

SAR Test Report

Test Report No. 14926563S-A-R1

Customer	KONICA MINOLTA, INC.
Description of EUT	SKR 3000
Model Number of EUT	P-53
FCC ID	YR7SKR3000P9
Test Regulation	FCC 47CFR 2.1093
Test Result	Complied
Issue Date	May 23, 2024
Remarks	-

Representative Test Engineer	Approved By				
H. haka	T.imamura				
Hiroshi Naka Engineer	Toyokazu Imamura Engineer				
g	g				
	ACCREDITED CERTIFICATE 1266.03				
The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.					
There is no testing item of "Non-accreditation".					
Report Cover Page -Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0 (SAR Revision-v23.3sar240122)					

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.

 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Shonan EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the applicant for this report is identified in Section 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14926563S-A

This report is a revised version of 14926563S-A. 14926563S-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents		
- (Original)	14926563S-A	February 21, 2024	-		
-R1	14926563S-A-R1	May 23, 2024	(p5, clause 2.2) Corrected errors in Feature of EUT) "Model number: P-95~" (was) -> "Model number: P-53~ "(new)		
		•	(p36, Appendix 3-4) Corrected errors in the attached calibration data file.		

Reference: Abbreviations (Including words undescribed in this report) (radio_10v09s06_230726)

A2LA The American Association for Laboratory Accreditation Japan Accreditation Board Alternating Current I AN Local Area Network AC. AFH LIMS Laboratory Information Management System Adaptive Frequency Hopping Amplitude Modulation MCS Modulation and Coding Scheme AM Multiple Input Multiple Output (Radio) Amp, AMP **Amplifier** MIMO Mutual Recognition Arrangement **ANSI** American National Standards Institute MRA MU-MIMO Ant, ANT Antenna Multi-User Multiple Input Multiple Output (Radio) AP Not Applicable, Not Applied Access Point N/A APD Absorbed Power Density National Information Infrastructure (Radio) NII National Institute of Standards and Technology **ASK** Amplitude Shift Keying NIST Atten., ATT Attenuator NR New Radio No signal detect. Average NS ΑV Binary Phase-Shift Keying **RPSK** NSA Normalized Site Attenuation Bluetooth Basic Rate BR OBW Occupied Band Width ВТ Bluetooth **OFDM** Orthogonal Frequency Division Multiplexing **BTLE** Bluetooth Low Energy PD Power Density BandWidth P/M BW Power meter Cal Int Calibration Interval **PCB** Printed Circuit Board CCK Complementary Code Keying PER Packet Error Rate Cyclic Delay Diversity CDD PHY Physical Layer Code of Federal Regulations PΚ CFR Peak Ch., CH PΝ Pseudo random Noise Pseudo-Random Bit Sequence **CISPR** Comite International Special des Perturbations Radioelectriques **PRBS** Continuous Wave **PSD** Power Spectral Density C:W DBPSK Differential BPSK QAM Quadrature Amplitude Modulation DC Direct Current QΡ Quasi-Peak **QPSK** Quadrature Phase Shift Keying D-factor Distance factor **DFS** Dynamic Frequency Selection **RBW** Resolution Band Width **DQPSK** Differential QPSK **RDS** Radio Data System DSSS Direct Sequence Spread Spectrum RE Radio Equipment Radio Frequency **Device Under Test** RF DUT RMS **EDR** Enhanced Data Rate Root Mean Square EIRP, e.i.r.p. Equivalent Isotropically Radiated Power RSS Radio Standards Specifications **EMC** ElectroMagnetic Compatibility RU Resource Unit Receiving EMI ElectroMagnetic Interference Rx European Norm SA, S/A Spectrum Analyzer ΕN ERP, e.r.p. Effective Radiated Power SAR Specific Absorption Rate SDM **ETSI** European Telecommunications Standards Institute Space Division Multiplexing EU European Union SISO Single Input Single Output (Radio) **EUT** Equipment Under Test SG Signal Generator SPLSR SAR to Peak Location Separation Ratio Fac. Factor FCC **SVSWR** Federal Communications Commission Site-Voltage Standing Wave Ratio **FHSS** Frequency Hopping Spread Spectrum TSL Tissue Simulation Liquid Frequency Modulation T/R Test Receiver FΜ Freq. Frequency Transmitting Tχ U-NII Unlicensed National Information Infrastructure (Radio) Frequency Shift Keying **FSK GFSK** Gaussian Frequency-Shift Keying **VBW** Video BandWidth **GNSS** Global Navigation Satellite System Vert. Global Positioning System GPS Very High Throughput (e.g. IEEE 802.11ac20VHT) VHT High Efficiency (e.g. IEEE 802.11ax20HE) ΗE WLAN Wireless LAN HT High Throughput (e.g. IEEE 802.11n20HT) Wi-Fi, WiFi Wireless LAN, trademarked by Wi-Fi Alliance Horizontal Hori. Interference-Causing Equipment Standard **ICES IEC** International Electrotechnical Commission **IEEE** Institute of Electrical and Electronics Engineers Intermediate Frequency ILAC International Laboratory Accreditation Conference IPD Incident Power Density **ISED** Innovation, Science and Economic Development Canada

International Organization for Standardization

ISO

CONTENTS		PAGE
ANNOUNCEMENT		2
REVISION HISTOR	RY	2
Reference : Abbre	viations (Including words undescribed in this report)	3
SECTION 1:	Customer information	5
SECTION 2:	Equipment under test (EUT)	
2.1	Identification of EUT	5
2.2	Product Description	
SECTION 3:	Maximum SAR value, test specification and procedures	6
3.1 3.2	Summary of Maximum SAR ValueRF Exposure limit	6
3.3	Test specification	
3.4	Addition, deviation and exclusion to the test procedure	
3.5	Test location	
3.6	SAR measurement procedure	
SECTION 4:	Operation of EUT during testing	9
4.1 4.2	Operation modes for testingRF exposure conditions (Test exemption)	9 10
SECTION 5:	Confirmation before testing	
5.1	Test reference power measurement	11
SECTION 6:	Tissue simulating liquid	
6.1	Liquid measurement	
6.2	Target of tissue simulating liquid	
6.3	Simulated tissue composition	
SECTION 7:	Measurement results	
7.1 7.2	Measurement results	
7.2 7.3	SAR Measurement Variability (Repeated measurement requirement)	16
7.4	Device holder perturbation verification	16
7.5	Requirements on the Uncertainty Evaluation	16
Contents of appen	dixes	
APPENDIX 1:	Photographs of test setup	17
Appendix 1-1	Photograph of EUT and antenna position	17
Appendix 1-2	EUT and support equipment	18
Appendix 1-3	Photograph of test setup (SAR)	
APPENDIX 2:	Measurement data	
Appendix 2-1	Plot(s) of Worst Reported Value	
APPENDIX 3:	Test instruments	
Appendix 3-1 Appendix 3-2	Equipment used	20 27
Appendix 3-2-1	SAR Measurement System	
Appendix 3-2-2	SAR system check results	30
Appendix 3-2-3	SAR system check measurement data	
Appendix 3-3 Appendix 3-4	Measurement Uncertainty	35 36

SECTION 1: Customer information

Company Name	KONICA MINOLTA, INC.
Address	1, Sakura-machi, Hino-shi, Tokyo, Japan 191-8511
Telephone Number	+81-42-589-8429
Contact Person	Ken Nagami

The information provided from the customer is as follows;

- Customer name, Company name, Type of Equipment, Model No., FCC ID on the cover and other relevant pages.
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT)
- SECTION 4: Operation of EUT during testing
- Appendix 1: The part of Antenna location information, Description of EUT and Support Equipment

SECTION 2: Equipment under test (EUT)

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

Identification of EUT

Туре	SKR 3000			
Model Number	P-53			
Serial Number	AEA0-S0004			
Rating	DC 15 V (Re-chargeable battery, the battery is had built-in in the EUT, and the user can not remove the battery.)			
Condition of sample	Engineering prototype (Not for sale: The sample is equivalent to mass-produced items.)			
Receipt Date of sample	November 6, 2023 (for power measurement) (*. No modification by the Lab.)			
Necelpt Date of Sample	January 9, 2024 (for SAR test) (*. No modification by the Lab.)			
Test Date (SAR)	January 10~12 and 15, 2024			

2.2 **Product Description**

General

Feature of EUT	Model number: P-53 (referred to as the EUT in this report) is a flat panel type detector "SKR 3000" which has WLAN function.				
SAR Category	Portable device (*. Since EUT may contact to a localized human body during wireless operation, the partial-				
Identified	body SAR (1g) shall be observed.)				
SAR Accessory	None				

Radio specification

Equipment type	Transceiver						
	WLAN 2.4 GHz Band: 2412 MHz ~ 2462 MHz	WLAN 5.6 GHz Band: 5500 MHz ~ 5700 MHz					
Frequency of operation	WLAN 5.2 GHz Band: 5180 MHz ~ 5240 MHz	WLAN 5.8 GHz Band: 5745 MHz ~ 5825 MHz					
	WLAN 5.3 GHz Band: 5260 MHz ~ 5320 MHz						
Supported modulations	WLAN 2.4 GHz band) 11b: DSSS, DBPSK/DQPSK/CCK; 11o						
Supported modulations	WLAN 5 GHz band) 11a/n: OFDM, BPSK/QPSK/16QAM/640						
Typical and maximum	*. The specification of typical and maximum transmit power (w	nich may occur) refer to remarks in below "Table of Typical					
transmit power	power and Maximum tune-up tolerance limit power".						
transi i it power	The measured output power (conducted) as SAR reference power refers to section 5 in this report.						
	2 pcs. (*. Separation distance between antenna 1 and antenna 2: approx. 500 mm)						
Antenna quantity	*. Mode of 11b, 11g, 11a: One selected Tx antenna operat	ion.					
	*. Mode of 11n20: One selected Tx antenna operation (MC	CS0~7) / Two Tx antenna operation (MCS8~13)					
Antenna ID	Antenna 1 Antenna 2						
Antenna type	PIFA (Planar Inverted F Antenna)	PIFA (Planar Inverted F Antenna)					
Antenna connector type	PCB side: U.FL, Antenna side: soldered	PCB side: U.FL, Antenna side: soldered					
Antenna gain a) (max. gain)	-1.95 dBi (2.4 GHz band),	-2.21 dBi (2.4 GHz band),					
(*.including cable loss)	-0.98 dBì (5 GHz band) -1.54 dBì (5 GHz band)						

The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

Table of Typical power and Maximum power (= Maximum tune-up tolerance limit power)

Maximum tune-up tolerance limit is conducted burst average power and is defined by a customer as Duty cycle 100% (continuous transmitting).

					SISC)					MII	MO			
Band	Band Ch. F		Mode	D/R or MCS	Typical [dBm]		Max.[dBm]		Mode	MCS Index.	Typical [dBm]			Max. [dBm]	
Danu	GI.	[MHz]	Mode	Index.	Ant.#1	Ant.#2	Ant.#1	Ant.#2	Mode	IVICO II IUEX.	Ant.1	Ant.2	Ant.1+2	Ant.1+2	
WLAN			11b	1~11 Mbps	10.0	10.0	13.0	13.0							
2.4 GHz	1~11	2412~2462	11g	6~54 Mbps	11.0	11.0	13.5	13.5							
2.4 GI IZ			11n20	MCS0~7	11.0	11.0	13.5	13.5	11n20	MCS8~15	11.0	11.0	14.0	16.5	
WLAN	WLAN 5.2 GHz 36~48 5180~524	E100- E240	11a	6~54 Mbps	6.0	6.0	8.5	8.5							
5.2 GHz		3100~3240	11n20	MCS0~7	6.0	6.0	8.5	8.5	11n20	MCS8~15	6.0	6.0	9.0	11.5	
WLAN	52~64	5260~5320	11a	6~54 Mbps	6.0	6.0	8.5	8.5							
5.3 GHz	Hz 52~04 5260~5320	5260~5320	11n20	MCS0~7	6.0	6.0	8.5	8.5	11n20	MCS8~15	6.0	6.0	9.0	11.5	
WLAN	WLAN 5.6 GHz 100~140 5500~57	100, 140	5500~5700	11a	6~54 Mbps	6.0	6.0	8.5	8.5						
		5500~5700	11n20	MCS0~7	6.0	6.0	8.5	8.5	11n20	MCS8~15	6.0	6.0	9.0	11.5	
WLAN	WLAN 5.8 GHz 149~165	5754~5825	11a	6~48 Mbps	6.0	6.0	8.5	8.5							
5.8 GHz		5/54~5825	11n20	MCS0~7	6.0	6.0	8.5	8.5	11n20	MCS8~15	6.0	6.0	9.0	11.5	

Ch.: channel, D/R: data rate, Ant.: antenna, Max. Maximum tune-up limit power, N/A: Not applicable.

SECTION 3: Maximum SAR value, test specification and procedures

Summary of Maximum SAR Value 3.1

Highest Reported						st Reported SAR [W/kg]					
			Partial-k	oody		Head		Limbs			
Mode / B	and	(Sepa	aration 0 mm,	Flat phantom)	(Separation 0 mm, SAM phantom)			(Separation 0 mm, Flat phantom)			
Wiodo / D	ana		SAR type: S	AR (1g)	SAI	R type: SAR	(1g)	SAF	SAR type: SAR (10g		
		Standa	alone	Simultaneous	Standalone		Simultaneous	Stand	lalone	Simultaneous	
		Antenna 1	Antenna 2	Transmission	Antenna 1	Antenna 2	Transmission	Antenna 1	Antenna 2	Transmission	
WLAN 2.4	GHz	GHz 1.04 0.65 SPLS		SPLSR: < 0.04 (*2)	N/A	N/A	N/A	N/A	N/A	N/A	
WLAN 5.2	AN 5.2 GHz 0.63 0.59		SPLSR: < 0.04 (*2)	N/A	N/A	N/A	N/A	N/A	N/A		
WLAN 5.3	GHz	0.58	0.42	SPLSR: < 0.04 (*2)	N/A	N/A	N/A	N/A	N/A	N/A	
WLAN 5.6	GHz	0.72	0.61	SPLSR: < 0.04 (*2)	N/A	N/A	N/A	N/A	N/A	N/A	
WLAN 5.8	GHz	1.04	0.69	SPLSR: < 0.04 (*2)	N/A	N/A	N/A	N/A	N/A	N/A	
Limit applied	Partial bod y/Head: 1.6 W/kg (SAR (1g)), Limbs: 4 W/kg (SAR (10g)), for general population/uncontrolled exposure is specified in FCC 47 CFR 2.1093.										
Test	Refer to 3	fer to Section 3.3 in this report. In addition;									
Procedure	UL Japan's SAR measurement work procedures No. ULID-003599 (13-EM-W0430).										
	UL Japan's SAR measurement equipment calibration and inspection work procedures No. ULID-003598 (13-EM-W0429).										
Category	Portable	device (The de	vices being u	sed within 20 cm betwee	en user and E	UT.)					

⁽KDB 248227 D01v02r02, Clause 6.1: Antenna Spatial Configurations) The SAR1g distribution of antenna 1 and antenna 2 wasn't overlapped, because the distance between the antenna 1 and antenna 2 was away sufficiently. (refer to clause 7.2, Appendix 1-1 of antenna position) Therefore, SAR from an antenna (either antenna 1 or antenna 2) was the result which indicates the higher SAR value.

The SAR test values found for the device are separately below the maximum limit of 1.6 W/kg.

3.2 **RF Exposure limit**

SAR Exposure Limit (100 kHz ~ 6 GHz)								
General Population / Uncontrolled Exposure (*1) Occupational / Controlled Expos								
	[W/kg]	[W/kg]						
Spatial Peak SAR (*3) (Whole Body)	0.08	0.4						
Spatial Peak SAR (*4) (Partial-Body, Head or Body)	1.6	8						
Spatial Peak SAR (*5) (Hands / Feet / Ankle / Wrist)	4	20						

For the purpose of this Regulation, FCC has adopted the SAR and RF exposure limits established in FCC 47 CFR 1.1310: Radiofrequency radiation exposure limits.

General Population / Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Average value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The limit applied to this device which tested in this report is;

Limit of Spatial Peak SAR (Partial-Body)	1.6 W/kg	General population / uncontrolled exposure
--	----------	--

^{*2.} SPLSR is smaller than 0.04, even if the SAR(1g) values of each antenna 1 and 2 is shown to equal to the SAR (1g) limit = 1.6 W/kg. (refer to clause 7.2)

Occupational / Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

3.3 Test specification

Standard	Description	Version
47 CFR 2.1093	(Limit) Radiofrequency radiation exposure evaluation: portable devices	-
ANSI/IEEE C95.1	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz	1992
IEEE Std. 1528	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	2013
KDB 248227 D01	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters	v02r02
KDB 447498 D04	Interim General RF Exposure Guidance	v01
KDB 447498 D03	OET Bulletin 65, Supplement C Cross-Reference	v01
KDB 865664 D01	SAR measurement 100 MHz to 6 GHz	v01r04
KDB 865664 D02	RF exposure compliance reporting and documentation considerations	v01r02
KDB 388624 D02	Pre-approval guidance list-APPENDIX OVER6G	v18r03

The measurement uncertainty budget is suggested by IEC/IEEE 62209-1528:2020 and determined by SPEAG, DASY8 Manual for Module SAR. Refer to Appendix3-3 for more details.

In addition to the above, the following information was used:

TCB workshop, 2016-10	RF Exposure Procedure, DUT Holder Perturbations; When the highest reported SAR of an antenna is > 1.2 W/kg, holder
TCB Workshop, 2010-10	perturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bands.
TCB workshop, 2018-04	Expedited Area Scans. (Including mother scans)
TCB workshop, 2019-04	RF Exposure Procedure, 802.11ax SAR Testing
TCB workshop, 2019-10	RF Exposure Procedure, Tissue Simulating Liquids (TSL) -FCC has permitted the use of single head tissue simulating liquid specified in IEC 62209 for all SAR tests.
	-If FCC parameters are used, 5 % tolerance. If IEC parameters, 10 %.

3.4 Addition, deviation and exclusion to the test procedure

No addition, exclusion nor deviation has been made from the test procedure.

3.5 Test Location

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

*. A2LA Certificate Number: 1266.03 (FCC Test Firm Registration Number: 626366, ISED Lab Company Number: 2973D / CAB identifier: JP0001)

Place	Width × Depth × Height (m)	Size of reference ground plane (m) / horizontal conducting plane
No.7 Shielded room	2.76 × 3.76 × 2.4	2.76×3.76

3.6 SAR measurement procedure

3.6.1 SAR Definition

SAR is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). The equation description is shown in right.	$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho * dV} \right)$
SAR measurement can be related to the electrical field in the tissue by the equation in right. SAR is expressed in units of	σIF12
Watts per kilogram (W/kg).	$SAR = \frac{\sigma E ^2}{ E ^2}$
Where : σ = conductivity of the tissue (S/m), ρ = mass density of the tissue (kg/m³), E = RMS electric field strength in tissue (V/m)	ρ

3.6.2 Full SAR measurement procedure

The SAR measurement procedures are as follows: (1) The EUT is installed engineering testing software that provides continuous transmitting signal; (2) Measure output power through RF cable and power meter; (3) Set scan area, grid size and other setting on the DASY software; (4) Find out the largest SAR result on these testing positions of each band; (5) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: Step 1) Power measurement --> SAR: Step 2) Power reference measurement --> Step 3) Area scan --> Step 4) Zoom scan --> Step 5) Power drift measurement

Step 1: Confirmation before SAR testing

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. This SAR reference power measurement was proceeded with the lowest data rate (which may have the higher time-based average power typically) on each operation mode and on the lower, middle (or near middle), upper and specified channels. The power measurement result is shown in Section 5.

