission SA	R for WiF	i and UM	TS			
Test Positio n	UMTS Band V Report ed SAR1-g (W/kg)	UMTS Band IV Report ed SAR1-g (W/kg)	UMTS Band II Report ed SAR1-g (W/kg)	WiFi2.4 G Reporte d SAR1-g (W/kg)	WiFi5.2 G Reporte d SAR1-g (W/kg)	WiFi5.3 G Reporte d SAR1-g (W/kg)	WiFi5.5 G Reporte d SAR1-g (W/kg)	WiFi5.8 G Reporte d SAR1-g (W/kg)	MAX. ΣSAR 1-g (W/kg)	SAR 1-g Limit (W/k g)	Peak location separati on ratio	Simut Meas. Require d
Front	/	/	/	/	/	/	/	- 1	/	1.6	no	no
Rear	0.665	0.390	0.203	0.132	0.212	0.211	0.254	0.279	0.944	1.6	no	no
Left	0.420	0.255	0.701	/	/	/	/	- 1	0.701	1.6	no	no
Right	/	/	/	0.083	0.144	0.116	0.113	0.172	0.172	1.6	no	no
bottom	/	/	/	/	/	/		/	/	1.6	no	no
Тор	0.324	0.326	0.120	/	/	/	/		0.326	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Departed SAD1 g(M//kg)			Test F	Position		
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор
LTE Band2	/	0.549	0.794	/	/	0.330
LTE Band4	/	0.271	0.752	/	/	0.326
LTE Band5	/	0.766	0.149	/	/	0.131
LTE Band7	/	0.280	0.183	/	/	0.221
LTE Band12	/	0.134	0.262	/	/	0.229
LTE Band13	/	0.241	0.506	/	/	0.313
LTE Band14	/	0.502	0.603	/	/	0.423
LTE Band17	/	0.120	0.265	/	/	0.218
LTE Band25	/	0.796	0.475	/	/	0.340
LTE Band26	/	0.752	0.448	/	/	0.215
LTE Band41	/	0.595	0.398	/	/	0.248
LTE Band66	/	0.778	0.368	/	/	0.223
LTE Band71	/	0.733	0.580	/	/	0.398
WiFi2.4G	/	0.132	/	0.083	/	/
WiFi5.2G	/	0.212	/	0.144	/	/
WiFi5.3G	/	0.211		0.116	/	/
WiFi5.5G	/	0.254		0.113	/	/
SRD5.8G	1	0.279	1	0.172	/	/
MAX. ΣSAR1-g (W/kg)	1	1.075	0.794	0.172	/	0.423
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no	no	no
Simut Meas. Required	no	no	no	no	no	no

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 62 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL R

Report No.: LCS210402039AEB

- 1. The WiFi and BT share same antenna, so cannot transmit at same time.
- 2. The value with **block** color is the maximum values of standalone
- 3. The value with blue color is the maximum values of $\Sigma \text{SAR}_{\text{1-g}}$

4.5 SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

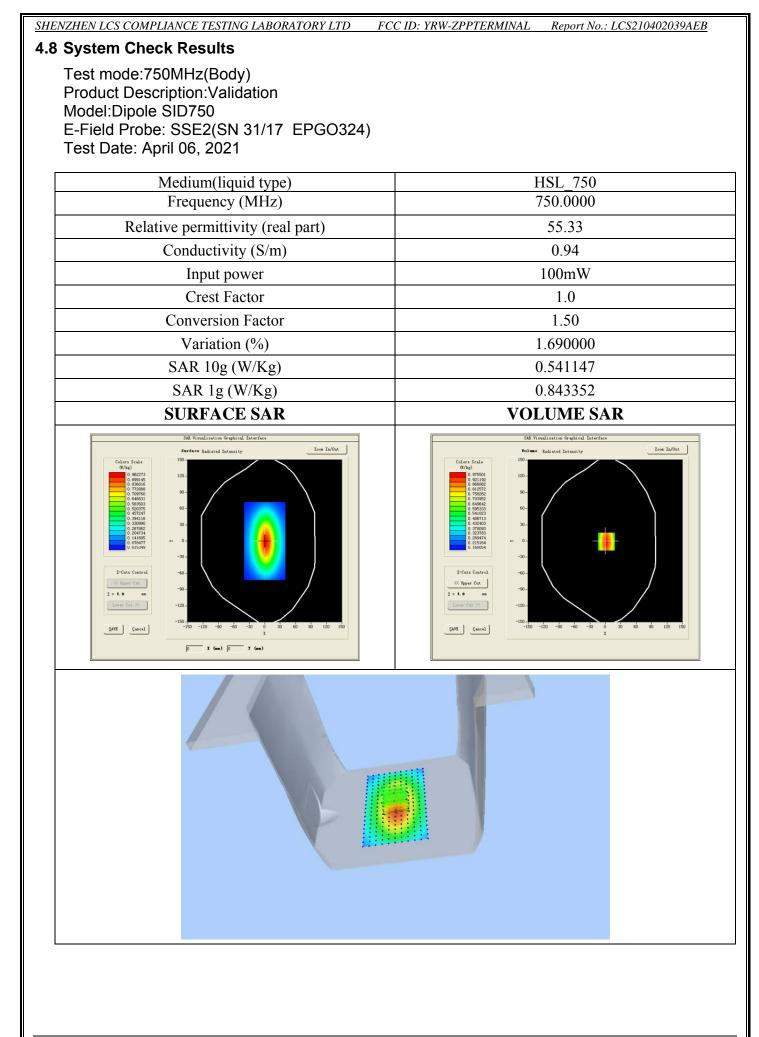
- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

1.20							
Frequency Band (MHz)	Air Interface	RF Exposure Configuration	Test Position	Repeated SAR (yes/no)	Highest Measured SAR _{1-g} (Wkg)	First Re Measued SAR _{1-g} (W/kg)	Epeated Largest to Smallest SAR Ratio
	LTE Band 12	Standalone	Body-Left	no	0.240	n/a	n/a
	LTE Band 13	Standalone	Body-Left	no	0.493	n/a	n/a
750	LTE Band 14	Standalone	Body-Left	no	0.600	n/a	n/a
	LTE Band 17	Standalone	Body-Left	no	0.247	n/a	n/a
	LTE Band 71	Standalone	Body-Rear	no	0.710	n/a	n/a
	WCDMA Band V	Standalone	Body-Rear	no	0.638	n/a	n/a
835	LTE Band 5	Standalone	Body-Rear	no	0.728	n/a	n/a
	LTE Band 26	Standalone	Body-Rear	no	0.710	n/a	n/a
	WCDMA Band IV	Standalone	Body-Rear	no	0.374	n/a	n/a
1800	LTE Band 4	Standalone	Body-Left	no	0.725	n/a	n/a
	LTE Band 66	Standalone	Body-Front	no	0.746	n/a	n/a
	WCDMA Band II	Standalone	Body-Left	no	0.203	n/a	n/a
1900	LTE Band 2	Standalone	Body-Left	no	0.724	n/a	n/a
	LTE Band 25	Standalone	Body-Front	no	0.714	n/a	n/a
2450	2.4GWLAN	Standalone	Body-Rear	no	0.119	n/a	n/a
2600	LTE Band 7	Standalone	Body-Rear	no	0.253	n/a	n/a
2000	LTE Band 41	Standalone	Body-Rear	no	0.538	n/a	n/a
	5.2GWLAN	Standalone	Body-Rear	no	0.211	n/a	n/a
5000-6000	5.3GWLAN	Standalone	Body-Rear	no	0.204	n/a	n/a
5000-6000	5.5GWLAN	Standalone	Body-Rear	no	0.245	n/a	n/a
	5.8GWLAN	Standalone	Body-Rear	no	0.268	n/a	n/a

