

588 West Jindu Road, Songjiang District, Shanghai, China

Telephone: +86 (0) 21 6191 5666 Fax: +86 (0) 21 6191 5678

ee.shanghai@sgs.com

Report No.: SHEM130600102001

Page 1 of 39

1 Cover Page

FCC REPORT

Application No. :	SHEM1306001020RF			
Applicant:	Queclink Wireless Solutions Co., Ltd			
FCC ID:	YQD-GL300US			
Equipment Under Test (E NOTE: The following same	EUT): ple(s) submitted was/were identified on behalf of the client as			
Product Name:	GPS Locator			
Brand Name:	Queclink			
Model:	GL300			
Added Model:	N/A			
Standards:	47 CFR Part 22 subpart H (2012) 47 CFR Part 24 subpart E (2012)			
Date of Receipt:	June 06, 2013			
Date of Test:	June 20, 2013 to June 26, 2013			
Date of Issue:	July 03, 2013			
Test Result: PASS *				

^{*}In the configuration tested, the EUT (Equipment under test) complied with the standards specified above.

Tony Wu

E&E Section Manager

SGS-CSTC (Shanghai) Co., Ltd.

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Page 2 of 39

2 Version

	Revision Record							
Version Chapter Date Modifier Remark								
00	/	July 03, 2013	/	Original				

Authorized for issue by:		
Engineer	Eddy Zong Print Name	Eddy Zong
Clerk	Susie Liu Print Name	Suire Liu
Reviewer	Keny Xu Print Name	Kony. Ku

Page 3 of 39

3 Test Summary

Test Item	FCC Requirement	Test method	Result			
GSM 850						
Conducted output power	Part 2.1046(a)/Part 22.913(a)	ITA-603-D-2010 Clause 2.2.1	PASS			
Effective Radiated Power of Transmitter(ERP)	Part 2.1046(a)/Part 22.913(a)	ITA-603-D-2010 Clause 2.2.17	PASS			
99% Occupied Bandwidth	Part 2.1049(h)	Part 22.917(b)	PASS			
Band Edge at antenna terminals	Part 2.1051/Part 22.917(a)	Part 22.917(b)	PASS			
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)	ITA-603-D-2010 Clause 2.2.13	PASS			
Field strength of spurious radiation	Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)	ITA-603-D-2010 Clause 2.2.12	PASS			
Frequency stability	Part 2.1055/ Part 22.355	ITA-603-D-2010 Clause 2.2.2	PASS			
	PCS1900					
Conducted output power	Part 2.1046(a) /Part 24.232(c)	ITA-603-D-2010 Clause 2.2.1	PASS			
Peak-to-Average Ratio	Part24.232(d)	ITA-603-D-2010	PASS			
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	ITA-603-D-2010 Clause 2.2.17	PASS			
99% Occupied Bandwidth	Part 2.1049(h)	Part 24.238(b)	PASS			
Band Edge at antenna terminals	Part 2.1051/ Part 24.238(a)	Part 24.238(b)	PASS			
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	ITA-603-D-2010 Clause 2.2.13	PASS			
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	ITA-603-D-2010 Clause 2.2.12	PASS			
Frequency stability	Part 2.1055/Part 24.235	ITA-603-D-2010 Clause 2.2.2	PASS			

Page 4 of 39

4 Contents

			Page
1	C	OVER PAGE	1
2	VE	ERSION	2
3		EST SUMMARY	
4		ONTENTS	
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TECHNICAL SPECIFICATIONS:	
	5.4	ACCESSORIES OF PRODUCT:	
	5.5	SUPPORT EQUIPMENTS FOR TESTING	
	5.6	DETAILS OF TEST MODE	6
	5.7	TEST LOCATION	6
	5.8	TEST FACILITY	
6	E	QUIPMENTS USED DURING TESTERROR! BOOKM	IARK NOT DEFINED.
7	TE	EST RESULTS AND MEASUREMENT DATA	9
	7.1	CONDUCTED OUTPUT POWER	9
	7.2	PEAK-TO-AVERAGE RATIO	11
	7.3	EFFECTIVE RADIATED POWER OF TRANSMITTER (ERP/EIRP)	
	7.4	99%OCCUPIED BANDWIDTH	
	7.5	BAND EDGE AT ANTENNA TERMINALS	21
	7.6	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	24
	7.7	FIELD STRENGTH OF SPURIOUS RADIATION	
	7.8	FREQUENCY STABILITY	36
8	Pł	HOTOGRAPHS - EUT TEST SETUP	39
9	Pł	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	39

Page 5 of 39

5 General Information

5.1 Client Information

Applicant:	Queclink Wireless Solutions Co., Ltd		
Address of Applicant: Room 501, Building 9, No 99, TianZhou Road, Shanghai, China			
Manufacturer:	Queclink Wireless Solutions Co., Ltd		
Address of Manufacturer:	Room 501, Building 9, No 99, TianZhou Road, Shanghai, China		

5.2 General Description of E.U.T.

Product Name	GPS Locator
Brand Name:	Queclink
Model No:	GL300
Added Model:	N/A
Product Description:	N/A

5.3 Technical Specifications:

Operation Frequency:	GSM850 and PCS1900
GPRS Operation mode:	Class B
GPRS Class:	Multislot Class 12
Power Supply:	3.7V DC Battery 5V DC (For Charger)
Antenna Type	Integral

5.4 Accessories of Product:

Battery:	Battery Type:	DC 3.7V		
	Model No.:	RCL-05050	OOUL	
Adoptor	Rated Input:	AC 100V-240V 47/63Hz 0.35A		
Adapter:	Rated Output:	DC 5.0V 50	00mA	
	Cable length:	DC port: 180cm (2 wires)		

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Page 6 of 39

5.5 Support equipments for Testing

The EUT has been tested independently.

