

FCC PART 15.247

TEST REPORT

For

Queclink Wireless Solutions Co.,Ltd

3 Floor, Building 2, No.717 Yishan Road, Xuhui District, shanghai, 200233 China

FCC ID: YQD-GV300CAU

Report Type:		Product Type:
Original Report		
Duciest Engineer	Jack Line	Jayle Jiao
I I Oject Engineer.	Jack Jiao	
Report Number:	RSHA2010190	01-00B
Report Date:	2020-12-04	
Reviewed By:	Oscar Ye EMC Manager	Oscar. Ye
Prepared By:	Bay Area Comp No.248 Chengh Tel: +86-0512- Fax: +86-0512- www.baclcorp.e	pliance Laboratories Corp. (Kunshan) nu Road, Kunshan, Jiangsu province, China 86175000 88934268 <u>com.cn</u>

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
KELATED SUBMITTAL(S)/GKANT(S)	
1est methodologi Measurement Uncertainty	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE.	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	14
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Factor & Over Limit Calculation	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
LEST PROCEDURE	
Test Results Summary	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE Test Data	
FCC $815247(d) = BAND FDCF$	
APPLICABLE STANDARD	
FCC Part 15.247	Page 2 of 42

Bay Area Compliance Laboratories Corp. (Kunshan)

Report No.: RSHA201019001-00B

Test Procedure	
TEST DATA	
Left Side	
RIGHT SIDE	
FCC 815 247(e) - POWER SPECTRAL DENSITY	30
FCC §15.247(e) - POWER SPECTRAL DENSITY	
FCC §15.247(e) - POWER SPECTRAL DENSITY	
FCC §15.247(e) - POWER SPECTRAL DENSITY APPLICABLE STANDARD TEST PROCEDURE TEST DATA	

GENERAL INFORMATION

Applicant	Queclink Wireless Solutions Co.,Ltd		
Tested Model	GV300CAU		
Product Type	GPS Tracker		
Power Supply	DC 8-32V		
RF Function	BLE		
Operating Band/Frequency	2402-2480 MHz		
Channel Number	40		
Channel Separation	2 MHz		
Modulation Type	GFSK		
Antenna Type	Chip antenna		
*Maximum Antenna Gain	2.5 dBi		

Product Description for Equipment under Test (EUT)

Note: The Maximum Antenna Gain was declared by the manufacturer.

*All measurement and test data in this report was gathered from production sample serial number: 20201019001. (Assigned by the BACL. The EUT supplied by the applicant was received on 2020-10-19)

Objective

This report is prepared on behalf of *Queclink Wireless Solutions Co.,Ltd* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine Compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s)/grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

	Item	Uncertainty
AC Power Lines Conducted Emissions		3.19dB
RF conducte	ed test with spectrum	0.9dB
RF Output Po	wer with Power meter	0.5dB
	30MHz~1GHz	6.11dB
De l'ete l'encienten	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Occupied Bandwidth		0.5kHz
Temperature		1.0°C
Humidity		6%

Measurement Uncertainty

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Test channel list is as below:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404		
	•••		•••
			•••
18	2438	38	2478
19	2440	39	2480

EUT was tested with channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

RF test tool: QCOM_V1.1

*Pre-scan with all the data rates, and the worst case was performed as below:

Mode	Data Rate	Power Level
BLE	1Mbps	AUTO

Note: The power level was declared by the applicant.

Duty Cycle:

Mode Duty Cycle (%) T(ms) 1/T(kHz) 10log(1/x) BLE 65.29 0.413 2.421 1.85

Note: "x" means the Duty Cycle.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
MCH	DC Source	MCH-303D-II	14070562