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

4.6 General description of test procedures


- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 63 of 185 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

- 5. UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- 6. WiFi was tested in 802.11b/g/n mode with 1 Mbit/s and 6 Mbit/s. According to KDB 248227 the SAR testing for 802.11g/n is not required since When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 7. Required WiFi test channels were selected according to KDB 248227
- 8. According to FCC KDB pub 248227 D01, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement and when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- 9. According to FCC KDB pub 941225 D06 this device has been tested with 10 mm distance to the phantom for operation in WiFi hot spot mode.
- 10. Per FCC KDB pub 941225 D06 the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WiFi hot spot function.
- 11. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 12. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - $\bullet \le$ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz
- 13. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band.
- 14. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.
- 15. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)
- 16. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.
- Per KDB648474 D04 require for phablet SAR test considerations, For Smartphones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 18. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

4.7 Measurement Uncertainty (450MHz-6GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 185

Test mode:835MHz(Body) Product Description: Validation Model:Dipole SID835 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: April 09, 2021

	HSL_850
Frequency (MHz)	835.0000
Relative permittivity (real part)	55.72
Conductivity (S/m)	0.95
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.59
Variation (%)	-0.990000
SAR 10g (W/Kg)	0.622285
SAR 1g (W/Kg)	0.973421
SURFACE SAR	VOLUME SAR
SN Frankistine Superal Interfer Image: Sn Frankistine Supera Interfer <td>SA Frankistine Super Larest Clar Sub Order</td>	SA Frankistine Super Larest Clar Sub Order

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 66 of 185

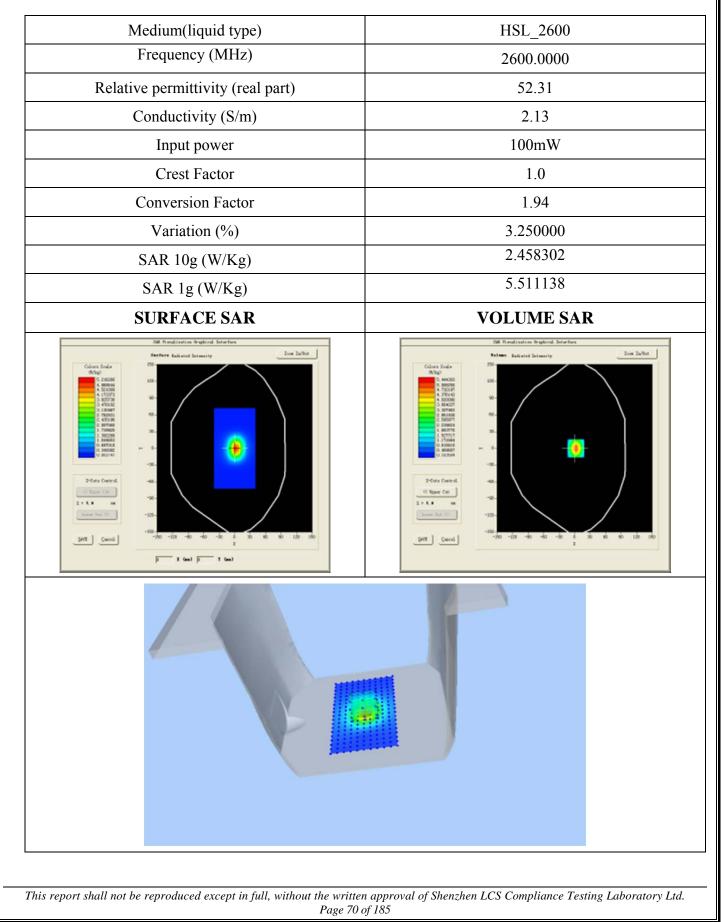
Test mode:1800MHz(Body) Product Description: Validation Model :Dipole SID1800 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: April 12, 2021

Medium(liquid type)	HSL_1800
Frequency (MHz)	
Relative permittivity (real part)	53.64
Conductivity (S/m)	1.55
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.68
Variation (%)	2.380000
SAR 10g (W/Kg)	1.998284
SAR 1g (W/Kg)	3.782458
SURFACE SAR	VOLUME SAR
$ \begin{array}{c} c_{clars} s_{cla} \\ 0/k_0 \\ \hline \\ 0/k_0 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\mathbf{v}_{1} = \mathbf{k} \operatorname{dist} \operatorname{Ist} Is$

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 67 of 185

Test mode:1900MHz(Body) Product Description: Validation Model :Dipole SID1900 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: April 16, 2021

Medium(liquid type)	HSL_1900
Frequency (MHz)	1900.0000
Relative permittivity (real part)	52.43
Conductivity (S/m)	1.54
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.93
Variation (%)	-4.210000
SAR 10g (W/Kg)	2.082425
SAR 1g (W/Kg)	4.206351
SURFACE SAR	VOLUME SAR
SAR Visual isstim Graphical Interface	S& Visualisation Graphical Interface
$\frac{1}{2} - \frac{1}{2} + \frac{1}$	$ \begin{array}{c} \text{Follow: Related Latensity} \\ \hline \\ $


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 68 of 185

Test mode:2450MHz(Body) Product Description: Validation Model:Dipole SID2450 E-Field Probe:SSE2(SN 31/17 EPGO324) Test Date: April 19, 2021

Medium(liquid type)	HSL_2450
Frequency (MHz)	2450.0000
Relative permittivity (real part)	53.22
Conductivity (S/m)	1.97
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.95
Variation (%)	3.690000
SAR 10g (W/Kg)	2.403351
SAR 1g (W/Kg)	5.237013
SURFACE SAR	VOLUME SAR
Colors Seele (0/s) Support 5 STREE (0/s) Support 5 STREE (0/s)	$ \begin{array}{c} \text{Follow Existic Literativ} \\ \hline \\ $

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 185

Test mode:2600MHz(Body) Product Description:Validation Model:Dipole SID2600 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: April 23, 2021

