




## FCC 47 CFR PART 15 SUBPART C

Product Type : Dual Mode Heart Rate Strap

Applicant : ALATECH Technology Limited Co.

Address : 39F., No.758, Jungming S. RD. Taichung, Taiwan, R.O.C.

Trade Name : ALATECH

Model Number : CS012

Test Specification : FCC 47 CFR PART 15 SUBPART C: Oct., 2013

ANSI C63.4:2009

Receive Date : Oct. 02, 2014

Test Period : Oct. 08 ~ Oct. 10, 2014

Issue Date : Oct. 15, 2014

Issue by

A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City,

Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

lac MRA



Taiwan Accreditation Foundation accreditation number: 1330

**Note:** This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.



# **Revision History**

| Rev. | Issue Date    | Revisions     | Revised By |
|------|---------------|---------------|------------|
| 00   | Oct. 15, 2014 | Initial Issue |            |
|      |               |               |            |
|      |               |               |            |
|      |               |               |            |

# Verification of Compliance

Issued Date: 10/15/2014

Product Type : Dual Mode Heart Rate Strap

Applicant : ALATECH Technology Limited Co.

Address : 39F., No.758, Jungming S. RD. Taichung, Taiwan, R.O.C.

Trade Name : ALATECH

Model Number : CS012

FCC ID : YQOCS012

EUT Rated Voltage : DC 3V

Test Voltage : DC 3V

Applicable Standard : FCC 47 CFR PART 15 SUBPART C: Oct., 2013

ANSI C63.4:2009

Test Result : Complied

Performing Lab. : A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City,

Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

http://www.atl-lab.com.tw/e-index.htm

The above equipment was tested by A Test Lab Techno Corp. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2009 and the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample identified in this report.

Approved By

L M

(Manager) (Fly Lu) (Testing Engineer) (Eric Ou Yang)



# **TABLE OF CONTENTS**

| 1 | Gen  | eral information                                     | 6  |
|---|------|------------------------------------------------------|----|
| 2 | EUT  | Description                                          | 7  |
| 3 | Test | Methodology                                          | 8  |
|   | 3.1. | Mode of Operation                                    | 8  |
|   | 3.2. | EUT Exercise Software                                | 8  |
|   | 3.3. | Configuration of Test System Details                 | 9  |
|   | 3.4. | Test Site Environment                                | 9  |
| 4 | Radi | iated Emission Measurement                           | 10 |
|   | 4.1. | Limit                                                | 10 |
|   | 4.2. | Test Instruments                                     | 10 |
|   | 4.3. | Setup                                                | 11 |
|   | 4.4. | Test Procedure                                       | 12 |
|   | 4.5. | Test Result                                          | 14 |
| 5 | Max  | imum Conducted Output Power Measurement              | 17 |
|   | 5.1. | Limit                                                | 17 |
|   | 5.2. | Test Setup                                           | 17 |
|   | 5.3. | Test Instruments                                     | 17 |
|   | 5.4. | Test Procedure                                       | 17 |
|   | 5.5. | Test Result                                          | 18 |
| 6 | 6dB  | RF Bandwidth and 99 % Occupied Bandwidth Measurement | 19 |
|   | 6.1. | Limit                                                | 19 |
|   | 6.2. | Test Setup                                           | 19 |
|   | 6.3. | Test Instruments                                     | 19 |
|   | 6.4. | Test Procedure                                       | 19 |
|   | 6.5. | Test Result                                          | 20 |
|   | 6.6. | Test Graphs                                          | 21 |
| 7 | Maxi | imum Power Density Measurement                       | 23 |
|   | 7.1. | Limit                                                | 23 |
|   | 7.2. | Test Setup                                           | 23 |
|   | 7.3. | Test Instruments                                     | 23 |
|   | 7.4. | Test Procedure                                       | 23 |
|   | 7.5. | Test Result                                          | 24 |
|   | 7.6. | Test Graphs                                          | 25 |

| 8  | Out c | of Band Conducted Emissions Measurement | 26 |
|----|-------|-----------------------------------------|----|
|    | 8.1.  | Limit                                   | 26 |
|    | 8.2.  | Test Setup                              | 26 |
|    | 8.3.  | Test Instruments                        | 26 |
|    |       | Test Procedure                          |    |
|    | 8.5.  | Test Graphs                             | 27 |
|    |       | I Edges Measurement                     |    |
|    | 9.1.  | Limit                                   | 30 |
|    | 9.2.  | Test Setup                              | 30 |
|    | 9.3.  | Test Instruments                        | 30 |
|    | 9.4.  | Test Procedure                          | 31 |
|    | 9.5.  | Test Result                             | 32 |
| 10 | Ante  | nna Measurement                         | 33 |
|    | 10.1. | Limit                                   | 33 |
|    | 10.2. | Antenna Connector Construction          | 33 |

