M10 User Manual

Contents

Contents	. 1
0. Revision history	. 4
1. Introduction	. 5
1.1. Reference	. 5
2. Product Concept	. 6
3. Placement	. 8
3.1. Pin Assignment	8
3.2. Placement recommendation	15
3.3. Placement clearance	15
4. Digital I/O Connection	17
5. VDD_EXT Pin	18
6. Serial Interface and Debug Interface	19
7. SIM Card	20
8. SLEEP Mode	21
9. Audio Trace	22
10. RF Design Guide	23
10.1. Recommended Impedance Matching Circuit	23
10.2. Matched RF Transmission Line Design	24
10.3. PCB Layout Consideration	24
11. The Recommended Ramp-soak-spike Reflow Profile	28

Table Index

Figure Index

FIGURE 1: PIN ASSIGNMENT	9
FIGURE 2: RECOMMENDATION OF PLACEMENT	15
FIGURE 3: PLACEMENT CLEARANCE	16
FIGURE 4: CIRCUIT OF THE SIM CARD	20
FIGURE 5: A UDIO TRACE ROUTING EXAMPLE	22
FIGURE 6: T-T YPE MATCHING CIRCUIT	23
FIGURE 7: П-Т YPE MATCHING CIRCUIT	23
FIGURE 8: M10 RF_ANT PCB LAYOUT	24
FIGURE 9: REFERENCE PCB DESIGN WITH ANTENNA PAD IN A FOUR-LAYER PCB	
FIGURE 10: REFERENCE PCB DESIGN WITH RF CONNECTOR IN A FOUR-LAYER PCB	27
FIGURE 11: STACK-UP OF THE FOUR-LAYER PCB	27
FIGURE 12: THE RECOMMENDED RAMP-SOAK-SPIKE REFLOW P ROFILE	

0. Revision history

Revision	Date	Author	Description of change
1.00		Ken Ji/	Origin
		Samuel Hong	

1. Introduction

This document gives recommendation for M10 module integration in a wireless application, such as vehicle tracking system, smart metering and PDA. It gives some recommendations for design notes, reference circuit and PCB layout.

The M10 is a Quad-band GSM/GPRS engine that works at frequencies of GSM850, and PCS1900. M10 features GPRS and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4.

With a tiny profile of $29\text{mm} \times 29\text{mm} \times 3.6$ mm, the module can meet almost all the requirements for M2M applications, including Tracking and Tracing, Intelligent Instrument, Wireless POS, Security, Telematics, Remote Controlling, etc.

M10 is an SMD type module, which can be embedded in customer application through its 64-pin pads. It provides all hardware interfaces between the module and customer's host board.

1.1. Reference

2. Product Concept

The M10 is a Quad-band GSM/GPRS engine that works at frequency bands of GSM850 and PCS 1900. The M10 features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4.

The M10 is an SMD type module with 64-pin pads and a tiny profile of 29mm x 29mm x 3.6 mm (the thickness of PCB is 1.6mm), which can fit into almost all customers' applications. It provides all hardware interfaces between the module and customer' host board.

- External controller can communicate with M10 through its main UART port.
- Two audio channels include two microphone inputs and two speaker outputs, which can be easily configured by AT command.

The module is designed with power saving technique so that the current consumption could be very low.

TCP/IP protocol stack has been integrated in the module. Moreover, extended TCP/IP AT commands have been developed for customer to use the internal TCP/IP protocol easily, which is very useful for data transfer application.

The module is fully RoHS compliant to EU regulation.

Mechanical dimensions of module

M10 top and side dimensions (Unit: mm)

M10 bottom dimensions (Unit: mm)

3. Placement

Please pay attention to the placement and the PCB layout in your application design.

3.1. Pin Assignment

The pin assignment of the M10 module is shown in Figure 1. Placement of module should be carefully considered to make the RF_IN pad as close as possible to antenna so as to reduce overall RF trace length. The longer the RF trace to antenna, the larger the RF insertion loss. In addition, please keep RF part and antenna from the system crystal and the audio part in host board as far as possible to reduce possible RF interference due to GSM transmission bursts from antenna and RF trace.