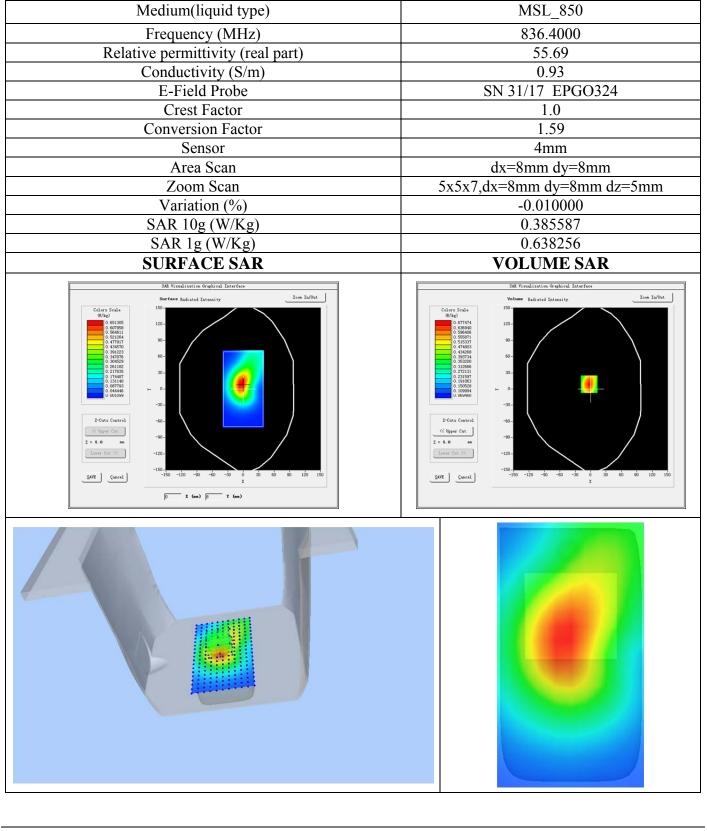
Test mode:5200MHz(Body) Product Description: Validation Model:Dipole SID5000 E-Field Probe: SE2(SN 31/17 EPGO324) Test Date: May 10, 2021

Medium(liquid type)	MSL_5000
Frequency (MHz)	5000.0000
Relative permittivity (real part)	48.80
Conductivity (S/m)	5.25
	100mW
Input power Crest Factor	1.0
Conversion Factor	1.56
Variation (%)	0.880000
	5.796425
$\frac{\text{SAR 10g (W/Kg)}}{\text{SAR 1c (W/Kg)}}$	
SAR 1g (W/Kg) SURFACE SAR	15.311321 VOLUME SAR
SUKFACE SAR	SAL VIEWIE SAR
	Image: strategy of the second seco

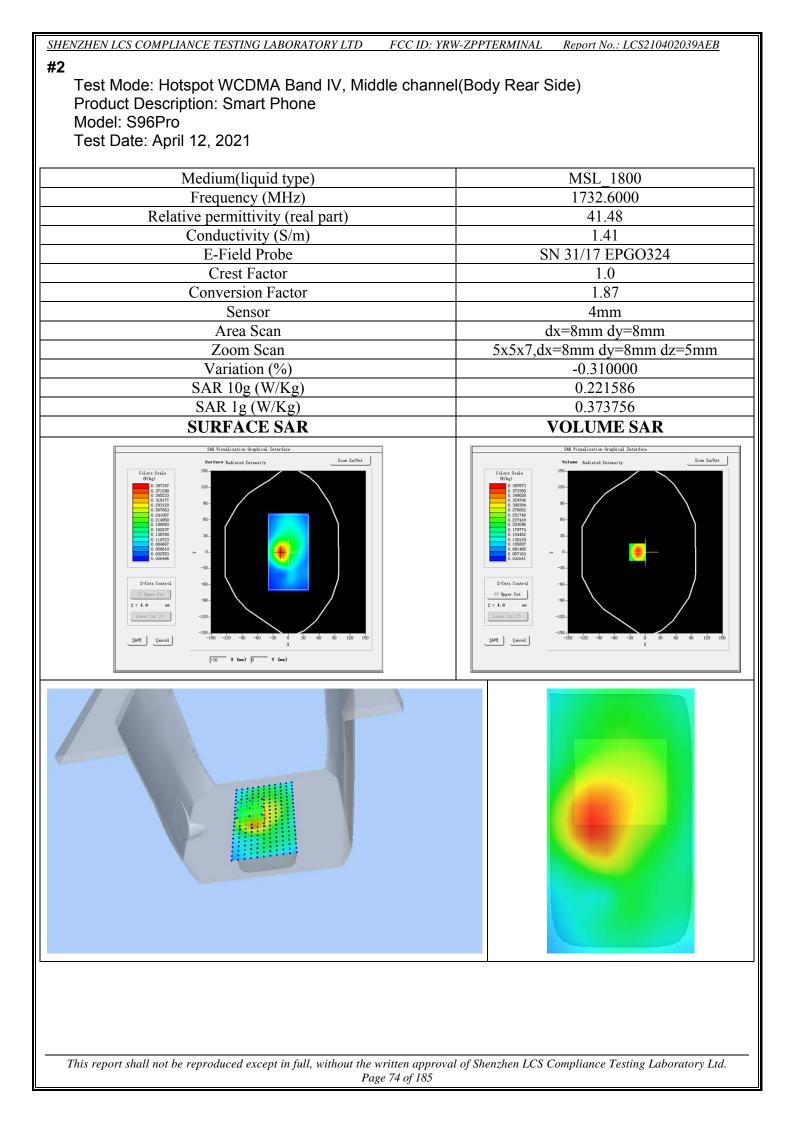
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 71 of 185

Test mode:5800MHz(Body) Product Description: Validation Model:Dipole SID5000 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: May 25, 2021

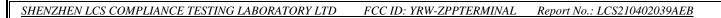
Medium(liquid type)	MSL_5000
Frequency (MHz)	5000.0000
Relative permittivity (real part)	48.46
Conductivity (S/m)	6.05
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.55
Variation (%)	1.010000
SAR 10g (W/Kg)	6.099085
SAR 1g (W/Kg)	18.189125
SURFACE SAR	VOLUME SAR