5.6 Details of Test Mode

Test Mode	Description of Test Mode
GPRS mode	Keep the EUT connected to the simulate station by GPRS mode.

5.7 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab No.588 West Jindu Road, Songjiang District, Shanghai, China. 201612.

Tel: +86 21 6191 5666 Fax: +86 21 6191 5678 No tests were sub-contracted.

5.8 Test Facility

CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. Date of expiry: 2014-07-26.

FCC – Registration No.: 402683

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered and fully described in a report filed with the Federal Communications Commission (FCC). The acceptance letter from the FCC is maintained in our files. Registration No.: 402683, Expiry Date: 2015-02-22.

Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A. Expiry Date: 2014-09-20.

VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-3868 and C-4336 respectively. Date of Registration: 2012-05-29. Date of Expiry: 2015-05-28.

Page 7 of 39

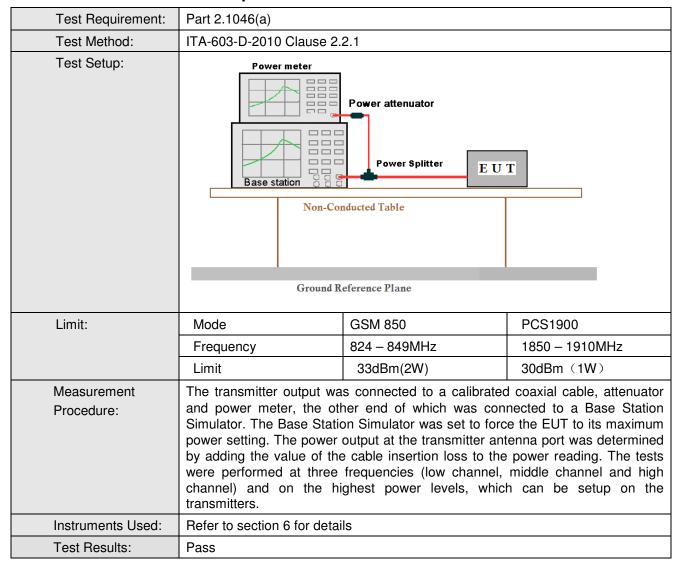
6 Equipments Used during Test

Conducted Emission

	Ochidated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal.Due date
1	EMI test	Rohde & Schwarz	ESCS30	100086	2013-02-23	2014-02-22
2	Line impedance stabilization network	SCHWARZBE CK	NSLK8127	8127-490	2013-02-23	2014-02-22
3	Line impedance stabilization network	ETS	3816/2	00034161	2013-02-23	2014-02-22

RF Conducted Test

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
1	EMI test receiver	Rohde & Schwarz	ESU40	100109	2013-02-23	2014-02-22
2	Horn Antenna	SCHWARZBE CK	BBHA9120	9120D-679	2013-03-07	2014-03-06
3	Horn Antenna	Rohde & Schwarz	HF906	100284	2013-06-03	2014-06-01
4	ANTENNA	SCHWARZBE CK	VULB9168	9168-313	2013-03-07	2014-03-06
5	Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 373	2013-03-07	2014-03-06
6	Ultra broadband antenna	Rohde & Schwarz	HL562	100227	2012-10-09	2013-10-08
7	Atmosphere pressure meter	Shanghai ZhongXuan Electronic Co;Ltd	BY – 2009P		2012-10-09	2013-10-08
8	CLAMP METER	FLUKE	316	86080010	2013-06-03	2014-06-01

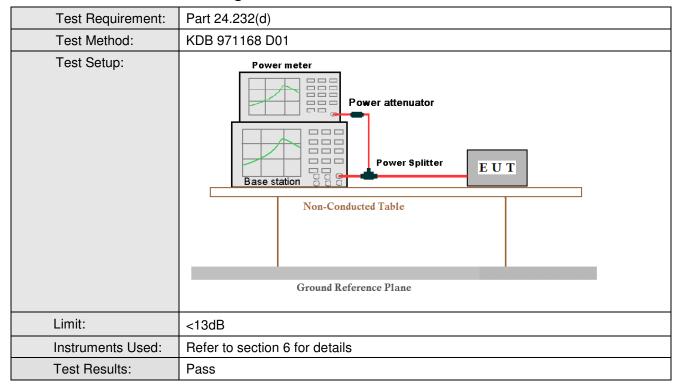

8 of 39 Page

9	Thermo- Hygrometer	ZHICHEN	ZC1-2	01050033	2012-10-09	2013-10-08
11	High-low temperature cabinet	Shanghai YuanZhen	GW2050		2013-06-03	2014-06-01
12	Tunable Notch Filter	Wainwright instruments	WRCT180 0.0/ 2000.0- 0.2/40- 5SSK	11	2013-06-03	2014-06-01
13	Tunable Notch Filter	Wainwright instruments	WRCT800. 0/880.0- 0.2/40- 5SSK	9	2013-06-03	2014-06-01
14	High pass Filter	FSCW	HP 12/2800- 5AA2	19A45-02	2013-06-03	2014-06-01
15	Low nosie	TESEQ	LNA6900	70133	2013-02-23	2014-02-22
16	EMI test receiver	Rohde & Schwarz	ESCS30	100086	2013-02-23	2014-02-22
17	Line impedance stabilization network	SCHWARZBE CK	NSLK8127	8127-490	2013-02-23	2014-02-22

Page 9 of 39

7 Test results and Measurement Data

7.1 Conducted Output Power


Page 10 of 39

Measurement results:

Test M	lode	Channel	Frequency	1Slots	2Slots	3Slots	4Slots
	Low	128	824.2	31.5	31.4	31.3	27.9
GSM 850	Mid	190	836.6	31.4	31.3	31.2	28.0
	High	251	848.8	31.6	31.5	31.4	28.1
	Low	512	1850.2	28.3	28.4	28.2	25.6
GSM1900	Mid	661	1880.0	28.1	28.1	28.0	25.2
	High	810	1909.8	27.8	27.7	27.9	25.1

Page 11 of 39

7.2 Peak-to-Average Ratio

Measurement results:

	G	SM850	
Center Frequency (MHz)	Channel No.	Test Mode	Peak-to-Average Ratio (dB)
		1 Slots	1.50
824.20	128	2 Slots	2.12
024.20	120	3 Slots	1.53
		4 Slots	1.27
	190	1 Slots	2.34
836.60		2 Slots	1.42
830.00		3 Slots	2.18
		4 Slots	1.66
		1 Slots	2.44
848.80	2 Slots 3 Slots 4 Slots	2.61	
040.00		3 Slots	2.06
		4 Slots	1.61

12 of 39 Page

	PC	CS1900	
Center Frequency (MHz)	Channel No.	Test Mode	Peak-to-Average Ratio (dB)
		1 Slots	3.50
1850.20	512	2 Slots	3.21
1830.20	312	3 Slots	2.36
		4 Slots	1.25
	661	1 Slots	3.50
1880.00		2 Slots	3.21
1880.00		3 Slots	2.36
		4 Slots	1.25
		1 Slots	3.50
1908.80	910	2 Slots	3.21
1908.60	810	3 Slots	2.36
		4 Slots	1.25

Limit:

Technical Services (Shanghail) **SGS-CSTC Standards** (Shanghai)Co., Ltd.

Report No.: SHEM130600102001

13 of 39 Page

7.3 Effect	ive Radiated Power of	Transmitte	r (ERP/EIR	(P)	
Test Requirement:	Part 2.1046(a)				
Test Method:	ITA-603-D-2010 Clause 2.2	.17			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	peak	100 kHz	300kHz	Peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
Test Setup:					
(Turntable) Ground Ref	Pro- Amplifier Controlles	Horn Antenna Tower Base station Ground Reference Plane Test Receiver Test Receiver Test Receiver			
(Turntable Signal Generator	OMHz to 1GHz Antenna Tower Antenna Tower Antenna Tower Antenna Tower Controlles	(Turntable)	Figure 2. a	Ground Reference Plan	

Figure 1. 30MHz to 1GHz Figure 2. above 1GHz Mode **GSM 850** PCS1900

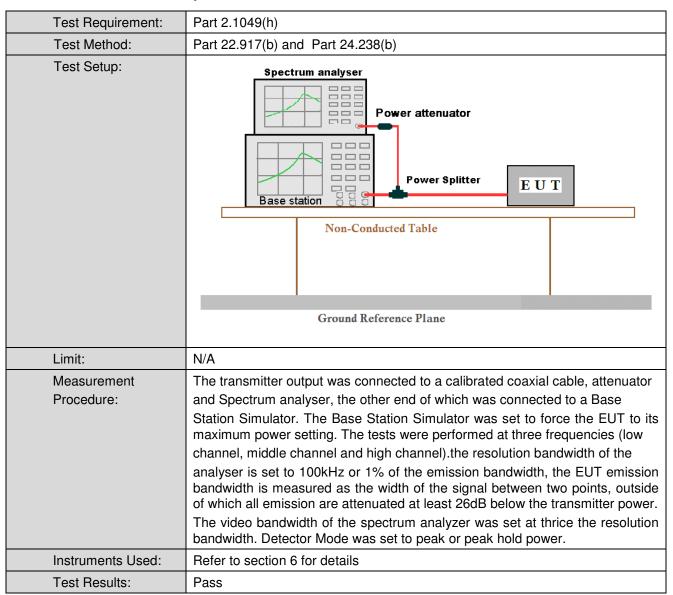
824 - 849MHz Frequency 1850 - 1910MHz Limit 38.45dBm (7W) 33.01dBm (2W)

Report No.: SHEM130600102001

14 of 39 Page

Measurement	Below 1GHz test procedure as below:
Procedure:	1). The EUT was powered ON and placed on a 0.8m high table in the
r rocedure.	chamber. The antenna of the transmitter was extended to its maximum
	length.
	2). The disturbance of the transmitter was maximized on the test receiver
	display by raising and lowering from 1m to 4m the receive antenna and by
	rotating through 360° the turntable. After the fundamental emission was
	maximized, a field strength measurement was made.
	3). Steps 1) and 2) were performed with the EUT and the receive antenna in
	both vertical and horizontal polarization.
	4). The transmitter was then removed and replaced with another antenna. The
	center of the antenna was approximately at the same location as the center of the transmitter.
	5). A signal at the disturbance was fed to the substitution antenna by means of
	a non-radiating cable. With both the substitution and the receive antennas
	horizontally polarized, the receive antenna was raised and lowered to
	obtain a maximum reading at the test receiver. The level of the signal
	generator was adjusted until the measured field strength level in step 2) is
	obtained for this set of conditions.
	6). The output power into the substitution antenna was then measured.
	7). Steps 5) and 6) were repeated with both antennas polarized.
	8). Calculate power in dBm by the following formula:
	ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)
	where:
	Pg is the generator output power into the substitution antenna.
	Above 1GHz test procedure as below:
	1). Different between above is the test site, change from Semi- Anechoic
	Chamber to fully Anechoic Chamber
	2). Calculate power in dBm by the following formula:
	EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB
	where:
	Pg is the generator output power into the substitution antenna.
	3). Test the EUT in the lowest channel, the middle channel the Highest
	channel
	4). The radiation measurements are performed in X, Y, Z axis positioning. And
	found the X axis positioning which it is worse case, Only the test worst case mode is recorded in the report.
	5). Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 6 for details
Test Results:	Pass