The EUT transmission power used SAR test was verified that it was not more than 2 dB lower than the maximum tune-up tolerance limit. (KDB447498 D01 (v06))

Step 2: Power reference measurement

Measured psSAR value at a peak location of Fast Area Scan was used as a reference value for assessing the power drop.

Step 3: Area Scan

(Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz))

Area Scans are used to determine the peak location of the measured field before doing a finer measurement around the hotspot. Peak location can be found accurately even on coarse grids using the advanced interpolation routines implemented in DASY8. Area Scans measure a two dimensional volume covering the full device under test area. DASY8 uses Fast Averaged SAR algorithm to compute the 1 g and 10 g of simulated tissue from the Area Scan. DASY8 can either manually or automatically generates Area Scan grid settings based on device dimensions. In automatically case, the scan extent is defined by the device dimensions plus additional 15mm on each side. In manually, the scan covered the entire dimension of the antenna of EUT.

Step 4: Zoom Scan and post-processing

(Scan parameters: KDB 865664 D01, IEC/IEEE 62209-1528 (> 6GHz)) Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

- A minimum volume of 30 mm $(x) \times 30$ mm $(y) \times 30$ mm (z) was assessed by "Ratio step" method (*1), for 2.4 GHz band. (Step XY: 5 mm)
- *. A minimum volume of 24 mm (x) × 24 mm (y) × 24 mm (z) was assessed by "Ratio step" method (*1), for 5 GHz band (Step XY: 4 mm).
- . A minimum volume of 24 mm (x) \times 24 mm (y) \times 24 mm (z) was assessed by "Ratio step" method (*1), for 6 GHz band (Step XY: 3.4 mm).

When the SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are proceeded for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. If the zoom scan measured as defined above complies with both of the following criteria. or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed.

- The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions and recorded.
- *. The ratio of the SAR at the second measured point to the SAR at the closest measured point at the x-y location of the measured maximum SAR value shall be at least 30 % and recorded.

			f≤3 GHz	3 GHz < <i>f</i> ≤ 10 GHz
measurement center of prophantom su	ent point obe sens Irface	sors) to	5 mm ± 1 mm	$\begin{array}{c} \text{1/2} \times \delta \times \text{ln(2)} \text{ mm} \\ \pm \text{0.5} \text{ mm} \end{array}$
Maximum p	robe an	gle from probe	5 ° ± 1 °(flat phantom only)	5°±1°(flat phantom only)
axis to phan the measure		face normal at	$30^{\circ} \pm 1^{\circ}$ (other phantom)	30 ° ± 1 °(other phantom)
Maximum a	area sc	an spatial	≤2 GHz : ≤15 mm, 2~3 GHz : ≤12 mm	3~4 GHz: ≤ 12 mm, 4~6 GHz: ≤ 10 mm > 6 GHz: ≤ 60/fmm, or half of the corresponding zoom scan length, whichever is smaller.
resolution.	∆XArea, Z	y Area	When the x or y dimension o measurement plane orientati above, the measurement res corresponding x or y dimensi least one measurement poin	on, is smaller than the olution must be ≤ the on of the test device with at
Maximum z resolution: Δ			\leq 2 GHz : \leq 8 mm, 2~3 GHz : \leq 5 mm (*1)	$3\sim4$ GHz: ≤ 5 mm (*1), $4\sim6$ GHz: ≤ 4 mm (*1) > 6 GHz: $\leq 24/f$ mm
Maximum zoom scan	uniform	n grid: Δz _{zcom} (n)	≤5mm	3~4 GHz:≤4 mm, 4~5 GHz:≤3 mm, 5~6 GHz:≤2 mm > 6 GHz:≤10/(£1) mm
spatial resolution, normal to phantom	graded	Δz _{Zcom} (1): between 1st two points closest to phantom surface	≤4 mm	3~4 GHz:≤3 mm, 4~5 GHz:≤2.5 mm, 5~6 GHz:≤2 mm >6 GHz:≤12/fmm
surface	grid	Δz _{zcom} (n>1): between subsequent points	$\leq 1.5 \times \Delta z_{200}$	_{om} (n-1) mm
Minimum zoom scan volume	-		≥30 mm	3~4 GHz : ≥ 28 mm, 4~5 GHz : ≥ 25 mm, 5~6 GHz : ≥ 22 mm > 6 GHz : ≥ 22 mm
Note: δ is the	penetrat	ion depth of a plane	e-wave at normal incidence to	the tissue medium; see IEEE

Step 5: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same project. The Power Drift Measurement gives the SAR difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. It was checked that the power drift was within ± 5% (0.21 dB) in single SAR project run. The verification of power drift during the SAR test shown in SAR plot data of APPENDIX 2.

Std 1528-2013 (\leq 6 GHz) and IEC/IEEE 62209-1528 (\leq 10 GHz) for details. *1. When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. (KDB 865664 D01)
*. The scan parameters of > 6GHz is defined IEC/IEEE 62209-1528.

The most of SAR tests were conservatively performed with test separation distance 0 mm. The phantom bottom thickness is approx. 2mm. Therefore, the distance between the SAR probe tip to the surface of test device which is touched the bottom surface of the phantom is approx. 2.4 mm. Typical distance from probe tip to

probe's dipole centers is 1mm.

"Ratio step" method parameters used; the first measurement point: "1.4 mm" from the phantom surface, the initial z grid separation: "1.5 mm", subsequent graded grid ratio: "1.5" for 2.4 GHz band and the initial z grid separation: "1.4 mm", subsequent graded grid ratio: "1.4" for above 5 GHz. These parameters comply with the requirement of KDB 865664 D01 and recommended by Schmid & Partner Engineering AG (DASY8 manual).

SECTION 4: Operation of EUT during testing

Operating modes for testing 4.1

The EUT has IEEE 802.11b, 11g, 11a and 11n continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

Operation	on mode	11	1b	1	1g		11n2	0	11	а		11n2	20	1	1a		11n2	20	11	la		11n2	20	1	1a		11n2	20
ba	and			WL/	\N 2	.4GH	z		WL	AN	5.2 (ЭHz	(*3)	١	NLA	N 5	3 GI	Ηz		WLA	N 5.	6 GH	z		WLA	N 5.	8 GH	z
Tx bar	nd [MHz]			24	02~2	2462				518	30~5	240			52	60~	5320)		55	00~5	700			57	45~5	825	
Ante	enna#	1	2	1	2	1	2	1+2	1	2	1	2	1+2	1	2	1	2	1+2	1	2	1	2	1+2	1	2	1	2	1+2
Tune-up	limit [dBm]	13	13	13.5	13.5	13.5	13.5	13.5 +13.5	8.5	8.5	8.5	8.5	8.5 +8.5	8.5	8.5	8.5	8.5	8.5 +8.5	8.5	8.5	8.5	8.5	8.5 +8.5	8.5	8.5	8.5	8.5	8.5 +8.5
	Rear	0	0	×	×	×	×	×	0	0	×	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×	×	×
SAR test	Front	0	0	×	×	×	×	X	0	0	×	X	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×	×
considered. ("*" initial test	Right (Ant.1)	0*	×	0	×	0	×	0	0*	×	0	×	0	0*	×	0	×	0	0*	×	0	×	0	0*	×	0	×	0
setup and	Bottom (Ant.2)	×	0*	×	0	×	0	0	×	0*	×	0	0	×	0*	X	0	0	×	0*	×	0	0	×	0*	×	0	0
mode) (*1)	Right	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	Тор	×	×	×	×	×	×	X	×	×	×	X	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×	×
Frequen	cy tested	(*2)	(*2)	(*2)	(*2)	n/a	n/a	n/a	(*2)	(*2)	n/a	n/a	n/a	(*2)	(*2)	n/a	n/a	n/a	(*2)	(*2)	n/a	n/a	n/a	(*2)	(*2)	n/a	n/a	n/a
	te [Mbps] S index#	1	1	6	6	#0	#0	#8	6	6	#0	#0	#8	6	6	#0	#0	#8	6	6	#0	#0	#8	6	6	#0	#0	#8
Controlled	_ Tes	st na	me					Soft	ware	nan	ne				٧	ersi	on		Rele	asec	Dat	е	,	Stora	age k	ocati	ion	
software	POMERM	neas	urer	ment	,			Pan	el Fin	mwa	ıre			\	/5.00)R0	00_0)4	202	23-07	7-07	E	:UT m	emoi	y			
Software		SAF	₹			QRC	T (Qı	ualcor	mm F	Radic	Cor	ntrol	Tool)		4.0	0.00	125		202	23-1′	1-06	С	connec	ted h	nost F	C		

- Ant: antenna, Antenna: "1", "2" means SISO, "1+2" means MIMO; n/a: not applied.

 (KDB 248227 D01) For 2.4GHz band, DSSS mode is initial mode. For 5GHz band of OFDM, Initial SAR test was applied to the operation mode which has higher bandwidth with the highest tune-up power and lowest data rate (lowest modulation).

 Marks on "SAR test considered" are "'o": SAR test was applied. "x": SAR test exempt (refer to clause 4.2).
- The tested frequencies refer to SAR test results in Section 7.
- SAR test of WLAN 5.2 GHz band was also applied for the reference purpose, even though the reported SAR(1g) of WLAN 5.3 GHz band were smaller than 1.2 W/kg.

OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

(KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters) The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default

power measurement procedures.

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected.

SAR test reduction considerations

(KDB 447498 D04(v01), General RF Exposure Guidance) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is:

- (1) \leq 0.8 W/kg for 1g , or 2.0 W/kg for 10g respectively, when the transmission band is \leq 100 MHz (2) \leq 0.6 W/kg for 1g, or 1.5 W/kg for 10g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) \leq 0.4 W/kg for 1g, or 1.0 W/kg for 10g respectively, when the transmission band is \geq 200 MHz

The SAR has been measured with highest transmission duty factor supported by the test mode tool for WLAN and/or Bluetooth. When the transmission duty factor could not be 100%, the reported SAR will be scaled to 100% transmission duty factor to determine compliance. When SAR is not measured at the maximum power level allowed for production unit, the measured SAR will be scaled to the maximum tune-up tolerance limit to determine compliance.

(KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters) (Clause 5.1.1 Initial Test Position SAR Test Reduction Procedure)

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- b) When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

For 2.4 GHz band, the highest measured maximum output power channel of DSSS was selected for SAR measurement, When the reported SAR is \leq 0.8 W/kg, no further SAR test is required in this exposure configuration. Otherwise, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/ka.

For 5 GHz band, the initial test configuration was selected accordance to the transmission mode with the highest maximum output power. When the reported SAR is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is \leq 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

4.2 RF exposure conditions (Test exemption)

Antenna separation distances in each test setup plan are shown as follows.

			Antenna ID:	1	2
Setup	Explanation of EUT setup (*. Refer to Appendix	(1 for test setup photographs.)		D [mm]	D [mm]
Right	The right surface of EUT was touched to the Flat phantom.			1.8	≈310
Bottom	The bottom surface existed) of EUT was touched to the Flat pha	ntom.		≈ 390.5	1.8
Back	The back surface of EUT was touched to the Flat phantom.			2.6	2.6
Front	The front surface (LCD) of EUT was touched to the Flat phanton	٦.		3.7	3.7
Top	The top surface of EUT was touched to the Flat phantom.			27.5	≈ 460
Left	The left surface of EUT was touched to the Flat phantom.			≈ 384	32

* D: Antenna separation distance. It is the distance from the antenna inside EUT to the outer surface of EUT which user may touch.

SAR test exemption consideration by KDB 447498 D04 (v01)

										Judg	ge of SAF	R test exe	emption (Test "or "E	xempt") (ı	upper rov	/)/SARt	based Th	reshold po	ower (lowe	er row)
										- 1	Antenna	1 separ	ation dis	tance [mr	n]		Antenna	2 separ	ation dist	ance [mn	n]
T	Higher		ax.	Α	ntenna	1	А	ntenna:	2	<5	<5	<5	28	>50	>50	<5	<5	<5	32	>50	>50
Tx mode	Frea.	cond output		Gain	EF	RP	Gain	EF	RP	Right	Back	Front	Тор	Left	Bottom	Bottom	Back	Front	Left	Right	Тор
	[MHz]	[dBm]	[mW]	[dBi]	[dBm]	[mW]	[dBi]	[dBm]	[mW]	SAR1g	SAR1g			SAR1g	SAR1g	SAR1g	SAR1g	SAR1g	SAR1g	SAR1g	SAR1g
WLAN	2462	13.5	22	-1.95	9.40	9	-2.21	9.14	8	Test	Test	Test	Exempt	Exempt	Exempt	Test	Test	Test	Exempt	Exempt	Exempt
2.4 GHz	2402	13.3	22	-1.33	3.40	9	-2.21	3.14	O	3 mW	3 mW	3 mW	73 mW	> 100 mW	>100 mW	3 mW	3 mW	3 mW	>80 mW	> 100 mW	$> 100 \mathrm{mW}$
WLAN	5240	8.5	7	-0.98	F 27	3	-1.54	4.04	3	Test	Test	Test	Exempt	Exempt	Exempt	Test	Test	Test	Exempt	Exempt	Exempt
5.2 GHz	3240	0.0	′	-0.90	5.57	3	-1.54	4.01	3	1 mW	1 mW	1 mW	53 mW	> 100 mW	> 100 mW	1 mW	1 mW	1 mW	>50 mW	> 100 mW	> 100 mW
WLAN	5320	8.5	7	-0.98	F 27	3	1 5 1	4.04	3	Test	Test	Test	Exempt	Exempt	Exempt	Test	Test	Test	Exempt	Exempt	Exempt
5.3 GHz	5320	0.0	/	-0.98	5.37	3	-1.54	4.01	3	1 mW	1 mW	1 mW	52 mW	> 100 mW	> 100 mW	1 mW	1 mW	1 mW	>50 mW	> 100 mW	> 100 mW
WLAN	5700	8.5	7	-0.98	E 27	3	-1.54	1 01	2	Test	Test	Test	Exempt	Exempt	Exempt	Test	Test	Test	Exempt	Exempt	Exempt
5.6 GHz	3700	0.0	′	-0.90	5.51	3	-1.54	4.01	3	1 mW	1 mW	1 mW	51 mW	> 100 mW	> 100 mW	1 mW	1 mW	1 mW	>50 mW	> 100 mW	> 100 mW
WLAN	5825	8.5	7	0.00	E 27	2	1 5 1	4.04	3	Test	Test	Test	Exempt	Exempt	Exempt	Test	Test	Test	Exempt	Exempt	Exempt
5.8 GHz	5625	6.5	/	-0.98	5.37	3	-1.54	4.01	3	1 mW	1 mW	1 mW	50 mW	> 100 mW	> 100 mW	1 mW	1 mW	1 mW	>50 mW	> 100 mW	>4W(*2)

- The table shows the upper frequency which has the maximum power (as "Tune-up limit") in each operation band, in mode and on the single antenna transmission.
- Freq.: Frequency
- Antenna separation distance is rounded to the nearest integer numbers (in mm) before calculation.
- (Calculating formula) ERP (dBm) = (max. conducted output power, dBm) + (antenna gain, dBi) 2.15

- Conclusion for consideration for SAR test reduction>
 1) All SAR tests were consometively reduction. All SAR tests were conservatively performed with test separation distance 0 mm. For antenna 1, "Right", "Back" and "Front" setups are applied SAR test. For antenna 2, "Bottom", "Back" and "Front" setups are applied SAR test.

SAR-based thresholds (Pth (mW) shown below table of "Example Power Thresholds [mW]" are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum time-averaged power or maximum time-averaged effective radiated power (ERP), whichever is greater. The SAR-based exemption is calculated by Formula (B.2) in below, applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold Pth (mW).

When 10-g extremity SAR applies, SAR test exemption may be considered by applying a factor of 2.5 to the SAR-based exemption thresholds.

*. This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive).

				Tab	le:	Exan	nple	Pov	ver T	hres	holds	mW	for	SAR	(1g)	_					.2 of	KDB	4474	198 D	04 (v	/01), I	talic	Calc	ulate	d)					Ta	nte B 1_	THRESHOLD	e top	Savere DE	Soldie
33				71	Α.Ι	o I	40.1		1 40	1 45	L	14	1 4	01.0	714	D	star	nce	mm	00	Loo	LA	LAP	Loc	LAT	100	LA	1 4			40.1		-				COUTINE EN			
	2402	2	4	5	7	9	10	12	12	13	20	15	25	5 2	0 2	8	35	39	42	46	50	55	59	64	68	72	75	30	3	2	144	180	220	RF Som	_	requency			Distance	Threshold ERP
	2450	3	4	5	7	8	10	12	15	17	19	22	25	5 2	8 3	-	_	38		_	-	54	_	-	-	73	78	83	11	_	143	_	219	f MHz		f _H MHz	λ _L /2π		λ _H /2π	W
N	2462	3	4	5	7	8	10	12	14	17	19	22	25	5 2	8 3	1	35	38	42	46	50	54	58	63	68	73	78	83	1 11	1	143	179	219	0.3	-	1.34	159 m	-	35.6 m	1,920 R ²
Σ	2480	3	4	5	7	8	10	12	14	17	19	22	25	5 2	8 3	1	35	38	42	46	50	54	58	63	67	72	77	82	11	1	143	179	218	1.34	-	30	35.6 m	-	1.6 m	3,450 R ² /f ²
5	3600	2	3	4	5	6	8	10	11	13	16	18	20	0 2	3 2	6	29	32	35	38	42	45	49	53	57	62	66	7	9	6	125	158	195	30	-	300	1.6 m	-	159 mm	3.83 R ²
e l	5240	1	2	3	4	5	6	8	9	11	13	14	17	7 1.	9 2	1	24	26	29	32	35	38	42	45	49	53	57	61	8	3	110	140	174	300	÷	1,500	159 mm	-	31.8 mm	0.0128 R ² f
20	5320	1	2	3	4	5	6	8	9	11	12	14	16	6 1	9 2	11	23	26	29	32	35	38	41	45	48	52	56	60	8	3	109	139	173	1,500	-	100,000	31.8 mm	-	0.5 mm	19.2R ²
e.	5700	1	2	3	4	5	6	7	9	10	12	14	16	6 1	8 2	0	23	25	28	31	34	37	40	43	47	51	55	59	8	1	107	136	170	Subscript	s L an	d H are low	and high; λ is	wave	length	
"	5800	1	2	3	4	5	6	7	9	10	12	14	16	6 1	8 2	0	22	25	28	30	33	36	40	43	47	50	54	58	8	0	106	136	169	From §1.	1307(modified by a			ance columns,
	5825	1	2	3	4	5	6	7	9	10	12	14	16	6 1	8 2	0	22	25	28	30	33	36	40	43	47	50	54	58	8	0	106	135	169				s in MHz	1 (4 4))		
	5885	1	2	3	4	5	6	7	8	10	12	14	16	6 1	8 2	0	22	25	27	30	33	36	39	43	46	50	54	58	8	0	105	135	168	I hre	esno		' [VV] = 19)istance: (rmula (A.1))
Ш	6000	1	2	3	4	5	6	7	8	10	12	13	15	5 1	7 2	0	22	24	27	30	33	36	39	42	46	50	53	57	7.	9	105	134	167			(L	isiai ice.	OVC	40 GH)	

Calculating formula: 2040† $0.3 \text{ GHz} \le f < 1.5 \text{ GHz}$ $(ERP_{20 \text{ cm}}(d/20 \text{ cm})^x)$ P_{th} (mW) = $P_{\text{th}} (\text{mW}) = ERP_{20 \text{ cm}} (\text{mW}) =$ $= -\log_{10}\left(\frac{1}{ERP_{20 \text{ cm}}\sqrt{f}}\right)$ ERP20 cm (3060 $1.5 \text{ GHz} \le f \le 6 \text{ GHz}$ $20 \text{ cm} < d \le 40 \text{ cm}$ (B.2) and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1).

