

GSM/GPRS/GPS Tracker **GV300N** User Manual

Application Notes: TRACGV300NUM001

Revision: 1.00

http://www.queclink.com

sales@queclink.com

000

Document Title	GV300N User Manual	
Version	1.00	
Date	2014-11-17	
Status	Release	
Document Control ID	TRACGV300NUM001	

General Notes

Queclink offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Queclink. The information provided is based upon requirements specifically provided to Queclink by the customers. Queclink has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by Queclink within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of Queclink. Copying of this document, and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specifications supplied herein are subject to change without notice at any time.

Copyright © Queclink Wireless Solutions Co., Ltd. 2014

Contents

Cor	ntents		3		
0.	Revision	History	6		
1.	Introduct	ion	7		
	1.1	Reference	8		
	1.2	Terms and Abbreviations	8		
2.	Product (Overview	9		
	2.1.	Check Parts List	9		
	2.2.	Parts List	10		
	2.3.	Interface Definition	11		
	2.4.	GV300N User Cable Color	12		
3.	Get Start	ed	13		
	3.1.	Open the Case	13		
	3.2.	Close the Case	13		
	3.3.	Install a SIM Card			
	3.4.	Install the Internal Backup Battery	14		
	3.5.	Switch on the Backup Battery	15		
	3.6.	Install the External GPS Antenna (Optional)	15		
	3.6.1.	GPS Antenna Specification	16		
	3.7.	Power Connection	16		
	3.8.	Ignition Detection	17		
	3.9.	Digital Inputs	17		
	3.10.	Analog Inputs			
	3.11.	Digital Outputs	19		
	3.12.	Device Status LED	20		
	3.13.	Serial Port/UART Interface	21		
	3.13.1	. Connect with Garmin GPS Set	22		
	3.13.2	2. Connect with CAN100 device	23		

Table Index

TABLE 1.	GV300N PROTOCOL REFERENCE	8
TABLE 2.	TERMS AND ABBREVIATIONS	8
TABLE 3.	PARTS LIST	10
TABLE 4.	DESCRIPTION OF 16 PIN CONNECTIONS	11
TABLE 5.	GV300N USER CABLE COLOR DEFINITION	12
TABLE 6.	GPS ANTENNA SPECIFICATION	16
TABLE 7.	ELECTRICAL CHARACTERISTICS OF IGNITION DETECTION	17
TABLE 8.	ELECTRICAL CHARACTERISTICS OF THE DIGITAL INPUTS	17
TABLE 9.	ELECTRICAL CHARACTERISTICS OF DIGITAL OUTPUTS	19
TABLE 10.	DEFINITION OF DEVICE STATUS AND LED	21
TABLE 11.	EXTERNAL INTERFACE OF CAN100 DEVICE	23
TABLE 12.	CAN100 DEVICE CONNECTS WITH GV300N	23

Figure Index

FIGURE 1.	APPEARANCE OF GV300N	9
FIGURE 2.	THE 16 PIN CONNECTOR ON THE GV300N	11
FIGURE 3.	OPEN THE CASE	13
FIGURE 4.	CLOSE THE CASE	13
FIGURE 5.	SIM CARD INSTALLATION	14
FIGURE 6.	BACKUP BATTERY INSTALLATION	14
FIGURE 7.	SWITCH AND ON/OFF POSITION	15
FIGURE 8.	GPS ANTENNA OF GV300N	15
FIGURE 9.	TYPICAL POWER CONNECTION	16
FIGURE 10.	TYPICAL IGNITION DETECTION	
FIGURE 11.	TYPICAL DIGITAL INPUT CONNECTION	
FIGURE 12.	TYPICAL ANALOG INPUT CONNECTION	18
FIGURE 13.	DIGITAL OUTPUT INTERNAL DRIVE CIRCUIT	19
FIGURE 14.	TYPICAL CONNECTION WITH RELAY	19
FIGURE 15.	TYPICAL CONNECTION WITH LED	20
FIGURE 16.	GV300N LED ON THE CASE	20
FIGURE 17.	TYPICAL CONNECTION WITH RS232 PORT	22
FIGURE 18.	GV300 CONNECTION WITH GARMIN GPS SET	22
FIGURE 19.	THE EXTERNAL INTERFACE OF CAN100 DEVICE	23