M10 module include the following major functional parts:

- □ The GSM baseband part
- □ Flash and SRAM
- □ The GSM radio frequency part
- \Box The SMT pads interface
- -LCD interface
- -SIM card interface
- -Audio interface
- -Key-board interface
- -Power supply
- -RF interface

Figure 1: Pin assignment

PIN NO.	PIN NAME	I/O	PIN NO.	PIN NAME	I/O
1	DISP_DATA	I/O	2	DISP_CLK	0
3	DISP_CS	0	4	DISP_D/C	0
5	DISP_RST	0	6	NETLIGHT	0
7	VDD_EXT	0	8	GND1	
9	DBG_RXD	I	10	DBG_TXD	0
11	SIM_PRESENCE	I	12	SIM_VDD	0
13	SIM_DATA	I/O	14	SIM_CLK	0
15	SIM_RST	0	16	VRTC	I/O
17	EMERG_OFF	I	18	PWRKEY	I
19	AGND	0	20	SPK2P	0
21	SPK1N	0	22	SPK1P	0
23	MIC1P	I	24	MICIN	I
25	MIC2P	I	26	MIC2N	I
27	LIGHT_MOS	0	28	KBR0	0
29	KBR1	0	30	KBR2	0
31	KBR3	0	32	KBR4	0
33	KBC0	I	34	KBC1	I
35	KBC2	I	36	KBC3	I
37	KBC4	I	38	GPIO1_KBC5	I/O
39	BUZZER	0	40	TEMP_BAT	I
41	ADC0	I	42	GND2	
43	RF_ANT	I/O	44	GND3	
45	GND4		46	GND5	
47	GND6		48	GND7	
49	GND8		50	VBAT1	I
51	VBAT2	I	52	VBAT3	I
53	VCHG ⁽¹⁾	I	54	STATUS	0
55	RI	0	56	DCD	0
57	CTS	0	58	RTS	I

59	DTR	I		60	TXD	0
61	RXD	I		62	TXD3	0
63	RXD3	I	1	64	GPIO0	I/O

Note: Please keep all reserved pins open.

(1): This function is not supported in the default hardware configuration.

Power supply	Power supply						
PIN NAME	I/O	DESCRIPTION	DC	COMMENT			
			CHARACTERISTICS				
VBAT	Ι	Module main power supply.	Vmax= 4.5V				
		The power supply of module	Vmin=3.4V				
		has to be a single voltage	Vnorm=4.0V				
		source of VBAT=3.4V~4.5V.					
		It must be able to provide					
		sufficient current in a					
		transmitting burst which					
		typically rises to 2A.					
VCHG	I	Voltage input for the	Vmax=6.5V	If unused, keep this			
		charging circuit	Vmin=1.1 * VBAT	pin open.			
			Vnorm=5.0V	Charging function is			
				not supported in			
				default.			
VRTC	I/O	Power supply for RTC when	VImax=VBAT	Recommend to			
		VBAT is not supplied for the	VImin=2.6V	connect to a backup			
		system.	VInorm=2.75V	battery or a golden			
		Charging for backup battery	VOmax=2.85V	capacitor.			
		or golden capacitor when the	VOmin=2.6V				
		VBAT is supplied.	VOnorm=2.75V				
			Iout(max)= 730uA				
			Iin=2.6~5 uA				

VDD_EXT	0	Supply 2.8V voltage for	Vmax=2.9V	1. If unused, keep this
		external circuit.	Vmin=2.7V	pin open.
			Vnorm=2.8V	2. Recommend to add
			Imax=20mA	a 2.2~4.7uF bypass
				capacitor, when using
				this pin for power
				supply.
GND		Digital ground		
Power on or p	ower	off		
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
PWRKEY	I	Power on/off key. PWRKEY	VILmax=0.3*VBAT	Pull up to VBAT
		should be pulled down for a	VIHmin=0.7*VBAT	Internally.
		moment to turn on or turn off	VImax=VBAT	
		the system.		
Emergency sh	utdov	r n		
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
EMERG_	Ι	Emergency off. Pulled down	VILmax=0.4V	Open drain/collector
OFF		for at least 20ms will turn off	VIHmin=2.2V	driver required in
		the module in case of	V _{open} max=2.8V	cellular device
		emergency. Use it only when		application.
		normal shutdown through		If unused, keep this
		PWRKEY or AT command		pin open.
		can't perform well.		