SECTION 5: Confirmation before testing

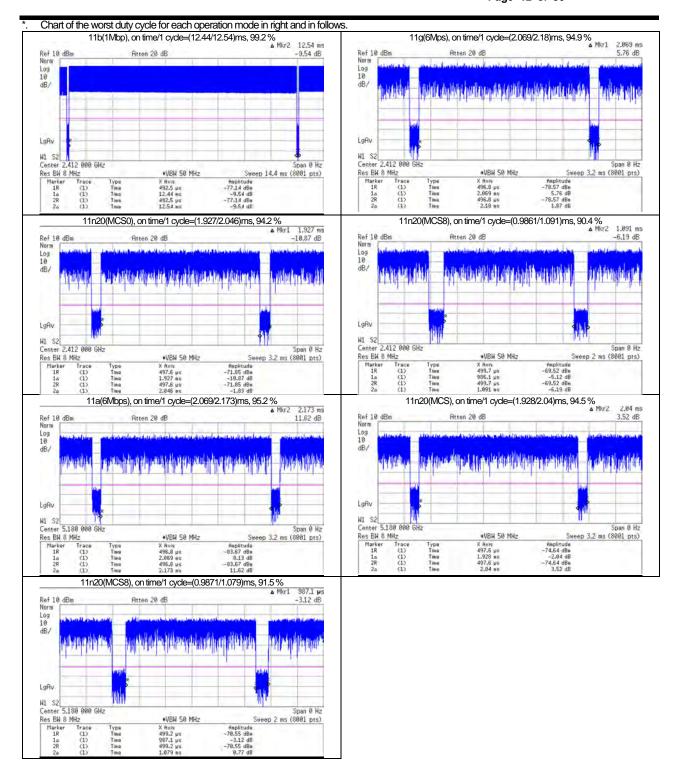
5.1 Test reference power measurement

			Data	Power spec.		outy cy				enna 1	power			Ante	enna 2	power		MIM	O powe	r (Antenn	a 1+Ante	enna 2)	Δdir	eted
Mada	Freque	ncy	rate,	on each antenna	duty	duty	scaled	Set	Burst	Δ	Tune-up	Time	Set	Burst	Δ	Tune-up	Time	MIMO	MIMO	SUM	Δ	MUS	Adju:	
Mode	•	Í	Index #	Typical Max.	- araia	factor		pwr.	Ave.	Max.	factor		pwr.	Ave.	Max.	factor	Ave.	target	max.	Burst Ave.	Max.	Time Ave.	setting	j? (*1
ŗ	[MHz]	СН	[Mbps]	[dBm] [dBm] [%]	[dB]	[-]	[-]	[dBm]	[dB]	[-]	[dBm]	[-]	[dBm]	[dB]	[-]	[dBm]	[dBm]	[dBm]	[dBm]	[dB]	[dBm]	Ant.1	Ant.2
	2412	1	1	10 13.0		0.03	1.01	11	11.71	-1.29	1.35	11.68	11	11.81	-1.19	1.32	11.78						Yes	Yes
11b	2437 2462	6 11	1	10 13.0 10 13.0		0.03	1.01 1.01	11 11	11.84 12.05	-1.16 -0.95	1.31 1.24	11.81 12.02	11 11	11.79 11.97	-1.21 -1.03	1.32 1.27	11.76 11.94						Yes Yes	Yes
	2412	1	6	11 13.5				12	12.44	-1.06	1.28	12.21	12	12.55	-0.95	1.24	12.32						Yes	Yes Yes
11g	2437	6	6	11 13.5	94.9	0.23 0.23		12	12.51	-0.99	1.26	12.28	12	12.49	-1.01	1.26	12.26						Yes	Yes
	2462	11	6	11 13.5		0.23	1.05	12	12.75	-0.75	1.19	12.52	12	12.72	-0.78	1.20	12.49						Yes	Yes
11n20	2412 2437	<u>1</u>	MCS0 MCS0	11 13.5 11 13.5		0.26 0.26	1.06	12 12	12.30 12.43	-1.20 -1.07	1.32 1.28	12.04 12.17	12 12	12.39 12.35	-1.11 -1.15	1.29	12.13 12.09						Yes Yes	Yes Yes
SISO	2462	11	MCS0	11 13.5		0.26	1.06	12	12.65	-0.85	1.22	12.39	12	12.61	-0.89	1.23	12.35						Yes	Yes
11n20	2412	1	MCS8	11 13.5		0.44		12	11.99	-1.51	1.42	11.55		11.98	-1.52	1.42	11.54	14	16.5	15.00		14.56	Yes	
MIMO	2437 2462	6 11	MCS8 MCS8	11 13.5 11 13.5		0.44 0.44	1.11 1.11	12 12	12.04 12.13	-1.46 -1.37	1.40 1.37	11.60 11.69	}	11.95 12.12	-1.55 -1.38	1.43 1.37	11.51 11.68	14 14	16.5 16.5	15.01 15.13	-1.49 -1.37	14.57 14.69	Yes Yes	
	5180	36	6	6 8.5		0.21	1.05	7.5	7.55	-0.95	1.24	7.34	7.5	7.31	-1.19	1.32	7.10	17	10.0	10.10	1.01	14.00	Yes	Yes
Ţ	5200	40	6	6 8.5	95.2	0.21	1.05	7.5	7.54	-0.96	1.25	7.33	7.5	7.27	-1.23	1.33	7.06						Yes	Yes
ļ	5220 5240	44 48	<u>6</u>	6 8.5 6 8.5	95.2 95.2	0.21 0.21	1.05 1.05	7.5 7.5 7.5	7.28 7.14	-1.22 -1.36	1.32 1.37	7.07	7.5 7.5	7.40 7.40	-1.10 -1.10	1.29 1.29	7.19 7.19						Yes Yes	Yes
	5260	52	6	6 8.5	95.2	0.21	1.05	7.5	6.95	-1.55	1.43	6.74	7.5	7.25	-1.25	1.33	7.19						Yes	Yes
Ţ	5280	56	6	6 8.5	95.2	0.21	1.05	7.5 7.5 7.5	6.92	-1.58	1.44	6.71	7.5	6.94	-1.56	1.43	6.73						Yes	Yes
4-	5300 5320	60 64	6	6 8.5	95.2 95.2	0.21 0.21	1.05	7.5 7.5	7.15 7.40	-1.35	1.36 1.29	6.94 7.19	7.5 7.5	7.33 7.38	-1.17	1.31	7.12						Yes	Yes
1a	5500	100	6	6 8.5 6 8.5	95.2	0.21	1.05	7.5	7.40	-1.10 -1.23	1.29	7.06	7.5	7.26	-1.12 -1.24	1.29	7.17 7.05						Yes Yes	Yes
Ì	5580	116	6	6 8.5	95.2	0.21	1.05	7.5 7.5 7.5 7.5	7.43	-1.07	1.33 1.28	7.22	7.5	7.15	-1.35	1.36	6.94						Yes	Yes
,		120	6	6 8.5		0.21	1.05	7.5	7.45	-1.05	1.27	7.24	7.5	7.06	-1.44	1.39	6.85						Yes	Yes
-	5700 5745	140 149	<u>6</u>	6 8.5 6 8.5	95.2 95.2	0.21	1.05	7.5	7.36 7.19	-1.14 -1.31	1.30 1.35	7.15 6.98	7.5 7.5	7.21 7.10	-1.29 -1.40	1.35 1.38	7.00 6.89						Yes Yes	Yes
•	5785	157	6	6 8.5	95.2	0.21	1.05	7.5 7.5	6.90	-1.60	1.45	6.69	7.5	6.93	-1.57	1.44	6.72						Yes	Yes
	5825	165	6	6 8.5	95.2	0.21	1.05	7.5	6.98	-1.52	1.42	6.77	7.5	7.18	-1.32	1.36	6.97						Yes	Yes
ŀ	5180 5200	36 40	MCS0 MCS0	6 8.5 6 8.5	94.5 94.5	0.25 0.25	1.06 1.06	7.5 7.5 7.5	7.46 7.42	-1.04 -1.08	1.27 1.28	7.21 7.17	7.5 7.5	7.17 7.08	-1.33 -1.42	1.36 1.39	6.92 6.83						Yes Yes	Yes Yes
	5220	44	MCS0	6 8.5		0.25	1.06	7.5	7.11	-1.39	1.38	6.86	7.5	7.20	-1.30	1.35	6.95						Yes	Yes
Ţ	5240	48	MCS0	6 8.5	94.5	0.25	1.06	7.5	7.02	-1.48	1.41	6.77	7.5	7.24	-1.26	1.34	6.99						Yes	Yes
	5260 5280	52 56	MCS0 MCS0	6 8.5 6 8.5	94.5 94.5	0.25	1.06 1.06	7.5	6.82 6.80	-1.68 -1.70	1.47 1.48	6.57 6.55	7.5 7.5	7.09 6.78	-1.41 -1.72	_1.38 _ 1.49	6.84 6.53						Yes Yes	Yes
	5300	60	MCS0	6 8.5	94.5	0.25	1.06	75 75 75	7.04	-1.46	1.40	6.79	7.5	7.16	-1.34	1.36	6.91						Yes	Yes
11n20 SISO	5320	64	MCS0	6 8.5	94.5	0.25	1.06	7.5	7.21	-1.29	1.35	6.96	7.5	7.20	-1.30	1.35	6.95						Yes	Yes
0.00		100 116	MCS0 MCS0	6 8.5 6 8.5	94.5 94.5	0.25	1.06 1.06	7.5 7.5 7.5 7.5	7.16 7.23	-1.34 -1.27	1.36 1.34	6.91 6.98	7.5 7.5	7.10 7.01	-1.40 -1.49	_ <u>1.38</u> _ 1.41	6.85 6.76						Yes Yes	Yes
ŀ		120	MCS0	6 8.5	94.5	0.25	1.06	7.5	7.32	-1.18	1.31	7.07	7.5	6.92	-1.58	1.44	6.67						Yes	Yes
Î	5700	140	MCS0	6 8.5	95.2	0.21	1.05	7.5	7.16	-1.34	1.36	6.95	7.5	7.04	-1.46	1.40	6.83						Yes	Yes
ŀ	5745 5785	149 157	MCS0	6 8.5 6 8.5	94.5 94.5	0.25 0.25	1.06 1.06	7.5 7.5	7.03 6.76	-1.47 -1.74	1.40 1.49	6.78 6.51	7.5 7.5	6.95 6.73	-1.55 -1.77	1.43 1.50	6.70 6.48						Yes Yes	Yes
		165	MCS0	6 8.5	94.5	0.25	1.06	7.5	6.80	-1.70	1.48	6.55	7.5	7.01	-1.49	1.41	6.76						Yes	Yes
	5180	36	MCS8	6 8.5	91.5	0.39	1.09	7.5 7.5	7.45	-1.05	1.27	7.06		7.26	-1.24	1.33	6.87	9	11.5	10.37	-1.13	9.98	Yes	
	5200 5220	40 44	MCS8	6 8.5 6 8.5	91.5 91.5	0.39 0.39	1.09 1.09	7.5 7.5	7.38 7.18	-1.12 -1.32	1.29 1.36	6.99 6.79		7.22 7.38	-1.28 -1.12	1.34 1.29	6.83 6.99	9 9	11.5 11.5	10.31 10.29	-1.19 -1.21	9.92 9.90	Yes	
ŀ	5240	48	MCS8 MCS8	6 8.5	91.5	0.39	1.09	7.5	6.97	-1.53	1.42	6.58	{	7.41	-1.09	1.29	7.02	9	11.5	10.29	-1.21	9.82	Yes Yes	
ļ	5260	52	MCS8	6 8.5	91.5	0.39	1.09	7.5	6.73	-1.77	1.50	6.34		7.27	-1.23	1.33	6.88	9	11.5	10.02	-1.48	9.63	Yes	
	5280 5300	56 60	MCS8 MCS8	6 8.5	91.5 91.5	0.39 0.39	1.09	7.5 7.5	6.79 7.13	-1.71 -1.37	1.48 1.37	6.40		6.97 7.39	-1.53 -1.11	1.42 1.29	6.58 7.00	- <u>9</u> -	11.5 11.5	9.89 10.27	-1.61 -1.23	9.50 9.88	Yes Yes	
11n20	5320	64	MCS8	6 8.5	91.5	0.39	1.09	7.5 7.5	7.13	-1.37 -1.21	1.32	6.90		7.41	-1.11	1.29	7.00	9	11.5	10.27	-1.23 -1.14	9.00	Yes	
MIMO	5500	100	MCS8	6 8.5	91.5	0.39	1.09	7.5	7.14	-1.36	1.37	6.75		7.08	-1.42	1.39	6.69	9	11.5	10.12	-1.38	9.73	Yes	
ſ		116	MCS8	6 8.5	91.5	0.39	1.09	7.5	7.58 7.34	-0.92	1.24	7.19		7.29	-1.21	1.32	6.90	9	11.5	10.45	-1.05	10.06	Yes	
		120 140	MCS8 MCS8	6 8.5	91.5 91.5	0.39	1.09 1.09	7.5 7.5	7.34	-1.16 -1.23	1.31 1.33	6.95 6.88		6.97 7.14	-1.53 -1.36	1.42	6.58 6.75	9	11.5 11.5	10.17 10.22	-1.33 -1.28	9.78 9.83	Yes Yes	
ľ					01.0	0.00	_									1.41			11.5					
ŀ	5745	149	MCS8	6 8.5	91.5	0.39	1.09	7.5	7.10	-1.40	1.38	6.71		7.00	-1.50	1.41	6.61	9		10.06	-1.44	9.67	Yes	
ļ	5745 5785	149 157		6 8.5 6 8.5 6 8.5	91.5	0.39	1.09	7.5 7.5 7.5	7.10 6.86 6.91	-1.40 -1.64 -1.59	1.38 1.46 1.44	6.47 6.52		7.00 6.81 7.05	-1.69 -1.45	1.48 1.40	6.42 6.66	9	11.5 11.5 11.5	9.85 9.99	-1.44 -1.65 -1.51	9.67 9.46 9.60	Yes Yes Yes	

- Calculating formula: Time average power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)

 Burst power (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB)

 Duty cycle: (duty cycle, %) = (Tx on time) / (1 cycle time) × 100, Duty factor (dBm) = 10 × log (100/(duty cycle, %))


 Duty cycle scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%) / (duty cycle, %)

 A Max. (Deviation form max. power, dB) = (Burst power measured (average, dBm)) (Max.tune-up limit power (average, dBm))

 Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = 1 / (10 ^ ("Deviation from max., dB" / 10))
- Date measured: December 25, 2023 / Measured by: H. Naka/ Place: Preparation room of No. 7 shield room. (23 deg.C./ 35 %RH)
- Uncertainty of antenna port conducted test; (±) 0.81 dB (Average power), (±) 0.27 % (duty cycle).

 ^{*.} SAR test was applied.
 *1. "Yes": The power setting was adjusted so that measured average power was not more than 2 dB lower than the maximum tune-up tolerance limit. Setting parameters: the value of "Power" cell of software was adjusted so that measurement power might be satisfied within 2dB of the maximum power. (This power setting value might be different from product specification value. Any conditions under the normal use do not exceed the condition of setting. End user cannot change the power setting of product.)

CH: Channel; Power spec.: Power specification; Max.: Maximum; Set pwr.: Setting power by tested software; Burst Ave.: Measured burst average power; Time Ave.: Measured time-based average power, SUM Ave.: Sum of antenna 1 power and antenna 2 power; n/a: Not applied /Not applicable.