## 1 General Information

## 1.1 Summary of Test Result

| Standard<br>15.247 | ltem                                       | Result | Remark                              |  |
|--------------------|--------------------------------------------|--------|-------------------------------------|--|
| 15.207             | AC Power Conducted Emission                | N/A    | This device is powered by DC source |  |
|                    | 99 % Occupied Bandwidth                    | PASS   |                                     |  |
| Standard           | Item                                       | Result | Remark                              |  |
| 15.247             | item                                       | result |                                     |  |
| 15.247(d)          | Transmitter Radiated Emissions             | PASS   |                                     |  |
| 15.247(b)(3)       | Max. Output Power                          | PASS   |                                     |  |
| 15.247(a)(2)       | 6dB RF Bandwidth                           | PASS   |                                     |  |
| 15.247(e)          | Power Spectral Density                     | PASS   |                                     |  |
| 15.247(d)          | Out of Band Conducted Spurious<br>Emission | PASS   |                                     |  |
| 15.247(d)          | Band Edge Measurement                      | PASS   |                                     |  |
| 15.203             | Antenna Requirement                        | PASS   |                                     |  |

The test results of this report relate only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result.

## 1.2 Measurement Uncertainty

| Test Item           | Frequency Ra                | Uncertainty (dB) |        |
|---------------------|-----------------------------|------------------|--------|
| Conducted Emission  | 9kHz ~ 30MHz                |                  | ± 2.02 |
|                     | 30MHz ~ 1000MHz             | Horizontal       | ± 3.98 |
|                     | 30WH2 ~ 1000WH2             | Vertical         | ± 3.62 |
| Radiated Emission   | 1000MHz ~ 18000MHz          | Horizontal       | ± 3.11 |
| Radiated Effilssion |                             | Vertical         | ± 3.07 |
|                     | 18000MHz ~ 40000MHz         | Horizontal       | ± 3.66 |
|                     | 10000IVII 12 * 40000IVII 12 | Vertical         | ± 3.54 |



# 2 **EUT Description**

| Product Type    | Dual Mode Heart Rate Strap                                                                                          |
|-----------------|---------------------------------------------------------------------------------------------------------------------|
| Trade Name      | ALATECH                                                                                                             |
| Model No.       | CS012                                                                                                               |
| Applicant       | ALATECH Technology Limited Co. 39F., No.758, Jungming S. RD. Taichung, Taiwan, R.O.C                                |
| Manufacturer    | ZHEJIANG ALA FITNESS TECHNOLOGY LTD<br>NO.99 GUANGHUA ROAD, TONGXIANG ECONOMIC DEVELOPMENT ZONE,<br>ZHEJIANG, CHINA |
| FCC ID          | YQOCS012                                                                                                            |
| Frequency Range | Bluetooth v4.0 LE: 2402 ~ 2480 MHz                                                                                  |
| Modulation Type | GFSK                                                                                                                |
| Antenna Type    | PCB Antenna                                                                                                         |
| Antenna Gain    | 1.08 dBi                                                                                                            |
| RF Output Power | 0.0005 W / -3.29 dBm                                                                                                |

## 3 Test Methodology

#### 3.1. Mode of Operation

Decision of Test ATL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

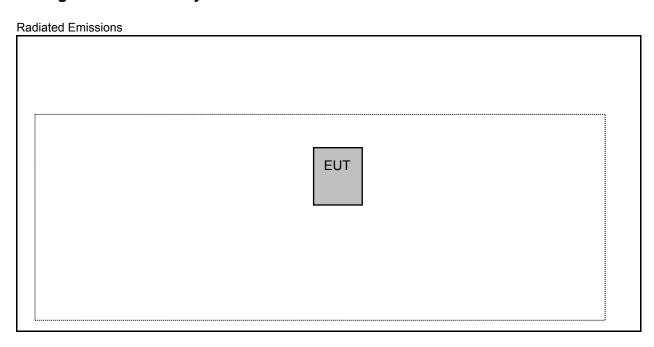
| Test    | N A  |       | ۱. |
|---------|------|-------|----|
| 1 2 5 1 | 11// | 16 16 | 16 |
|         |      |       |    |

Mode 1: Normal Operation Mode

Mode 2: Bluetooth v4.0 LE Link Mode


Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.