Module status indication						
PIN NAME	I/O	DESCRIPTION	DC	COMMENT		
			CHARACTERISTICS			
STATUS	0	Used to indicate module	VOLmin=GND	If unused, keep this		
		operating status. High level	VOLmax=0.34V	pin open.		
		indicates module power-on	VOHmin=2.0V			
		and low level indicates	VOHmax= VDD_EXT			
		power-down.				
Audio interfa	ces					
PIN NAME	I/O	DESCRIPTION	DC	COMMENT		
			CHARACTERISTICS			
MIC1P	Ι	Positive and negative	Audio DC	If unused, keep these		
MIC1N		voice-band input	Characteristics refer to	pins open		
			Chapter 3.10.			
MIC2P	I	Auxiliary positive and				
MIC2N		negative voice-band input				
SPK1P	0	Positive and negative		If unused, keep these		
SPK1N		voice-band output		pins open		

SPK2P	0	Auxiliary positive		If unused, keep this
		voice-band output		pin open.
AGND		AGND is separate ground		If unused, keep this
		connection for external audio		pin open.
		circuits.		
BUZZER	0	Buzzer output		If unused, keep this
				pin open
General purp	ose inj	out/output		
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
KBC0~	I	Keypad interface	VILmin=0V	If unused, keep these
KBC4			VILmax=0.67V	pins open
KBR0~	0		VIHmin=1.7V	Pull up to VDD_EXT,
KBR4			VIHmax=	if unused, keep these
			VDD_EXT+0.3	pins open
DISP_DATA	I/O	LCD display interface	VOLmin=GND	If unused, keep these
DISP_CLK	0		VOLmax=0.34V	pins open
DISP_CS	0		VOHmin=2.0V	
DISP_D/C	0		VOHmax= VDD_EXT	
DISP_RST	0			
NETLIGHT	0	Network status indication		If unused, keep these
GPIO0	I/O	Normal input/output port		pins open
GPIO1_	I/O	Normal input/output		
KBC5		port/Keypad interface		
LIGHT_	0	Open drain output port	Imax=100mA	If unused, keep this
MOS				pin open

Serial port						
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT		
DTR	I	Data terminal ready	VILmin=0V	If only use TXD,		
RXD	Ι	Receiving data	VILmax=0.67V	RXD and GND to		
TXD	0	Transmitting data	VIHmin=1.7V	communicate,		
RTS	Ι	Request to send	VIHmax=	recommend to keep		
CTS	0	Clear to send	VDD_EXT+0.3	other pins open.		
RI	0	Ring indicator	VOLmin=GND			
DCD	0	Data carrier detection	VOLmax=0.34V VOHmin=2.0V VOHmax= VDD_EXT			
Debug port		•				
DBG_TXD	0	Serial interface for debugging only.		If unused, keep these pins open		
DBG_RXD	I					

Serial port 3				
TXD3	0	Transmitting data	VILmin=0V	If unused, keep these
RXD3	Ι	Receiving data	VILmax=0.67V	pins open.
			VIHmin=1.7V	
			VIHmax=	
			VDD_EXT+0.3	
			VOLmin=GND	
			VOLmax=0.34V	
			VOHmin=2.0V	
			VOHmax= VDD_EXT	

SIM interface	,			
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
SIM_VDD	0	Voltage supply for SIM card	The voltage can be	All signals of SIM
			selected by software	interface should be
			automatically. Either	protected against ESD
			1.8V or 3V.	with a TVS diode
SIM_DATA	I/O	SIM data	VIHmin=0.7*SIM_VD	array.
SIM_CLK	0	SIM clock	D	Maximum cable
SIM_RST	0	SIM reset	VOHmin=0.8*SIM_VD	length 200mm from
			D	the module pad to
			VOLmax=0.4V	SIM card holder.
			When SIM_VDD=3V	
			VILmax=0.4V	
			When SIM_VDD=1.8V	
			VILmax=0.2*	
			SIM_VDD	
			VOHmin=0.9*SIM_VD	
			D	
			When SIM_VDD=3V	
			VOLmax=0.4V	
			When SIM_VDD=1.8V	
			VOLmax=0.2*	
			SIM_VDD	
SIM_PRESE	I	SIM card detection	VILmax=0.67V	If unused, keep this
NCE			VIHmin=1.7V	pin open.