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 72 of 185

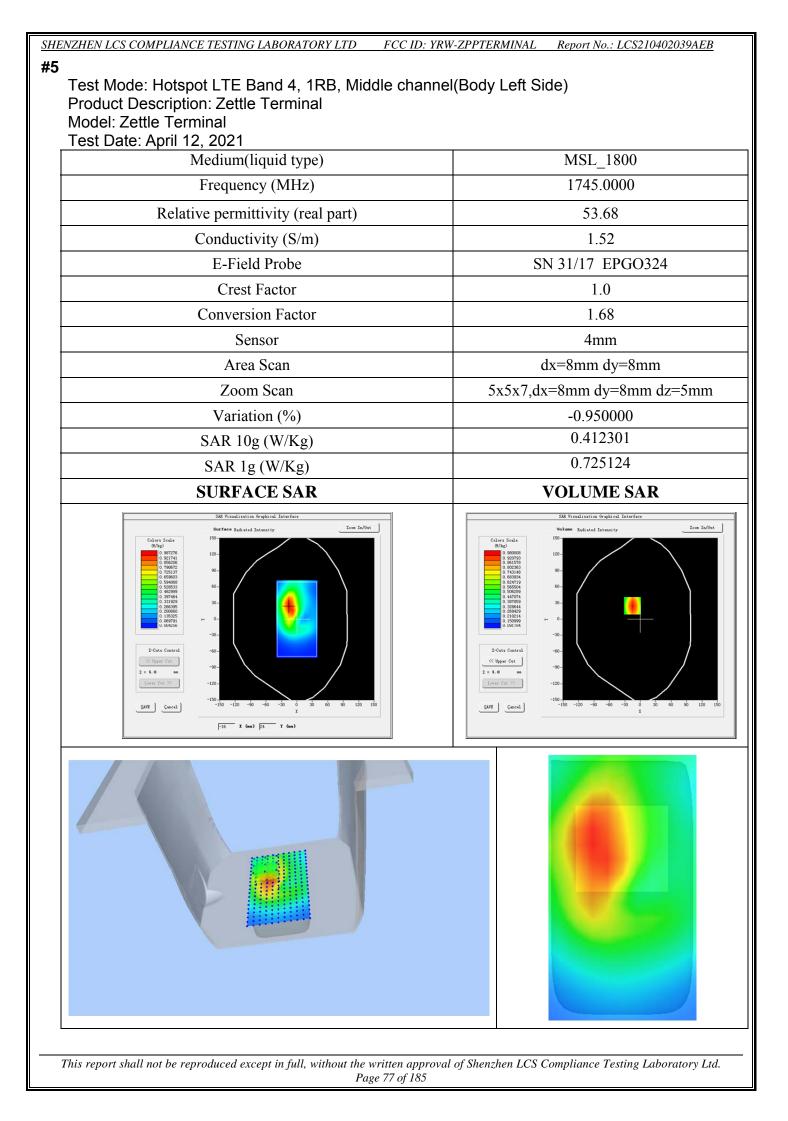
4.9 SAR Test Graph Results

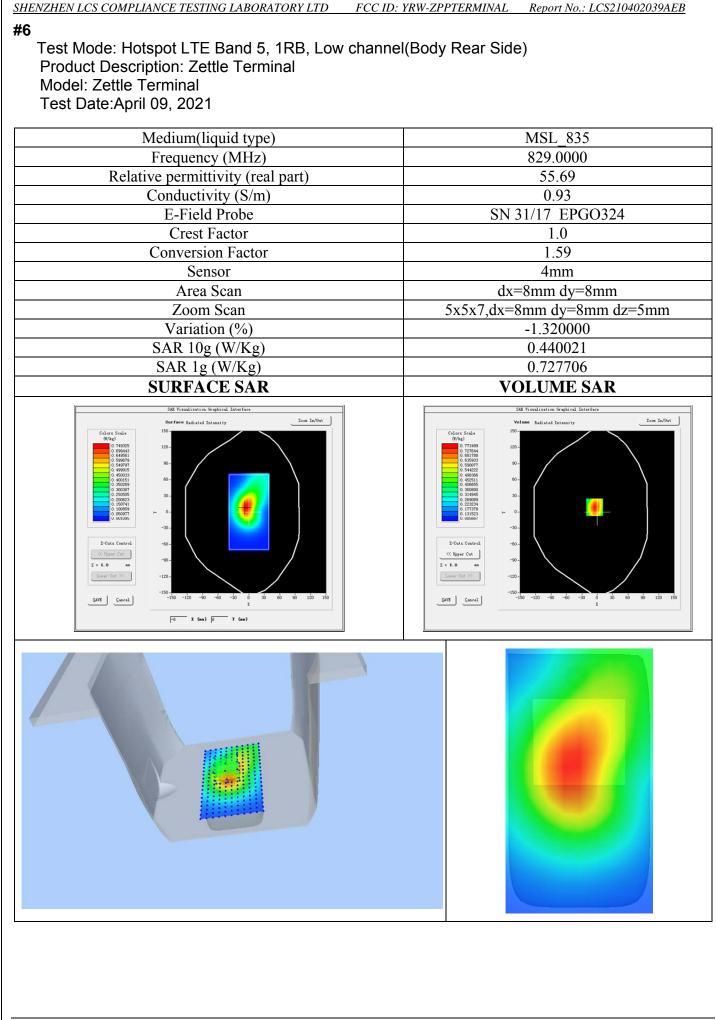

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02;

#1


Test Mode: Hotspot WCDMA Band V,Middle channel(Body Rear Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date:April 09, 2021

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 73 of 185

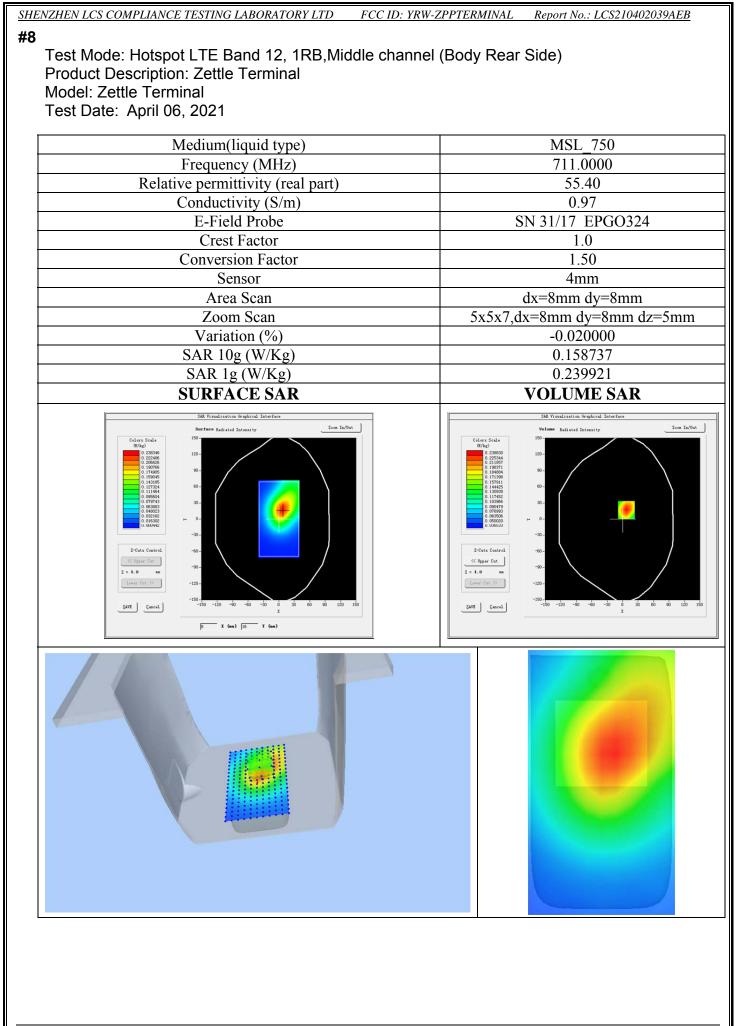

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC	TID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB		
	10. 1KW-2111EKMINAL Kepon No., EC5210402059AEB		
#3 Test Mode: Hotspot WCDMA Band II,Middle channel(Body Left Side) Product Description: Zettle Terminal Model: Zettle Terminal			
Test Date: April 16, 2021			
Medium(liquid type)	MSL_1900		
Frequency (MHz)	1880.0000		
Relative permittivity (real part)	52.45		
Conductivity (S/m)	1.52		
E-Field Probe	SN 31/17 EPGO324		
Crest Factor	1.0		
Conversion Factor	1.93		
Sensor	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-0.400000		
SAR 10g (W/Kg)	0.442010		
SAR 1g (W/Kg)	0.701230		
SURFACE SAR	VOLUME SAR		
SAR Yiraalisation Graphical Interface	S& Visualisation Graphical Interface		
$\begin{array}{c c} \hline \\ \hline $	$\frac{Veltame held stel Intensity}{2 con Index}$		
This report shall not be reproduced except in full, without the written Page 75 of			