0. Revision History

Revision	Date	Author	Description of change
1.00	2014-11-17	Super Zhao	Initial

1. Introduction

The GV300N is a powerful GPS locator designed for vehicle or asset tracking. It has superior receiver sensitivity, fast TTFF (Time to First Fix) and supports quad band GSM frequencies GSM850/GSM900/DCS/PCS. Its location can be monitored in real time or periodically tracked by a backend server or other specified terminals. The GV300N has multiple input/output interfaces that can be used for monitoring or controlling external devices. Based on the integrated @Track protocol, the GV300N can communicate with a backend server through the GPRS/GSM network to transfer reports of emergency, geo-fence boundary crossings, low backup battery and scheduled GPS position as well as many other useful functions. Users can also use GV300N to monitor the status of a vehicle and control the vehicle by its external relay output. System integrators can easily set up their tracking systems based on the full-featured @Track protocol.

WARNING: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and

(2) This device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.

- Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. -Consult the dealer or an experienced radio/TV technician for help.

FCC RF Exposure Statement:

For the product, under normal use condition is at least 20cm away from the body of the user, the user must keeping at least 20cm distance to the product.

1.1 Reference

Table 1.	GV300N	Protocol	Reference
----------	--------	----------	-----------

SN	Document name	Remark		
[1]	GV300N @Track Air Interface Protocol	The air protocol interface between		
		GV300N and backend server.		

1.2 Terms and Abbreviations

Abbreviation	Description	
AGND	Analog Ground	
AIN	Analog Input	
DIN	Digital Input	
DOUT	Digital Output	
GND	Ground	
MIC	Microphone	
RXD	Receive Data	
TXD	Transmit Data	
SPKN	Speaker Negative	
SPKP	Speaker Positive	

Table 2. Terms and Abbreviations

2. Product Overview

2.1. Check Parts List

Before starting, check whether all the following items have been included with your GV300N. If anything is missing, please contact your supplier.

Figure 1. Appearance of GV300N

2.2. Parts List

Name	Picture
GV300N Locator	80*49*26 mm
User Cable	
GPS Antenna (Optional)	
	O
DATA_CABLE_M (Optional)	

Table 3. Parts List

2.3. Interface Definition

The GV300N has a 16 PIN interface connector which contains the connections for power, I/O, RS232, microphone, speaker, etc. The sequence and definition of the 16PIN connector are shown in the following figure:

Figure 2. The 16 PIN Connector on the GV300N

Index	Description	Comment	
1	MICP	Single end, 2-2.2k microphone, internal bias	
2	AGND	Analog ground	
3	IGN	Ignition input, positive trigger	
4	RXD	UART RXD, RS232	
5	TXD	UART TXD, RS232	
6	GND	Power and digital ground	
7	OUT3	Open drain, 150 mA max	
8	OUT2	Open drain, 150 mA max	
9	EARP	Differential estruct 22 alors 1/4-s en estern	
10	EARN	Differential output, 32 ohm 1/4w speaker	
11	PWR	External DC power input, 8-32V	
12	IN2	Digital input, negative trigger	
13	IN1	Digital input, negative trigger	
14	OUT1	Open drain, 150 mA max ,with latch circuit	
15		Multifunction input, analog or digital input	
15	AD1/IN3	0-16V	
16	AD2	Analog input 0.3-16V	

Table 4. Description of 16 PIN Connections

2.4. GV300N User Cable Color

Definition	Color	PIN No	Cable	PIN No	Color	Definition
OUT2	Yellow	8	1001	16	Brown/White	AD2
OUT3	Brown	7		15	Green	AD1/IN3
GND	Black	6		14	Blue	OUT1
TXD	White/Black	5		13	Orange	IN1
RXD	Pink	4		12	Orange/Black	IN2
IGN	White	3		11	Red	PWR
AGND	Gray/Black	2		10	Purple/White	EARN
MICP	Gray	1		9	Purple	EARP