By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

#### 3.2. EUT Exercise Software

- 1. Setup the EUT shown on 3.3.
- 2. Turn on the power of all equipment.
- 3. Turn on Bluetooth function link to CBT
- 4. EUT run test program.
- 5 Start to test



# 3.3. Configuration of Test System Details



### 3.4. Test Site Environment

| Items                      | Required (IEC 60068-1) | Actual |  |
|----------------------------|------------------------|--------|--|
| Temperature (°C)           | 15-35                  | 26     |  |
| Humidity (%RH)             | 25-75                  | 60     |  |
| Barometric pressure (mbar) | 860-1060               | 950    |  |

### 4 Radiated Emission Measurement

#### **4.1. Limit**

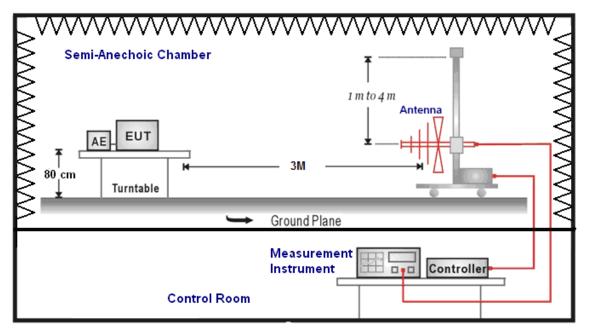
According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency     | Field Strength  | Measurement Distance |
|---------------|-----------------|----------------------|
| (MHz)         | (μV/m at meter) | (meters)             |
| 0.009 - 0.490 | 2400 / F (kHz)  | 300                  |
| 0.490 – 1.705 | 24000 / F (kHz) | 30                   |
| 1.705 – 30.0  | 30              | 30                   |
| 30 - 88       | 100**           | 3                    |
| 88-216        | 150**           | 3                    |
| 216-960       | 200**           | 3                    |
| Above 960     | 500             | 3                    |

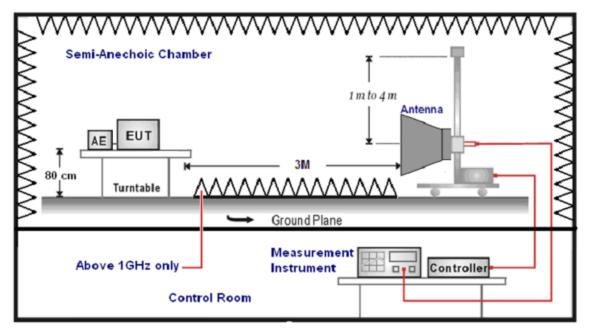
<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

### 4.2. Test Instruments

| 3 Meter Chamber                   |                                |              |               |            |        |  |  |  |
|-----------------------------------|--------------------------------|--------------|---------------|------------|--------|--|--|--|
| Equipment                         | Manufacturer                   | Model Number | Serial Number | Cal. Date  | Remark |  |  |  |
| RF Pre-selector                   | Agilent                        | N9039A       | MY46520256    | 01/10/2014 | (1)    |  |  |  |
| Spectrum Analyzer                 | Agilent                        | E4446A       | MY46180578    | 01/10/2014 | (1)    |  |  |  |
| Pre Amplifier                     | Agilent                        | 8449B        | 3008A02237    | 02/21/2014 | (1)    |  |  |  |
| Pre Amplifier                     | Agilent                        | 8447D        | 2944A10961    | 02/21/2014 | (1)    |  |  |  |
| Broadband Antenna<br>(30MHz~1GHz) | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163     | 9163-270      | 07/22/2014 | (1)    |  |  |  |
| Horn Antenna<br>(1~18GHz)         | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA9120D    | 9120D-550     | 06/11/2014 | (1)    |  |  |  |
| Horn Antenna<br>(18~40GHz)        | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA9170     | 9170-320      | 07/02/2014 | (1)    |  |  |  |
| Loop Antenna                      | COM-POWER<br>CORPORATION       | AL-130       | 121014        | 01/28/2014 | (3)    |  |  |  |
| Test Site                         | ATL                            | TE01         | 888001        | 08/28/2014 | (1)    |  |  |  |


Remark: (1) Calibration period 1 year. (2) Calibration period 2 years. (3) Calibration period 3 years.

Note: N.C.R. = No Calibration Request.




## 4.3. Setup

Below 1GHz



Above 1GHz



#### 4.4. Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 9 kHz to 26.5 GHz is investigated.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna (mode VULB9163) at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna (model BBHA9120D&9170) was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20dB/decade).

