RF Exposure Evaluation Declaration

Product Name: GPS Tracker Model No.: GV500 FCC ID: YQD--GV500

Applicant : Queclink Wireless Solutions Co.,Ltd.

Address : Room 501, Building 9, No.99, Tianzhou Road, Shanghai, China

 Date of Receipt : 08-24-2015

 Issued Date :
 09-22-2015

 Report No. :
 UL12620150824FCC058-3

 Report Version : V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF, CNAS or any agency of the Government. The test report shall not be reproduced except in full without the written approval of Unilab Corporation.

Unilab

RF Exposure Evaluation Declaration

Issued Date : 09-22-2015 Report No. : UL12620150824FCC058-3

Product Name: Model No. :	GPS Locator GV500
Applicant :	Queclink Wireless Solutions Co.,Ltd
Address :	Room 501, Building 9, No 99, TianZhou Road, Shanghai, China
Manufacturer :	Queclink Wireless Solutions Co.,Ltd.
Address :	Room 501, Building 9, No 99, TianZhou Road, Shanghai, China
EUT Voltage	Extreme Low:8V DC,Nominal:12/24V DC,Extreme High:32V DC
Brand Name:	Queclink
Applicable Standard :	FCC's Rules(47 C.F.R. § 1.1310 and 2.1091)
Test Result :	Complied
Performed Location :	Unilab (Shanghai) Co.,Ltd.
	FCC 2.948 register number is 714465
	No.1350, Lianxi Road, Pudong New District, Shangha, China
	TEL:+86-21-5027-5125/FAX:+86-21-5027-7862

Poul Your

(Technical Engineer: Paul Yang)

ovest cao

Reviewed By :

Documented By :

(Senior Engineer: Forest Cao)

Gra wang

Approved By :

(Supervisor: Eva Wang)

1. EUT Description

Product Name:	GPS Locator		
Model Name:	GV500		
Hardware Version:	V1.01		
Software Version:	GV500NR00A01V05M128_MXIC		
RF Exposure Environment:	Uncontrolled		
GSM/GPRS			
Support Band:	GSM850/ PCS 1900		
Tx Frequency Range:	GSM 850: 824.2MHz to 848.8MHz PCS 1900: 1850.2MHz to 1909.8MHz		
Rx Frequency Range:	GSM 850: 869.2MHz to 893.8MHz PCS 1900: 1930.2MHz to 1989.8MHz		
Type of modulation:	GMSK		
Antenna Type:	Internal		
Antenna Peak Gain:	GSM 850:-3.1dBi PCS 1900:-2.2dBi		

2. RF Exposure Evaluation

2.1 Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency	Electric Filed	Magnetic Filed	Power Density	Average Time			
Range(MHz)	Strength	Strength	(mW/cm2)	(Minutes)			
	(V/m)	(A/m)					
(A)Limits for Occupation/Control Exposures							
300-1500			F/300	6			
1500-100,000			5	6			
(B)Limits for General Occupation/UnControlled Exposures							
300-1500			F/1500	6			
1500-100,000			1	30			

F= Frequency in MHz

Friis Formula Friis transmission formula: Pd = (Pout*G)/(4*Pi*R2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2.Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 26°C and 52% RH.

2.3.Test Result of RF Exposure Evaluation

This device is evaluated by mobile device with general population/uncontrolled exposure condition For this device, the calculation is using the most conservative values, and the results are as follows:

Antenna Gain (dBi)	Maximum Output Power (dBm)	Average Power (dBm)	Average ERP/EIRP (mW)	Calculated RF Exposure at d = 20cm (mW/cm2)	MPE Limit (mW/cm2)	
-3.1	33.5	24.5	138.04	0.03	0.55	
-3.1	33	24	123.03	0.02	0.55	
-2.2	30.5	21.5	85.11	0.02	1.00	
-2.2	30	21	75.86	0.02	1.00	
The averaged power calculated method are shown as below:						
Averaged power=Maximum burst averaged power(1 Tx Slot)-9dB						
Duty cycle =12.5%						
Average EIRP Power=Average Power+Antenna Gain						
r	Gain (dBi) -3.1 -3.1 -2.2 -2.2 ower calculation =Maximum 5%	Antenna Gain (dBi) -3.1 -3.1 -3.1 -3.1 -2.2 -30.5 -2.2 -30.5 -2.2 -30 -2 -2 -2 -2 -30 -2 -2 -2 -30 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Antenna Gain (dBi)Output Power (dBm)Average Power (dBm)-3.133.524.5-3.13324-2.230.521.5-2.23021ower calculated method are shown a2=Maximum burst averaged power(15%	Antenna Gain (dBi)Output Power (dBm)Average Power (dBm)Average ERP/EIRP (mW)-3.133.524.5138.04-3.13324123.03-2.230.521.585.11-2.2302175.86ower calculated method are shown as below: r=Maximum burst averaged power(1 Tx Slot)-9dB	Antenna Gain (dBi)Output Power (dBm)Average Power (dBm)Average ERP/EIRP (mW)RF Exposure at d = 20cm (mW/cm2)-3.133.524.5138.040.03-3.13324123.030.02-2.230.521.585.110.02-2.2302175.860.02-wer calculated method are shown as below: r=Maximum burst averaged power(1 Tx Slot)-9dB5%	

Test Mode	Antenna Gain (dBi)	Maximum Output Power (dBm)	Average Power (dBm)	Average ERP/EIRP (mW)	Calculated RF Exposure at d = 20cm (mW/cm2)	MPE Limit (mW/cm2)
GSM 850	-3.1	32.97	23.97	122.18	0.02	0.55
GPR S850	-3.1	32.94	23.94	121.34	0.02	0.55
PCS 1900	-2.2	29.59	20.59	69.02	0.01	1.00
GPRS 1900	-2.2	29.58	20.58	68.87	0.01	1.00
The averaged power calculated method are shown as below: Averaged power=Maximum burst averaged power(1 Tx Slot)-9dB Duty cycle =12.5% Average EIRP Power=Average Power+Antenna Gain						

This device can pass RF exposure limit.