

# FCC SAR TEST REPORT

**Report No. :** SET2015-12282

| Product :     | GPS Locator                                                                                    |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Model No. :   | GL300                                                                                          |  |  |  |  |
| FCC ID :      | YQDGL300                                                                                       |  |  |  |  |
| Applicant :   | Queclink Wireless Solutions Co.,Ltd                                                            |  |  |  |  |
| A 11          | Room 501, Building 9, No 99, TianZhou Road, Shanghai,                                          |  |  |  |  |
| Address :     | China                                                                                          |  |  |  |  |
| Issued by :   | CCIC-SET                                                                                       |  |  |  |  |
| Lab Location: | Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055, P. R. China |  |  |  |  |
| Tel:          | 86 755 26627338 Fax: 86 755 26627238                                                           |  |  |  |  |
| Mail :        | manager@ccic-set.com Website: http://www.ccic-set.com                                          |  |  |  |  |

This test report consists of 72 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.



# **Test Report**

| Product               | GPS Locator                                                                                                                                                                                                 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No              | GL300                                                                                                                                                                                                       |
| Brand Name:           | Queclink                                                                                                                                                                                                    |
| FCC ID:               | YQDGL300                                                                                                                                                                                                    |
| Applicant:            | Queclink Wireless Solutions Co., Ltd                                                                                                                                                                        |
| Applicant Address:    | Room 501, Building 9, No 99, TianZhou Road, Shanghai,<br>China                                                                                                                                              |
| Manufacturer:         | Queclink Wireless Solutions Co., Ltd                                                                                                                                                                        |
| Manufacturer Address: | Room 501, Building 9, No 99, TianZhou Road, Shanghai,<br>China                                                                                                                                              |
| Test Standards:       | <b>47CFR § 2.1093-</b> Radiofrequency Radiation Exposure Evaluation: Portable Devices;                                                                                                                      |
|                       | <b>ANSI C95.1–1992:</b> Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)                                                       |
|                       | <b>IEEE 1528–2003:</b> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques; |
| Test Result:          | Pass                                                                                                                                                                                                        |
| Tested by             | Mei Chun 2015-09-25<br>Chun Mei, Test Engineer                                                                                                                                                              |
| Reviewed by:          | Shuangwan Thomas 2015-09-25                                                                                                                                                                                 |
|                       | Shuangwen Zhang, Senior Egineer                                                                                                                                                                             |
| Approved by           | Wu Li'an , Manager                                                                                                                                                                                          |
|                       |                                                                                                                                                                                                             |



## Contents

| 1.  | GENERAL CONDITIONS                                           |     |
|-----|--------------------------------------------------------------|-----|
| 2.  | ADMINISTRATIVE DATA                                          | 5   |
|     | 2.1. Identification of the Responsible Testing Laboratory    | 5   |
|     | 2.2. Identification of the Responsible Testing Location(s)   | 5   |
|     | 2.3. Organization Item                                       |     |
|     | 2.4. Identification of Applicant                             | 5   |
|     | 2.5. Identification of Manufacture                           | 5   |
| 3.  | EQUIPMENT UNDER TEST (EUT)                                   | 6   |
| 4.  | SAR SUMMAY                                                   |     |
| 5.  | Specific Absorption Rate(SAR)                                | 7   |
|     | 5.1. Introduction                                            |     |
|     | 5.2. SAR Definition                                          | 7   |
|     | 5.3. Phantoms                                                | 8   |
|     | 5.4. Device Holder                                           |     |
|     | 5.5. Probe Specification                                     |     |
| 6.  | OPERATIONAL CONDITIONS DURING TEST                           |     |
|     | 6.1. Schematic Test Configuration                            |     |
|     | 6.2. SAR Measurement System                                  | 10  |
|     | 6.3. Equipments and results of validation testing            |     |
|     | 6.4. SAR measurement procedure                               | 14  |
|     | 6.5. Antennas position and test position                     |     |
| 7.  | CHARACTERISTICS OF THE TEST                                  |     |
|     | 7.1. Applicable Limit Regulations                            |     |
|     | 7.2. Applicable Measurement Standards                        |     |
| 8.  | LABORATORY ENVIRONMENT                                       |     |
| 9.  | CONDUCTED RF OUTPUT POWER                                    | 17  |
| 10. | . TEST RESULTS                                               | 19  |
| 11. | . MEASUREMENT UNCERTAINTY                                    | 21  |
| 12. | . MAIN TEST INSTRUMENTS                                      | 24  |
| Th  | is Test Report consists of the following Annexes:            |     |
|     | Annex A: Test Layout                                         | -25 |
|     | Annex B: Sample Photographs                                  | -29 |
|     | Annex C: System Performance Check Data and Highest SAR Plots | -32 |