For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

- (1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)
  - FI= Reading of the field intensity.
  - AF= Antenna factor.
  - CL= Cable loss.
  - P.S Amplitude is auto calculate in spectrum analyzer.
- (2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)
  - The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:
  - (a) For fundamental frequency: Transmitter Output < +30dBm
  - (b) For spurious frequency: Spurious emission limits = fundamental emission limit /10

Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

### 4.5. Test Result

#### Below 1GHz

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: DC 3V

Model Number: CS012 Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60%RH

Mode: 1 Date: 10/10/2014

Test By: Eric Ou Yang

| Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark | Ant.Polar. |
|-----------|---------|----------------|----------|----------|--------|--------|------------|
| (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        | H/V        |
| 145.0000  | 23.28   | -11.95         | 11.33    | 43.50    | -32.17 | QP     | Н          |
| 261.0000  | 22.04   | -11.71         | 10.33    | 46.00    | -35.67 | QP     | Н          |
| 398.5000  | 24.06   | -8.23          | 15.83    | 46.00    | -30.17 | QP     | Н          |
| 548.5000  | 23.74   | -5.48          | 18.26    | 46.00    | -27.74 | QP     | Н          |
| 696.5000  | 23.70   | -2.45          | 21.25    | 46.00    | -24.75 | QP     | Н          |
| 844.5000  | 23.09   | 0.51           | 23.60    | 46.00    | -22.40 | QP     | Н          |
| 156.0000  | 24.84   | -11.71         | 13.13    | 43.50    | -30.37 | QP     | V          |
| 288.5000  | 22.32   | -10.58         | 11.74    | 46.00    | -34.26 | QP     | V          |
| 404.0000  | 23.71   | -8.12          | 15.59    | 46.00    | -30.41 | QP     | V          |
| 549.0000  | 24.74   | -5.47          | 19.27    | 46.00    | -26.73 | QP     | V          |
| 710.0000  | 25.03   | -2.15          | 22.88    | 46.00    | -23.12 | QP     | V          |
| 827.0000  | 23.52   | 0.21           | 23.73    | 46.00    | -22.27 | QP     | V          |

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kH~30MHz).

CS012

Report Number: 1410FR18

26(°C)/60%RH

#### **Above 1GHz**

Model Number:

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: DC 3V

Mode: 2 Date: 10/10/2014

Frequency: 2402MHz Test By: Eric Ou Yang

| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct Factor (dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark | Ant.Polar.<br>H / V |
|--------------------|-------------------|-----------------------|--------------------|-------------------|----------------|--------|---------------------|
| 3023.000           | 37.04             | -0.14                 | 36.90              | 74.00             | -37.10         | peak   | Н                   |
| 4591.000           | 34.20             | 4.43                  | 38.63              | 74.00             | -35.37         | peak   | Н                   |
| 6705.000           | 33.94             | 10.05                 | 43.99              | 74.00             | -30.01         | peak   | Н                   |
| 3079.000           | 38.36             | 0.02                  | 38.38              | 74.00             | -35.62         | peak   | V                   |
| 4549.000           | 35.12             | 4.33                  | 39.45              | 74.00             | -34.55         | peak   | V                   |
| 6677.000           | 33.87             | 9.97                  | 43.84              | 74.00             | -30.16         | peak   | V                   |

Temp.(°C)/Hum.(%RH):

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: DC 3V

Model Number: CS012 Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60%RH

Mode: 2 Date: 10/10/2014

Frequency: 2442MHz Test By: Eric Ou Yang

| i roquonoj. |         |                |          | root by. |        | Liio oa ii | ag         |
|-------------|---------|----------------|----------|----------|--------|------------|------------|
| Frequency   | Reading | Correct Factor | Result   | Limit    | Margin | Remark     | Ant.Polar. |
| (MHz)       | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |            | H/V        |
| 3023.000    | 34.77   | -0.14          | 34.63    | 74.00    | -39.37 | peak       | Н          |
| 4570.000    | 33.25   | 4.38           | 37.63    | 74.00    | -36.37 | peak       | Н          |
| 6670.000    | 32.03   | 9.95           | 41.98    | 74.00    | -32.02 | peak       | Н          |
|             | 1       | 1              | 1        | 1        |        |            | 1          |
| 3030.000    | 34.76   | -0.11          | 34.65    | 74.00    | -39.35 | peak       | V          |
| 4598.000    | 33.45   | 4.45           | 37.90    | 74.00    | -36.10 | peak       | V          |
| 6698.000    | 31.37   | 10.03          | 41.40    | 74.00    | -32.60 | peak       | V          |

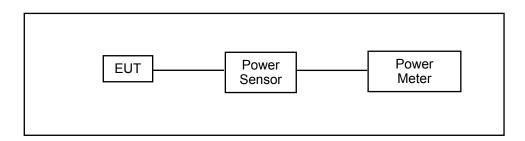
Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: DC 3V