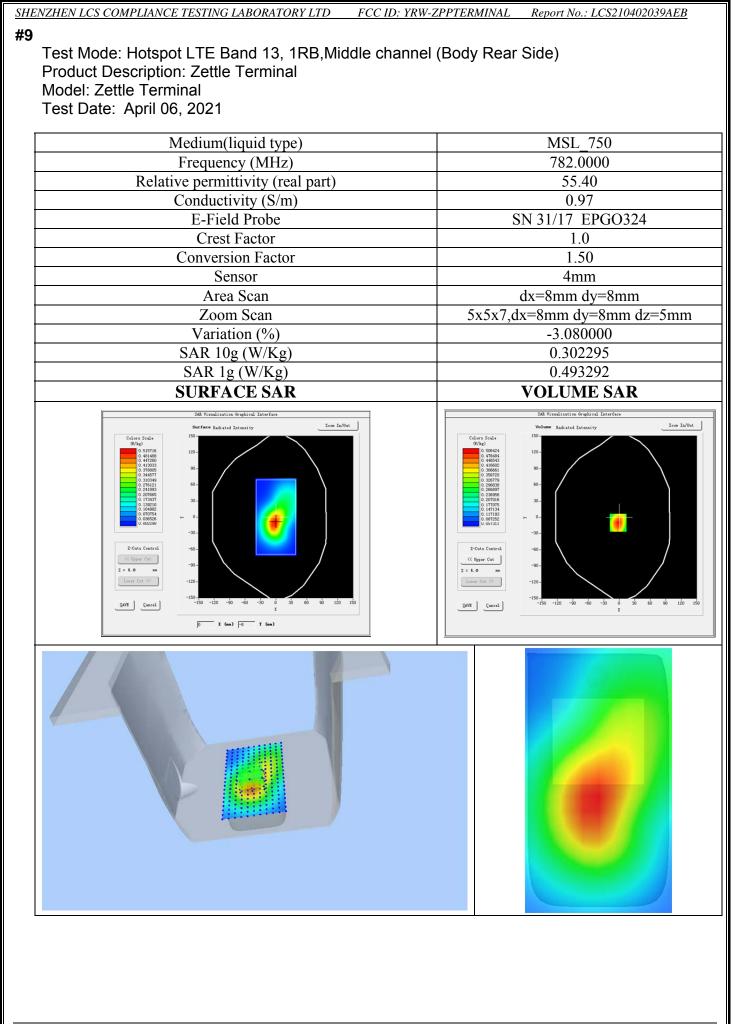


#4 Test Mode: Hotspot LTE Band 2, 1RB, Low channel(Body Left Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date: January 08, 2021

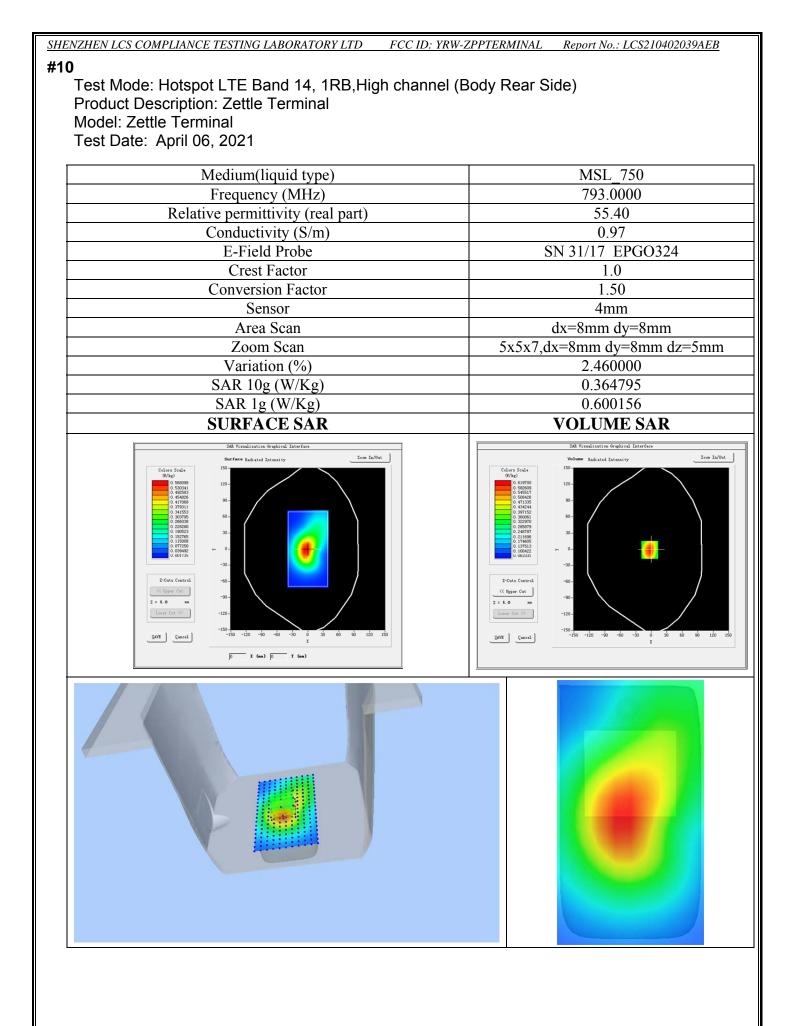
Medium(liquid type)	MSL 1900
Frequency (MHz)	1860.0000
Relative permittivity (real part)	52.45
Conductivity (S/m)	1.52
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.93
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.170000
SAR 10g (W/Kg)	0.425103
SAR 1g (W/Kg)	0.724023
SURFACE SAR	VOLUME SAR
SAR Visualisation Graphical Interface	SAR Visualisation Graphical Interface
$\begin{bmatrix} CAllers Scale}{(7.4c)} \\ \hline 0 & 15500 \\ \hline 0 & 15500 \\ \hline 0 & 0 & 55000 \\ \hline 0 & 0 & 0 & 55000 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 &$	Calary Stals 200 mm 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.0000 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.00075 0.000777 0.00075 0.000777 0.00075 0.000777 0.00075 0.000777 0.00075 0.000777 0.00077 0.000777 0.00077 0.000777 0.00077 0.000777 0.00077 0.000777 0.00077 0.000777 0.00077 0.00077 </td