External I/O Cable

Cable Description	Length (m)	From Port	То
Power Cable	1.5	EUT	DC Source

Low Channel

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.247(d)	Spurious Emissions at Antenna Port	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test (Chamber 1#)						
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2019-12-14	2020-12-13	
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2017-12-26	2020-12-25	
Sonoma Instrunent	Pre-amplifier	310N	171205	2020-08-14	2021-08-13	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-8	008	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-9	009	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-10	010	2020-08-15	2021-08-14	
	Radiated En	ission Test (Cha	mber 2#)			
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2020-04-01	2021-03-31	
ETS-LINDGREN	Horn Antenna	3115	6229	2020-01-10	2023-01-09	
ETS-LINDGREN	Horn Antenna	3116	00084159	2019-10-18	2022-10-17	
A.H.Systems,inc	Amplifier	PAM-0118P	512	2020-02-20	2021-02-19	
EM Electronics Corporation	Amplifier	EM18G40G	060726	2020-03-22	2021-03-21	
MICRO-TRONICS	Band Reject Filter	BRM50702	G024	2020-08-05	2021-08-04	
Narda	Attenuator	10dB	010	2020-08-15	2021-08-14	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-6	006	2019-12-12	2020-12-11	
MICRO-COAX	Coaxial Cable	Cable-11	011	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-12	012	2020-08-15	2021-08-14	
MICRO-COAX	Coaxial Cable	Cable-13	013	2020-08-15	2021-08-14	
RF Conducted Test						
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2019-12-14	2020-12-13	
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2020-07-28	2020-07-27	
Narda	Attenuator	10dB	010	2020-08-15	2021-08-14	
Agilent	Power Meter	N1912A	MY5000492	2019-11-18	2020-11-17	
Agilent	Power Sensor	N1921A	MY54210024	2019-11-18	2020-11-17	
Queclink	RF Cable	Queclink C01	C01	Each Time	/	
Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2019-12-14	2020-12-13	
Rohde & Schwarz	LISN	ENV216	3560655016	2019-11-30	2020-11-29	
Audix	Test Software	e3	V9			
Rohde & Schwarz	Pulse limiter	ESH3-Z2	0357.8810.54	2020-08-10	2021-08-09	
MICRO-COAX	Coaxial Cable	Cable-15	015	2020-08-15	2021-08-14	

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f ²)	30	
30-300	27.5	0.073	0.2	30	
300-1500	/		f/1500	30	
1500-100,000	/		1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

- P = power input to the antenna (in appropriate units, e.g., mW);
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_i}{S_{Limit,i}} \leq 1$$

Mode	Frequency Range	Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit (mW/cm ²)
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(
BLE	2402~2480	2.5	1.78	2.50	1.78	20	0.0060	1.0
GSM850	824-849	3.7	2.34	25.97	395.37	20	0.1844	0.55
GSM1900	1850-1910	1.53	1.42	22.97	198.15	20	0.0561	1.0
WCDMA II	1850-1910	1.53	1.42	25.00	316.23	20	0.0895	1.0
WCDMA V	824-849	3.7	2.34	25.00	316.23	20	0.1475	0.55
LTE Band 2	1850-1910	1.53	1.42	25.00	316.23	20	0.0895	1.0
LTE Band 4	1710-1755	2.03	1.60	25.00	316.23	20	0.1004	1.0
LTE Band 5	824-849	3.7	2.34	25.70	371.54	20	0.1733	0.55
LTE Band 7	2500-2570	2.24	1.67	25.00	316.23	20	0.1054	1.0

Calculated Data:

Note:

(1) The LTE module FCC ID: XMR201805EC21AU, Date of Grant: 05/22/2018.
 (2) BLE & GSM/WCDMA/LTE can transmit simultaneously; the worst condition as below:

 $\sum_{i} \frac{S_i}{S_{Limit,i}} = 0.0060/1.00 + 0.1844/0.55 = 0.341 < 1.0$

Conclusion: The device meets MPE at distance 20cm

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine Compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has a chip antenna for BLE, and the antenna gain is 2.5 dBi. The antenna is permanently attached to the unit, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The Factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Attenuator. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Attenuator (dB)

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7 dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data Environmental Conditions

Temperature:	24.9 °C
Relative Humidity:	51 %
ATM Pressure:	101.7 kPa

The testing was performed by Jack Jiao on 2020-11-17.

Test Result: Compliant.

For BLE Mode:

EUT operation mode: Transmitting in BLE mode low channel (worst case)

AC 120V/60 Hz, Line

AC 120V/60 Hz, Neutral

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1CHz	1MHz	3 MHz	/	РК
Above IGHZ	1MHz	3 MHz	/	Ave.

Test Procedure

According to ANSI C63.10-2013 clause 6.5, 6.6 and 6.7.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "**Margin**" column of the following data tables indicates the degree of Compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

Test Data

Environmental Conditions

Temperature:	24.1~24.8 ℃
Relative Humidity:	50~52 %
ATM Pressure:	101.0~101.2 kPa

The testing was performed by Jack Jiao from 2020-11-03 to 2020-12-04.

Test Result: Compliant.