Report No.: SHEM130600102001


15 of 39 Page

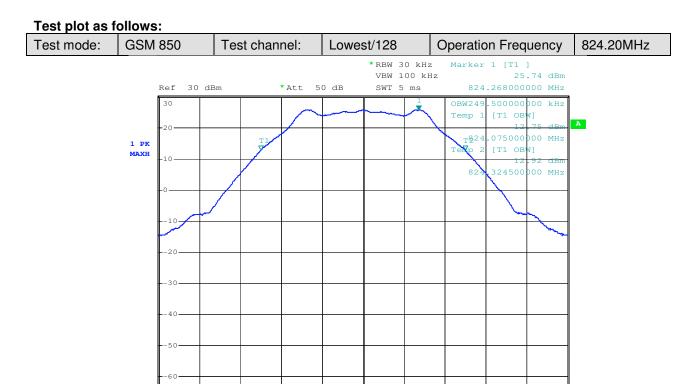
Measurement Data:

EUT	Frequency (MHz)	СН	EUT	Antenna	S.G. output	Antenna Gain	Cable loss	ERP	Limit
mode	(1411 12)		Pol.	Pol.	(dBm)	(dBd)	(dB)	(dBm)	(dBm)
				V	24.24	8.40	3.32	29.32	38.45
	824.20	128	V	Н	25.13	8.40	3.32	30.21	38.45
GSM				V	25.24	8.42	3.40	30.26	38.45
850	836.60	190	V	Н	24.78	8.42	3.40	29.80	38.45
				V	24.63	8.47	3.43	29.67	38.45
	848.80	251	V	Н	24.89	8.47	3.43	29.93	38.45
EUT	Frequency (MHz)	СН	EUT	Antenna	S.G. output	Antenna Gain	Cable loss	EIRP	Limit
mode	(IVITIZ)		Pol.	Pol.	(dBm)	(dBi)	(dB)	(dBm)	(dBm)
				V	22.36	9.15	4.15	27.36	33
	1850.20	512	٧	Н	22.08	9.15	4.15	27.08	33
PCS 1900				V	22.39	9.22	4.28	27.33	33
	1880.00	661	V	Н	21.86	9.22	4.28	26.80	33
				V	22.58	9.25	4.41	27.42	33
	1908.80	810	V	Н	21.92	9.25	4.41	26.76	33

Page 16 of 39

7.4 99%Occupied Bandwidth

17 of 39 Page

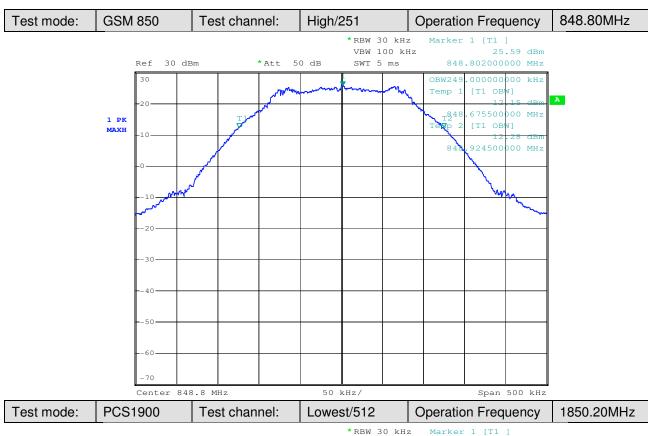

Measurement Data:

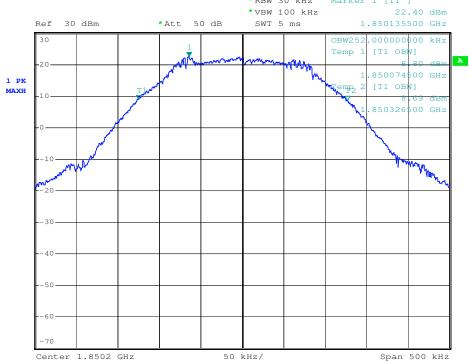
GSM 850						
Test channel	Frequency (MHz)	99% Emission Bandwidth (kHz)	Result			
Lowest/128	824.20	249.50	Pass			
Middle/190	836.60	250.00	Pass			
Highest/251	848.80	249.00	Pass			
	F	PCS 1900				
Test channel	Frequency (MHz)	99% Emission Bandwidth (kHz)	Result			
Lowest/512	1850.20	252.00	Pass			
Middle/661	1880.00	251.50	Pass			
Highest/810	1908.80	251.00	Pass			

Report No.: SHEM130600102001

18 of 39 Page

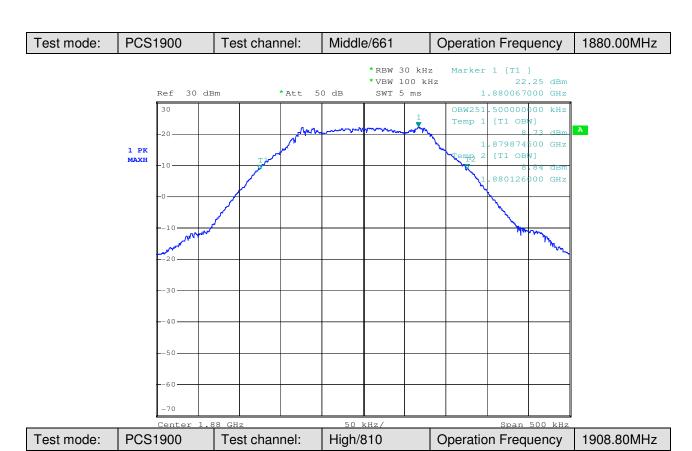
Span 500 kHz 50 kHz/ Test mode: Middle/190 **Operation Frequency** 836.60MHz **GSM 850** Test channel:


824.2 MHz



Report No.: SHEM130600102001

Page 19 of 39



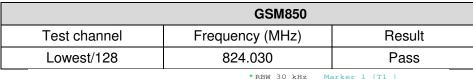
SGS-CSTC Standards SGS-CSTC Standar Technical Services (Shanghai)Co., Ltd. (Shanghai)Co., Ltd.

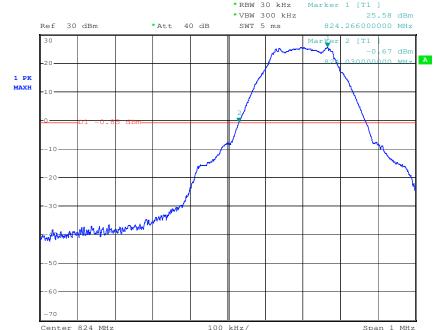
Report No.: SHEM130600102001

20 of 39 Page

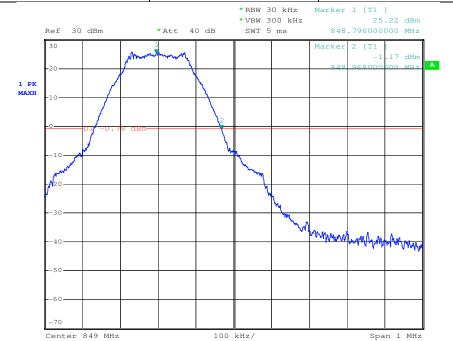
Page 21 of 39

7.5 Band Edge at antenna terminals

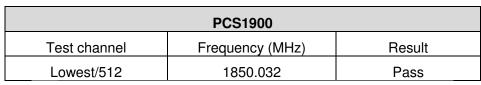

Test Requirement:	Part 2.1051				
Test Method:	Part 22.917(b) and Part	rt 24.238(b)			
Test Setup:	Spectrum ar Base station		EUT		
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyser, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel).in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of 100kHz or 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed. The EUT emission bandwidth is measured as the width of the signal between two points, outside of which all emission are attenuated at least 26dB below the transmitter power. The video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to peak or peak hold power.				
Limit:	Operation Band	Frequency Range(MHz)	Limit		
	GSM 850	Below 824 and above 849	Attenuated at least 43+10log(P)		
	PCS1900	Below 1850 and above 1910	Attenuated at least 43+10log(P)		
Instruments Used:	Refer to section 6 for details				
Test Results:	Pass				

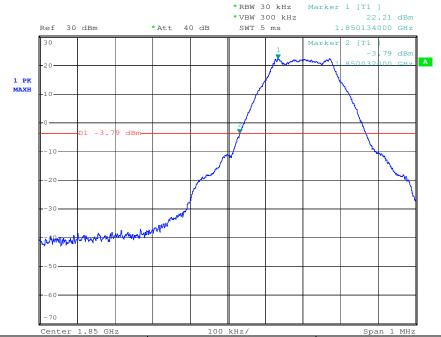


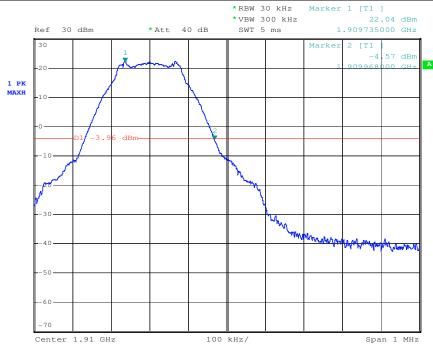
Report No.: SHEM130600102001


22 of 39 Page

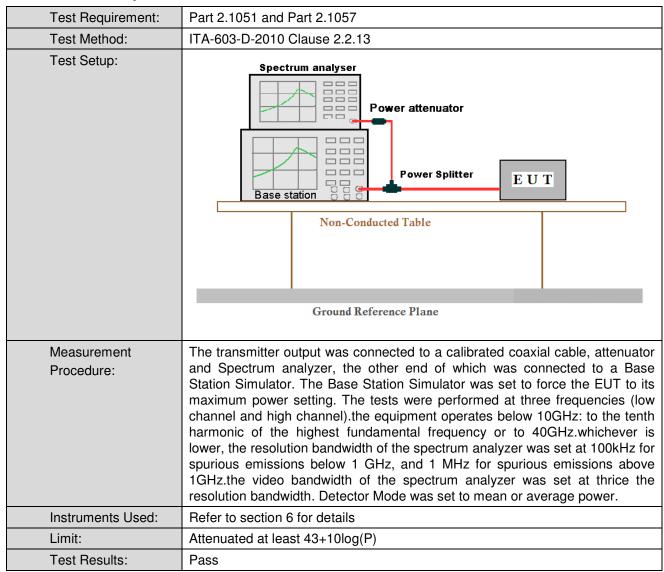
Measurement Data:


Test channel	Frequency (MHz)	Result
Highest/251	848.968	Pass




Report No.: SHEM130600102001

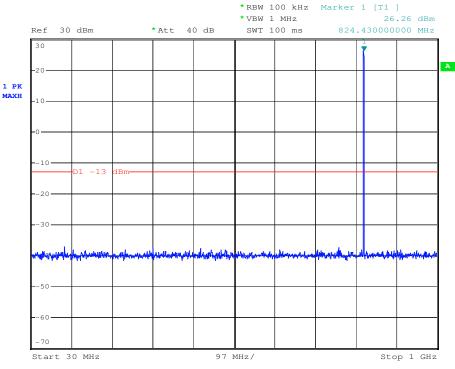
Page 23 of 39



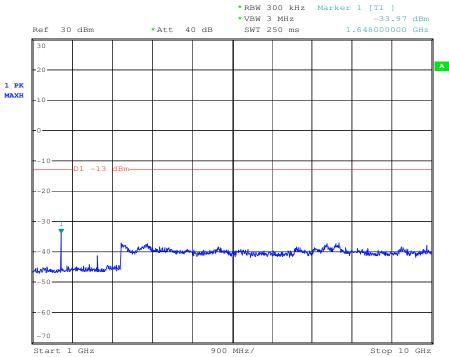
Test channel	Frequency (MHz)	Result
Highest/1175	1909.968	Pass

Page 24 of 39

7.6 Spurious emissions at antenna terminals


SGS-CSTC Standards

Report No.: SHEM130600102001


25 of 39 Page

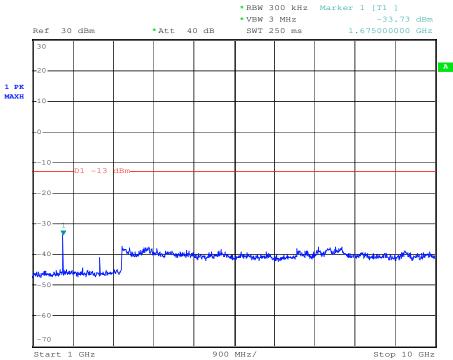
Test plot as follows:

For 30MHz-1GHz:

For 1GHz-10GHz:



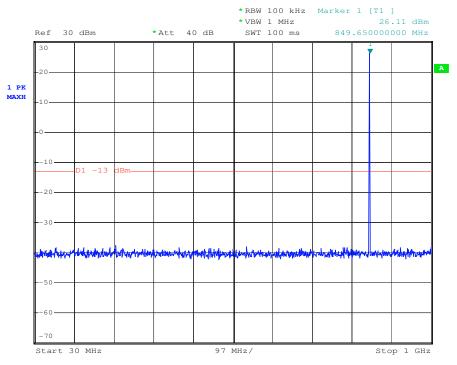
Report No.: SHEM130600102001


26 of 39 Page

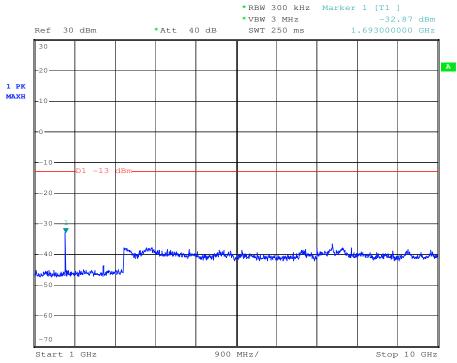
Test m	node:	GSM 850	Test channel:	Middle/190	Operation Frequency	836.60MHz	l
--------	-------	---------	---------------	------------	---------------------	-----------	---

For 30MHz-1GHz:

For 1GHz-10GHz:



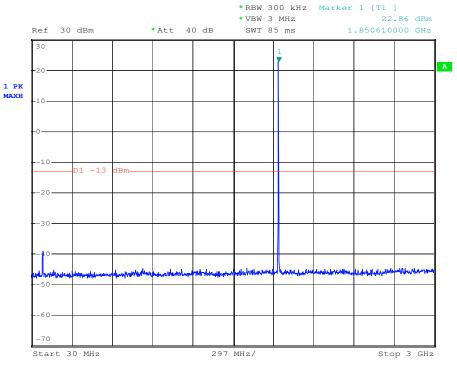
Report No.: SHEM130600102001


27 of 39 Page

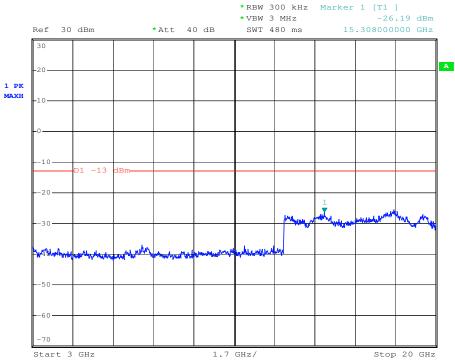
Test mode:	GSM 850	Test channel:	High/251	Operation Frequency	848.80MHz
------------	---------	---------------	----------	---------------------	-----------

For 30MHz-1GHz:

For 1GHz-10GHz:


SGS-CSTC Standards SGS-CSTC Standar Technical Services (Shanghai)Co., Ltd. (Shanghai)Co., Ltd.