SECTION 6: Tissue simulating liquid

Liquid measurement 6.1

			Jacai	<i></i>														
							iquid	paramete	ers (*a)						ΔSA	AR Co	efficients (*b)	
			Liquid	Pe	ermittivity	/ (er) [-	1	Co	nductivit	y [S/m		Interpolated	Δe	nd,	ΔS	AR		
Frequency [MHz]	Liquid	Liquid	depth of			asure		_	Me	asure	d	?	>48h	rs (*1)			ΔSAR	Date measured
[IVITZ]	type	Temp.	phantom	Target		Δεr	Limit	Target	_	Δσ	Limit	□: No	εr	σ	1g [%]	10g	Corrected?	
		[deg.C.]	[mm]	value	Value	[%]	[%]	value	Value	[%]	[%]	☑: Yes	[%]	[%]	[%]	[%]		
2450	Head	22.0	151	39.2	39.52	0.8	5	1.80	1.850	2.8	5		begin	begin	1.2	0.6	no (positive sign)	
5250	-	-	-	35.93	34.85	-3.0	5	4.706	4.544	-3.4	5	ā	begin	begin	0.7	0.9		2024-01-10, before
5600	-	-	-	35.53	34.28	-3.5	5	5.065	4.931	-2.6	5		begin	begin	0.8	1.0	no (positive sign)	SAR test.
5800	-	-	-	35.3	33.95	-3.8	5	5.27	5.152	-2.2	5		begin	begin	0.9	1.0	no (positive sign)	
	Head	22.0	151	39.2	39.52	0.8	5	1.80	1.850	2.8	5		-0.2	1.2	1.8	0.9	no (positive sign)	
5250	-	-	-	35.93	34.85	-3.0	5	4.706	4.544	-3.4	5		-0.5	1.3	0.8	1.0	no (positive sign)	2024-01-12, last of
5600	-	-	-	35.53	34.28	-3.5	5	5.065	4.931	-2.6	5		-0.6	1.3	0.9	1.1	no (positive sign)	SAR test period 01- 10~01-12
5800	-	-	-	35.3	33.95	-3.8	5	5.27	5.152	-2.2	5		-0.7	1.4	0.9	1.2	no (positive sign)	10~01-12
	Head	22.0	1510	39.2	39.52	8.0	5	1.80	1.850	2.8	5		begin	begin	1.5	8.0	no (positive sign)	
5250	-	-	-	35.93	34.85	-3.0	5	4.706	4.544	-3.4	5		begin	begin	8.0	1.0	no (positive sign)	
5600	-	-	-	35.53	34.28	-3.5	5	5.065	4.931	-2.6	5		begin	begin	0.9	1.2	no (positive sign)	SAR test.
5800	•	•	-	35.3	33.95	-3.8	5	5.27	5.152	-2.2	5		begin	begin	1.0	1.2	no (positive sign)	
2412	Head	22.0	151	39.27	39.59	0.8	5	1.766	1.820	3.1	5		-	-	1.3	0.7	no (positive sign)	
2437				39.22	39.54	0.8	5	1.788	1.840	2.9	5		-	-	1.2	0.6	no (positive sign)	
2462				39.19	39.50	0.8	5	1.813	1.860	2.6	5		-	-	1.1	0.5	no (positive sign)	
5180				36.01	34.99	-2.8	5	4.635	4.468	-3.6	5		-	-	0.7	0.9	no (positive sign)	
5200				35.99	34.96	-2.9	5	4.655	4.489	-3.6	5		-	-	0.7	0.9	no (positive sign)	
5220				35.96	34.91	-2.9	5	4.676	4.511	-3.5	5		-	-	0.7	0.9	no (positive sign)	
5240				35.94	34.87	-3.0	5	4.696	4.533	-3.5	5		-	-	0.7	1.0	no (positive sign)	
5260				35.92	34.84	-3.0	5	4.717	4.555	-3.4	5		-	-	0.7	0.9	no (positive sign)	
5280				35.89	34.80	-3.1	5	4.737	4.576	-3.4	5		-	-	0.7	1.0	no (positive sign)	
5300				35.87	34.76	-3.1	5	4.758	4.600	-3.3	5		-	-	0.7	1.0	no (positive sign)	SAR test.
5320				35.85	34.74	-3.1	5	4.778	4.623	-3.2	5		-	-	0.7	1.0	no (positive sign)	
5500				35.64	34.44	-3.4	5	4.963	4.817	-2.9	5		-	-	0.8	1.0	no (positive sign)	
5580				35.55	34.32	-3.5	5	5.045	4.909	-2.7	5		-	-	8.0	1.0	no (positive sign)	
5600				35.53	34.28	-3.5	5	5.065	4.931	-2.6	5		-	-	8.0	1.0	no (positive sign)	4
5700				35.41	34.11	-3.7	5	5.168	5.039	-2.5	5		-	-	0.8	1.0	no (positive sign)	4
5745				35.36	34.02	-3.8	5	5.214	5.092	-2.3	5		-	-	0.9	1.1	no (positive sign)	4
5785 5825				35.32 35.27	33.98	-3.8	5	5.255 5.296	5.136	-2.3 -2.2	5			_	0.9	1.0	no (positive sign)	4
	Head	22.0	454	39.19	33.88 39.51	-3.9	5	1.813	5.181 1.872	3.3	5	<u> </u>	-	-	0.9	1.1	no (positive sign)	
5320	nead	22.0	151	35.85		0.8	5	4.778	4.690	-1.8	5	H	-	-	1.4 0.8	0.7	no (positive sign)	
5580				35.55	34.49 34.05	-3.8 -4.2	5	5.045	4.690	-1.8	5		-	-	0.8	1.1	no (positive sign)	2024-01-15, before
				35.53	34.05			5.065		-1.2 -1.1	5	H	-	-	0.9	1.1	no (positive sign)	SAR test.
5600 5745					33.73	-4.3 -4.6	5	5.065	5.007	-0.9		H	-	-			no (positive sign)	-
5/45				35.36	33.13	-4.6	5	5.214	5.168	-0.9	5		-	-	1.0	1.2	no (positive sign)	1

[&]quot;begin": SAR test has ended within 24 hours from the liquid parameter measurement, "< 48 hrs.": Since SAR test has ended within 48 hours (2 days) from the liquid parameter measurement and a change in the liquid temperature was within 1 degree, liquid parameters measured on first day were used on next day continuously, "value (%)". Since the SAR test series took longer than 48 hours, the liquid parameters were measured on every 48 hours period and on the date which was end of test series. Since the difference of liquid parameters between the beginning and next measurement was smaller than 5%, the liquid parameters measured in beginning were used until end of each test series.

"\(\Delta end(>48 hrs.) (\(\gamma\))"" = {(dielectric properties, end of test series) / (dielectric properties, beginning of test series) -1} \times 100

*b. The coefficients in below are parameters defined in IEEE Std.1528-2013.

 $(\text{Calculating formula, 4 MHz-6 GHz}): \Delta SAR(1g) = Cer \times \Delta \text{Er} + C\sigma \times \Delta \sigma, \text{ Ca=-7.854E-4x}^3 + 9.402E-3x^2 - 2.742E-2x^4 - 0.2026 / C\sigma = 9.804E-3x^3 - 8.661E-2x^2 + 2.981E-2x^4 + 0.7829$ $\Delta SAR(10g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, \ ce=3.456 \times 10^{-3} \times 10^{-2} \times 10^{-$

(Calculating formula): ΔSAR corrected SAR (W/kg) = (Measured SAR (W/kg)) × (100 - (ΔSAR(%)) / 100 Since the calculated ΔSAR values of the tested liquid had shown positive correction, the measured SAR was not converted by ΔSAR correction. conservatively.

Target of tissue simulating liquid

Nominal dielectric values of the tissue simulating liquids in the phantom are listed in the following table. (Appendix A, KDB 865664 v01r04)

Target Frequency	He	ead	В	Body	Target Frequency	He	ead	В	ody
(MHz)	ε _r	σ(S/m)	ϵ_{r}	σ(S/m)	(MHz)	ε _r	σ(S/m)	$\epsilon_{\rm r}$	σ(S/m)
1800~2000	40.0	1.40	53.3	1.52	3000	38.5	2.40	52.0	2.73
2450	39.2	1.80	52.7	1.95	5800	35.3	5.27	48.2	6.00

For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures. Above 5800MHz were obtained using linear extrapolation.

6.3 Simulated tissue composition

Liquid type	Head	Control No.	SSLHV6-01	Model No. / Product No.	HBBL600-10000V6 / SL AAH U16 BC
Ingredient: Mixture [%]	Wat	er: >77, Ethanedio	ol: <5.2, Sodium pe	troleum sulfonate:<2.9, Hexylene G	ilycol: <2.9, alkoxylated alcohol (>C ₁₆):<2.0
Tolerance specification				± 10%	
Temperature gradients [%/deg.C]		permittivity: -0.	19/conductivity: -0	0.57 (at 2.6 GHz), permittivity: +0.31	/ conductivity: -1.43 (at 5.5 GHz) (*)
Manufacture	Schmid 8	Reartner Engineer	ing AG No	ote: *. speag_920-SLAAxyy-E_1.12.15	ICL (Maintenance of tissue simulating liquid)

The dielectric parameters were checked prior to assessment using the DAKS-3.5 dielectric probe.

^{*}a. The target values of (2000, 2450, 3000, 5800) MHz are parameters defined in Appendix A of KDB 865664 D01 (refer to clause 6.2). For other frequencies, the target nominal dielectric values shall be obtained by linear interpolation between the higher and lower tabulated figures. Above 5800MHz were obtained using linear extrapolation.

SECTION 7: Measurement results

7.1 Measurement results (SAR)

				Mada and Fra		(+0)	.		_			1						040	0 .	ı
	Test set	tup		Mode and Fred		` ′	Duty	cycle		ver correc				ılts [W/k		L	SAR	SAR plot#	Setup photo	
ANT	Test position	Gap	Source	Mode (D/R)	[MHz]	CH	Duty	Duty	Max. tune-up	Measured			.value d	of multi-p		SAR	1 imit	in	#in	Remarks
#	Setup	[mm]	power	Mark with "*" is the	initial mo	ode &	[%]	scaled	limit		scaled	Measured	∆SAR	∆SAR	Scaled	type	[W/kg]	Аррх.	Аррх.	
			·	frequen	cy.		[, 4]	factor	[dBm]	[ubiii]	tactor	ivicasuicu	[%]	corrected	(*b)			2-2	1-3	
1) V	VLAN 2.4GH	lz ba	and																	
1	Right	0	DC supply	11b (1 Mbps)*	2412	1	99.2	1.01	13	11.71	1.35	0.587	Positive	n/a (*a)	0.800	1g	1.6	-	P1	-
1	Right	Ō	DC supply	11b (1 Mbps)*	2437	6	99.2	1.01	13	11.84	1.31	0.720	Positive	n/a (*a)	0.953	1g	1.6		P1	-
1	Right	0	DC supply	11b (1 Mbps)*	2462*	11	99.2	1.01	13	12.05	1.24	0.590	Positive	n/a (*a)	0.739	1g	1.6		P1	-
1	Right	0	DC supply		2412	1	94.9	1.05	13.5	12.44	1.28	0.653	Positive	n/a (*a)	0.878	1g	1.6	-	P1	-
1	Right				2437	6	94.9			12.51	1.26	0.789	Positive	n/a (*a)	1.044	1g	1.6	1-1	P1	
1	Right		DC supply		2462	11	94.9		13.5		1.19	0.648	Positive	n/a (*a)	0.810	1g	1.6		P1	
1		0				1								, ,			1.6	_	FI	-
	Right		DC supply		2412	L	94.2	1.06	13.5	12.30	1.32	<u>n/a</u>	Positive	n/a (*a)	n/a	<u>1g</u>				
1_	Right		DC supply		2437	6	94.2	1.06	13.5		1.28	0.756	Positive	n/a (*a)	1.026	1g	1.6		P1	<1.2 w/kg
1	Right	0	DC supply		2462	11	94.2	1.06	13.5	12.65	1.22	n/a	Positive	n/a (*a)	n/a	1g	1.6	-	-	-
1_1_	Right	0	DC supply	11n20 (MCS8)(*1)	2412	1_1	90.4	1.11	13.5	11.99	1.42	0.526	Positive	n/a (*a)	0.829	1g	1.6		P1	
1	Right	0	DC supply	11n20 (MCS8)(*1)	2437	6	90.4	1.11	13.5	12.04	1.40	0.641	Positive	n/a (*a)	0.996	1g	1.6	-	P1	-
1	Right	ō	DC supply	11n20 (MCS8)(*1)	2462	11	90.4	1.11	13.5	12.13	1.37	0.513	Positive	n/a (*a)	0.780	1g	1.6	-	P1	-
1	Back	0	DC supply	11n20 (MCS8)(*1)	2462	11	90.4	1.11	13.5		1.37	0.077	Positive	n/a (*a)	0.117	1g	1.6		P3	-
1	Front	0	DC supply	11n20 (MCS8)(*1)	2462	11	90.4	1.11	13.5		1.37	0.106	Positive	n/a (*a)	0.161	1g	1.6		P4	-
1	Тор		DC supply		2462	11	90.4		13.5		1.37	n/a	Positive	n/a (*a)	n/a	1g	1.6			SAR test: Exempt
1-1-	Left		DC supply		2462	11	90.4		13.5		1.37	n/a	Positive		n/a	1g	1.6			SAR test: Exempt
1	Bottom	-ŏ-	DC supply		2462	11	90.4		13.5	12.13	1.37		Positive		n/a	1g	1.6			SAR test: Exempt
_		_										n/a								SAIN lest. Exempt
2	Bottom		DC supply		2412	1 - 1	99.2	1.01	13	11.81	1.32	0.257	Positive	n/a (*a)	0.343	1g	1.6		P2 P2	[
2	Bottom		DC supply		2437	6	99.2	1.01	13	11.79	1.32	0.388	Positive	n/a (*a)	0.517	<u>1g</u>	1.6			
2	Bottom	0	DC supply		2462*	11	99.2	1.01	13	11.97	1.27	0.464	Positive	n/a (*a)	0.595	1g	1.6	-	P2	-
2	Bottom	0_	DC supply		2412	1_1	94.9	1.05	13.5	12.55	1.24	0.291	Positive	n/a (*a)	0.379	<u>1g</u>	1.6		P2	
2	Bottom	0	DC supply	11g (6 Mbps)	2437	6	94.9	1.05	13.5	12.49	1.26	0.436	Positive	n/a (*a)	0.577	<u>1g</u>	1.6		P2	
2	Bottom	0	DC supply	11g (6 Mbps)	2462	11	94.9	1.05	13.5	12.72	1.20	0.523	Positive	n/a (*a)	0.659	1g	1.6	1-2	P2	<1.2 w/kg
2	Bottom	0	DC supply		2412	1	94.2	1.06	13.5	12.39	1.29	n/a	Positive	n/a (*a)	n/a	1g	1.6	-	-	-
2	Bottom	ō	DC supply		2437	6	94.2	1.06	13.5	12.35	1.30	n/a	Positive	n/a (*a)	n/a	1g	1.6			-
2	Bottom	ō	DC supply		2462	11	94.2	1.06	13.5	12.61	1.23	n/a	Positive	n/a (*a)	n/a	1g	1.6			
	Bottom	0	DC supply		2412	1	90.4	1.11	13.5	11.98	1.42	n/a	Positive	n/a (*a)	n/a	1g	1.6	-	_	_
2	Bottom		DC supply		2437	6	90.4	1.11	13.5		1.43	n/a	Positive	n/a (*a)	n/a	1g	1.6			
2	+					11	90.4	1.11							0.633				P2	-1.2///
	Bottom		DC supply		2462				13.5		1.37	0.416	Positive	n/a (*a)		<u>1g</u>	1.6			<1.2 w/kg
2	Back		DC supply		2462	11	90.4		13.5		1.37	0.079	Positive	n/a (*a)	0.120	1 <u>g</u>	1.6		P5	
2	Front		DC supply		2462	11	90.4		13.5		1.37	0.091	Positive		0.138	<u>1g</u>	1.6		P6	-
2	Left		DC supply		2462	11	90.4		13.5	12.12	1.37	n/a	Positive	n/a (*a)	n/a	1g	1.6			SAR test: Exempt
2	Right	0	DC supply	11n20 (MCS8)(*1)	2462	11	90.4	1.11	13.5	12.12	1.37	n/a	Positive	n/a (*a)	n/a	1g	1.6			SAR test: Exempt
2	Тор	0		11n20 (MCS8)(*1)	2462	11	90.4		13.5	12.12	1.37	n/a	Positive	n/a (*a)	n/a	1g	1.6	-	-	SAR test: Exempt
2) V	VLAN 5.3GH	lz ba	and (and	WLAN 5.2GHz	band	addit	ional	ly)												
1	Right	0	DC supply	11a (6 Mbps)*	5260	52	95.2	1.05	8.5	6.95	1.43	0.348	Positive	n/a (*a)	0.523	1g	1.6	-	P1	-
1	Right	Ö	DC supply	11a (6 Mbps)*	5300	60	95.2		8.5	7.15	1.36	0.374	Positive	n/a (*a)	0.534	1g	1.6		P1	-
1	Right	ō	DC supply		5320*	64	95.2		8.5	7.40	1.29	0.414	Positive	n/a (*a)	0.561	1g	1.6		P1	<1.2 w/kg
1	Right	0	DC supply		5260	52	94.5	1.06	8.5	6.82	1.47	n/a	Positive	n/a (*a)	n/a	1g	1.6	-	<u> </u>	
1-1-	Right		DC supply		5300	60	94.5		8.5	7.04	1.40		Positive	n/a (*a)	n/a		1.6			
						64						n/a				1 <u>g</u>				4.0//
1	Right	0	DC supply		5320		94.5		8.5	7.21	1.35	0.403	Positive	n/a (*a)	0.577	1g	1.6	-	P1	<1.2 w/kg
1	Right	0.	DC supply		5260	52	91.5	1.09	8.5	6.73	1.50	n/a	Positive	n/a (*a)	n/a	<u>1g</u>	1.6			
1_	Right		DC supply		5300	60	91.5	1.09	8.5	7.13	1.37	n/a	Positive	n/a (*a)	n/a	<u>1g</u>	1.6			-
1	Right	0	DC supply		5320	64	91.5	1.09	8.5	7.29	1.32	0.405	Positive	n/a (*a)	0.583	1g	1.6	2b-1		<1.2 w/kg
1	Back	0	DC supply	11n20 (MCS8)(*1)	5320	64	91.5	1.09	8.5	7.29	1.32	0.144	Positive	n/a (*a)	0.207	1g	1.6	-	P2	-
1	Front	0	DC supply	11n20 (MCS8)(*1)	5320	64	91.5	1.09	8.5	7.29	1.32	0.106	Positive	n/a (*a)	0.153	1g	1.6	-	P3	-
1	Тор	ō	DC supply	11n20 (MCS8)(*1)	5320	64 64		1.09		7.29	1.32	n/a	Positive		n/a	1g	1.6	-	-	SAR test: Exempt
1	Left	ō	DC supply	11n20 (MCS8)(*1)	5320	64	91.5	1.09	8.5	7.29	1.32	n/a	Positive		n/a	1g	1.6			SAR test: Exempt
1	Bottom		DC supply		5320	64	91.5	1.09	8.5	7.29	1.32	n/a	Positive		n/a	1g	1.6			SAR test: Exempt
_	Bottom		DC supply		5260	52	95.2		8.5	7.25	1.33	0.264	Positive		0.369	1g	1.6	-	P2	l-
2 2	Bottom		DC supply		5300	60	95.2 95.2	1.05	8.5	7.33	1.31	0.273	Positive		0.376	1g	1.6		P2	
- 5-	Bottom				5320*	60 64									0.420		1.6			- <1.2 w/kg
			DC supply			U4 E0	95.2		8.5	7.38	1.29	0.310		n/a (*a)		1g		2b-2		>1.∠ W/NY
2	Bottom		DC supply		5260	52 60	94.5	1.06	8.5	7.09	1.38	<u>n/a</u>	Positive		n/a	<u>1g</u>	1.6			
	Bottom		DC supply		5300	60		1.06	8.5	7.16	1.36	n/a	Positive		n/a	<u>1g</u>	1.6			
2	Bottom	_	DC supply	` '	5320	64		1.06	8.5	7.20	1.35	n/a	Positive		n/a	1g	1.6	-	-	
2	Bottom	4 - i -	DC supply		5260	52	91.5		8.5	7.27	1.33	n/a	Positive	n/a (*a)	n/a	1 <u>g</u>	1.6		l <u></u>	
2	Bottom		DC supply		5300	60	91.5	1.09	8.5	7.39	1.29	n/a	Positive	n/a (*a)	n/a	1g	1.6]		
2	Bottom	ō	DC supply	11n20 (MCS8)(*1)	5320	64	91.5	1.09	8.5	7.41	1.29	0.293	Positive	n/a (*a)	0.412	1g	1.6		P2	<1.2 w/kg
2	Back		DC supply		5320	64	91.5	1.09	8.5	7.41	1.29	0.121	Positive		0.170	1g	1.6		P4	- -
2 2 2	Front		DC supply		5320	64 64	91.5	1.09	8.5	7.41	1.29	0.083	Positive		0.117	1g	1.6		P5	
2	Left		DC supply	11n20 (MCS8)(*1)	5320	64	91.5	1.09	8.5	7.41	1.29	n/a	Positive		n/a	1g	1.6			SAR test: Exempt
2	Right					64	01.0	1.00					Positive				1.6			SAR test: Exempt
		L - I -	DC supply		5320	64	91.5	1.09	8.5	7.41	1.29	n/a			n/a	1g				
2	Top		DC supply		5320	64	91.5		8.5	7.41	1.29	n/a	Positive	· /	n/a	1g	1.6	-	-	SAR test: Exempt
1	Right	0	DC supply		5180*	36	95.2		8.5	7.55	1.24	0.481	Positive	n/a (*a)	0.626	<u>1g</u>	1.6	2a-1	P1	*.additionally
1_	Right		DC supply	{	5220	44	95.2		8.5	7.28	1.32	0.378	Positive		0.524	<u>1g</u>	1.6		P1	*.additionally
1	Right	0	DC supply	11a (6 Mbps)*	5240	48	95.2	1.05	8.5	7.14	1.37	0.357	Positive	n/a (*a)	0.514	1g	1.6	-	P1	*.additionally
1	Right	0	DC supply	11n20 (MCS0)	5180	36	94.5	1.06	8.5	7.46	1.27	0.463	Positive	n/a (*a)	0.623	1g	1.6	-	P1	*.additionally
1	Right	0	DC supply	11n20 (MCS8)	5180	36	91.5		8.5	7.45	1.27	0.435	Positive	n/a (*a)	0.602	1g	1.6	-	P1	*.additionally
2	Bottom	-	DC supply		5180	36	95.2		8.5	7.31	1.32	0.422	Positive		0.585	1g	1.6	2a-2	P2	*.additionally
2	Bottom	4 - i -	DC supply		5220*	44	95.2		8.5		1.29			n/a (*a)					P2	*.additionally
			DC supply		5240	44 48	95.2	1.05	8.5	7.40	1.29			n/a (*a)					P2	*.additionally
2	Bottom	()	DC STRAW											a (a)	U.T 13	· iu	. 1.0			