EUT operation mode: Transmitting by BLE mode

Spurious Emission Test:

30MHz-1GHz

(*Pre-scan with low, middle and high channels of operation in the X,Y and Z axes of orientation, the worst case* **Low** *channel of operation in the Z axis of orientation was recorded*)

Frequency	Corrected Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Margin (dB)
(MHz)	QuasiPeak (dBµV/m)	Height (cm)	Polar (H/V)	Degree	(dB/m)	(dBµV/m)	
35.509450	19.67	100.0	V	262.0	-8.3	40.00	20.33
56.391400	9.92	100.0	Н	48.0	-18.0	40.00	30.08
125.801350	16.18	100.0	V	358.0	-11.2	43.50	27.32
202.609450	15.41	200.0	V	41.0	-11.7	43.50	28.09
372.353200	17.69	100.0	Н	279.0	-9.3	46.00	28.31
552.047350	21.18	100.0	Н	73.0	-5.8	46.00	24.82

1GHz-18GHz

(*Pre-scan in the X,Y and Z axes of orientation, the worst case* **Z-axis of orientation** was recorded)

Note:

- 1. This test was performed with the 2.4-2.5GHz notch filter.
- Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dBμV/m) = Corrected Factor (dB/m) + Reading (dBμV) Margin (dB) = Limit (dBμV/m) – Corrected Amplitude (dBμV/m)

Low Channel: 2402MHz

Frequency	Corrected Amplitude		Rx Antenna		Turntabla	Corrected	Limit	Mongin
(MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1283.900000	30.82		150.0	V	333.0	-17.5	74.00	43.18
1283.900000		20.57	150.0	V	333.0	-17.5	54.00	33.43
4804.000000	37.40		150.0	Н	1.0	-5.6	74.00	36.60
4804.000000		29.65	150.0	Н	10	-5.6	54.00	24.35
6638.900000	43.54		150.0	V	52.0	-0.9	74.00	30.46
6638.900000		34.48	150.0	V	52.0	-0.9	54.00	19.52
10836.200000		35.77	150.0	V	127.0	2.7	54.00	18.23
10836.200000	45.48		150.0	V	127.0	2.7	74.00	28.52
13982.900000	49.20		150.0	Н	294.0	6.1	74.00	24.80
13982.900000		40.06	150.0	Н	294.0	6.1	54.00	13.94
17777.300000		43.67	150.0	Н	1.0	8.8	54.00	10.33
17777.300000	52.09		150.0	Н	1.0	8.8	74.00	21.91

Middle Channel: 2440MHz

Frequency	Corrected Amplitude		Rx A	Rx Antenna		Corrected	Limit	Margin
(MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1289.000000	31.62		150.0	V	331.0	-17.5	74.00	42.38
1289.000000		23.42	150.0	V	331.0	-17.5	54.00	30.58
3924.000000		31.88	200.0	V	15.0	-7.3	54.00	22.12
3924.000000	36.87		200.0	V	15.0	-7.3	74.00	37.13
4880.000000	37.71		150.0	Н	123.0	-5.4	74.00	36.29
4880.000000		30.02	1500	Н	123.0	-5.4	54.00	23.98
7150.600000	45.78		150.0	Н	27.0	0.3	74.00	28.22
7150.600000		34.58	150.0	Н	27.0	0.3	54.00	19.42
12969.700000		37.95	150.0	V	213.0	5.1	54.00	16.05
12969.700000	47.89		1500	V	213.0	5.1	74.00	26.11
17726.300000		43.55	150.0	V	353.0	8.8	54.00	10.45
17726.300000	51.83		150.0	V	353.0	8.8	74.00	22.17

High Channel: 2480MHz

Frequency	Corrected Amplitude		Rx Antenna		Turntabla	Corrected	Limit	Morgin
(MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1697.000000		24.28	200.0	V	252.0	-15.6	54.00	29.72
1697.000000	28.88		200.0	V	252.0	-15.6	74.00	45.12
3230.400000		29.46	150.0	V	329.0	-9.5	54.00	24.54
3230.400000	35.40		150.0	V	329.0	-9.5	74.00	38.60
4960.000000	38.78		200.0	Н	335.0	-5.3	74.00	35.22
4960.000000		32.14	200.0	Н	335.0	-5.3	54.00	21.86
8043.100000		35.56	150.0	V	231.0	1.8	54.00	18.44
8043.100000	45.90		150.0	V	231.0	1.8	74.00	28.10
10625.400000		34.69	150.0	V	85.0	2.5	54.00	19.31
10625.400000	45.36		150.0	V	85.0	2.5	74.00	28.64
17408.400000		41.90	150.0	Н	20.0	8.6	54.00	12.10
17408.400000	52.06		150.0	Н	20.0	8.6	74.00	21.94