 Table 5. GV300N User Cable Color Definition

3. Get Started

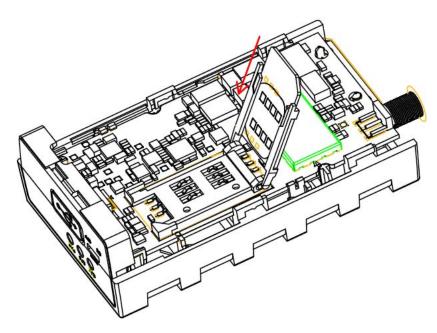
3.1. Open the Case

Figure 3. Open the Case

Insert the triangular-pry-opener into the gap of the case as shown above, and push the opener up until the case is unsnapped.

3.2. Close the Case

Figure 4. Close the Case


Place the cover on the bottom in the position as shown in the figure above. Slide the cover against the direction of the arrow until it snaps.

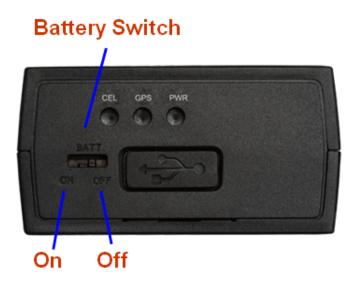
TRACGV300NUM001

3.3. Install a SIM Card

Open the case and ensure the unit is not powered (unplug the 16Pin cable and switch the internal battery to the OFF position). Slide the holder right to open the SIM card holder. Insert the SIM card into the holder as shown below with the gold-colored contact area facing down. Take care to align the cut mark. Close the SIM card holder. Close the case.

Figure 5. SIM Card Installation

3.4. Install the Internal Backup Battery


Figure 6. Backup Battery Installation GV300N has an internal backup Li-ion battery.

3.5. Switch on the Backup Battery

To use the GV300N backup battery, the switch must be in the ON position. The switch on the case and the ON/OFF position are shown below.

Figure 7. Switch and ON/OFF Position

Note:

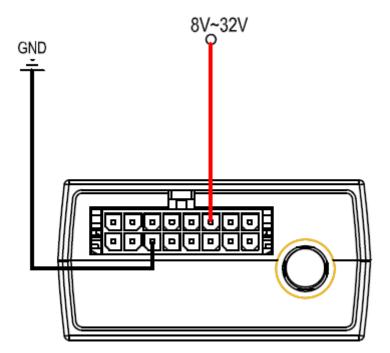
- 1. The switch must be in the "OFF" position when the GV300N is shipped on an aircraft.
- 2. When the switch is in the "OFF" position, the battery cannot be charged or discharged.

3.6. Install the External GPS Antenna (Optional)

There is a SMA GPS antenna connector on GV300N. The GV300N will automatically detect and use an external antenna when connected.

GPS Connector

Figure 8. GPS Antenna of GV300N


3.6.1. GPS Antenna Specification

GPS antenna	Frequency: 1575.42 MHz
Bandwidth	>5 MHz
Beam width	>120 deg
Supply voltage	2.7V-3.3V
Polarization	RHCP
Gain	Passive: 0 dBi min
	Active: 15 dB
Impedance	50Ω
VSWR	<2
Noise figure	<3

Table 6.	GPS Antenna	a Specification
----------	--------------------	-----------------

3.7. Power Connection

PWR (PIN12)/GND (PIN6) is the power input pin. The input voltage range for this device is from 8V to 32V. The device is designed to be installed in vehicles that operate on 12V or 24V systems without the need for external transformers.