	Test set	Jp		Mode and Fre	quency ((*2)	Duty	cycle		ver correc	tion	SA	R resu	ılts [W/k	(g]		0.5	SAR	Setup	
ANT	Test position	Gap	Source	Mode (D/R)	[MHz]	CH	Duty	Duty	Max. tune-up	Measured		(Max.	value c	of multi-p	eak)	SAR		plot# in	photo #in	Remarks
#	Setup	[mm]	power	Mark with "*" is th		node	[%]	scaled	limit	conducted		Measured	ΔSAR	∆SAR	Scaled	type	[W/kg]	Аррх.	Аррх.	Kemarks
3) V	VLAN 5.6 GHz	z ban	nd	& freque	ency.			factor	[dBm]	[dBm]	Iacioi		[%]	corrected	(*b)			2-2	1-3	
1	Right		DC supply	11a (6 Mbps)*	5500	100	95.2	1.05	8.5	7.27	1.33	0.517	Positive	n/a (*a)	0.722	1g	1.6	3-1	P1	<1.2 w/kg
1	Right		DC supply	11a (6 Mbps)*		116		1.05	8.5	7.43	1.28	0.352	Positive	n/a (*a)		1g	1.6		P1	-
1	Right	0	DC supply	11a (6 Mbps)*	5600	120	95.2	1.05	8.5	7.45	1.27	0.350	Positive	n/a (*a)	0.467	1g	1.6		P1	-
1	Right	0	DC supply	11a (6 Mbps)*	5700	140	95.2	1.05	8.5	7.36	1.30	0.420	Positive	n/a (*a)	0.573	1g	1.6	-	P1	-
1	Right		DC supply	11n20 (MCS0)	5500	100	94.5	1.06	8.5	7.16	1.36	0.480	Positive	n/a (*a)	0.692	1g	1.6	-	P1	<1.2 w/kg
1	Right		DC supply	11n20 (MCS0)		116	94.5	1.06	8.5	7.23	1.34	n/a	Positive	n/a (*a)	n/a	1 <u>g</u>	1.6			
1	Right	_	DC supply	11n20 (MCS0)		140	94.5	1.06	8.5	7.16	1.36	n/a	Positive	n/a (*a)	n/a	1g	1.6	-		
1	Right		DC supply	11n20 (MCS8)(*1)		100	91.5	1.09	8.5	7.14	1.37	0.445	Positive	n/a (*a)	0.665	<u>1g</u>	1.6		P1	<1.2 w/kg
1	Right			11n20 (MCS8)(*1)		116	91.5		8.5	7.58	1.24	0.331	Positive	n/a (*a)	0.447	<u>1g</u>	1.6		P1	-
1-1-	Right			11n20 (MCS8)(*1)		140		1.09	8.5	7.27	1.33	0.413	Positive	n/a (*a)	0.599	<u>1g</u>	1.6		P1	-
- 1-	Back			11n20 (MCS8)(*1)		116	91.5		8.5	7.58	1.24		Positive	n/a (*a)	0.173	1 <u>g</u>	1.6	=	P3	
-1-	Front			11n20 (MCS8)(*1)		116	91.5		8.5	7.58	1.24	0.088	Positive Positive	n/a (*a)	0.119	1g	1.6		P4	CARtest Francis
<u>1</u> 1	Top Loft			11n20 (MCS8)(*1)		116		1.09	8.5	7.58	1.24	n/a	Positive	n/a (*a)	n/a n/a	1g	1.6 1.6	:		SAR test: Exempt SAR test: Exempt
	Left Bottom		DC supply	11n20 (MCS8)(*1) 11n20 (MCS8)(*1)		116 116	91.5 91.5	1.09	8.5 8.5	7.58 7.58	1.24 1.24	n/a n/a	Positive	n/a (*a) n/a (*a)	n/a	1g 1g	1.6			SAR test: Exempt
2	Bottom		DC supply	11a (6 Mbps)*		116	95.2	1.05	8.5	7.26	1.33	0.294	Positive	n/a (*a)	0.411	1g	1.6	-	P2	-
2	Bottom		DC supply	11a (6 Mbps)*		116	95.2	1.05	8.5	7.15	1.36	0.426	Positive	n/a (*a)	0.608	1g	1.6	3-2	P2	<1.2 w/kg
2	Bottom		DC supply	11a (6 Mbps)*		120	95.2	1.05	8.5	7.06	1.39	0.360	Positive	n/a (*a)	0.525	1g	1.6	- 52	P2	-
2	Bottom		DC supply	11a (6 Mbps)*		140	95.2	1.05	8.5	7.21	1.35	0.353	Positive	n/a (*a)	0.500	1g	1.6		P2	
2	Bottom		DC supply	11n20 (MCS0)		100	94.5	1.06	8.5	7.10	1.38	n/a	Positive	n/a (*a)	n/a	1g	1.6	-		
2	Bottom	0	DC supply	11n20 (MCS0)		116	94.5	1.06	8.5	7.01	1.41	n/a	Positive	n/a (*a)	n/a	1g	1.6			
2	Bottom	0	DC supply	11n20 (MCS0)	5700	140	94.5	1.06	8.5	7.04	1.40	n/a	Positive	n/a (*a)	n/a	1g	1.6			
2	Bottom	0	DC supply	11n20 (MCS8)(*1)	5500	100	91.5	1.09	8.5	7.08	1.39	n/a	Positive	n/a (*a)	n/a	1g	1.6	-		
2	Bottom	0	DC supply	11n20 (MCS8)(*1)	5580	116	91.5	1.09	8.5	7.29	1.32	0.407	Positive	n/a (*a)	0.586	1g	1.6		P2	<1.2 w/kg
2	Bottom	0	DC supply	11n20 (MCS8)(*1)	5700	140	91.5		8.5	7.14	1.37	n/a	Positive	n/a (*a)	n/a	1g	1.6			
2	Back			11n20 (MCS8)(*1)		116	91.5		8.5	7.29	1.32	0.128	Positive	n/a (*a)	0.184	<u>1g</u>	1.6		P5	-
2	Front			11n20 (MCS8)(*1)		116	91.5	1.09	8.5	7.29	1.32	0.093	Positive	n/a (*a)	0.134	<u>1g</u>	1.6		P6	-
2	Left			11n20 (MCS8)(*1)			91.5		8.5	7.29	1.32	n/a	Positive	n/a (*a)	n/a	<u>1g</u>				SAR test: Exempt
2	Right			11n20 (MCS8)(*1)			91.5		8.5	7.29	1.32	n/a	Positive		n/a	<u>1g</u>				SAR test: Exempt
2	Top			11n20 (MCS8)(*1)	5580	116	91.5	1.09	8.5	7.29	1.32	n/a	Positive	n/a (*a)	n/a	1g	1.6	-	-	SAR test: Exempt
4) V	VLAN 5.8 GHz Right		DC supply	11a (6 Mbps)*	5745*	149	95.2	1.05	8.5	7.19	1.35	0.482	Positive	n/a (*a)	0.683	10	1.6	_	P1	L
	Right		DC supply	11a (6 Mbps)*		157	95.2		8.5	6.90	1.45	0.581	Positive	n/a (*a)		1g 1g	1.6		P1	
1-1-	Right		DC supply	11a (6 Mbps)*		165	95.2	1.05	8.5	6.98	1.42	0.678	Positive	n/a (*a)	1.011	1g	1.6			<1.2 w/kg
1	Right	_	DC supply	11n20 (MCS0)		149	94.5	1.06	8.5	7.03	1.40	n/a	Positive	n/a (*a)	n/a	1g	1.6	-	÷	
1	Right		DC supply	11n20 (MCS0)	+	157	94.5	1.06	8.5	6.76	1.49	n/a	Positive	n/a (*a)	n/a	1g	1.6			
1	Right		DC supply	11n20 (MCS0)		165	94.5	1.06	8.5	6.80	1.48	0.662	Positive	n/a (*a)	1.039	1g	1.6	4-1-	P1	<1.2 w/kg
1	Right			11n20 (MCS8)(*1)		149	91.5	1.09	8.5	7.10	1.38	0.475	Positive	n/a (*a)	0.714	1g	1.6	-	P1	-
1	Right	0		11n20 (MCS8)(*1)		157	91.5		8.5	6.86	1.46	0.578	Positive	n/a (*a)	0.920	1g	1.6		P1	-
1	Right	0	DC supply	11n20 (MCS8)(*1)		165	91.5	1.09	8.5	6.91	1.44	0.604	Positive		0.948	1g	1.6		P1	<1.2 w/kg
1	Back		DC supply	11n20 (MCS8)(*1)		149		1.09	8.5	7.10	1.38	0.151	Positive	n/a (*a)	0.227	1g	1.6		P3	-
1	Front			11n20 (MCS8)(*1)		149	91.5	1.09	8.5	7.10	1.38	0.061	Positive	n/a (*a)	0.092	1g	1.6		P4	-
1	Тор			11n20 (MCS8)(*1)		149	91.5	1.09	8.5	7.10	1.38	n/a	Positive		n/a	1 <u>g</u>	1.6			SAR test: Exempt
1_1_	Left			11n20 (MCS8)(*1)				1.09	8.5	7.10	1.38	n/a		n/a (*a)	n/a	1g	1.6		<u></u> -	SAR test: Exempt
1	Bottom			11n20 (MCS8)(*1)							1.38			n/a (*a)		1g		-	-	SAR test: Exempt
2	Bottom		DC supply	11a (6 Mbps)*			95.2	1.05	8.5	7.10	1.38	0.378	Positive	n/a (*a)	0.548	<u>1g</u>		=_	P2	40/
2	Bottom		DC supply	11a (6 Mbps)*				1.05	8.5	6.93	1.44	0.393	Positive	n/a (*a)	0.594	1g	1.6	=_	P2	<1.2 w/kg
2	Bottom		DC supply	11a (6 Mbps)*				1.05	8.5	7.18	1.36	0.311	Positive	n/a (*a)	0.444	1g		-	P2	-
2	Bottom Bottom		DC supply DC supply	11n20 (MCS0)		149	94.5		8.5	6.95	1.43	n/a	Positive	n/a (*a)	n/a	1g	1.6			
2	Bottom		DC supply DC supply	11n20 (MCS0) 11n20 (MCS0)				1.06	8.5	6.73	1.50	n/a	Positive Positive	n/a (*a)	n/a		1.6 1.6			
2	Bottom		DC supply			149		1.06	8.5 8.5	7.01 7.00	1.41	n/a 0.446	Positive	n/a (*a) n/a (*a)	n/a 0.685	1g 1g		4-2	H	<1.2 w/kg
2	Bottom		DC supply	11n20 (MCS8)				1.05	8.5	6.81	1.48	0.446 n/a	Positive		n/a	19 1g	1.6	-4-2		~1.2 W/NY
2	Bottom		DC supply					1.05	8.5	7.05	1.40	n/a	Positive		n/a	1g			P2	
2	Back		DC supply	11n20 (MCS8)				1.09	8.5	7.00	1.41			n/a (*a)	0.207	1g			P5	 -
2	Front	-ŏ-	DC supply	11n20 (MCS8)				1.09	8.5	7.00	1.41			n/a (*a)	0.078	1g			P6	
2	Left		DC supply	11n20 (MCS8)				1.09	8.5	7.00	1.41	n/a		n/a (*a)	n/a	1g				SAR test: Exempt
2	Right		DC supply	11n20 (MCS8)				1.09			1.41	n/a		n/a (*a)	n/a		1.6			SAR test: Exempt
2	Top		DC supply	11n20 (MCS8)			91.5		8.5	7.00	1.41	n/a		n/a (*a)	n/a	1g				SAR test: Exempt
				Clause 6.1: A										. ,				·	щ.	

^{*1. (}KDB 248227 D01v02r02, Clause 6.1: Antenna Spatial Configurations) The SAR1g distribution of antenna 1 and antenna 2 wasn't overlapped in this setup condition because the distance between the antenna 1 and antenna 2 was away sufficiently. (refer to clause 7.2, Appendix 1-1 of antenna position)

Therefore, SAR from an antenna (either antenna 1 or antenna 2) was the result which indicates the higher SAR value.

The higher scaled (reported) SAR in each operation band is marked (shaded yellow marker).

Appx. Appendix, ant: antenna; Max.: maximum.; n/a: not applied. Gap: It is the separation distance between EUT surface and the bottom outer surface of phantom.

During test, the EUT was operated with full charged battery.

During SAR test, the radiated power is always monitored by Spectrum Analyzer or/and MAIA.

Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction. Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(%)) / 100 \]

Calculating formula:
\[\triangle ASAR \text{ corrected SAR (W/kg)} = (Measured SAR (W/kg)) \times (100 - (\triangle SAR(W/kg)) / (Power scaled factor) \times (Power scaled factor) \times (Power dBm) - (Measured SAR(W/kg)) / (Measured SAR(W/kg)) / (Measured SAR(W/kg)) / (Measured SAR(W/kg)) / (Measured SAR(W/kg)) \times (Measured SAR(W/kg)) / (Power scaled factor) \text{ (Measured SAR(W/kg)) / (Measured SAR(

^{*}b. Calculating formula:

Test Report No. 14926563S-A-R1 Page 16 of 36

* Tb.	* The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.												
. 100													
Liquid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty								
Head	(2412, 2437, 2462) MHz	2450 MHz	within ± 50 MHz of calibration frequency	6.89	± 12.0 %								
Head	(5180, 5220, 5240, 5260, 5300, 5320) MHz	5250 MHz	within \pm 110 MHz of calibration frequency	4.75	± 13.1 %								
Head	(5500, 5580, 5600, 5700) MHz	5600 MHz	within \pm 110 MHz of calibration frequency	4.33	± 13.1 %								
Head	(5745, 5785, 5825) MHz	5825 MHz	within ± 110 MHz of calibration frequency	4.31	± 13.1 %								

Simultaneous transmission evaluation

Result: Co-location SAR test (volume scan post-processing) was not required because of the SPLSR is smaller than 0.04, even if the SAR(1g) values of each antenna 1 and 2 is shown to equal to the SAR (1g) limit = 1.6 W/kg.

According to KDB447498 D04; Volume scan SAR test exclusion was applied to antenna pair that transmits simultaneously by using SPLAR (SAR Peak Location Separation Ratio) method.

On the EUT, since the antenna separation distance is big enough (>300 mm) on each setup direction, SPLSR is smaller than 0.04 even if the standalone SAR(1g) of antenna 1 and antenna 2 is equal to the SAR(1g) limit (≤1.6 W/kg). Therefore SAR test for co-location cannot be required.

Setup	Antenna separation	Max. standalone	e SAR(1g) [W/kg]	Σ1g SAR	SPLSR?	SPLSR	Volume scan	Remarks
Selup	distance (design based)	antenna 1	antenna 2	[W/kg]	(Yes/No)	(≤ 0.04)	Required?	Remarks
Front (Patient side) and Back	≈ 500 mm	1.6 (*.limit)	1.6 (*.limit)	3.2	Yes	0.01	No	-
Right (antenna 1 side)	≈ 390 mm	1.6 (*.limit)	1.6 (*.limit)	3.2	Yes	0.01	No	-
Bottom (antenna 2 side)	≈ 310 mm	1.6 (*.limit)	1.6 (*.limit)	3.2	Yes	0.02	No	-

⁽Calculating formula, KDB447498 D04) SPLSR = (SAR1 + SAR2)^1.5 / R(distance between pair of antennas, mm) where SAR1 and SAR2 are the highest reported SAR values for the two sources in the pair.

7.3 SAR Measurement Variability (Repeated measurement requirement)

Result: Since all the measured SAR were less than 0.8 W/kg (SAR(1g)), the repeated measurement was not required.