AUXADC				
PIN NAME	I/O	DESCRIPTION	DC	COMMENT
			CHARACTERISTICS	
ADC0	I	General purpose analog to digital converter.	voltage range: 0V to 2.8V	If unused, keep this pin open
TEMP_BAT	Ι	ADC input for battery	voltage range: 0V to	NTC should be

	RF interface		temperature over NTC resistor.	2.8V	installed inside or near battery pack to deliver temperature values. If unused keep this pin open.
	PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT
ĺ	RF_ANT	I/O	RF antenna pad	impedance of 50Ω	

3.2. Placement recommendation

The analog part components such as microphone should be placed far away from antenna and power supply. General placement recommendation is shown in Figure 2.

Figure 2: Recommendation of placement

3.3. Placement clearance

The module mounts with 64 SMT pads. For easy maintenance of this module and accessing to these pads, please keep a distance no less than 3mm between M10 and other components.

Figure 3: Placement clearance

4. Digital I/O Connection

If the voltage level of peripheral interface circuit does not match module interface, the power consumption of the system could increase, and could even cause the module damaged.

• Each digital I/O of the module operates in a 2.8V logic level inside the module. The voltage level of those digital interfaces connected to the module should match the electrical characteristics of the module listed in Table 2. Otherwise, a level shifter circuit must be inserted between the host and the module.

SYMBOL	MIN	MAX	UNITS
Vil	0	0.67	V
Vih	1.7	3.1	V
Vol	0	0.34	V
Voh	2.0	2.8	V

Table 1: Digital I/O electrical characteristics

• For direct connection between I/Os, please pay attention to I/Os' input or output configuration. If the I/O direction configuration conflicts with each other, the power consumption could increase, and the module could be very hot, and even be damaged. For example, it is forbidden that user's I/O outputs a low level while module's connected I/O outputs a high level.

5. VDD_EXT Pin

This pin is a power supply from a regulator inside the module which can supply current of about 20mA. Customer can also use this pin to judge whether the module is off or not. When the module is turned off, the VDD_EXT pin will change from high level to low level.

6. Serial Interface and Debug Interface

The TXD and RXD pins should be connected to host MCU. The DTR pin should be controlled to trigger SLEEP mode or wakeup the module. The RTS and CTS pins should be connected to the host MCU if hardware flow control is required.

The TXD, RXD, PWRKEY and GND pins can also be used for software upgrade and high-level acoustic parameters configuration. The DBG_TXD and DBG_RXD pins are only used for software debug. Please note that the PWRKEY pin should be pulled to low level when the M10 is being upgraded. For more detailed information on serial port design, please refer to document [2]

Notes: It's recommended to connect the pins necessary for firmware upgrade to external interface.

7. SIM Card

As shown in Figure 4, connecting a large volume capacitor such as 10uF in the SIM_VDD line could lead to failure of detecting the SIM card. A capacitor between 100nF and 1uF is recommended.

Figure 4: Circuit of the SIM card

8. SLEEP Mode

The command AT+CSCLK can enable or disable SLEEP mode. When the SLEEP mode is enabled, pulling the DTR pin to high level would drive the module into SLEEP mode; and pulling the DTR pin to low level the module would exit from SLEEP mode.

9. Audio Trace

If possible, the audio trace should be placed in inner layer, and shielded by ground in the same layer and the upper and lower adjacent layers to prevent from RF interference. In addition, it is recommended to add as many via as possible between ground layers so as to reduce RF noise.

The AGND signal is usually used for AOUT2 channel to establish a single-end output with SPK2P. Do not pair GND with SPK2P to establish an audio output, otherwise TDD (Time Division Duplex) noise from power supply could occur in AOUT2.

Figure 5: Audio trace routing example

10. RF Design Guide

Correct RF design is essential for RF performance such as transmitting power, receiving sensitivity and harmonics. Following this RF design guide could benefit to improve the RF performance of customer's product.

10.1. Recommended Impedance Matching Circuit

The impedance of M10's RF_ANT port is 50 Ω . If the impedance of antenna is close to 50 Ω in all working frequency bands, the antenna could be connected to the RF_ANT port directly via 50 Ω transmission line. But if the impedance of antenna is not close to 50 Ω , a T-type or π -type matching circuit should be inserted between transmission line and antenna. The matching components should be placed as close as possible to the antenna's feed point.

Figure 6 and Figure 7 show the reference designs of T-type and π -type matching circuits.