### 1. GENERAL CONDITIONS

1.1 This report only refers to the item that has undergone the test.

1.2 This report standalone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities.

1.3 This document is only valid if complete; no partial reproduction can be made without written approval of CCIC-SET

1.4 This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of CCIC-SET and the Accreditation Bodies, if it applies.



### 2. Administrative Date

| 2.1. Identification of the Responsible Testing Laboratory                                                                                           |                                                                                                            |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Company Name:                                                                                                                                       | CCIC-SET                                                                                                   |  |  |  |  |  |
| Department:<br>Address:                                                                                                                             | EMC & RF Department<br>Electronic Testing Building, Shahe Road, Nanshan District,<br>ShenZhen, P. R. China |  |  |  |  |  |
| Telephone:                                                                                                                                          | +86-755-26629676                                                                                           |  |  |  |  |  |
| Fax:                                                                                                                                                | +86-755-26627238                                                                                           |  |  |  |  |  |
| Responsible Test Lab<br>Managers:                                                                                                                   | Mr. Wu Li'an                                                                                               |  |  |  |  |  |
| 2.2. Identification of the Re<br>Company Name:                                                                                                      | esponsible Testing Location(s)<br>CCIC-SET                                                                 |  |  |  |  |  |
| Address:                                                                                                                                            | Electronic Testing Building, Shahe Road, Nanshan District,<br>Shenzhen, P. R. China                        |  |  |  |  |  |
| 2.3. Organization Item<br>CCIC-SET Report No.:<br>CCIC-SET Project Leader:<br>CCIC-SET Responsible<br>for accreditation scope:<br>Start of Testing: | SET2015-12282<br>Mr. Li Sixiong<br>Mr. Wu Li'an<br>2015-09-25                                              |  |  |  |  |  |
| End of Testing:                                                                                                                                     | 2015-09-25                                                                                                 |  |  |  |  |  |
| 2.4. Identification of Applic                                                                                                                       | ant                                                                                                        |  |  |  |  |  |
| Company Name:                                                                                                                                       | Queclink Wireless Solutions Co.,Ltd                                                                        |  |  |  |  |  |
| Address:                                                                                                                                            | Room 501, Building 9, No 99, TianZhou Road, Shanghai,<br>China                                             |  |  |  |  |  |
| 2.5. Identification of Manuf                                                                                                                        | acture                                                                                                     |  |  |  |  |  |
| Company Name:                                                                                                                                       | Queclink Wireless Solutions Co.,Ltd                                                                        |  |  |  |  |  |
| Address:                                                                                                                                            | Room 501, Building 9, No 99, TianZhou Road, Shanghai,<br>China                                             |  |  |  |  |  |
| Notes: This data is based o                                                                                                                         | on the information by the applicant.                                                                       |  |  |  |  |  |



### 3. Equipment Under Test (EUT)

#### 3.1. Identification of the Equipment under Test

Test Band

Sample Name: GPS Locator

Type Name: **GPS** Locator

Brand Name: Queclink

| Support Band | GSM850MHz/1900MHz |
|--------------|-------------------|
|              |                   |

GPRS 850MHz/ GPRS 1900MHz,

|              | Test Danu          |                     |
|--------------|--------------------|---------------------|
|              | Multislot Class    | GPRS: Class 12      |
|              | GPRS Class         | Class B             |
| General      | Development Stage  | Identical Prototype |
| description: | Accessories        | Power Supply        |
|              | Battery type       | 3.7V 1300mAh        |
|              | Antenna type       | Inner Antenna       |
|              | Operation mode     | GSM / GPRS          |
|              | Modulation mode    | GMSK                |
|              | Max. RF Power      | 32.18dBm            |
|              | Max. SAR Value     | Body: 1.288 W/kg;   |
|              | Exposure Condition | 0mm separation      |

#### NOTE:

- a. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- b. This device supports GPRS operation up to class12(max.uplin:4, max.downlink:4, total timeslots:5)
- c. This EUT did not support voice, only support GPRS Data mode.