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 76 of 185

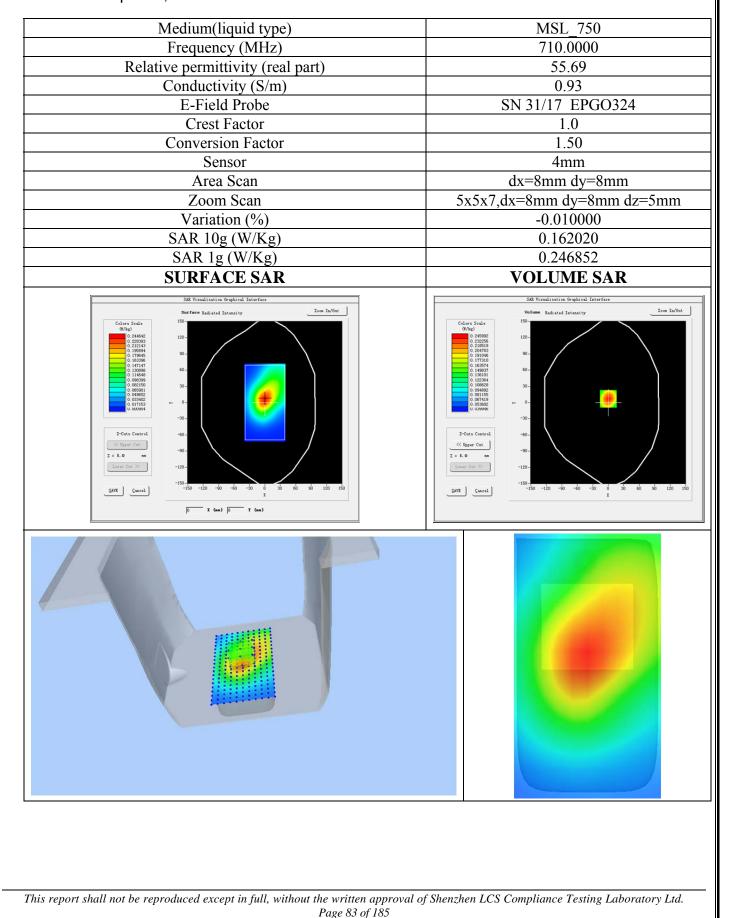


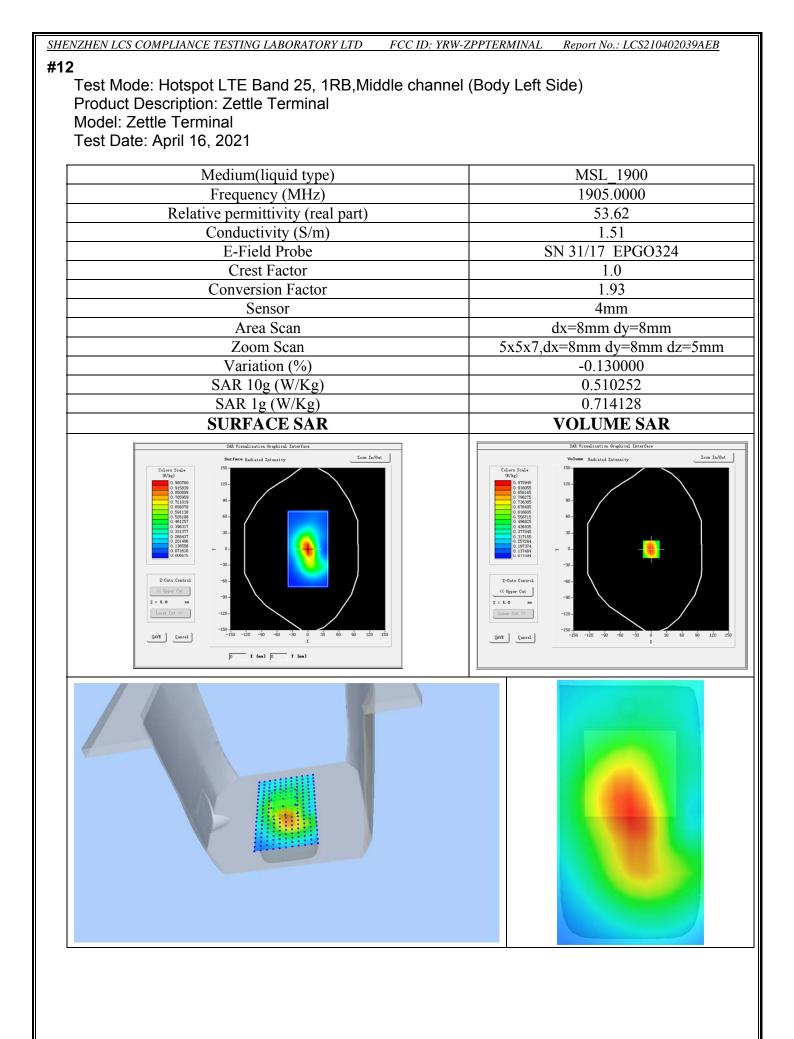

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 78 of 185 **#7** Test Mode: Hotspot LTE Band 7, 1RB,Low channel (Body Rear Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date: April 23, 2021

Medium(liquid type)	MSL_2600
Frequency (MHz)	2510.0000
Relative permittivity (real part)	52.36
Conductivity (S/m)	2.15
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.94
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.870000
SAR 10g (W/Kg)	0.148423
SAR 1g (W/Kg)	0.252945
SURFACE SAR	VOLUME SAR
SAR Visualisation Graphical Interface	SAR Visualisation Graphical Interface
Surface Rediated Intensity Zoom In/Out Colors Scale 150	Volume Radiated Intensi ty Colors Scale (0/kg)
$\begin{bmatrix} 2 - 6415 \\ 0 & 1973 \\ 0 & 1973 \\ 0 & 0 & 1973 \\ 0 & 0 & 00010 \\ 0 & 0 & 0 & 00010 \\ 0 & 0 & 0 & 00010 \\ 0 & 0 & 0 & 00010 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & $	110- 100- 100- 110- 100-


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 79 of 185

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 80 of 185


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 81 of 185



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 82 of 185

#11

Test Mode: Hotspot LTE Band 17, 1RB,Middle channel (Body Left Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date: April 06, 2021

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 84 of 185 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB #13 Test Mode: Hotspot LTE Band 26, 1RB,Low channel (Body Left Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date: April 09, 2021 Medium(liquid type) HSL 835 831.5000 Frequency (MHz) 41.68 Relative permittivity (real part) 0.89 Conductivity (S/m) **E-Field Probe** SN 31/17 EPGO324

Crest Factor

Conversion Factor Sensor

Area Scan

Z-Cuts Control

SAVE Cancel

7 = 1.0

Zoom Scan5x5x7,dx=8mm dy=8mm dz=5mmVariation (%)-0.210000SAR 10g (W/Kg)0.433710SAR 1g (W/Kg)0.710282SURFACE SARVOLUME SARSurface samUnits to find the latentityConstructionSurface samSurface samOutputSurface samSurface sam<td