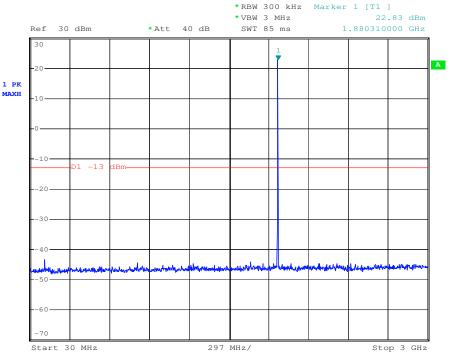
Report No.: SHEM130600102001


28 of 39 Page

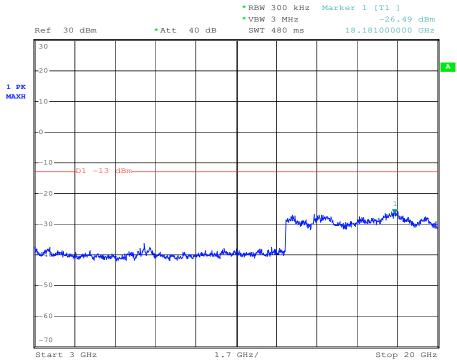
Test mode: PCS 1900 Test channel: Lowest/512 1850.20MHz Operation Frequency

For 30MHz-3GHz:

For 3GHz-20GHz:



Report No.: SHEM130600102001


29 of 39 Page

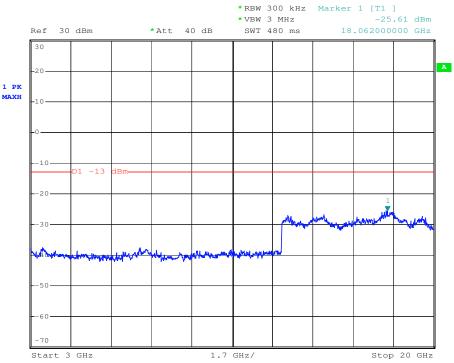
Test mode:	PCS 1900	Test channel:	Middle/661	Operation Frequency	1880.00MHz
------------	----------	---------------	------------	---------------------	------------

For 30MHz-3GHz:

For 3GHz-20GHz:



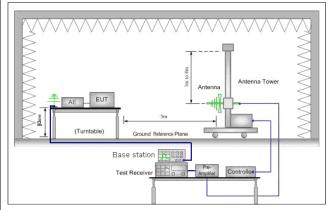
Report No.: SHEM130600102001


30 of 39 Page

	Test mode:	PCS 1900	Test channel:	High/810	Operation Frequency	1908.80MHz	
--	------------	----------	---------------	----------	---------------------	------------	--

For 30MHz-3GHz:

For 3GHz-20GHz:



Report No.: SHEM130600102001

Page 31 of 39

7.7 Field strength of spurious radiation

Test Requirement:	Part 2.1053 and Part 2.1057					
Test Method:	ITA-603-D-2010 Clause 2.2.12					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Peak	100 kHz	300kHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
Test Setup:						

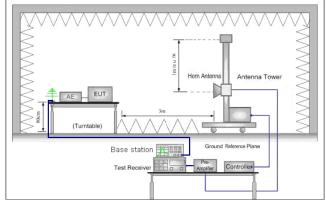


Figure 2. 30MHz to 1GHz

Figure 3. above 1GHz

Measurement Procedure:

Below 1GHz test procedure as below:

- 1). The EUT was powered ON and placed on a 1.70m high table in the chamber. The antenna of the transmitter was extended to its maximum length.
- 2). The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 3). Steps 1) and 2) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 4). The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 5). A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions.
- 6). The output power into the substitution antenna was then measured.

32 of 39 Page

	7). Steps 5) and 6) were repeated with both antennas polarized.
	8) Calculate power in dBm by the following formula:
	ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)
	where:
	Pg is the generator output power into the substitution antenna.
	Above 1GHz test procedure as below:
	1) Different between above is the test site, change from Semi- Anechoic
	Chamber to fully Anechoic Chamber
	2) Calculate power in dBm by the following formula:
	EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)
	EIRP=ERP+2.15dB
	where:
	Pg is the generator output power into the substitution antenna.
	3.Test the EUT in the lowest channel, the middle channel the Highest channel
	4. The radiation measurements are performed in X, Y, Z axis positioning.
	And found the X axis positioning which it is worse case, Only the test
	worst case mode is recorded in the report.
	5. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 6 for details
Limit:	Attenuated at least 43+10log(P)
Test Results:	Pass

Report No.: SHEM130600102001

Page 33 of 39

Test mode: GSM 850 Test channel: Lowest/128 Operation Frequency 824.20MHz

Frequency (MHz)	Ant.Pol. H/V	ERP/ EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
1666.00	Н	-31.20	-13.	-18.20
3340.00	Н	-41.77	-13	-28.77
5806.00	Н	-41.29	-13	-28.29
1648.00	V	-28.79	-13	-15.79
2467.00	V	-40.30	-13	-27.30
5824.00	V	-43.18	-13	-30.18

Frequency (MHz)	Ant.Pol. H/V	ERP/ EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
1666.00	Н	-31.20	-13.	-18.20
3340.00	Н	-41.77	-13	-28.77
5806.00	Н	-41.29	-13	-28.29
1666.00	V	-27.24	-13	-14.24
3340.00	V	-43.08	-13	-30.08
5635.00	V	-43.18	-13	-30.18

Report No.: SHEM130600102001

Page 34 of 39

Test mode: GSM 850 Test channel: High/251 Operation Frequency 848.80MHz

Frequency (MHz)	Ant.Pol. H/V	ERP/ EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
1693.00	Н	-32.77	-13.	-19.77
5752.00	Н	-41.79	-13	-28.79
1693.00	V	-28.12	-13	-15.12
5815.00	V	-43.05	-13	-30.05

Test mode:	PCS 1900	Test channel:	Lowest/512	Operation Frequency	1850.20MHz	
------------	----------	---------------	------------	---------------------	------------	--