### 4 SAR SUMMARY

#### Highest Standalone SAR Summary

| Exposure<br>Position                | Frequency<br>Band | Scaling Factor | Scaled<br>1g-SAR(W/kg) | Highest<br>Scaled<br>1g-SAR(W/kg) |  |
|-------------------------------------|-------------------|----------------|------------------------|-----------------------------------|--|
| Body-worn<br>Accessory<br>(0mm Gap) | GSM850            | 1.033          | 1.233                  | 4 000                             |  |
|                                     | GSM1900           | 1.208          | 1.288                  | 1.288                             |  |

### 5 Specific Absorption Rate (SAR)

#### 5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

#### 5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity,  $\delta T$  is the temperature rise and  $\delta t$  the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of the tissue and E is the rms electrical field strength.

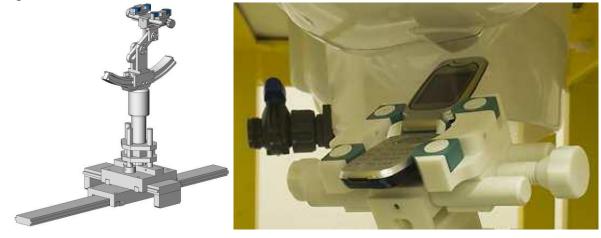
However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.



#### 5.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.




#### SAM Twin Phantom

#### 5.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

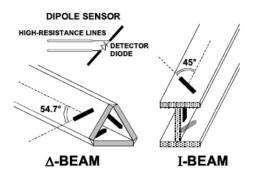
The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.



Device holder



#### 5.5 Probe Specification


| 1000 |     |    |
|------|-----|----|
| 1    | -   | 5. |
| 100  | 100 | -  |
|      | Z   | 00 |
| 100  | 50  |    |

| C. I IN       |                                                                                                                                                                                                                                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction  | Symmetrical design with triangular core<br>Interleaved sensors<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents,<br>e.g., DGBE)<br>ISO/IEC 17025 calibration service available. |
| Frequency     | 700 MHz to 3 GHz;<br>Linearity: ± 0.5 dB (700 MHz to 3 GHz)                                                                                                                                                                           |
| Directivity   | ± 0.25 dB in HSL (rotation around probe axis)<br>± 0.5 dB in tissue material (rotation normal to probe<br>axis)                                                                                                                       |
| Dynamic Range | 1.5 μW/g to 100 mW/g;<br>Linearity: ± 0.5 dB                                                                                                                                                                                          |
| Dimensions    | Overall length: 330 mm (Tip: 20 mm)<br>Tip diameter: 5 mm<br>Distance from probe tip to dipole centers: <2.7 mm                                                                                                                       |
| Application   | General dosimetry up to 3 GHz<br>Dosimetry in strong gradient fields<br>Compliance tests of mobile phones                                                                                                                             |
| Compatibility | COMOSAR                                                                                                                                                                                                                               |

#### Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:





### **6** OPERATIONAL CONDITIONS DURING TEST

#### 6.1 Schematic Test Configuration

During SAR test, EUT was operating in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) was allocated to 128, 189 and 251 respectively in the case of GSM 850MHz, or to 512, 661 and 810 respectively in the case of PCS 1900MHz. The EUT was commanded to operate at maximum transmitting power.

