

 Prüfbericht - Nr.:
 50046620 001
 Seite 1 von 3

 Test Report No.
 Page 1 of 3

Appendix I- RF Exposure statement

Exposure Requirements – FCC KDB # 447498 D01

FCC KDB # 447498 D01 V06 – RF EXPOSURE PROCEDURES AND EQUIPMENT AUTHORIZATION POLICIES FOR MOBILE AND PORTABLE DEVICES, Appendix A shows that the SAR Test Exclusion Threshold for a device with a separation distance.

MII	5	10			•	ation distance.
MHz	39	10 77	15 116	20 155	25 194	mm
150	27	55	82		137	
300				110		
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	SAR Test
1500	12	24	37	49	61	Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	
MHz	30	35	40	45	50	mm
					50	111111
150	232	271	310	349	387	IIIII
150 300		271 192				IIIII
	232		310	349	387	mm
300	232 164	192	310 219	349 246	387 274	mm
300 450	232 164 134	192 157	310 219 179	349 246 201	387 274 224	
300 450 835	232 164 134 98	192 157 115	310 219 179 131	349 246 201 148	387 274 224 164	SAR Test
300 450 835 900	232 164 134 98 95	192 157 115 111	310 219 179 131 126	349 246 201 148 142	387 274 224 164 158	SAR Test Exclusion
300 450 835 900 1500	232 164 134 98 95 73	192 157 115 111 86	310 219 179 131 126 98	349 246 201 148 142 110	387 274 224 164 158 122	SAR Test
300 450 835 900 1500 1900	232 164 134 98 95 73 65	192 157 115 111 86 76	310 219 179 131 126 98 87	349 246 201 148 142 110 98	387 274 224 164 158 122 109	SAR Test Exclusion
300 450 835 900 1500 1900 2450	232 164 134 98 95 73 65 57	192 157 115 111 86 76 67	310 219 179 131 126 98 87	349 246 201 148 142 110 98 86	387 274 224 164 158 122 109 96	SAR Test Exclusion
300 450 835 900 1500 1900 2450 3600	232 164 134 98 95 73 65 57 47	192 157 115 111 86 76 67 55	310 219 179 131 126 98 87 77 63	349 246 201 148 142 110 98 86 71	387 274 224 164 158 122 109 96 79	SAR Test Exclusion

Produkte Products

Prüfbericht - Nr.: 50046620 001
Test Report No.

Seite 2 von 3 Page 2 of 3

MHz	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm
100	474	481	487	494	501	507	514	521	527	534	541	547	554	561	567	
150	387	397	407	417	427	437	447	457	467	477	487	497	507	517	527	
300	274	294	314	334	354	374	394	414	434	454	474	494	514	534	554	
450	224	254	284	314	344	374	404	434	464	494	524	554	584	614	644	
835	164	220	275	331	387	442	498	554	609	665	721	776	832	888	943	
900	158	218	278	338	398	458	518	578	638	698	758	818	878	938	998	
1500	122	222	322	422	522	622	722	822	922	1022	1122	1222	1322	1422	1522	mW
1900	109	209	309	409	509	609	709	809	909	1009	1109	1209	1309	1409	1509	
2450	96	196	296	396	496	596	696	796	896	996	1096	1196	1296	1396	1496	
3600	79	179	279	379	479	579	679	779	879	979	1079	1179	1279	1379	1479	
5200	66	166	266	366	466	566	666	766	866	966	1066	1166	1266	1366	1466	
																1

Calculated EIRP

The maximum measured transmitter power is the following:

Frequency [GHz]	Conducted Output Power Pout [dBm]	Conducted Output Power Pout [mW]	Maximum Antenna Gain [dBi]	P _{out} EIRP [dBm]	P _{out} EIRP [mW]
2.402	-5.47	0.2837919	3.19	-2.28	0.59156163

Note:

Per the equation in section 1.3.1 of FCC Document # 412172 D01 Determining ERP and EIRP v01;

 $EIRP = p_t x g_t$

where:

p_t = transmitter output power in watts

g_t = Numeric gain of transmitting antenna (unitless)

Evaluation for FCC

According to FCC KDB # 447498 D01 V06, Clause 4.3.1

(a) For 100MHz to 6 GHz and test separation distances \leqslant 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

 $\frac{\text{(max. power of channel, including tune - up tolerance, mW)}}{\text{(min. test separation distance, mm)}} \times \sqrt{f(GHz)}$

 \leq 3.0, for 1-g SAR, and \leq 7.5, for 10-g extremity SAR

So, the max allowed power for 1-g SAR with distance 5mm is 9.68mW And the max allowed power for 10-g extremity SAR with distance 5mm is 24.20mW

Products

Prüfbericht - Nr.: Test Report No.	50046620 001	Seite 3 von 3 Page 3 of 3
Conclusion		
The max EIRP of the device 1-g and 10-g SAR test excess So, SAR data is not require	ce is 0.59156163mW, which is totally lower than the clusion thresholds. red for FCC.	