Vpper Cut

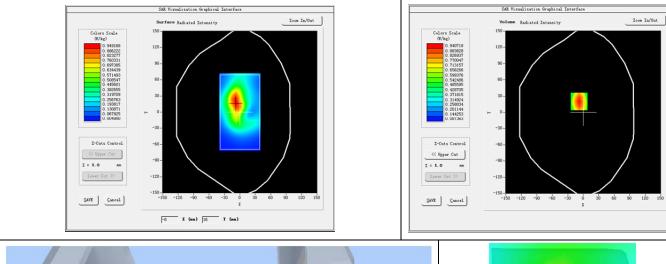

SAVE Cancel

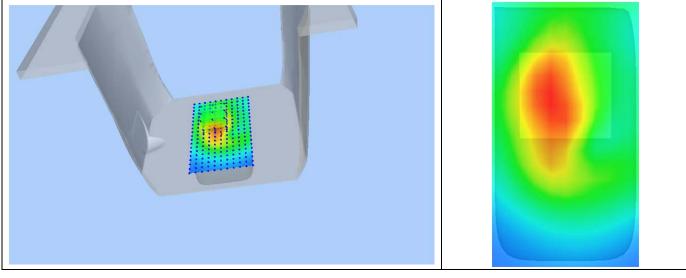
7 = 1 0

1.0 1.55

4mm dx=8mm dy=8mm

120

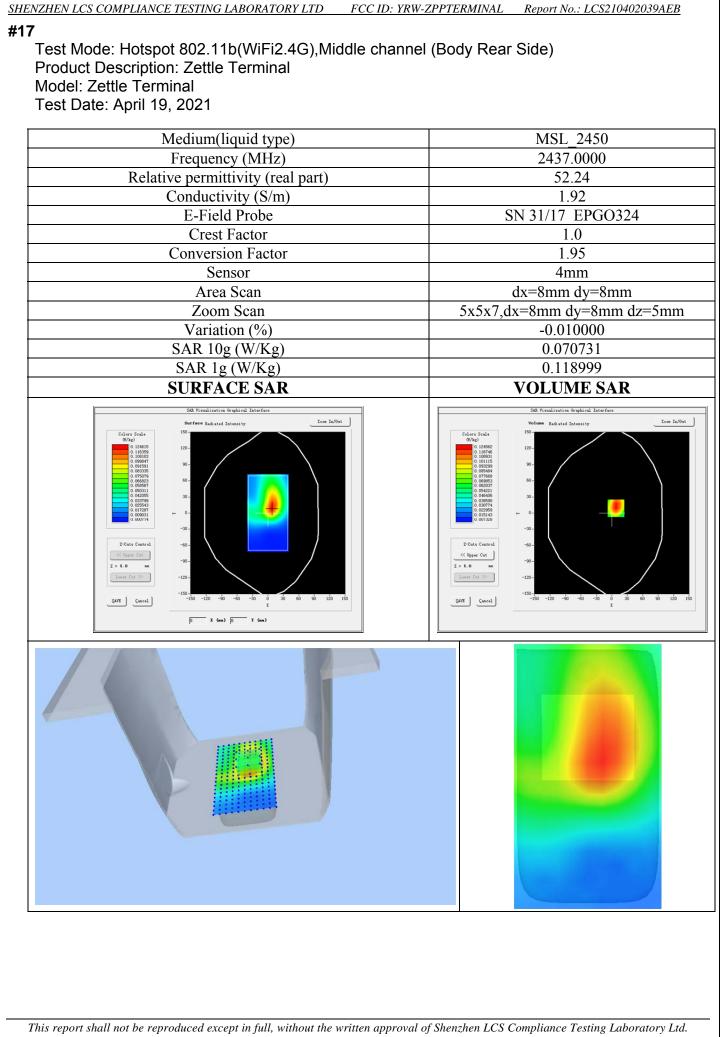

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 85 of 185


#14

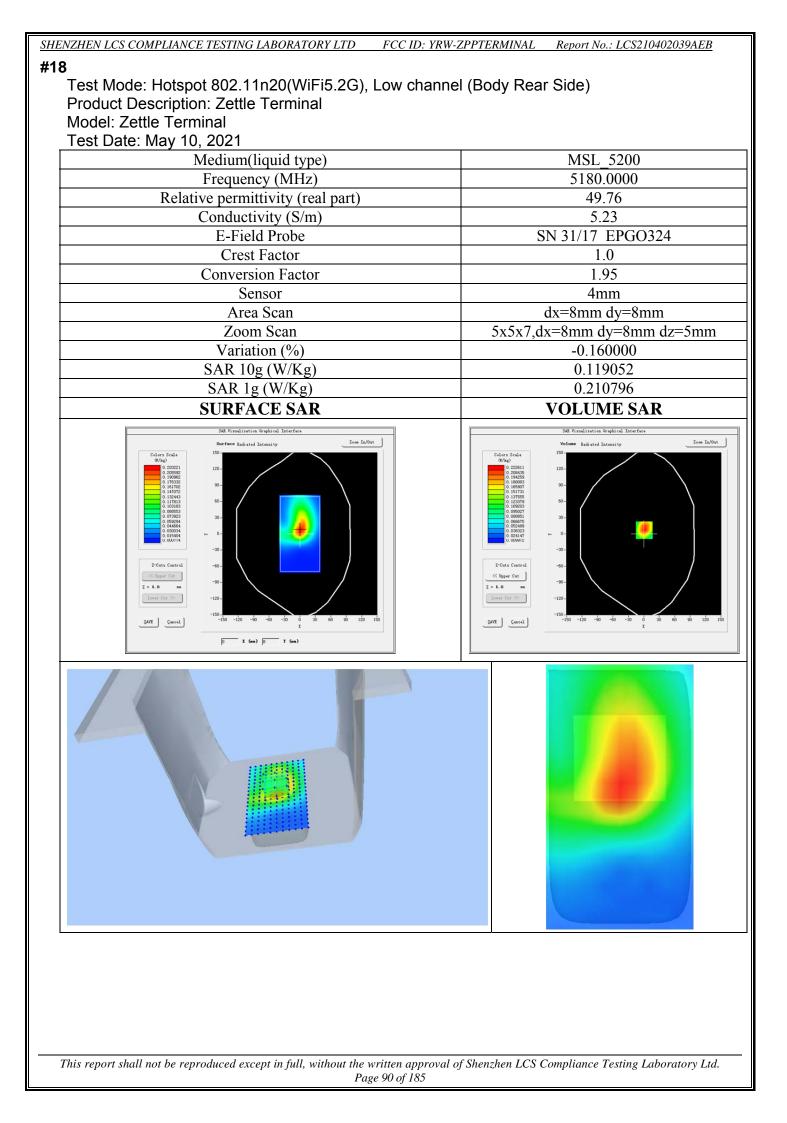
Test Mode: Hotspot LTE Band 41, 1RB,High channel (Body Rear Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date: April 23, 2021