The EUT should use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link was used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point should be lower than the output power level of the handset by at least 35 dB

#### 6.2 SAR Measurement System

The SAR measurement system being used is the SATIMO system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

#### 6.2.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

| Ingredients    | Frequency (MHz) |     |     |      |      |  |
|----------------|-----------------|-----|-----|------|------|--|
| (% by weight ) | 450             | 835 | 915 | 1900 | 2450 |  |



Report No. SET2015-12282

| Tissue Type         | Head  | Body  | Head  | Body | Head  | Body  | Head  | Body | Head | Body |
|---------------------|-------|-------|-------|------|-------|-------|-------|------|------|------|
| Water               | 38.56 | 51.16 | 41.46 | 52.4 | 41.05 | 56.0  | 54.9  | 40.4 | 62.7 | 73.2 |
| Salt (Nacl)         | 3.95  | 1.49  | 1.45  | 1.4  | 1.35  | 0.76  | 0.18  | 0.5  | 0.5  | 0.04 |
| Sugar               | 56.32 | 46.78 | 56.0  | 45.0 | 56.5  | 41.76 | 0.0   | 58.0 | 0.0  | 0.0  |
| HEC                 | 0.98  | 0.52  | 1.0   | 1.0  | 1.0   | 1.21  | 0.0   | 1.0  | 0.0  | 0.0  |
| Bactericide         | 0.19  | 0.05  | 0.1   | 0.1  | 0.1   | 0.27  | 0.0   | 0.1  | 0.0  | 0.0  |
| Triton x-100        | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0  | 36.8 | 0.0  |
| DGBE                | 0.0   | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 44.92 | 0.0  | 0.0  | 26.7 |
| Dielectric Constant | 43.42 | 58.0  | 42.54 | 56.1 | 42.0  | 56.8  | 39.9  | 54.0 | 39.8 | 52.5 |
| Conductivity (s/m)  | 0.85  | 0.83  | 0.91  | 0.95 | 1.0   | 1.07  | 1.42  | 1.45 | 1.88 | 1.78 |

#### Table 2 Recommended Tissue Dielectric Parameters

|                 | Head | Head Tissue Bod |      | y Tissue |  |
|-----------------|------|-----------------|------|----------|--|
| Frequency (MHz) | ٤r   | <b>σ</b> (S/m)  | ٤r   | σ(S/m)   |  |
| 150             | 52.3 | 0.76            | 61.9 | 0.80     |  |
| 300             | 45.3 | 0.87            | 58.2 | 0.92     |  |
| 450             | 43.5 | 0.87            | 56.7 | 0.94     |  |
| 835             | 41.5 | 0.90            | 55.2 | 0.97     |  |
| 900             | 41.5 | 0.97            | 55.0 | 1.05     |  |
| 915             | 41.5 | 0.98            | 55.0 | 1.06     |  |
| 1450            | 40.5 | 1.20            | 54.0 | 1.30     |  |
| 1610            | 40.3 | 1.29            | 53.8 | 1.40     |  |
| 1800-2000       | 40.0 | 1.40            | 53.3 | 1.52     |  |
| 2450            | 39.2 | 1.80            | 52.7 | 1.95     |  |
| 3000            | 38.5 | 2.40            | 52.0 | 2.73     |  |
| 5800            | 35.3 | 5.27            | 48.2 | 6.00     |  |

#### 6.2.2 Simulant liquids

For body-worn measurements, the EUT was tested against flat phantom representing the user body. The EUT was put on in the belt holder. Simulant liquids that are used for testing at frequencies of GSM 850MHz/1900MHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms.

| Temperature: 23.2°C; Humidity: 64%;   |                                                                 |         |         |  |  |
|---------------------------------------|-----------------------------------------------------------------|---------|---------|--|--|
| /                                     | / Frequency Permittivity $\epsilon$ Conductivity $\sigma$ (S/m) |         |         |  |  |
| Target value                          | 835MHz                                                          | 55.2±5% | 0.97±5% |  |  |
| Validation value<br>(Sep. 09th, 2015) | 835MHz                                                          | 54.73   | 0.95    |  |  |

Report No. SET2015-12282

| Target value      | 1900MHz  | 53.3±5% | 1.52±5% |
|-------------------|----------|---------|---------|
| Validation value  | 1900MHz  | 52.24   | 1.50    |
| (Sep. 10th, 2015) | TBOOMINZ | 52.24   | 1.00    |




Fig. 1 Configuration of body tissue

#### 6.3 Results of validation testing

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of  $\pm 10\%$ . The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below :