Figure 9. Typical Power Connection

Logical status

3.8. Ignition Detection

0		
Active	5	5.0V to 32V
Inactive	0	0V to 3V or open
		Vehicle ignition switch Start(4th position) Run(3rd position) Accessories(2nd position) Off(1st position)

Table 7.	Electrical	Characteristics	of Ignition	Detection
----------	------------	-----------------	-------------	-----------

Electrical characteristics

Figure 10. Typical Ignition Detection

IGN (Pin3) is used for ignition detection. It is strongly recommended to connect this pin to ignition key "RUN" position as shown above.

An alternative to connecting to the ignition switch is to find a non-permanent power source that is only available when the vehicle is running, for example, the power source for the FM radio. IGN signal can be configured to start transmitting information to the backend server when ignition

is on, and enter the power saving mode when ignition is off.

3.9. Digital Inputs

There are three general purpose digital inputs on GV300N. They are all negative triggers.

Logical status	Electrical characteristics
Active	0V to 0.8V
Inactive	Open

Table 8.	Electrical	Characteristics	of the Digital Inputs
----------	------------	-----------------	-----------------------

The following diagram shows the recommended connection of a digital input.

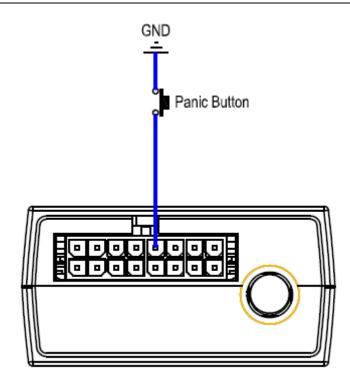


Figure 11. Typical Digital Input Connection

3.10. Analog Inputs

There are two analog inputs on GV300, and the analog input voltage range is from 0 to 16V. The following diagram shows the recommended connection.

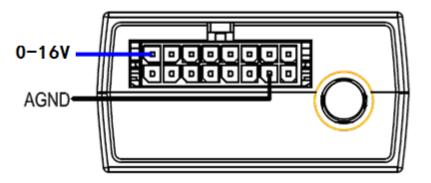


Figure 12. Typical Analog Input Connection

Note:

PIN 15 is a multifunction pin: it can be configured as a digital input or an analog input.

3.11. Digital Outputs

There are three digital outputs on GV300N. All are of open drain type and the maximum drain current is 150 mA. Each output has the built-in over current PTC resettable fuse.

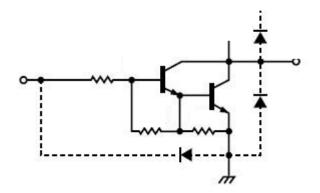


Figure 13. Digital Output Internal Drive Circuit

Logical status	Electrical characteristics
Enable	<1.5V @150 mA
Disable	Open drain

Figure 14. Typical Connection with Relay

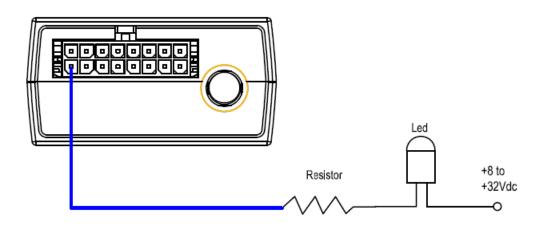


Figure 15. Typical Connection with LED

Note:

1. OUT1 will latch the output state during reset.

2. Many modern relays come with a flyback diode pre-installed internal to the relay itself. If the relay has this diode, ensure the relay polarity is properly connected. If this diode is not internal, it should be added externally. A common diode such as a 1N4004 will work in most circumstances.