- In accordance with published RF Exposure KDB 865664 D01: SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.
- Repeated measurement is not required when the original highest measured SAR(1g) is < 0.80 W/kg; steps 2) through 4) do not apply.
- When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

El	JT setup	Band		Frequency		SAR Measurement Variability Result									SAR plot # in Appendix 2 (Setup photo# in Appendix 1-3)				
Ant	Position	[GHz]	Mode	[MHz]	Type	Unit	Original 1st Repeated		2	nd Repe	eated		Original	1 st	2 nd				
AIII.	FUSILIOIT				Туре	Offic	Highest	Judge	Measured	Judge	Ratio	Judge	Measured	Judge	Ratio	Judge	Oliginal	Repeated	Repeated
1	Back	WLAN 2.4	11g	2437	SAR1g	W/kg	0.789	< 0.8	n/a		-	-	n/a	-		-	-	-	-
1	Back	WLAN 5.2	11a	5180	SAR1g	W/kg	0.481	< 0.8	n/a			-	n/a	-		-	-	-	-
1	Back	WLAN 5.3	11a	5320	SAR1g	W/kg	0.414	< 0.8	n/a		-	-	n/a	-	-	-	-	-	-
1	Back	WLAN 5.6	11a	5500	SAR1g	W/kg	0.517	≥0.8	n/a		-	-	n/a	-	-	-	-	-	-
1	Back	WLAN 5.8	11a	5825	SAR1g	W/kg	0.678	≥0.8	n/a		-	-	n/a	-	-	-	-	-	-
2	Back	WLAN 2.4	11g	2462	SAR1g	W/kg	0.514	< 0.8	n/a		-	-	n/a	-		-	-	-	-
2	Back	WLAN 5.2	11a	5180	SAR1g	W/kg	0.422	< 0.8	n/a		-	-	n/a	-	-	-	-	-	-
2	Back	WLAN 5.3	11a	5320	SAR1g	W/kg	0.310	< 0.8	n/a		-	-	n/a	-	-	-	-	-	-
2	Back	WLAN 5.6	11a	5580	SAR1g	W/kg	0.426	≥0.8	n/a		-	-	n/a	-		-	-	-	-
2	Back	WLAN 5.8	11n20 (MCS8)	5745	SAR1g	W/kg	0.446	≥0.8	n/a	-	-	-	n/a	-	-	-	-	-	-

^{*.} Calculating formula: "Ratio": Largest to Smallest SAR Ratio (%) = (Largest SAR (W/kg)) / Smallest SAR (W/kg)

7.4 Device holder perturbation verification (SAR)

Result: Since all the reported (scaled) SAR were less than 1.2 W/kg (SAR(1g)), the additional "device holder perturbation verification" measurement was not considered.

When the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification (by Urethane form alone) is required by using the highest SAR configuration among all applicable frequency bands.

Requirements on the Uncertainty Evaluation 7.5

7.5.1 SAR Uncertainty Evaluation

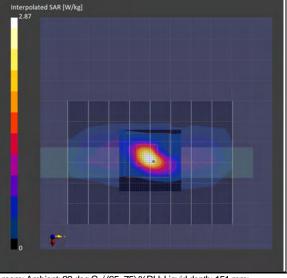
*. The highest measured SAR(1g) is less than 1.5 W/kg and the highest measured SAR(10g) is less than 3.75 W/kg. Therefore, per KDB 865664 D01, the extended measurement uncertainty analysis described in IEEE 1528-2013 and IEC/IEEE 62209-1528 is not required.

APPENDIX 2: Measurement data

Appendix 2-1: Plot(s) of Worst Reported Value

Plot 1-1: (2.4 GHz band) Antenna 1, Right & touch, 11g (6Mbps), 2437 MHz

EUT: SKR 3000; Model: P-53; Serial: AEA0-S0004


Mode: 11g (6 Mbps) (UID: 0 (CW)); Frequency: 2437 MHz; Test Distance: 0.00 mm

TSL parameters used: Head(v6); f= 2437 MHz; Conductivity: 1.840 S/m; Permittivity: 39.54

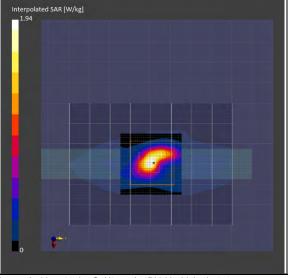
DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat

- Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (6.89, 6.89, 6.89)@2437 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

5	Scan Setup		Measu	rement Res	ults
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan
Grid Extents [mm]	60.0×80.0	30.0×30.0 ×30.0	psSAR 1g [W/kg]	0.706	0.789
Grid Steps [mm]	10.0×10.0	5.0×5.0×1.5	psSAR 10g [W/kg]	0.264	0.254
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.02	0.01
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A
MAIA monitored	Y	Y	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	63.9
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.1

Remarks: *. Date tested: 2024-01-10;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (65~75) %RH; Liquid depth: 151 mm;

*. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h248.5g_p53.d8sar-1/10-3,24h3,at1,side.g(6),2437


Plot 1-2: (2.4 GHz band) Antenna 2, Bottom & touch, 11g (6Mbps), 2462 MHz

EUT: SKR 3000; Model: P-53; Serial: AEA0-S0004

Mode: 11g (6 Mbps) (UID: 0 (CW)); Frequency: 2462 MHz; Test Distance: 0.00 mm TSL parameters used: Head(v6); f= 2462 MHz; Conductivity: 1.860 S/m; Permittivity: 39.50

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (6.89, 6.89) @ 2462.000 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

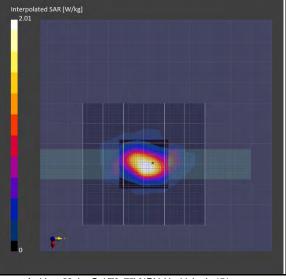
5	Scan Setup		Measu	rement Res	ults
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan
Grid Extents [mm]	60.0×80.0	30.0×30.0 ×30.0	psSAR 1g [W/kg]	0.497	0.523
Grid Steps [mm]	10.0×10.0	5.0×5.0×1.5	psSAR 10g [W/kg]	0.177	0.173
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.01	0.01
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction
Surface Detection	All points	All points	M2/M1 [%]	N/A	64.5
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.1

Remarks: *. Date tested: 2024-01-10; Tested by: Hiroshi Naka; Tested place: No.7 shielded room; Ambient: 23 deg.C. / (65~75) %RH; Liquid depth: 151 mm;

Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g)/small=SAR(1g)

*. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/10-14,24h14,at2,side,g(6),2462

Plot 2a-1: (5.2 GHz band) Antenna 1, Right & touch, 11a (6Mbps), 5180 MHz


EUT: SKR 3000; Model: P-53; Serial:AEA0-S0004

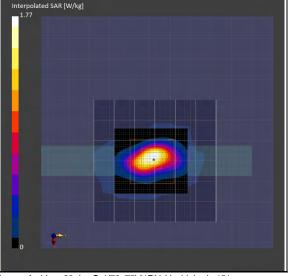
Mode: 11a(6Mbps) (UID: 0 (CW)); Frequency: 5180 MHz; Test Distance: 0.00 mm

TSL parameters used: Head(v6); f= 5180 MHz; Conductivity: 4.468 S/m; Permittivity: 34.99

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.75, 4.75, 4.75) @5180 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

5	Scan Setup		Measu	rement Res	ults
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan
Grid Extents [mm]	60.0×60.0	24.0× 24.0 ×22.0	psSAR 1g [W/kg]	0.425	0.481
Grid Steps [mm]	10.0×10.0	4.0× 4.0 ×1.4	psSAR 10g [W/kg]	0.113	0.126
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.04	0.07
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A
MAIA monitored	Υ	Y	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	63.9
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	4.8

*. Date tested: 2024-01-11;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (70–75) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h248.5g_p53.d8sar-1/11-21,5h14,at1,side,a,5180 Remarks:


Plot 2a-2: (5.2 GHz band) Antenna 2, Bottom & touch, 11a (6Mbps), 5180 MHz

EUT: SKR 3000; Model: P-53; Serial:AEA0-S0004 Mode: 11a(6Mbps) (UID: 0 (CW)); Frequency: 5180 MHz; Test Distance: 0.00 mm

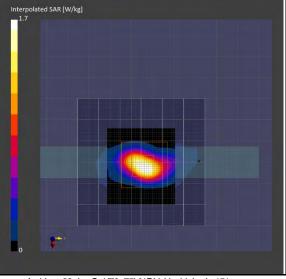
TSL parameters used: Head(v6); f= 5180 MHz; Conductivity: 4.468 S/m; Permittivity: 34.99

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.75, 4.75, 4.75) @5180.000 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

			,, ,		
S	Scan Setup		Measu	rement Res	ults
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan
Grid Extents [mm]	60.0×60.0	24.0×24.0 ×22.0	psSAR 1g [W/kg]	0.415	0.422
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR 10g [W/kg]	0.118	0.127
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.01	0.06
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A
MAIA monitored	Υ	Y	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	All points	M2/M1 [%]	N/A	61.9
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	4.7

*. Date tested: 2024-01-11;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (70-75) %RH; Liquid depth: 151 mm; Remarks:

*. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h248.5g_p53.d8sar-1/11-8,5h1,at2,side,a,5180


Plot 2b-1: (5.3 GHz band) Antenna 1, Right & touch, 11n20HT (MCS8), 5320 MHz

EUT: SKR 3000; Model: P-53; Serial: AEA0-S0004

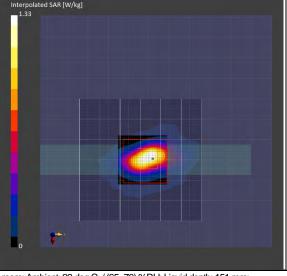
Mode: 11n20(MCS8,MIMO) (UID: 0 (CW)); Frequency: 5320 MHz; Test Distance: 0.00 mm TSL parameters used: Head(v6); f= 5320 MHz; Conductivity: 4.623 S/m; Permittivity: 34.74

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.75, 4.75, 4.75) @5320.000 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

5	Scan Setup		Measu	rement Res	ults
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan
Grid Extents [mm]	60.0×60.0	24.0×24.0 ×22.0	psSAR 1g [W/kg]	0.344	0.405
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR 10g [W/kg]	0.099	0.123
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.19	-0.20
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A
MAIA monitored	Υ	Y	TSL Correction	No correction	No correction
Surface Detection	All points	All points	M2/M1 [%]	N/A	61.9
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.1

*. Date tested: 2024-01-12;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (70–75) %RH; Liquid depth: 151 mm;
*. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g)

*. Project file name-Measurement Group: 240110_14926563_h248.5g_p53.d8sar-1/12-5,5h31,at1+2,side,n20(m8),5320 Remarks:


Plot 2b-2: (5.3 GHz band) Antenna 2, Bottom & touch, 11a (6Mbps), 5320 MHz

EUT: SKR 3000; Model: P-53; Serial: AEA0-S0004

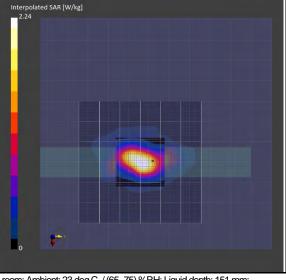
Mode: 11a (6Mbps) (UID: 0 (CW)); Frequency: 5320 MHz; Test Distance: 0.00 mm TSL parameters used: Head(v6); f= 5320 MHz; Conductivity: 4.623 S/m; Permittivity: 34.74

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.75, 4.75) @5320 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

5	Scan Setup		Measu	rement Res	ults
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan
Grid Extents [mm]	60.0×60.0	24.0×24.0 ×22.0	psSAR 1g [W/kg]	0.303	0.310
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR 10g [W/kg]	0.086	0.096
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.04	0.09
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	All points	M2/M1 [%]	N/A	62.4
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	4.8

*. Date tested: 2024-01-11;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (65~70) %RH; Liquid depth: 151 mm;

*. Liquid temperature: 22.0 deg.C. \pm 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g)/small=SAR(1g)


. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/11-10,5h3,at2,side,a,5320

Plot 3-1: (5.6 GHz band) Antenna 1, Right & touch, 11a (6Mbps), 5500 MHz

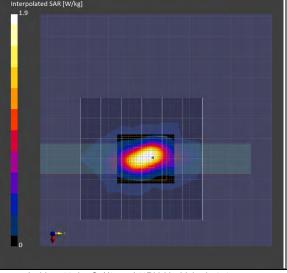
EUT: SKR 3000; Model: P-53; Serial:AEA0-S0004 Mode: 11a (6Mbps) (UID: 0 (CW)); Frequency: 5500 MHz; Test Distance: 0.00 mm TSL parameters used: Head(v6); f= 5500 MHz; Conductivity: 4.817 S/m; Permittivity: 34.44

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.33, 4.33) @ 5500 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

5	Scan Setup		Measurement Results			
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	60.0×60.0	24.0×24.0 ×22.0	psSAR 1g [W/kg]	0.468	0.517	
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR 10g [W/kg]	0.123	0.137	
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.03	-0.06	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A	
MAIA monitored	Υ	Y	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	62.0	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.4	

*. Date tested: 2024-01-11;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (65~75) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h248.5g_p53.d8sar-1/11-24,5h17,at1,side,a,5500 Remarks:

Plot 3-2: (5.6 GHz band) Antenna 2, Bottom & touch, 11a (6Mbps), 5580 MHz


EUT: SKR 3000; Model: P-53; Serial: AEA0-S0004

Mode: 11a (6Mbps) (UID: 0 (CW)); Frequency: 5580 MHz; Test Distance: 0.00 mm TSL parameters used: Head(v6); f= 5580 MHz; Conductivity: 4.909 S/m; Permittivity: 34.32

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.33, 4.33, 4.33)@5580.000 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

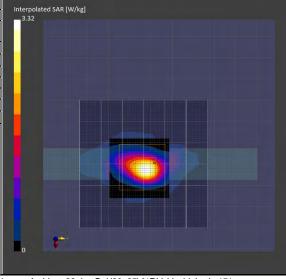
Measurement Results

Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan
Grid Extents [mm]	60.0×60.0	24.0× 24.0 ×22.0	psSAR 1g [W/kg]	0.420	0.426
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR 10g [W/kg]	0.115	0.129
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.08	-0.01
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction
Surface Detection	VMS+6p	All points	M2/M1 [%]	N/A	60.7
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.4

*. Date tested: 2024-01-11;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (65~75) %RH; Liquid depth: 151 mm;

*. Liquid temperature: 22.0 deg.C. \pm 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g)/small=SAR(1g)

. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/11-12,5h5,at2,side,a,5580


Plot 4-1: (5.8 GHz band) Antenna 1, Right & touch, 11n20HT (MCS0), 5825 MHz

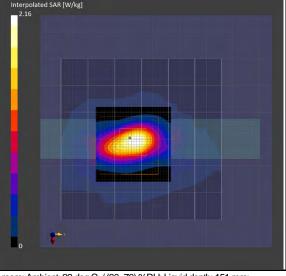
EUT: SKR 3000; Model: P-53; Serial: AEA0-S0004

Mode: 11n20(MCS0) (UID: 0 (CW)); Frequency: 5825 MHz; Test Distance: 0.00 mm TSL parameters used: Head(v6); f= 5825 MHz; Conductivity: 5.181 S/m; Permittivity: 33.88

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.31, 4.31, 4.31)@5825 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

5	Scan Setup		Measurement Results						
Setup items	Area Scan Zoom Scan		Meas. Items	Area Scan	Zoom Scan				
Grid Extents [mm]	60.0×60.0	24.0×24.0 ×22.0	psSAR 1g [W/kg]	0.555	0.662				
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR 10g [W/kg]	0.148	0.165				
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.20	-0.16				
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled				
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A				
MAIA monitored	Υ	N/A	TSL Correction	No correction	No correction				
Surface Detection	All points	All points	M2/M1 [%]	N/A	57.8				
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	4.9				

*. Date tested: 2024-01-12;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 22 deg.C. / (60–65) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h248.5g_p53.d8sar-1/12-2,5h28,at1,side,n20(m0),5825 Remarks:


Plot 4-2: (5.8 GHz band) Antenna 1, Right & touch, 11n20HT (MCS8), 5745 MHz

EUT: SKR 3000; Model: P-53; Serial: AEA0-S0004

Mode: 11n20(MCS8, MIMO) (UID: 0 (CW)); Frequency: 5745 MHz; Test Distance: 0.00 mm TSL parameters used: Head(v6); f= 5745 MHz; Conductivity: 5.168 S/m; Permittivity: 33.73

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19) / - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.31, 4.31, 4.31) @ 5745 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

5	Scan Setup		Measurement Results			
Setup items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	60.0×60.0	24.0×24.0 ×22.0	psSAR 1g [W/kg]	0.409	0.446	
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR 10g [W/kg]	0.114	0.136	
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	-0.16	-0.05	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A	
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction	
Surface Detection	All points	All points	M2/M1 [%]	N/A	57.1	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	5.1	

*. Date tested: 2024-01-16;Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (60~70) %RH; Liquid depth: 151 mm;

*. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/16-5,5h53,at2+1,side,n20(m8),5745

APPENDIX 3: Test instruments

Appendix 3-1: Equipment used

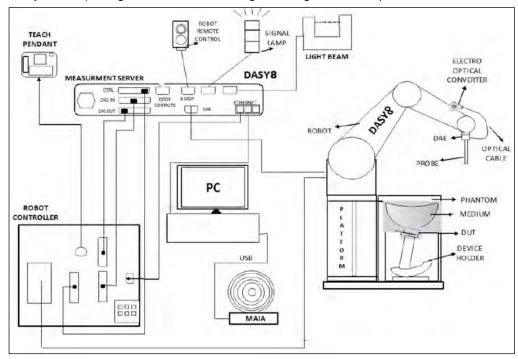
Test					1000	Calibration		
Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Date	(Month)	
AT	145800	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY48250106	2023/03/01	12	
AT	169910	Power Meter	Keysight Technologies Inc	8990B	MY51000448	2023/09/28	12	
AT	169911	Power sensor	Keysight Technologies Inc	N1923A	MY57270004	2023/09/28	12	
AT	169912	Power sensor	Keysight Technologies Inc	N1923A	MY57290005	2023/09/28	12	
AT	196949	Coaxial Cable	Huber+Suhner	SUCOFLEX 102	803480/2	2023/03/02	12	
AT	236500	Attenuator	To-Conne Co., Ltd.	SA-PJ-10	-	2023/12/04	12	
AT	236504	Attenuator	To-Conne Co., Ltd.	SA-PJ-10	-	2023/12/04	12	
AT,SAR	191844	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/08/03	12	
SAR	144886	Dielectric assessment kit soft	Schmid&Partner Engineering AG	DAK ver.3.0.6.14	9-0EE103A4	-	-	
SAR	144986	Thermo-Hygrometer data logger	SATO KEIRYOKI	SK-L200THIIa/SK-LTHIIa-2	015246/08169	2023/08/04	12	
SAR	144988	Power meter	Keysight Technologies Inc	E4417A	GB41290718	2023/09/27	12	
SAR	144990	Power sensor	Keysight Technologies Inc	E9327A	US40440544	2023/09/27	12	
SAR	144991	Power sensor	Anritsu Corporation	MA2411B	12088	2023/09/27	12	
SAR	145086	Ruler(300mm)	SHINWA	13134	-	2023/02/08	12	
SAR	145087	Ruler(100x50mm,L)	SHINWA	12101		2023/02/08	12	
SAR	145105	Power meter	Anritsu Corporation	ML2495A	6K00003356	2023/09/27	12	
SAR	145106	Ruler(150mm,L)	SHINWA	12103	-	2023/02/08	12	
SAR	145558	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	765	2023/05/24	12	
SAR	146112	Primepure Ethanol	Kanto Chemical Co., Inc.	14032-79	Ç.	_	-	
SAR	146176	Spectrum Analyzer	ADVANTEST	R3272	101100994	-	-	
SAR	146185	DI water	MonotaRo	34557433		_	-	
SAR	146258	Network Analyzer	Keysight Technologies Inc	8753ES	US39171777	2023/10/05	12	
SAR	146308	Power sensor	Keysight Technologies Inc	E9327A	US40440545	2023/09/27	12	
SAR	150560	Measuring Tool, Ruler	SHINWA	14001	-	2023/02/08	12	
SAR	201967	Digital thermomoter	HANNA	Checktemp-4	A01440226111	2023/08/04	12	
SAR	201968	Digital thermomoter	HANNA	Checktemp-4	A01310946111	2023/08/04	12	
SAR	207714	Head Tissue Simulating Liquid	Schmid&Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	-	
SAR	224020	DASY8 PC	Hewlett Packard	HP Z4 G4 Workstation	CZC1198G21		-	
SAR	224023	Robot Controller	Schmid&Partner Engineering AG	CS9spe-TX2-60	F/22/0033789/C/001	-	-	
SAR	224025	Measurement Server	Schmid&Partner Engineering AG	DASY8 Measurement Server	10042	2023/12/18	12	
SAR	224026	Electro-Optical Converter	Schmid&Partner Engineering AG	EOC8-60	1027	-	-	
SAR	224027	Light Beam Unit	Schmid&Partner Engineering AG	LIGHTBEAM-85	2069	-	-	
SAR	224028	Modulation & Audio Interference Analyser	Schmid&Partner Engineering AG	MAIA	1582		-	
SAR	224031	DASY8 Module SAR/APD soft	Schmid&Partner Engineering AG	ver.16.2.4.2524	9-2506F07D	-	-	
SAR	224032	6-axis Robot	Schmid&Partner Engineering AG	TX2-60L spe	F/22/0033789/A/001	2023/08/29	12	
SAR	224034	Flat Phantom	Schmid&Partner Engineering AG	ELI V8.0	2161	2023/08/21	12	
SAR	225155	Mounting Platform	Schmid&Partner Engineering AG	MP8E-TX2-60L Basic	-	-	-	
SAR	225418	Directional coupler (dual)	TAP Microwave	TDC20180A20D	22100556	2023/12/04	12	
SAR	226380	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3745	2023/04/18	12	
SAR	235176	Signal Generator	Rohde & Schwarz	SMB 100A	183690	2023/01/26	12	
SAR	236501	Coaxial Cable	To-Conne Co., Ltd.	TC-038-SP-SP-200	23E09-01	2023/12/04	12	
SAR	236503	Coaxial Cable	To-Conne Co., Ltd.	TC-038-SP-SP-1800	23E09-02	2023/12/04	12	
SAR	243045	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	518	2023/04/19	12	
SAR	243047	Dipole Antenna (5GHz)	Schmid&Partner Engineering AG	D5GHzV2	1039	2023/04/17	12	
SAR	243048	Dielectric assessment kit	Schmid&Partner Engineering AG	DAKS-3.5	1058	2023/05/22	12	

AT (antenna terminal conducted power measurement) was measured December 25, 2023. (Refer to Section 5 in this report.)