Model Number: CS012 Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60%RH

Mode: 2 Date: 10/10/2014

Frequency: 2480MHz Test By: Eric Ou Yang


| i requericy.       | 2400              | JIVII IZ              |                    | iest by.          | Liic Ou 1      |        | ariy                |
|--------------------|-------------------|-----------------------|--------------------|-------------------|----------------|--------|---------------------|
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct Factor (dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark | Ant.Polar.<br>H / V |
| (1711 12)          | (dDdv)            | (dD/III)              | (dDd V/III)        | (abaviii)         | (GD)           |        | 117 V               |
| 3009.000           | 34.33             | -0.17                 | 34.16              | 74.00             | -39.84         | peak   | Н                   |
| 4591.000           | 31.66             | 4.43                  | 36.09              | 74.00             | -37.91         | peak   | Н                   |
| 6677.000           | 31.31             | 9.97                  | 41.28              | 74.00             | -32.72         | peak   | Н                   |
|                    |                   | 1                     | 1                  | 1                 |                |        | 1                   |
| 2995.000           | 34.92             | -0.22                 | 34.70              | 74.00             | -39.30         | peak   | V                   |
| 4577.000           | 32.75             | 4.39                  | 37.14              | 74.00             | -36.86         | peak   | V                   |
| 6663.000           | 31.83             | 9.94                  | 41.77              | 74.00             | -32.23         | peak   | V                   |
|                    |                   |                       |                    |                   |                |        |                     |

## 5 Maximum Conducted Output Power Measurement

#### **5.1.** Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm.

#### 5.2. Test Setup



#### 5.3. Test Instruments

| Equipment                         | Manufacturer | Model Number | Serial Number | Cal. Date  | Remark |
|-----------------------------------|--------------|--------------|---------------|------------|--------|
| Single Channel PK<br>Power Sensor | Agilent      | N1911A       | MY45101619    | 12/21/2013 | (1)    |
| Wideband Power<br>Meter           | Agilent      | N1921A       | MY45241957    | 12/21/2013 | (1)    |
| Test Site                         | ATL          | TE05         | TE05          | N.C.R.     |        |

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years. (3) Calibration period 3 years.

Note: N.C.R. = No Calibration Request.

#### 5.4. Test Procedure

The tests below are run with the EUT's transmitter set at high power in TX mode. The EUT is needed to force selection of output power level and channel number. While testing, EUT was set to transmit continuously. Remove the Subjective device's antenna and connect the RF output port to power sensor. The maximum peak output power shall not exceed 1 watt.

Use a direct connection between the antenna port of transmitter and the power sensor, for prevent the power sensor input attenuation 40-50 dB. Set the RBW Bandwidth of the emission or use a channel power meter mode.

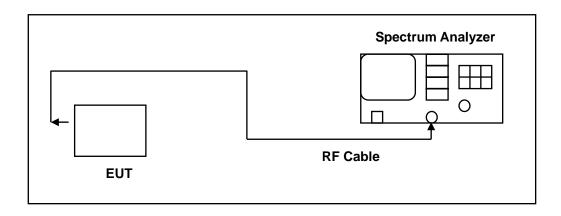
For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt (+30 dBm). For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6)/3 dBm.

The antenna port of the EUT was connected to the input of a power sensor. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.



## 5.5. Test Result

| Model Number | CS012                               |                                |        |            |        |       |  |
|--------------|-------------------------------------|--------------------------------|--------|------------|--------|-------|--|
| Test Item    | Maximum Cond                        | Maximum Conducted Output Power |        |            |        |       |  |
| Test Mode    | Mode 2: Bluetooth v4.0 LE Link Mode |                                |        |            |        |       |  |
| Date of Test | 10/10/2014                          | 10/10/2014 Test Site TE05      |        |            |        |       |  |
| Frequency    | Data Rate                           | Average Power                  |        | Peak Power |        | Limit |  |
| (MHz)        | Dala Rale                           | (dBm)                          | (W)    | (dBm)      | (W)    | (dBm) |  |
| 2402         |                                     | -3.55                          | 0.0004 | -3.29      | 0.0005 | < 30  |  |
| 2442         |                                     | -3.78                          | 0.0004 | -3.49      | 0.0004 | < 30  |  |
| 2480         |                                     | -3.62                          | 0.0004 | -3.32      | 0.0005 | < 30  |  |


## 6 6dB RF Bandwidth and 99 % Occupied Bandwidth Measurement

#### 6.1. Limit

6dB RF Bandwidth: Systems using digital modulation techniques may operate in the 2400–2483.5 MHz bands. The minimum 6 dB band-width shall be at least 500 kHz.

99 % Occupied Bandwidth: N/A

### 6.2. Test Setup



#### 6.3. Test Instruments

| Equipment         | Manufacturer | Model Number | Serial Number | Cal. Date  | Remark |
|-------------------|--------------|--------------|---------------|------------|--------|
| Spectrum Analyzer | Agilent      | E4445A       | MY45300744    | 12/19/2012 | (2)    |
| Test Site         | ATL          | TE05         | TE05          | N.C.R.     |        |

dRemark: (1) Calibration period 1 year. (2) Calibration period 2 years. (3) Calibration period 3 years.

Note: N.C.R. = No Calibration Request.