3.12. Device Status LED

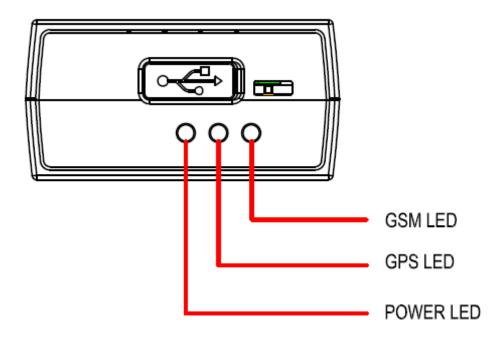


Figure 16. GV300N LED on the Case

LED	Device status	LED status
GSM	Device is searching GSM network.	Fast flashing
(Note 1)		(Note 3)
	Device has registered to GSM network.	Slow flashing
		(Note 4)
	SIM card needs pin code to unlock.	ON
GPS	GPS chip is powered off.	OFF
(Note 2)	GPS sends no data or data format error occurs.	Slow flashing
	GPS chip is searching GPS info.	Fast flashing
	GPS chip has gotten GPS info.	ON
PWR	No external power and internal battery voltage is lower	OFF
(Note 2)	than 3.35V.	
	No external power and internal battery voltage is	Slow flashing
	below 3.5V.	
	External power in and internal battery is charging.	Fast flashing
	External power in and internal battery is fully charged.	ON

Table 10. Definition of Device Status and LED

Note:

1. GSM LED cannot be configured.

2. GPS LED and PWR LED can be configured to turn off after a period of time by using the configuration tool.

3. Fast flashing is about 60 ms ON/780 ms OFF.

4. Slow flashing is about 60 ms ON/1940 ms OFF.

3.13. Serial Port/UART Interface

There are two lines dedicated to the Serial Port/UART interface (TXD and RXD). TXD/RXD are standard RS232 signal.

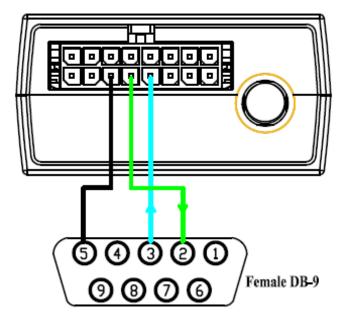


Figure 17. Typical Connection with RS232 Port

3.13.1. Connect with Garmin GPS Set

GV300N can communicate with Garmin GPS set. The following typical connection is using Queclink AG100 cable.

Figure 18. GV300 Connection with Garmin GPS Set

Note:

Some versions of GV300N can connect with Garmin GPS set by Garmin FMI10/FMI15 cable. Please consult Queclink for detail information.

3.13.2. Connect with CAN100 device

GV300N can communicate with CAN100 device only by RS232 port. The following picture shows the external interface of CAN100 device. Refer to Figure 19.

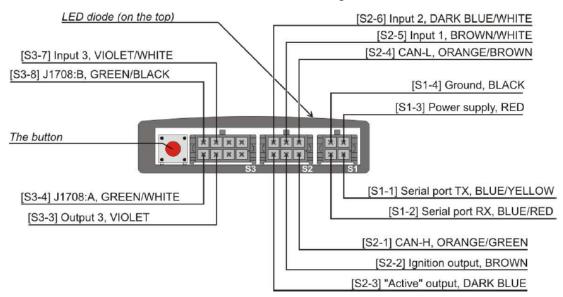


Figure 19. The External Interface of CAN100 Device

The following table 11 shows the definition of CAN100 device's external interface .

Pin No.	Pin Name	Cable Color	
S1-1	ТХ	Blue/Yellow	
S1-2	RX	Blue/Red	
S1-3	Power Supply	Red	
S1-4	Ground	Black	

 Table 11. External Interface of CAN100 Device

The following Table 12 shows how to connect with the GV300N.

GV300N				CAN100		
Pin No.	Pin Name	Color	Connection	Pin No.	Pin Name	Color
4	RXD	Green or Pink	←→	S1-1	ТХ	Blue/Yellow
5	TXD	White/Black	←→	S1-2	RX	Blue/Red
11	Power	Red	←→	S1-3	Power Supply	Red
6	Ground	Black	←→	S1-4	Ground	Black

Table 12. CAN100 Device Connects with GV300N

Note:

1. As to how to distinguish the CAN100 device's serial port is RS232 or TTL, please refer to CAN100 specification.