18GHz-25GHz

(*Pre-scan with low, middle and high channels of operation in the X,Y and Z axes of orientation, the worst case* **Low** *channel of operation in the Z axis of orientation was recorded*)

Horizontal

Date: 16.NOV.2020 04:52:48

Vertical

Date: 16.NOV.2020 04:51:37

FCC Part 15.247

Restricted Bands Emissions Test:

(Pre-scan in the X,Y and Z axes of orientation, the worst case Z-axis of orientation was recorded)

Note:

1. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V/m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Frequency (MHz)	Corrected Amplitude		Rx Antenna		Turntable	Corrected	Limit	Margin
	MaxPeak (dBµV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
	Low Channel: 2402MHz							
2390.000000	44.53		150.0	Н	275.0	-2.9	74.00	29.47
2390.000000		41.21	150.0	Н	275.0	-2.9	54.00	12.79
			High Char	nnel: 2480M	Hz			
2483.500000	45.03		150.0	V	339.0	-2.5	74.00	28.97
2483.500000		42.20	150.0	V	339.0	-2.5	54.00	11.80

EUT operation mode: Transmitting simultaneously by BLE & GSM 850 mode (worst case)

Spurious Emission Test:

30MHz-1GHz

(*Pre-scan with low, middle and high channels of operation in the X,Y and Z axes of orientation, the worst case* **Low** *channel of operation in the Z axis of orientation was recorded*)

Frequency	CorrectedRx AntennaFrequencyAmplitude		Turntable	Corrected	Limit	Margin	
(MHz)	QuasiPeak (dBµV/m)	Height (cm)	Polar (H/V)	Degree	(dB/m)	(dBµV/m)	(dB)
43.752250	25.57	100.0	V	223.0	-13.8	40.00	14.43
59.054650	25.51	100.0	V	272.0	-18.0	40.00	14.49
94.306300	25.12	100.0	V	86.0	-16.5	43.50	18.38
117.667850	21.57	100.0	V	253.0	-12.3	43.50	21.93
208.949700	24.16	100.0	V	2.0	-12.3	43.50	19.34
238.743950	17.51	100.0	V	80.0	-13.5	46.00	28.49

1GHz-18GHz

(*Pre-scan in the X,Y and Z axes of orientation, the worst case* **Z-axis of orientation** was recorded)

Note:

- 1. This test was performed with the 2.4-2.5GHz notch filter.
- Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dBμV/m) = Corrected Factor (dB/m) + Reading (dBμV) Margin (dB) = Limit (dBμV/m) – Corrected Amplitude (dBμV/m)

Frequency	Corrected	Corrected Amplitude		Rx Antenna		Corrected	Limit	Morgin
(MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Height (cm)	ieight Polar Degree Factor (cm) (H/V) (dB/m) (d	(dBµV/m)	(dB)		
1394.400000	31.96		100.0	V	327.0	-16.9	74.00	42.04
1394.400000		20.26	100.0	V	327.0	-16.9	54.00	33.74
4403.400000	40.42		100.0	Н	186.0	-6.4	74.00	33.58
4403.400000		30.02	100.0	Н	186.0	-6.4	54.00	23.98
4802.900000		30.96	200.0	Н	220.0	-5.6	54.00	23.04
4802.900000	38.01		200.0	V	10.0	-5.6	74.00	35.99
7203.300000		34.57	200.0	Н	90.0	0.4	54.00	19.43
7203.300000	44.33		200.0	V	358.0	0.4	74.00	29.67
11103.100000		36.25	100.0	Н	3.0	2.9	54.00	17.75
11103.100000	46.13		200.0	Н	130.0	2.9	74.00	27.87
17529.100000		42.69	100.0	V	301.0	8.9	54.00	11.31
17529.100000	52.94		200.0	Н	233.0	8.9	74.00	21.06

18GHz-25GHz

(*Pre-scan with low, middle and high channels of operation in the X,Y and Z axes of orientation, the worst case* **Low** *channel of operation in the Z axis of orientation was recorded*)

Horizontal

Date: 4.DEC.2020 05:49:05

FCC Part 15.247

Date: 4.DEC.2020 05:36:33

Conducted Spurious Emissions at Antenna Port

Low Channel

Date: 4.NOV.2020 10:17:40

Middle Channel

Date: 3.NOV.2020 15:40:45

Bay Area Compliance Laboratories Corp. (Kunshan)

High Channel

Date: 3.NOV.2020 15:49:55

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.8.1

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data

Environmental Conditions

Temperature:	24.1 °C	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Jack Jiao from 2020-11-03 to 2020-11-04.