#### 6.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to DTS test procedure of KDB558074D01 for compliance to FCC 47CFR 15.247 requirements.

6dB RF Bandwidth: The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A peak output reading was taken, a DISPLAY line was drawn 6 dB lower than peak level. The 6 dB bandwidth was determined from where the channel output spectrum intersected the display line.

The test was performed at 3 channels (Channel low, middle, high)

99 % Occupied Bandwidth: The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded.



## 6.5. Test Result

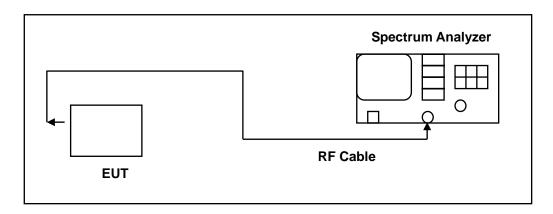

| Model Number       | CS012                               |                                            |       |               |  |  |  |
|--------------------|-------------------------------------|--------------------------------------------|-------|---------------|--|--|--|
| Test Item          | 6dB RF Bandwidth & 99 % Occ         | 6dB RF Bandwidth & 99 % Occupied Bandwidth |       |               |  |  |  |
| Test Mode          | Mode 2: Bluetooth v4.0 LE Link Mode |                                            |       |               |  |  |  |
| Date of Test       | 10/10/2014                          | Test Site                                  | TE05  |               |  |  |  |
| Frequency<br>(MHz) | 6dB Bandwidth<br>(kHz)              | 99% Occupied Bandwidth (MHz)               |       | _imit<br>kHz) |  |  |  |
| 2402               | 792.50                              | 1.5080                                     | > 500 |               |  |  |  |
| 2442               | 571.90                              | 1.2741                                     | > 500 |               |  |  |  |
| 2480               | 569.00                              | 1.0616                                     | >     | 500           |  |  |  |



### 6.6. Test Graphs

6dB RF Bandwidth






## 7 Maximum Power Density Measurement

#### **7.1. Limit**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

### 7.2. Test Setup



#### 7.3. Test Instruments

| Equipment         | Manufacturer | Model Number | Serial Number | Cal. Date  | Remark |
|-------------------|--------------|--------------|---------------|------------|--------|
| Spectrum Analyzer | Agilent      | E4445A       | MY45300744    | 12/19/2012 | (2)    |
| Test Site         | ATL          | TE05         | TE05          | N.C.R.     |        |

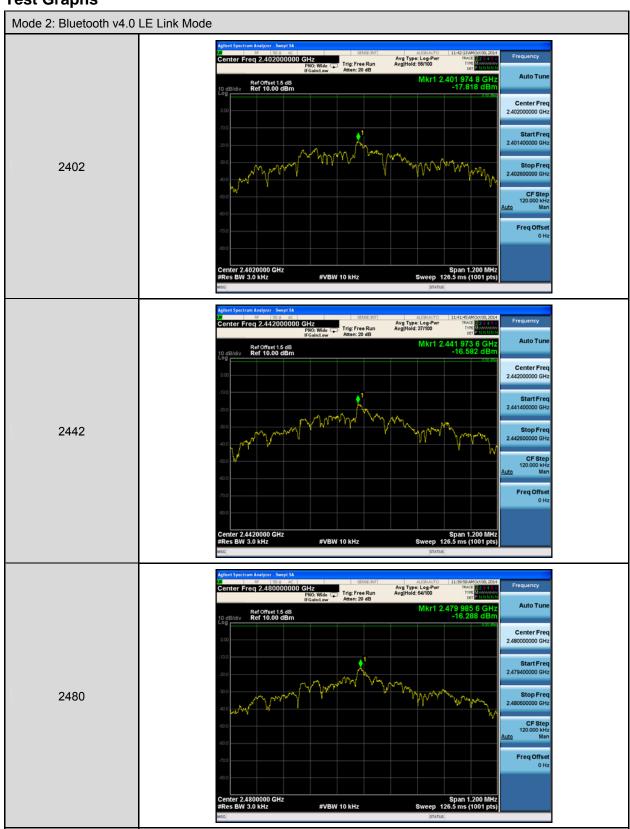
Remark: (1) Calibration period 1 year. (2) Calibration period 2 years. (3) Calibration period 3 years.

Note: N.C.R. = No Calibration Request.