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chain of calibrations. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

[Test Item] SAR: Specific Absorption Rate, AT: Antenna terminal conducted power


LIMS ID: 146112, the parameters of primepure Ethanol (as reference liquid) used for the simulated tissue parameter confirmation was defined the NPL Report MAT23 (http://www.npl.co.uk/content/conpublication/4295)

^{*.} Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

Appendix 3-2: Measurement System

Appendix 3-2-1: SAR Measurement System

These measurements were performed with the automated near-field scanning system DASY8 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot), which positions the probes with a positional repeatability of better than \pm 0.03 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The DASY8 SAR/APD system for performing compliance tests consist of the following items:

- 6-axis robotic arm (Stäubli TX2-60L) for positioning the probe
- Mounting Platform for keeping the phantoms at a fixed location relative to the robot
- Measurement Server for handling all time-critical tasks, such as measurement data acquisition and supervision of safety features
- EOC (Electrical to Optical Converter) for converting the optical signal from the DAE to electrical before being transmitted to the measurement server
- LB (Light-Beam unit) for probe alignment (measurement of the exact probe length and eccentricity)
- SAR probe (EX3DV4 probes) for measuring the E-field distribution in the phantom. The SAR distribution and the psSAR (peak spatial averaged SAR) are derived from the E-field measurement.
- SAR phantom that represents a physical model with an equivalent human anatomy. A Specific Anthropomorphic Mannequin (SAM) head is usually used for handheld devices, and a Flat phantom is used for body-worn devices.
- TSL (Tissue Simulating Liquid) representing the dielectric properties of used tissue, e.g. Head Simulating Liquid, HSL.
- DAE (Data Acquisition Electronics) for reading the probe voltages and transmitting it to the DASY8 PC.
- Device Holder for positioning the DUT beneath the phantom.
- MAIA (Modulation and Interference Analyzer) for confirming the accuracy of the probe linearization parameters
- Operator PC for running the DASY8 software to define/execute the measurements
- System validation kits for system check/validation purposes.

Platforms

The platform is a multi-phantom support structure made of a wood and epoxy composite (ϵ = 3.3 and loss tangent δ < 0.07). It is a strong and rigid structure transparent to electric and magnetic fields (nonmetallic components).

TX2-60L robot, CS9 robot controller

•Number of Axes : 6 •Repeatability : ±0.03 mm •Manufacture : Stäubli

DASY8 Measurement server

The DASY8 Measurement Server handles all time critical tasks such as acquisition of measurement data. detection of phantom surface, control of robot movements, supervision of safety features.

•Manufacture : Schmid & Partner Engineering AG

Data Acquisition Electronic (DAE)

The DAE is used to acquire the probe sensor voltages and transfer them to the DASY8 Measurement Server, and to report mechanical surface detection and probe collisions. The DAE consists of a highly sensitive electrometergrade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, and a command decoder with a control logic unit. Transmission to the DASY8 Measurement Server is accomplished through an optical downlink for data and status information and an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts weed for mechanical surface detection and probe collision detection. •Measurement Range: $1 \mu V$ to $> 200 \, \text{mV}$ (2 range settings: 4 mV (low), 400 mV (high))

< 1 μ V (with auto zero) •Input Resistance : 200 M Ω > 10 hrs. (with two rechargeable 9 V battery) •Input Offset voltage : $< 1 \,\mu\text{V}$ (with auto zero)

 Battery operation Manufacture Schmid & Partner Engineering AG

Electro-Optical Converter (EOC8-TX2-60L)

The Electrical to Optical Converter (EOC8) supports as data exchange between the DAE and the measurement server (optical connector) and data acquisition based on Ethernet protocol.

: Schmid & Partner Engineering AG Manufacture

Light Beam Switch

The light beam unit allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm, as well as the probe length and the horizontal probe offset, are measured. The software then corrects all movements within the measurement jobs, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

: Schmid & Partner Engineering AG

SAR measurement software

 Software version : Refer to Appendix 3-1 (Equipment used) Manufacture : Schmid & Partner

Engineering AG

E-Field Probe

 \bullet Frequency: 4 MHz to 10 GHz, Linearity: ± 0.2 dB (30 MHz to 10 GHz) Model EX3DV4 Symmetrical design with triangular core, Built-in shielding against static charges, PEEK •Construction :

enclosure material (resistant to organic solvents, e.g., DGBE). •CF Refer to calibration data of Appendix. (CF: Conversion Factors)

 Directivity \pm 0.1 dB in TSL (rotation around probe axis) / \pm 0.3 dB in TSL (rotation normal to probe axis)

10 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g) •Dynamic Range: Overall length: 330 mm (Tip: 20 mm) / Tip diameter: 2.5 mm (Body: 12 mm) Dimension

Typical distance from probe tip to dipole centers: 1mm

High precision dosimetric measurement in any exposure scenario (e.g., very strong gradient Application

fields). Only probe which enables compliance testing for frequencies up to 6GHz with precision of

•Manufacture : Schmid & Partner Engineering AG

ELI Phantom

The ELI phantom is used for compliance testing of handheld and body-mounted wireless devices in the frequency range of 4 MHz to 10 GHz. ELI is fully compatible with the IEC/IEEE 62209-1528 standard and all known tissue simulating liquids.

ELI V8.0 phantom shell has optimized pretension in the bottom surface during production, such that the phantom is more robust and with reduced sagging.

•Model Number: ELI V8.0 flat phantom •Shell Material: Vinyl ester, fiberglass reinforced (VE-GF) \bullet Shell Thickness: 2.0 ± 0.2 mm (bottom plate) \bullet Dimensions: 600 mm \times 400 mm (oval) (volume: Approx. 30 liters)

•Manufacture : Schmid & Partner Engineering AG

Device Holder, Laptop holder, support material

Accurate device positioning is crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ==3 and loss tangent 5=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have

suggested that the influence of the clamp on the test results could thus be lowered.

Device holder: In combination with the ELI phantom, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Transmitter devices can be easily and accurately positioned. The low-loss dielectric urethane foam was used for the mounting section of device holder.

•Manufacture: Schmid & Partner Engineering AG Material : Polyoxymethylene (POM) Laptop holder: A simple but effective and easy-to-use extension for the Mounting Device; facilitates testing of larger devices (e.g., laptops, cameras, etc.) according to IEC 62209-2.

•Material : Polyoxymethylene (POM), PET-G, Foam•Manufacture: Schmid & Partner Engineering AG

Data storage and evaluation (post processing)

The F-field data value is used to calculate SAR:

= local specific absorption rate in mW/g

= equivalent tissue density in g/cm3

= total field strength in V/m = conductivity in $[\Omega/m]$ or [S/m]

with SAR

Ftot

σ

The uplink signal transmitted by the DUT is measured inside the TSL by the probe, which is accurately positioned at a precisely known distance and with a normal orientation with respect to the phantom surface. The dipole / loop sensors at the probe tips pick up the signal and generate a voltage, which is measured by the voltmeter inside the DAE. The DAE returns digital values, which are converted to an optical signal and transmitted via the EOC to the measurement server. The data is finally transferred to the DASY8 software for further post processing. In addition, the DASY8 software periodically requests a measurement with short-circuited inputs from the DAE to compensate the amplifier offset and drift. This procedure is called DAE zeroing.

The operator has access to the following low level measurement settings:

- the integration time is the voltage acquisition time at each measurement point. It is typically 0.5 s.
- the zeroing period indicates how often the DAE zeroing is performed.

In parallel, the MAIA measures the characteristics of the uplink signal via the air interface and sends this information to the DASY8 software, which compares them to the communication system defined by the operator. A warning is issued if any difference is detected.

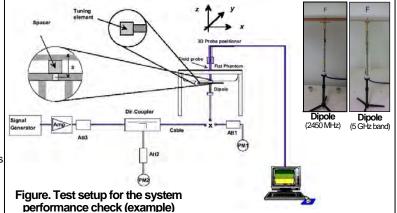
The measurement data is now acquired and can be post processed to compute the psSAR1g/8g/10g.

The measured voltages are not directly proportional to SAR and must be linearized. The formulas below are based on [1] (*1).

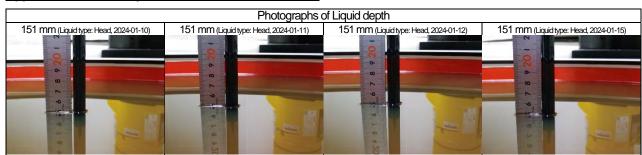
The measured voltage is first linearized using the (a, b, c, d) set of parameters specific to the communication system and sensor.

Note: The resulting linearized voltage is only approximated because the probe UID is used 0 (CW) for the test signal in this test report.

 $SAR = E_{tot}^2 \cdot \frac{\sigma}{\sigma \cdot 1000}$


^{(*1) [1]} Jagadish Nadakuduti, Sven Kuehn, Marcel Fehr, Mark Douglas Katja Pokovic and Niels Kuster, "The Effect of Diode Response of electromagnetic Field Probes for the Measurements of Complex Signals." IEEE Transactions on Electromagnetic Compatibility, vol. 54, pp. 1195–1204, Dec. 2012.

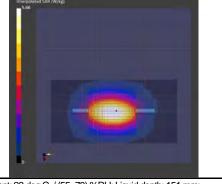
Appendix 3-2-2: SAR system check results


Prior to the SAR assessment of EUT, the Daily check was performed to test whether the SAR system was operating within its target of ±10%. The Daily check results are in the table below.

		Da	aily o	chec	k resu	ılts (*.	Abbre	viation	ns: F:	Frequ	ency, N	/leas.:	Meas	ured,	Cal.:	Calibration value, STD: Standard value, Dev.: Deviation)	
Liquid type:		ΔS	AR		SAR	(1g)[\	N/kg] ((*b)			SAR (10g) [W/kg	(*b)			Dev.
Head	F	1a	10a	Meas.	1W	Ta	ırget	Devi	iation	Meas.	1W	Ta	rget	Devi			Limit
Date	[MHz]		[%]		scaled	Cal. (*c)	STD (*d)	Cal.	STD [%]	(*a)	scaled	Cal. (*c)		Cal. [%]			[%]
2024-01-10	2450	1.2	0.6	2.69	53.16	52.7	52.4	0.9	1.5	1.25	24.86	24.7	24	0.6	3.6		≤10
2024-01-11	5250	0.7	0.9	4.02	79.84	80.7	77.6	-1.1	2.9	1.16	23	23.1	21.9	-0.4	5.0		≤10
2024-01-11	5500	8.0	1.0	4.34	86.1	84.5	81.5	1.9	5.6	1.24	24.56	24.1	22.9	1.9	7.2		≤10
2024-01-11	5800	0.9	1.0	4.05	80.28	80	78	0.4	2.9	1.15	22.78	22.6	21.9	8.0	4.0		≤10
2024-01-12	2450	1.2	0.6	2.63	51.96	52.7	52.4	-1.4	-0.8	1.22	24.26	24.7	24	-1.8	1.1		≤10
2024-01-12	5250	0.7	0.9	4.02	79.84	80.7	77.6	-1.1	2.9	1.16	23	23.1	21.9	-0.4	5.0		≤10
2024-01-12	5500	8.0	1.0				81.5	1.4	5.2		24.56						≤10
2024-01-12	5800	0.9	1.0	4.02	79.68	80	78	-0.4	2.2	1.14	22.58	22.6	21.9	-0.1	3.1		≤10
2024-01-15	2450	1.5	0.8	2.68	52.8	52.7	52.4	0.2	0.8	1.24	24.6	24.7	24	-0.4	2.5		≤10
2024-01-15	5250	8.0	1.0	4.07	80.74	80.7	77.6	0.0	4.0	1.17	23.16	23.1	21.9	0.3	5.8		≤10
2024-01-15	5500	0.9	1.2	4.33	85.82	84.5	81.5	1.6	5.3	1.24	24.5	24.1	22.9	1.7	7.0		≤10
2024-01-15	5800	1.0	1.2	4.07	80.58	80	78	0.7	3.3	1.16	22.92	22.6	21.9	1.4	4.7		≤10

- The measured SAR value is obtained at 50 mW (17 dBm) for all tested frequencies
- The measured SAR value of Daily check was compensated for tissue dielectric deviations (ΔSAR) and scaled to 1W of output power in order to compare with the manufacture's calibration target value which was normalized.
 - Δ SAR corrected SAR (1g) (W/kg) = (Measured SAR(1g) (W/kg)) × (100 - (\Delta SAR1g(%)) / 100 \Delta SAR corrected SAR (10g) (W/kg) = (Measured
- SAR(10g) (W/kg)) × (100 (\Delta SAR10g(%)) / 100 The target value is a parameter defined in the calibration data sheet of D2450V2(sn765) dipole and D5GHzV2(sn1039) dipole calibrated by Schmid & Partner Engineering AG, the data sheet was filed in this report when there were used.
- The target value (normalized to 1W) is defined in IEEE Std.1528.

Appendix 3-2-3: SAR system check measurement data


Dipole: D2450V2 - SN765; Mode: CW (0); Frequency: 2450 MHz; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm

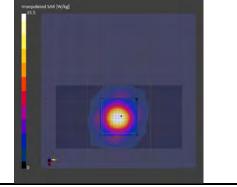
TSL parameters used: Head(v6); f= 2450 MHz; Conductivity: 1.850 S/m; Pernittivity: 39.52

DASY8 Configuration: - Electronics: D424-SN518 (Calibrated: 2023-04-19)/ - Phantom: EL V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat

Parks: FX2DV4 - SN2746 (Calibrated: 2023-04-19)/ - SN2746 (Calibrated: 2023-04-- Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (6.89, 6.89, 6.89) @2450 MHz / - Software: N/A (Measurement); 16.2.4.2524 (Evaluation)

	Scan Setup		Measurement Results			
Setup Items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	40.0×80.0	30.0×30.0 ×30.0	psSAR1g [W/kg]	2.71	2.69	
Grid Steps [mm]	10.0×10.0	5.0×5.0×1.5	psSAR10g [W/kg]	1.25	1.25	
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.01	0.00	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A	
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	79.8	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	9.0	

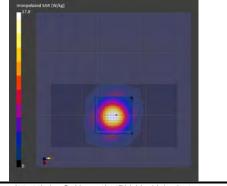
Remarks: *. Date tested:2024-01-10; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (55~70) %RH; Liquid depth: 151 mm;


*. Liquid temperature: 22.0 deg.C. \pm 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/10a,50mw

Dipole: D5GHzV2 - SN1039 ; Mode: CW (0) ; Frequency: 5250 MHz ; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm

TSL parameters used: Head(v6) ; f= 5250 MHz; Conductivity: 4.544 S/m; Permittivity: 34.85

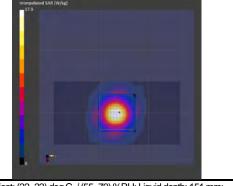
DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19) - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat
- Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.75, 4.75) @5250 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)


:	Scan Setup		Measurement Results			
Setup Items	etup Items Area Scan Zoom		Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	40.0×80.0	24.0×24.0 ×22.0	psSAR1g [W/kg]	3.82	4.02	
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR10g [W/kg]	1.09	1.16	
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.05	0.04	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A	
MAIA monitored	N/A	N/A	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	65.6	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.3	

- *. Date tested:2024-01-11; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (22-23) deg.C. / (55-70) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/11b,50mw Remarks:

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.33, 4.33) @5600 MHz/- Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

	Scan Setup		Measurement Results			
Setup Items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	40.0×80.0	24.0×24.0 ×22.0	psSAR1g [W/kg]	4.12	4.34	
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR10g [W/kg]	1.15	1.24	
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.06	0.04	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A	
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction	
Surface Detection VMS + 6p		VMS+6p	M2/M1 [%]	N/A	62.9	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.2	

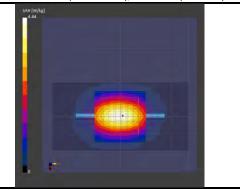


- *. Date tested:2024-01-11; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (22-23) deg.C. / (55-70) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/11c,50mw Remarks:

<u>Dipole: D5GHzV2 - SN1039 ; Mode: CW (0) ; Frequency: 5800 MHz ; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm TSL parameters used: Head(v6) ; f= 5800 MHz; Conductivity: 5.152 S/m; Permittivity: 33.95</u>

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19) - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.31, 4.31, 4.31)@5800 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