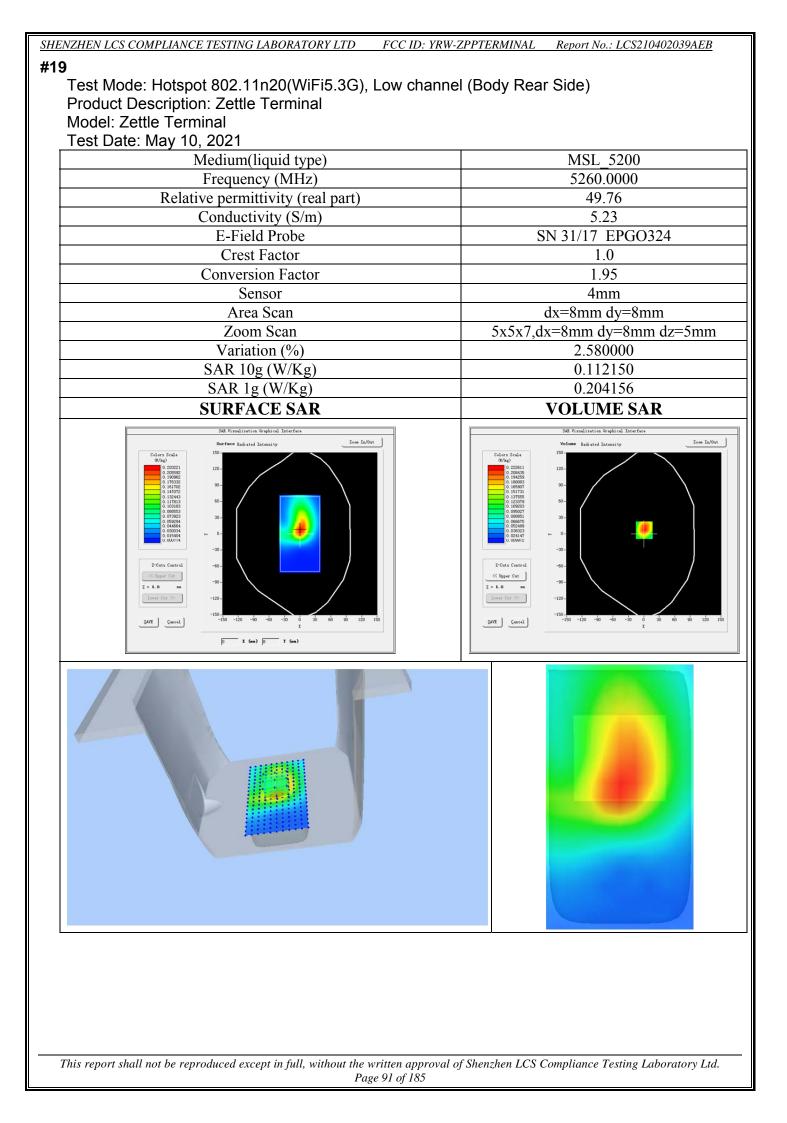
MSL_2600
2593.0000
52.36
2.15
N 31/17 EPGO324
1.0
1.94
4mm
dx=8mm dy=8mm
x=8mm dy=8mm dz=5mm
0.240000
0.251140
0.538202
VOLUME SAR
SAR Visualisation Graphical Interface
Velues ladited Intentity Zeen In/Out 10- 0- -0- -0- -0- -0- -0- -0-

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 86 of 185 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB #15 Test Mode: Hotspot LTE Band 66, 1RB,Low channel (Body Left Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date: April 12, 2021 Medium(liquid type) MSL 1800 Frequency (MHz) 1770.0000 Relative permittivity (real part) 56.12 0.95 Conductivity (S/m) **E-Field Probe** SN 31/17 EPGO324 Crest Factor 1.0 1.50 **Conversion Factor** Sensor 4mm dx=8mm dy=8mm Area Scan Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) -0.350000 SAR 10g (W/Kg) 0.538900 SAR 1g (W/Kg) 0.889555 **SURFACE SAR VOLUME SAR**

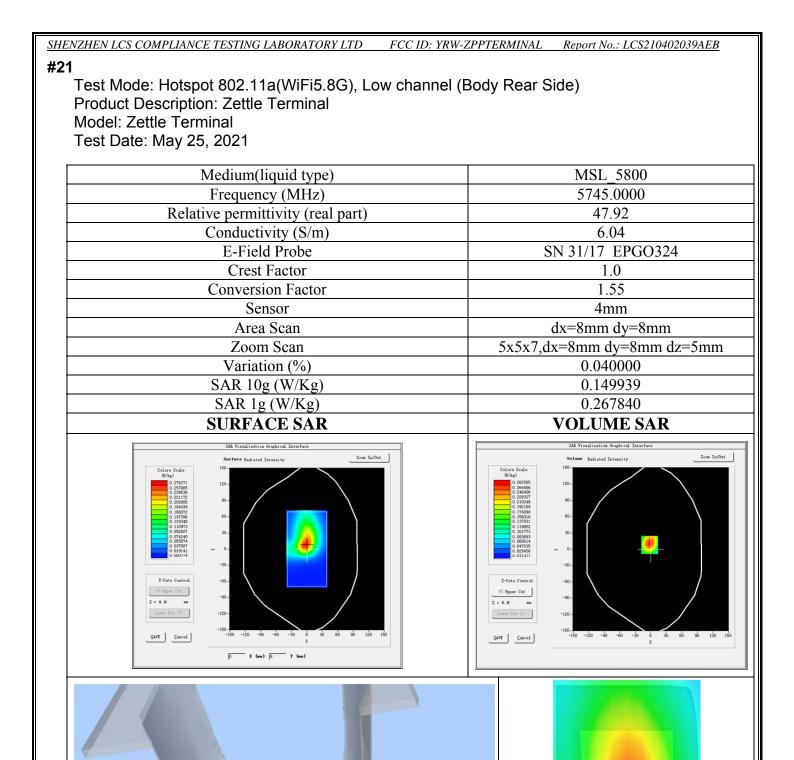

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 87 of 185

#16


Test Mode: Hotspot LTE Band 71, 1RB,Low channel (Body Left Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date: April 06, 2021


MSL_750 711.0000 55.40 0.97 SN 31/17 EPGO324 1.0 1.50
55.40 0.97 SN 31/17 EPGO324 1.0 1.50
0.97 SN 31/17 EPGO324 1.0 1.50
SN 31/17 EPGO324 1.0 1.50
1.0 1.50
1.50
4mm
dx=8mm dy=8mm
5x5x7,dx=8mm dy=8mm dz=5mm
2.650000
0.517138
0.709737
VOLUME SAR
SAR Visualisation Graphical Interfees Volume Rediated Intensity Zem In/Ont 0 0.738061 0.05502 0.05500

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 88 of 185



Page 89 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB #20 Test Mode: Hotspot 802.11a(WiFi5.5G), High channel (Body Rear Side) Product Description: Zettle Terminal Model: Zettle Terminal Test Date: May 25, 2021 Medium(liquid type) MSL 5800 Frequency (MHz) 5700.0000 47.92 Relative permittivity (real part) 6.04 Conductivity (S/m) **E-Field Probe** SN 31/17 EPGO324 Crest Factor 1.0 **Conversion Factor** 1.55 Sensor 4mm dx=8mm dy=8mm Area Scan Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) 1.110000 SAR 10g (W/Kg) 0.141058 SAR 1g (W/Kg) 0.245120 **SURFACE SAR** VOLUME SAR SAR Visualization Graphical Interfac Zoom In/Out Zoom In/Out Surface Redicted To Radiated Intensit Z-Cuts Control << Upper Cut 7 = 1.0 z = 1.0 -90 -60 -30 60 90 120 SAVE Cancel 0 SAVE Cancel _____χ (nn) 8 _____χ (nn) 0 This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 92 of 185

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 93 of 185

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 94 of 185 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/7/2020	Jes
Checked by :	Jérôme LUC	Product Manager	10/7/2020	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	10/7/2020	thim Mitthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
А	10/7/2020	Initial release

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 95 of 185

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD FCC ID: YRW-ZPPTERMINAL Report No.: LCS210402039AEB

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

TABLE OF CONTENTS

1	Dev	ce Under Test	
2	Prod	uct Description	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	
	5.4	Isotropy	8
6	List	of Equipment10	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.