FCC§1.1307& §2.1091 – MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RKS170602005-00B

Applicable Standard

According to subpart §2.1051and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)			Power Density (mW/cm^2)	Averaging Time (minutes)				
0.3-1.34	614	1.63	*(100)	30				
1.34-30	824/f	2.19/f	*(180/f²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/	/	f/1500	30				
1500-100,000	/	/	1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

FCC Part 22H/24E Page 9 of 28

Calculated Data:

Mode	Frequency Range	- · Ant		Output Power		Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
GPRS 850	824.2-848.8	0.69	1.17	26.0	398.11	20	0.0928	0.57
GPRS1900	1850.2-1909.8	1.90	1.55	24.5	281.84	20	0.0868	1.00

Report No.: RKS170602005-00B

Number of Time slot	1	2
Duty Cycle	1:8.3	1:4.15
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB

Note: The target output power:

GPRS 850: 1 slot 32 \pm 0.5dBm, 2 slot 31.5 \pm 0.5dBm max average power 26dBm GPRS 1900: 1 slot 30.5 \pm 0.5dBm, 2 slot 30 \pm 0.5dBm max average power 24.5dBm

Which declared by the manufacturer.

Result: The device meet FCC MPE at 20 cm distance.

FCC Part 22H/24E Page 10 of 28