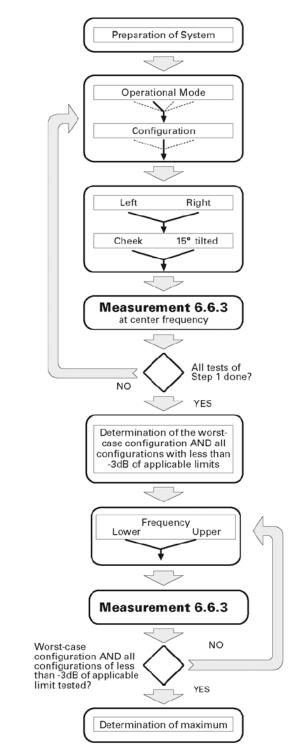


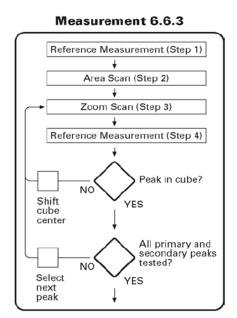
With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.25W (24 dBm). If this level is too high to read directly with the power meter sensor, insert a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The humidity and ambient temperature of test facility were 64% and 23.2°C respectively. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.

The distance between the back of the EUT and the bottom of the flat phantom is 0 mm (taking into account of the IEEE 1528 and the place of the antenna).


| Francisco                | Dutu avala | Target value | Test value (W/kg) |       |
|--------------------------|------------|--------------|-------------------|-------|
| Frequency                | Duty cycle | (W/kg)       | 250 mW            | 1W    |
| 835MHz(Sep. 09th, 2015)  | 1:1        | 10.31±10%    | 2.52              | 10.08 |
| 1900MHz(Sep. 10th, 2015) | 1:1        | 40.81±10%    | 10.13             | 40.52 |


\* Note: Target value was referring to the measured value in the calibration certificate of reference dipole. Note: All SAR values are normalized to 1W forward power.



#### 6.4 SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

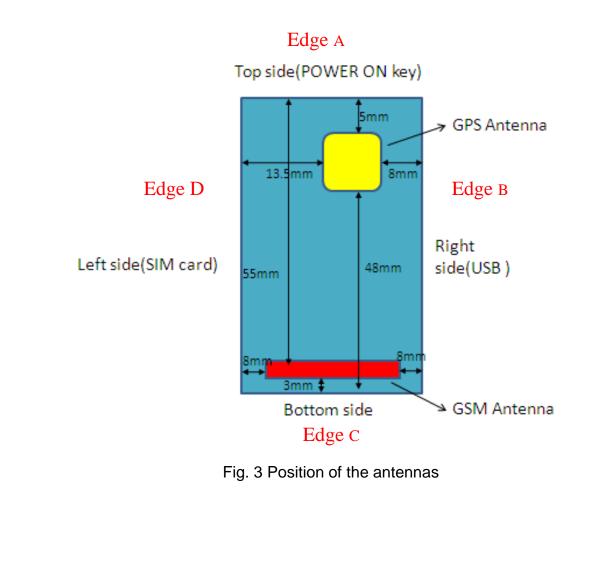




Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a




second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.

For body-worn measurement, the EUT was tested under two position: face upward and back upward.

#### 6.5 Transmitting antenna information

The GSM antenna inside the EUT is the only transmitting source, and it's a type of PIFA antenna.





The Body SAR measurement positions of each band are as below:

| Antenna                 | Front | Back | Edge A | Edge B | Edge C | Edge D |
|-------------------------|-------|------|--------|--------|--------|--------|
| 2G Antenna<br>Body-worn | Yes   | Yes  | Yes    | Yes    | Yes    | Yes    |

### 7 CHARACTERISTICS OF THE TEST

#### 7.1 Applicable Limit Regulations

47CFR § 2.1093- Radiofrequency Radiation Exposure Evaluation: Portable Devices;

**ANSI C95.1–1992:** Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.( IEEE Std C95.1-1991)

**IEEE 1528–2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques;

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

#### 7.2 Applicable Measurement Standards

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this is in accordance with the following standards:

FCC 47 CFR Part2 (2.1046) ANSI/IEEE C95.1-2005 IEEE 1528-2003 FCC KDB 447498 D01 v05r02 FCC KDB 648474 D04 v01r02 FCC KDB 865664 D01 v01r03 FCC KDB 941225 D01 v03 FCC KDB865664 D02 RF Exposure Reporting v01r01