#### 7.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to DTS test procedure of KDB558074D01 for compliance to FCC 47CFR 15.247 requirements.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to:  $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$ .
- 4. Set the VBW  $\geq$  3  $\times$  RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

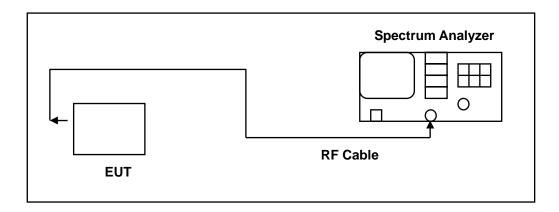



## 7.5. Test Result

| Model Number       | CS012                               |           |                |  |  |
|--------------------|-------------------------------------|-----------|----------------|--|--|
| Test Item          | Maximum Power Density               |           |                |  |  |
| Test Mode          | Mode 2: Bluetooth v4.0 LE Link Mode |           |                |  |  |
| Date of Test       | 10/10/2014                          | Test Site | TE05           |  |  |
| Frequency<br>(MHz) | Reading<br>(dBm/3KHz)               |           | Limit<br>(dBm) |  |  |
| 2402               | -17.818                             |           | < 8            |  |  |
| 2442               | -16.582                             |           | < 8            |  |  |
| 2480               | -16.288                             |           | < 8            |  |  |



## 7.6. Test Graphs




### 8 Out of Band Conducted Emissions Measurement

#### **8.1. Limit**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

### 8.2. Test Setup



#### 8.3. Test Instruments

| Equipment         | Manufacturer | Model Number | Serial Number | Cal. Date  | Remark |
|-------------------|--------------|--------------|---------------|------------|--------|
| Spectrum Analyzer | Agilent      | E4445A       | MY45300744    | 12/19/2012 | (2)    |
| Spectrum Analyzer | Agilent      | E4408B       | MY45107753    | 07/24/2014 | (1)    |
| Test Site         | ATL          | TE05         | TE05          | N.C.R.     |        |

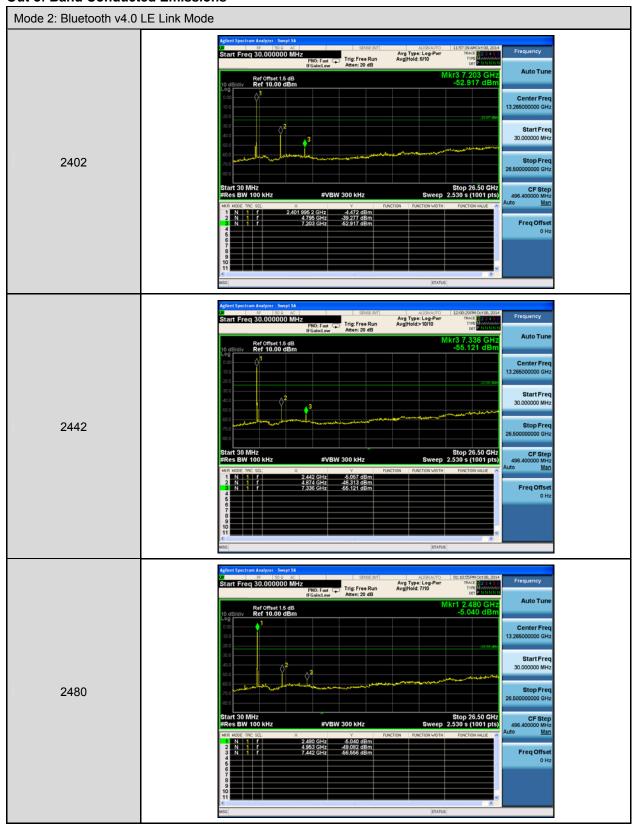
Remark: (1) Calibration period 1 year. (2) Calibration period 2 years. (3) Calibration period 3 years.

Note: N.C.R. = No Calibration Request.

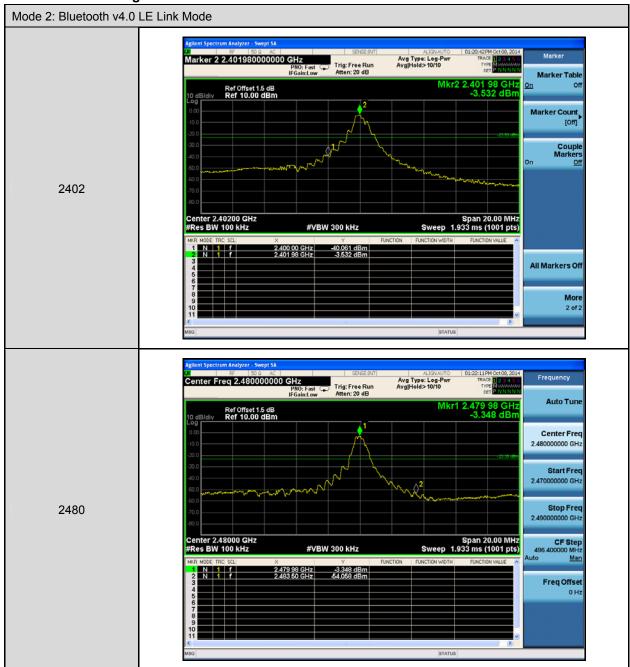
#### 8.4. Test Procedure

In any 100 kHz bandwidth outside the EUT pass band, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function. All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the pass band. The test was performed at 3 channels.