Figure 6: T-type matching circuit

Figure 7: π -type matching circuit

10.2. Matched RF Transmission Line Design

In PCB layout, a matched RF transmission line has a fixed characteristic impedance, which is called Z_0 , from its source to its load. The source should have an internal resistance of Z_0 and the resistance of matching load should close to Z_0 .

Since the impedance of M10's RF_ANT port is 50Ω , the impedance of the RF transmission line from this port to the antenna or the matching circuit should also be made to 50Ω .

More than twelve different types of transmission line can be created on a PCB simply by controlling trace geometry, and some of them are shown in Figure 8.

Figure 8: M10 RF_ANT PCB layout

Customer may adopt one or certain types of them to design RF trace. Upon the demand of application design, the number of PCB layer can be different such as two and four. Each type of PCB has corresponding "stack-up". The "stack-up" is the name given to the order of the various etched copper foil and dielectric layers that are laminated together under pressure and heat to make a PCB.

10.3. PCB Layout Consideration

PCB Layout is essential to the performance of customer's product. Here are some rules that should be followed:

Impedance control

Control the impedance of RF trace as close as possible to 50Ω . If the thickness between RF_ANT pad and the ground layer is less than 0.4mm, it could significantly decrease the output power. Therefore, when they are too close, we strongly suggest removing the copper in the layer beneath the RF_ANT pad. If RF trace routes to another layer, add GND via along with it to keep GND integral. The clearance between RF trace and ground plane in same layer should be at least twice the RF trace width.

• Make RF trace as short as possible

Place the module and the matching circuit near the antenna pad. Shorten the length of RF trace. Place the antenna PAD in the corner or at the edge of host board.

• Protect RF trace

Avoid placing noise generating traces such as digital signal or clock line near RF trace in the same layer. Carefully route other traces in the layers adjacent to the RF trace, remember not to route in parallel with the RF trace. If possible, keep those traces far away from the RF trace.

• An RF test point is located at the bottom side of M10 for manufacture purpose. The copper which is close to this test point in the top layer of customer's host board must be kept out or removed. No signal trace should be placed in the top layer and the second layer beneath this test point.

Insert a picture.

 Customer can use either antenna PAD or RF connector to connect the antenna. If antenna PAD is adopted, Figure 9 is a reference design for a four-layer PCB. Make the space on all layers beneath antenna pad keep-out. Place a ground PAD near the antenna PAD. The distance between GND PAD and antenna PAD can be around 1.8mm. The size of antenna PAD can be 1.8mm*1.8mm, and the GND PAD should be a little bigger, e.g. 2.5mm*2.5mm. Add several GND via near or on the GND PAD to reduce impedance from the GND PAD to the RF reference ground.

Figure 9: Reference PCB design with antenna pad in a four-layer PCB

If RF connector is adopted, place the RF connector close to module RF_ANT, and add several ground via close to the GND PAD of RF connector. Figure 10 is the reference PCB design.

The stack-up of the four-layer PCB is shown in Figure 11.

	Copper Plat	ting	13 µm.e		ŧ
LAYER4	Copper		12.0 µm.₽		ŧ
	1080LDP		200.0 μm. 🖉		÷
LAYER3	Copper		18.0 µm. 🛛 🕫		4
	Prepreg	2116	500.0 µm. 🕫		÷
LAYER2	Copper		18.0 µm.₽		¢.
				standard via 1-4.₽	
	1080 LDP		200.0 µm		÷
LAYER1	Copper		12.0 µm.₽		¢
	Copper Plating		13 µm.₽		÷
	Electroless Nic	kel	2.54 µm.₽		ę
	Chemical Gold		0.05 µm.₽		Þ
	Solder Mask		18.0 µm.₽		ę

MATERIAL BUILD-UP-

TOTAL OVERALL THICKNESS 1.0 mm +

1.0.mm +0.1/-0.1mm+

Figure 11: Stack-up of the four-layer PCB

11. The Recommended Ramp-soak-spike Reflow Profile

Figure 12: The recommended ramp-soak-spike reflow p rofile

FCC Statement

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC RF exposure statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator& your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

FCC Label Instructions

The outside of final products that contains this module device must display a label referring to the enclosed module. This exterior label can use wording such as: "Contains Transmitter Module FCC ID: YQD-M10" or "Contains FCC ID: YQD-M10" Any similar wording that expresses the same meaning may be used.