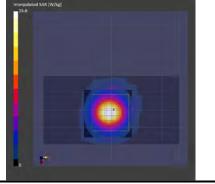
	Scan Setup		Measurement Results			
Setup Items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	40.0×80.0	24.0×24.0 ×22.0	psSAR1g [W/kg]	3.86	4.05	
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR10g [W/kg]	1.07	1.15	
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.01	0.02	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A	
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction	
Surface Detection	Surface Detection VMS + 6p		M2/M1 [%]	N/A	61.2	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.2	



*. Date tested:2024-01-11; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (22-23) deg.C. / (55-70) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/11d,50mw Remarks:

Dipole: D2450V2 - SN765; Mode: CW (0); Frequency: 2450 MHz; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm TSL parameters used: Head(v6); f= 2450 MHz; Conductivity: 1.850 S/m; Permittivity: 39.52

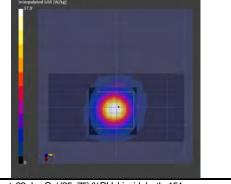
DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated: 2023-04-19)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (6.89, 6.89, 6.89)@2450 MHz/ - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)


	Scan Setup		Measurement Results						
Setup Items	tup Items Area Scan		Meas. Items	Area Scan	Zoom Scan				
Grid Extents [mm]	40.0×80.0	30.0×30.0 ×30.0	psSAR1g [W/kg]	2.66	2.63				
Grid Steps [mm]	10.0×10.0	5.0×5.0×1.5	psSAR10g [W/kg]	1.23	1.22				
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.00	0.00				
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled				
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A				
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction				
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	79.6				
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	9.0				

*. Date tested:2024-01-12; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (65~75) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/12a,50mw Remarks:

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.75, 4.75) @5250 MHz/- Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

	Scan Setup		Measurement Results			
Setup Items	Area Scan	Zoom Scan	Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	40.0×80.0	24.0×24.0 ×22.0	psSAR1g [W/kg]	3.75	4.02	
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR10g [W/kg]	1.08	1.16	
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.02	0.01	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A	
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction	
Surface Detection VMS + 6p		VMS+6p	M2/M1 [%]	N/A	65.5	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.2	

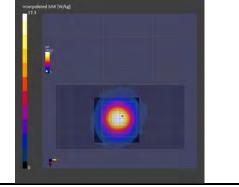


*. Date tested:2024-01-12; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (65~75) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/12b,50mw Remarks:

<u>Dipole: D5GHzV2 - SN1039 ; Mode: CW (0) ; Frequency: 5600 MHz ; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm TSL parameters used: Head(v6) ; f= 5600 MHz; Conductivity: 4.931 S/m; Permittivity: 34.28</u>

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19) - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.33, 4.33) @ 5600 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

	Scan Setup			Measurement Results			
Setup Items	Setup Items Area Scan Zoom Scan		Meas. Items	Area Scan	Zoom Scan		
Grid Extents [mm]	40.0×80.0	24.0x 24.0 x22.0 psSAR1g [W/kg]		4.05	4.32		
Grid Steps [mm]	10.0×10.0	4.0×4.0×1.4	psSAR10g [W/kg]	1.15	1.24		
Sensor Surface [mm]	3.0 1.4 Power Di		Power Drift [dB]	0.02	0.01		
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled		
Grading Ratio	N/A	1.4	Scaling Factor [dB]	N/A	N/A		
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction		
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	62.8		
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.4		

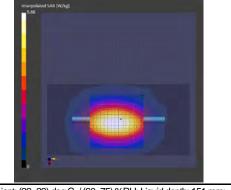

*. Date tested:2024-01-12; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (65~75) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/12c,50mw Remarks:

Dipole: D5GHzV2 - SN1039 ; Mode: CW (0) ; Frequency: 5800 MHz ; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm

TSL parameters used: Head(v6) ; f= 5800 MHz; Conductivity: 5.152 S/m; Permittivity: 33.95

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19) - Phantom: ELI V8.0 (20deg probe tilt) ; Serial: 2161 ; Phantom section: Flat
- Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.31, 4.31, 4.31)@5800 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

	Scan Setup		Measurement Results				
Setup Items	Setup Items Area Scan Zoom		Meas. Items	Area Scan	Zoom Scan		
Grid Extents [mm]	Extents [mm] 40.0×80.0		psSAR1g [W/kg]	3.76	4.02		
Grid Steps [mm]	Grid Steps [mm] 10.0x10.0 4.0		psSAR10g [W/kg]	1.06	1.14		
Sensor Surface [mm]	urface [mm] 3.0		Power Drift [dB]	0.03	0.01		
Graded Grid	N/A Yes		Power Scaling	Disabled	Disabled		
Grading Ratio	Grading Ratio N/A		Scaling Factor [dB] N/A		N/A		
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction		
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	61.2		
Scan Method	Measured	Measured	asured Dist 3dB Peak [mm] N/A		7.4		



*. Date tested:2024-01-12; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: 23 deg.C. / (65~75) %RH; Liquid depth: 151 mm; *. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/12d,50mw Remarks:

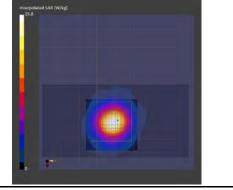
<u>Dipole: D2450V2 - SN765 ; Mode: CW (0) ; Frequency: 2450 MHz ; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm TSL parameters used: Head(v6) ; f= 2450 MHz; Conductivity: 1.863 S/m; Permittivity: 39.54</u>

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19) - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (6.89, 6.89, 6.89) @ 2450 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

	, , , , , , , , , , , , , , , , , , , ,							
	Scan Setup		Measurement Results					
Setup Items	Setup Items Area Scan Zoom S		Meas. Items	Area Scan	Zoom Scan			
Grid Extents [mm]	40.0×80.0	30.0×30.0 ×30.0 psSAR1g [W/kg]		2.65	2.68			
Grid Steps [mm]	10.0×10.0	5.0×5.0×1.5	psSAR10g [W/kg]	1.24	1.24			
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.01	0.02			
Graded Grid	N/A	N/A Yes Power Sca		Disabled	Disabled			
Grading Ratio	N/A	1.5	Scaling Factor [dB]	N/A	N/A			
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction			
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	79.5			
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	9.0			

*. Date tested:2024-01-15; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (22-23) deg.C. / (60-75) %RH; Liquid depth: 151 mm;

*. Liquid temperature: 22.0 deg.C. \pm 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g)

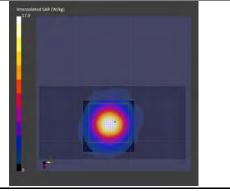

*. Project file name-Measurement Group: 240110_14926563_h2485g_p53.d8sar-SPC Measurement Group

Test Location: UL Japan, Shonan EMC Lab. / Date: 2024-01-15, 09:54

Dipole: D5GHzV2 - SN1039; Mode: CW (0); Frequency: 5250 MHz; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm TSL parameters used: Head(v6); f= 5250 MHz; Conductivity: 4.613 S/m; Permittivity: 34.63

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.75, 4.75) @ 5250 MHz / - Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

	Scan Setup		Measurement Results				
Setup Items	Setup Items Area Scan Zoom Sca		Meas. Items	Area Scan	Zoom Scan		
Grid Extents [mm]	40.0×80.0	24.0×24.0 ×22.0 psSAR1g [W/kg]		3.83	4.07		
Grid Steps [mm]	10.0×10.0	0.0×10.0 4.0×4.0×1.4 psSAR10		1.10	1.17		
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.07	0.00		
Graded Grid	irid N/A		Power Scaling	Disabled	Disabled		
Grading Ratio	Ratio N/A		Scaling Factor [dB]	N/A	N/A		
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction		
Surface Detection	VMS+6p	VMS+6p	M2/M1 [%]	N/A	65.4		
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.4		

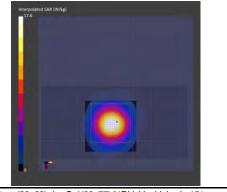


Remarks: *. Date tested:2024-01-15; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (22-23) deg.C. / (60-75) %RH; Liquid depth: 151 mm;

*. Liquid temperature: 22.0 deg.C. \pm 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/15b,50mw

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.33, 4.33) @5600 MHz/- Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

;	Scan Setup		Measurement Results			
Setup Items Area Scan Zoom Scar		Zoom Scan	Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	40.0×80.0	0.0 24.0×24.0 psSAR1g [W/k		4.07	4.33	
Grid Steps [mm]	10.0×10.0	4.0× 4.0 ×1.4	psSAR10g [W/kg]	1.15	1.24	
Sensor Surface [mm]	3.0	1.4	Power Drift [dB]	0.03	0.01	
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled	
Grading Ratio	Grading Ratio N/A 1.4		Scaling Factor [dB]	N/A	N/A	
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction	
Surface Detection	ection VMS+6p VMS+6p		M2/M1 [%]	N/A	62.8	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.6	


*. Date tested:2024-01-15; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (22-23) deg.C. / (60-75) %RH; Liquid depth: 151 mm; Remarks:

*Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h2485g_p53.d8sar-1/15c,50mw

Dipole: D5GHzV2 - SN1039; Mode: CW (0); Frequency: 5800 MHz; Test Distance: 10 mm (dipole to liquid); Power: 17.0 dBm TSL parameters used: Head(v6); f= 5800 MHz; Conductivity: 5.230 S/m; Permittivity: 33.64

DASY8 Configuration: - Electronics: DAE4 - SN518 (Calibrated:2023-04-19)/ - Phantom: ELI V8.0 (20deg probe tilt); Serial: 2161; Phantom section: Flat - Probe: EX3DV4 - SN3745(Calibrated: 2023-04-18); ConvF: (4.31, 4.31, 4.31)@5800 MHz/- Software: 16.2.4.2524 (Measurement); 16.2.4.2524 (Evaluation)

;	Scan Setup		Measurement Results			
Setup Items Area Scan Zoom S		Zoom Scan	Meas. Items	Area Scan	Zoom Scan	
Grid Extents [mm]	40.0×80.0	24.0×24.0 ×22.0	nsSAR1a I///kal		4.07	
Grid Steps [mm]	10.0×10.0	4.0× 4.0 ×1.4	.0×4.0×1.4 psSAR10g [W/kg]		1.16	
Sensor Surface [mm]	[mm] 3.0 1.4		Power Drift [dB]	0.03	0.01	
Graded Grid	I N/A Yes		Power Scaling	Disabled	Disabled	
Grading Ratio	ading Ratio N/A 1.4		Scaling Factor [dB]	N/A	N/A	
MAIA monitored	Υ	Υ	TSL Correction	No correction	No correction	
Surface Detection	VMS+6p VMS+6p		M2/M1 [%]	N/A	61.0	
Scan Method	Measured	Measured	Dist 3dB Peak [mm]	N/A	7.6	

Remarks: *. Date tested:2024-01-15; Tested by: Hiroshi Naka; Tested place:No.7 shielded room; Ambient: (22-23) deg.C. / (60-75) %RH; Liquid depth: 151 mm;

*. Liquid temperature: 22.0 deg.C. ± 0.5 deg.C. (22.5 deg.C., in check); *. Red cubic: big=SAR(10g) / small=SAR(1g) *. Project file name-Measurement Group: 240110_14926563_h24&5g_p53.d8sar-1/15d,50mw

Appendix 3-3: Measurement Uncertainty

U	Incertainty of SAR measurement (2.4 GH	T)) (v11r0	4)	1g SAR	10g SAR			
Symbol	Error Description	Uncertainty (Unc.)	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g) (Std. Unc.)	ui (10g) (Std. Unc.)
	urement System (DASY8)							
CF	Probe Calibration (EX3DV4)	± 13.1 %	Normal	2	1	1	± 6.55 %	± 6.55 %
CFdfft	Probe Calibration Drift	±1.7%	Rectangular	√3	1	1	± 1.0 %	±1.0%
LIN	Probe Linearity	±4.7%	Rectangular	√3	1	1	±2.7%	±2.7%
BBS	Broadband Signal	±2.6%	Rectangular	√3	1	1	± 1.5 %	±1.5%
ISO1	Probe Isotropy	±7.6%	Rectangular	√3	1	1	± 4.4 %	±4.4%
DAE	Data Acquisition	±1.2%	Normal	1	1	1	± 1.2 %	±1.2%
AMB	RF Ambient (noise&refrection) (< 12μW/g)	±1.0%	Normal	1	1	1	±1.0%	±1.0%
Δsys	Probe Positioning	±0.5%	Normal	1	0.33	0.33	±0.2%	±0.2%
DAT	Data Processing	±2.3%	Normal	1	1	1	±2.3%	±2.3%
Phan	tom and Device Error							
LIQ(σ)	Conductivity (measured) (DAKS-3.5)	±5.0%	Normal	2	0.78	0.71	±2.0%	±1.8%
LIQ(Tσ)	Conductivity (temperature) (≤2 deg.C.)	±2.4%	Rectangular	√3	0.78	0.71	± 1.1 %	±1.0%
EPS	Phantom Permittivity (liquid to antenna: ≥5 mm)	± 14.0 %	Rectangular	√3	0.25	0.25	±2.0%	±2.0%
DIS	Distance EUT-TSL	±2.7%	Normal	1	2	2	± 5.4 %	±5.4%
Dxyz	Test Sample positioning	±1.8%	Normal	1	1	1	±5.0%	±5.0%
Н	Device holder uncertainty	±3.6%	Normal	1	1	1	± 3.6 %	±3.6%
MOD	EUT Modulation	±2.4%	Rectangular	√3	1	1	± 1.4 %	± 1.4 %
TAS	Time-average SAR	±0.0%	Rectangular	√3	1	1	± 0.0 %	±0.0%
RFdrift	Drift of output power (measured, < 0.2 dB)	±4.7%	Normal	2	1	1	± 2.4 %	± 2.4 %
Corre	ection to the SAR results			,		,	•	
C(e,\sigma)	Deviation to Target (e',σ: ≤ 10 %, IEC head)	±1.9%	Normal	1	1	0.84	±1.9%	±1.6%
C(R)	SAR Scaling	±0%	Rectangular	√3	1	1	±0.0%	±0.0%
u(∆SAR)	(SAR: 2.4 GHz~6 GHz) Combined Standard Unc	ertainty				RSS	± 12.1 %	±12.0%
U	(SAR: 2.4 GHz~6 GHz) Expanded Uncertainty					k=2	± 24.2 %	± 24.0 %

^{*.} This uncertainty budget is suggested by IEC/IEEE 62209-1528:2020 and determined by SPEAG, DASY8 Module SAR Manual, 2022-08 (Chapter 6.3, DASY8 Uncertainty Budget for Hand-held/Body-wom Devices, Frequency band: 300 MHz - 3 GHz range and 3 GHz − 6 GHz range). All listed error components have veff equal to ∞.

	Uncertainty of SAR daily check (2.4 G	Hz ~ 6 GHz) (*.	liquid: head(v6), DAKS	-3.5, CW)	(v11r04)		1g SAR	10g SAR
Symbol	Error Description	Uncertainty (Unc.)	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g) (Std. Unc.)	ui (10g) (Std. Unc.)
Meas	urement System (DASY8)							
CF	Probe Calibration (EX3DV4)	± 13.1 %	Nomal	2	1	1	± 6.55 %	± 6.55 %
CFdfft	Probe Calibration Drift	± 1.7%	Rectangular	√3	1	1	±1.0%	±1.0%
LIN	Probe Linearity	± 4.7 %	Rectangular	√3	1	1	± 2.7 %	± 2.7 %
ISO2	Probe Isotropy	±4.7%	Rectangular	√3	1	1	±2.7%	±2.7%
DAE	Data Acquisition	± 1.2 %	Nomal	1	1	1	± 1.2 %	±1.2%
AMB	RF Ambient (noise&refrection) (<12uW/g)	± 1.0 %	Nomal	1	1	1	± 1.0 %	±1.0%
Δsys	Probe Positioning	± 0.5 %	Nomal	1	0.33	0.33	± 0.2 %	± 0.2 %
DAT	Data Processing	±2.3%	Nomal	1	1	1	±2.3%	±2.3%
Phan	tom and Device Error							
LIQ(σ)	Conductivity (measured) (DAKS-3.5)	±5.0%	Nomal	2	0.78	0.71	±2.0%	±1.8%
LIQ(Tσ)	Conductivity (temperature) (≤2 deg.C.)	±2.4%	Rectangular	√3	0.78	0.71	± 1.1 %	± 1.0 %
EPS	Phantom Permittivity (liquid to antenna: ≥5 mm)	± 14.0 %	Rectangular	√3	0.25	0.25	± 2.0 %	± 2.0 %
VAL	Validation antenna uncertainty	± 5.5 %	Rectangular	√3	1	1	±3.2%	± 3.2 %
Pin	Uncertainty in accepted power	± 2.5 %	Nomal	2	1	1	± 1.3 %	± 1.3 %
DIS	Distance EUT-TSL	±2.0%	Nomal	1	2	2	±4.0%	±4.0%
Dxyz	Test Sample positioning	± 1.0 %	Nomal	1	1	1	± 1.0 %	±1.0%
RFdrift	Drift of output power (measured, < 0.1 dB)	±2.3%	Rectangular	√3	1	1	±1.3%	±1.3%
Corre	ection to the SAR results							
C(e,σ)	Deviation to Target (e', σ : \leq 10 %. IEC head)	± 1.9 %	Normal	1	1	0.84	± 1.9 %	± 1.6 %
u(∆SAR)	(SAR daily check: 2.4 GHz~6 GHz) Combined St	tandard Uncertai	inty			RSS	± 10.5 %	± 10.4 %
U	(SAR daily check: 2.4 GHz~6 GHz) Expanded U	ncertainty				k=2	± 21.0 %	± 20.8 %

This uncertainty budget is suggested by IEC/IEEE 62209-1528:2020 and determined by SPEAG, DASY8 Module SAR Manual, 2022-08 (Chapter 6.2, DASY8 Uncertainty Budget for System Verification, Frequency band: 300 MHz - 6 GHz range). All listed error components have verification on the suggested by IEC/IEEE 62209-1528:2020 and determined by SPEAG, DASY8 Module SAR Manual, 2022-08 (Chapter 6.2, DASY8 Uncertainty Budget for System Verification, Frequency band: 300 MHz - 6 GHz range). All listed error components have verification.

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

^{*.} Although this standard determines only the limit value of uncertainty, there is no applicable rule of uncertainty in this. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

Test Report No. 14926563S-A-R1 Page 36 of 36

Appendix 3-4: Calibration certificates

LIMS ID	Description	Type/Model	Serial Number	Manufacture	Calibration Certificate	Note
226380	Dosimetric E-Field Probe	EX3DV4	3745	SPEAG		-
145558	Dipole Antenna (2.45 GHz)	D2450V2	765	SPEAG	(*1
243047	Dipole Antenna (5 GHz)	D5GHzV2	1039	SPEAG	*	*1

^{*1:} As stated on page 2 of the certificate, the calibration was performed in accordance with the latest standard IEC/IEEE 62209-1528. Therefore, the reported SAR values are valid for any system that complies with IEC/IEEE 62209-1528 including all new versions of DASY such as DASY6 and DASY8.

-End of report-