# 8.5. Test Graphs

#### Reference level

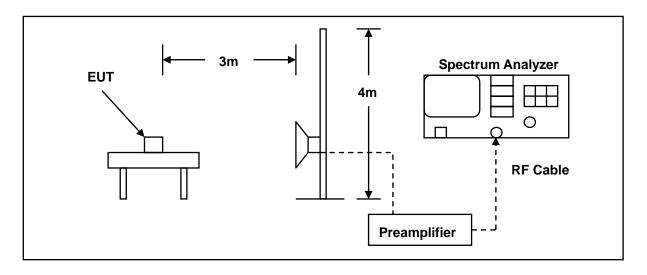





#### **Out of Band Conducted Emissions**



### **Conducted Band Edge**




## 9 Band Edges Measurement

#### 9.1. **Limit**

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

## 9.2. Test Setup



### 9.3. Test Instruments

| 3 Meter Chamber           |                                |              |               |            |        |  |
|---------------------------|--------------------------------|--------------|---------------|------------|--------|--|
| Equipment                 | Manufacturer                   | Model Number | Serial Number | Cal. Date  | Remark |  |
| RF Pre-selector           | Agilent                        | N9039A       | MY46520256    | 01/10/2014 | (2)    |  |
| Spectrum Analyzer         | Agilent                        | E4446A       | MY46180578    | 01/10/2014 | (1)    |  |
| Pre Amplifier             | Agilent                        | 8449B        | 3008A02237    | 02/21/2014 | (1)    |  |
| Pre Amplifier             | Agilent                        | 8447D        | 2944A10961    | 02/21/2014 | (1)    |  |
| Horn Antenna<br>(1~18GHz) | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA9120D    | 9120D-550     | 06/11/2014 | (1)    |  |
| Test Site                 | ATL                            | TE01         | 888001        | 08/28/2014 | (1)    |  |

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years. (3) Calibration period 3 years.

Note: N.C.R. = No Calibration Request.

#### 9.4. Test Procedure

The EUT was setup to ANSI C63.4, 2009; tested to DTS test procedure of KDB558074D01 for compliance to FCC 47CFR 15.247 requirements.

The emissions on the harmonics frequencies, the limits, and the margin of compliance are presented. These tests were made when the transmitter was in full radiated power. The additional test was performed to show compliance with the requirement at the band-edge frequency 2483.5 MHz and up to 2500 MHz and at 2390.0 MHz.

The transmitter was configured with the worst case antenna and setup to transmit at the highest channel. Then the field strength was measured at 2483.5 MHz.

The transmitter was then configured with the worst case antenna and setup to transmit at the lowest channel. Then the field strength was measured at 2390.0 MHz. These tests were performed at 4 different bit rates.

For measurements the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

#### 9.5. Test Result

Standard:

Standard: FCC Part 15C Test Distance: 3m DC 3V Test item: Radiated Emission Power: CS012 Model Number: Temp.(°C)/Hum.(%RH): 26(°C)/60%RH Mode: 2 Date: 10/10/2014 Frequency: 2402 MHz Test By: Eric Ou Yang Correct Factor Limit Ant.Polar. Frequency Reading Result Margin Remark (dB/m) (dBuV/m) H/V(MHz) (dBuV) (dBuV/m) (dB) 2386.670 40.16 -1.97 38.19 74.00 -35.81 peak Н 2390.000 38.03 -1.94 36.09 74.00 -37.91 peak Н 2332.000 40.22 -2.20 38.02 74.00 -35.98 V peak V 2390.000 37.78 -1.94 35.84 74.00 -38.16 peak

Test item: Radiated Emission DC 3V Power: Model Number: CS012 Temp.(°C)/Hum.(%RH): 26(°C)/60%RH Mode: 2 10/10/2014 Date: Frequency: 2480 MHz Test By: Eric Ou Yang Frequency Reading Correct Factor Result Limit Margin Remark Ant.Polar. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) H/V2483.500 38.68 -1.5237.16 74.00 -36.84 peak Η

Test Distance:

3m

FCC Part 15C

2492.580 40.65 -1.48 39.17 74.00 -34.83 Н peak 2483.500 38.25 -1.52 36.73 74.00 -37.27 V peak 2484.360 39.89 74.00 V -1.51 38.38 -35.62 peak

### 10 Antenna Measurement

#### 10.1.Limit

For intentional device, according to 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And According to 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### **10.2.Antenna Connector Construction**

The antenna used in this product is PCB Antenna. And the maximum Gain of this antenna is 1.08 dBi.