Test Result: Compliant.

Bay Area Compliance Laboratories Corp. (Kunshan)

EUT operation mode: Transmitting

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (MHz)
Low	2402	0.68	≥0.5
Middle	2440	0.68	≥0.5
High	2480	0.69	≥0.5

Spectrui	n									∇
RefLeve	el 20.00 d	Bm Offset	1.00 dB 🧉	RBW	100 kHz					
Att	30	db SWT	18.9 µs	VBW	300 KHZ	Mode A	uto FFT			
ртык мах	1		1	_		M1	[1]			-4.49 dBm
									2.401	62800 GHz
10 dBm				-		M2M2	2[1]			1.97 dBm
				-		_ ×.			2.402	21580 GHz
o dom	D1 -4.03	0 dBm		4		~ 4	1			
-10 dBm—				_			·			
			X							
-20 dBm—		- /	4	+						
		\rightarrow								
-30 dBm-										
-40 d8m-										
-50 d8m—				_						
-60 dBm—				+						
-70 d8m-										
-70 ubin										
CE 2 402	042				1001 m	te				
GF 2.402	GH2				1001 þ				she	III 3.0 MH2
Type Re	f Trc	X-val	ue I	Y-	value	Funct	ion	Fu	nction Result	t
M1	1	2.40	1628 GHz		4.42 dBm					-
D1 /	11 1	6	81.0 kHz		0.02 dB					
M2	1	2.4022	2158 GHz		1.97 dBm					
	T T					Meas	uring		1444	04.11.2020

Low Channel

Date: 4.NOV.2020 10:16:44

Middle Channel

Date: 3.NOV.2020 15:40:05

High Channel

Date: 3.NOV.2020 15:48:59

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, Compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

For BLE:

According to ANSI C63.10-2013 sub-clause 11.9.1.1

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set VBW \geq 3 x RBW.
- 3. Set span \geq 3 x RBW
- 4. Sweep time = auto couple.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

Test Data

Environmental Conditions

Temperature:	24.1 °C	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Jack Jiao on 2020-11-19.

Test Result: Compliant.

EUT operation mode: Transmitting

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)	Result
Low	2402	2.26	30	Pass
Middle	2440	1.95	30	Pass
High	2480	1.41	30	Pass

Low Channel

Middle Channel

High Channel

FCC §15.247(d) – BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates Compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

Test Procedure

According to ANSI C63.10-2013 sub-clause 6.10.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24.1 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Jack Jiao from 2020-11-03 to 2020-11-04.

Test Result: C	ompliant.
----------------	-----------

Channel	Frequency (MHz)	The attenuation from highest amplitude to highest edge point (dBc)	Limit (dBc)	Result
Low	2402	40.28	≥ 20	PASS
High	2480	42.96	≥ 20	PASS

FCC Part 15.247

EUT operation mode: Transmitting

Left Side

Date: 4.NOV.2020 10:17:24

Date: 3.NOV.2020 15:49:40

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

According to ANSI C63.10-2013 sub-clause 11.10.2

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- 1. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 2. Set the VBW \geq 3xRBW.
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 9. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	24.1 °C	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Jack Jiao from 2020-11-03 to 2020-11-04.

Test Result: Compliant.

Bay Area Compliance Laboratories Corp. (Kunshan)

EUT operation mode: Transmitting

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	2402	-9.16	≤8
Middle	2440	-11.05	≤8
High	2480	-11.76	≤ 8

₽ Spectrum Ref Level 20.00 dBm Att 30 dB Mode Auto FFT ∋1Pk Max -9.16 dBn 2.40221745 GH M1[1] 10 dBm-0 dBm -10 dBm MMAMM MM nMMA. payment where Mr. March MAG -20 dBm ٨.٨ -30 dBm -40 dBm -50 dBm -60 dBm--70 dBm Span 1.0125 MHz CF 2.402 GHz 1001 pts

Low Channel

Date: 4.NOV.2020 09:05:56

Middle Channel

Date: 3.NOV.2020 15:40:14

High Channel

Date: 3.NOV.2020 15:49:08

Declarations

1: BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

2: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

3: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

4: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

5: This report cannot be reproduced except in full, without prior written approval of the Company.

6: This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

***** END OF REPORT *****