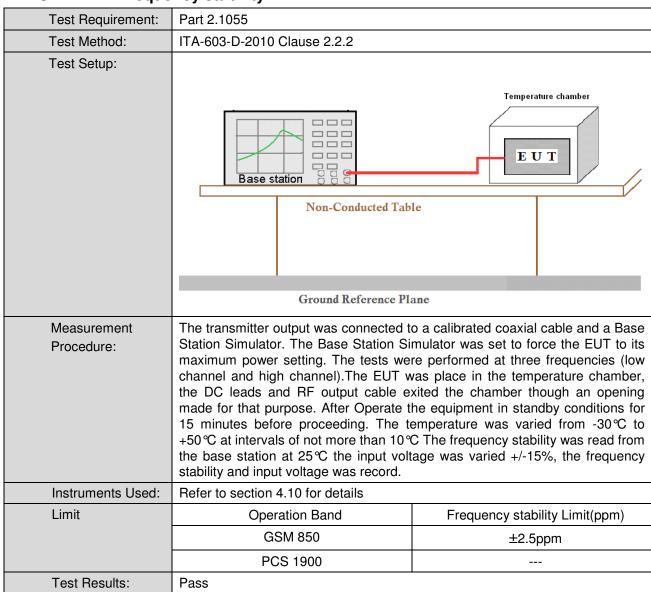
Frequency (MHz)	Ant.Pol. H/V	ERP/ EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
1850.00	Н	-36.04	-13.	-23.04
5539.00	Н	-41.75	-13	-28.79
13852.00	Н	-39.99	-13	-26.99
1850.00	٧	-34.78	-13	-21.78
3703.00	V	-38.92	-13	-25.92
15399.00	V	-39.58	-13	-26.58

Report No.: SHEM130600102001

Page 35 of 39

Test mode: PCS 1900 Test channel: Middle/661 Operation Frequency 1880.00MHz

Frequency (MHz)	Ant.Pol. H/V	ERP/ EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
1867.00	Н	-33.08	-13.	-20.08
3754.00	Н	-38.98	-13	-25.98
15263.00	Н	-40.20	-13	-27.20
1867.00	V	-31.47	-13	-18.47
3754.00	V	-38.21	-13	-25.21
15025.00	V	-40.02	-13	-27.02


Test mode:	PCS 1900	Test channel:	High/810	Operation Frequency	1908.80MHz
------------	----------	---------------	----------	---------------------	------------

Frequency (MHz)	Ant.Pol. H/V	ERP/ EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
1901.00	Н	-34.99	-13.	-21.99
3822.00	Н	-39.07	-13	-26.07
13852.00	Н	-39.64	-13	-26.64
1901.00	V	-30.91	-13	-17.91
3822.00	V	-40.95	-13	-27.95
15025.00	V	-39.55	-13	-26.55

Page 36 of 39

7.8 Frequency stability

37 of 39 Page

	GSM 850						
Power Supply	Environment	Test Channel		Freq Delta	Freq Dev	Limit	
Vdc	Temperature (℃)	Channel No.	Frequency (MHz)	(Hz)	(ppm)	(ppm)	
120	-20	1013	824.70	35	0.42	±2.5	
120	-20	777	848.31	48	0.57	±2.5	
120	-10	1013	824.70	20	0.24	±2.5	
120	-10	777	848.31	15	0.18	±2.5	
120	0	1013	824.70	-17	-0.21	±2.5	
120	0	777	848.31	42	0.50	±2.5	
120	10	1013	824.70	18	0.22	±2.5	
120	10	777	848.31	32	0.38	±2.5	
120	20	1013	824.70	11	0.13	±2.5	
120	20	777	848.31	10	0.12	±2.5	
120	30	1013	824.70	-25	-0.30	±2.5	
120	30	777	848.31	25	0.29	±2.5	
120	40	1013	824.70	16	0.19	±2.5	
120	40	777	848.31	31	0.37	±2.5	
120	50	1013	824.70	41	0.50	±2.5	
120	50	777	848.31	-30	-0.35	±2.5	
138	20	1013	824.70	12	0.15	±2.5	
138	20	777	848.31	22	0.26	±2.5	
102	20	1013	824.70	33	0.40	±2.5	
102	20	777	848.31	-16	-0.19	±2.5	

38 of 39 Page

	PCS 1900						
Power Supply	Environment	Test Channel		Freq Delta	Freq Dev	Limit	
Vdc	Temperature (°C)	Channel No.	Frequency (MHz)	(Hz)	(ppm)	(ppm)	
120	-20	25	1851.25	37	0.20	±2.5	
120	-20	1175	1908.75	23	0.12	±2.5	
120	-10	25	1851.25	-19	-0.10	±2.5	
120	-10	1175	1908.75	-35	-0.18	±2.5	
120	0	25	1851.25	26	0.14	±2.5	
120	0	1175	1908.75	-17	-0.09	±2.5	
120	10	25	1851.25	-44	-0.24	±2.5	
120	10	1175	1908.75	33	0.17	±2.5	
120	20	25	1851.25	-27	-0.16	±2.5	
120	20	1175	1908.75	48	0.25	±2.5	
120	30	25	1851.25	23	0.12	±2.5	
120	30	1175	1908.75	-41	-0.21	±2.5	
120	40	25	1851.25	33	0.18	±2.5	
120	40	1175	1908.75	26	0.14	±2.5	
120	50	25	1851.25	18	0.10	±2.5	
120	50	1175	1908.75	43	0.23	±2.5	
138	20	25	1851.25	-33	-0.19	±2.5	
138	20	1175	1908.75	24	0.13	±2.5	
102	20	25	1851.25	30	0.16	±2.5	
102	20	1175	1908.75	27	0.14	±2.5	

Page 39 of 39

8 Photographs - EUT Test Setup

Refer to the < GL300_Test Setup photos>.

9 Photographs - EUT Constructional Details

Refer to the < GL300_External Photos > & < GL300_Internal Photos >.