### **8 LABORATORY ENVIRONMENT**

| 5                        |                                                |  |  |
|--------------------------|------------------------------------------------|--|--|
| Temperature              | Min. = 22 $^{\circ}$ C, Max. = 25 $^{\circ}$ C |  |  |
| Atmospheric pressure     | Min.=86 kPa, Max.=106 kPa                      |  |  |
| Relative humidity        | Min. = 45%, Max. = 75%                         |  |  |
| Ground system resistance | < 0.5 Ω                                        |  |  |

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

### 9.Conducted RF Output Power

### 9.1 GSM Conducted Power

| Band    |                    | Burst Ave | erage Pow | /er (dBm) Frame-A |        | verage Power (dBm) |        |
|---------|--------------------|-----------|-----------|-------------------|--------|--------------------|--------|
|         | TX Channel         | 128       | 190       | 251               | 128    | 190                | 251    |
|         | Frequency(MHz)     | 824.2     | 836.4     | 848.8             | 824.2  | 836.4              | 848.8  |
|         | GSM(GMSK)          | 32.16     | 32.11     | 32.14             | 22.97  | 22.92              | 22.95  |
| GSM850  | GPRS (GMSK Slot 1) | 32.18     | 32.09     | 32.13             | 22.99  | 22.90              | 22.94  |
|         | GPRS (GMSK Slot 2) | 31.3      | 31.17     | 31.35             | 25.17  | 25.04              | 25.22  |
|         | GPRS (GMSK Slot 3) | 29.71     | 29.69     | 29.73             | 25.29  | 25.27              | 25.31  |
|         | GPRS (GMSK Slot 4) | 28.73     | 28.72     | 28.86             | 25.55  | 25.54              | 25.68  |
|         | TX Channel         | 512       | 661       | 810               | 512    | 661                | 810    |
|         | Frequency(MHz)     | 1850.2    | 1880      | 1909.8            | 1850.2 | 1880               | 1909.8 |
|         | GSM(GMSK)          | 29.75     | 29.46     | 29.38             | 20.56  | 20.27              | 20.19  |
| GSM1900 | GPRS (GMSK Slot 1) | 29.74     | 29.45     | 29.36             | 20.55  | 20.26              | 20.17  |
|         | GPRS (GMSK Slot 2) | 28.86     | 28.94     | 28.87             | 22.73  | 22.81              | 22.74  |
|         | GPRS (GMSK Slot 3) | 27.25     | 27.29     | 27.28             | 22.83  | 22.87              | 22.86  |
|         | GPRS (GMSK Slot 4) | 26.15     | 26.18     | 26.18             | 22.97  | 23.00              | 23.00  |

#### Table 10: GSM Conducted Power

**Note:** Per KDB 447498 D01 v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.

For Body worn SAR testing, GSM should be evaluated, therefore the EUT was set in GSM Voice for GSM850 and GSM 1900 due to its highest frame-average power.



| No. Of Slots      | Slot 1   | Slot 2   | Slot 3   | Slot 4   |  |  |
|-------------------|----------|----------|----------|----------|--|--|
| Slot Consignation | 1Up4Down | 2Up3Down | 3Up2Down | 4Up1Down |  |  |
| Duty Cycle        | 1:8      | 1:4      | 1:267    | 1:2      |  |  |
| Crest Factor      | -9.03dB  | -6.02dB  | -4.26dB  | -3.01dB  |  |  |

#### Table 11: Timeslot consignations

### General Note:

- 1. Per KDB 447498 D01v05r02,the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
  - a. Tune-up scaling Factor =tune-up limit power(mW)/EUT RF power(mW), where tune-up limit is the maximum rated power among all production units.
  - b. For SAR testing of WLAN signal with non-100% duty cycle , the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
  - c. For WWAN: Reported SAR(W/kg)=Measured SAR(W/kg)\*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v05r02,for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing is not necessary.
- 3. Per KDB 648474 D04v01r02,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/kg, SAR testing with a headset connected to the handset is not required.
- 4. Per KDB 865664 D01V01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg



### Simultaneous SAR

| No. | Transmitter Combinations | Scenario Supported or<br>not | Supported for<br>Mobile Hotspot or<br>not |
|-----|--------------------------|------------------------------|-------------------------------------------|
| 1   | GSM(Voice)+GSM(Data)     | No                           | No                                        |

### 10 TEST RESULTS

### 10.1 Summary of SAR Measurement Results

#### Table 7: SAR Values of GSM 850MHz Band(Body 0mm Separation)

| Temperature: 23.0~23.5°C, humidity: 62~64%. |              |        |                   |                             |        |              |
|---------------------------------------------|--------------|--------|-------------------|-----------------------------|--------|--------------|
|                                             |              |        | Channel           | SAR(W/Kg), 1.6 (1g average) |        |              |
| Te                                          | st Positions | 3      | /Frequency (MHz)  | SAR(W/Kg),                  | Scaled | Scaled       |
|                                             |              |        |                   | 1g                          | factor | SAR(W/Kg),1g |
|                                             |              |        | 128/824.2         | 1.158                       | 1.064  | 1.232        |
|                                             | l            | Face   | 190/836.4         | 1.154                       | 1.067  | 1.231        |
|                                             |              | Upward | 251/848.8         | 1.194                       | 1.033  | 1.233        |
|                                             |              |        | 251/848.8(Repeat) | 1.191                       | 1.033  | 1.230        |
| Body (0mm                                   | GPRS         | Back   | 128/824.2         | 0.746                       | 1.064  | 0.771        |
| Separation)                                 | (4Tx)        | Upward | 190/836.4         | 0.737                       | 1.067  | 0.761        |
| • · ·                                       | , ,          |        | 251/848.8         | 0.762                       | 1.033  | 0.787        |
|                                             |              | Edge A | 251/848.8         | 0.052                       | 1.033  | 0.054        |
|                                             | l            | Edge B | 251/848.8         | 0.420                       | 1.033  | 0.434        |
|                                             | l            | Edge C | 251/848.8         | 0.110                       | 1.033  | 0.114        |
|                                             |              | Edge D | 251/848.8         | 0.542                       | 1.033  | 0.560        |



| Table 8: SAR Values of GSM1900 MHz Band(Body 0mm Separation) |                |        |                    |              |                |              |  |
|--------------------------------------------------------------|----------------|--------|--------------------|--------------|----------------|--------------|--|
| Temperature: 23.0~23.5°C, humidity: 62~64%.                  |                |        |                    |              |                |              |  |
|                                                              |                |        | Channel /Frequency | SAR(W/       | Kg), 1.6 (1g a | average)     |  |
| Te                                                           | st Positions   |        | (MHz)              | SAR(W/Kg),1g | Scaled         | Scaled       |  |
|                                                              |                |        |                    |              | factor         | SAR(W/Kg),1g |  |
|                                                              |                |        | 512/1850.2         | 0.708        | 1.216          | 0.861        |  |
|                                                              |                | Face   | 661/1880.0         | 0.711        | 1.208          | 0.859        |  |
|                                                              |                | Upward | 810/1909.8         | 0.720        | 1.208          | 0.870        |  |
|                                                              |                |        | 810/1909.8(Repeat) | 0.718        | 1.208          | 0.867        |  |
|                                                              |                |        | 512/1850.2         | 1.053        | 1.216          | 1.280        |  |
|                                                              | Back<br>Upwarc | Back   | 661/1880.0         | 1.056        | 1.208          | 1.276        |  |
|                                                              |                | Upward | 810/1909.8         | 1.066        | 1.208          | 1.288        |  |
|                                                              |                |        | 810/1909.8(Repeat) | 1.064        | 1.208          | 1.285        |  |
| Body (0mm                                                    | GPRS           | Edge A | 810/1909.8         | 0.324        | 1.208          | 0.391        |  |
| Separation)                                                  | (4Tx)          |        | 512/1850.2         | 0.789        | 1.216          | 0.959        |  |
|                                                              |                | Edge B | 661/1880.0         | 0.792        | 1.208          | 0.957        |  |
|                                                              |                | 0      | 810/1909.8         | 0.806        | 1.208          | 0.974        |  |
|                                                              |                |        | 810/1909.8(Repeat) | 0.802        | 1.208          | 0.969        |  |
|                                                              |                | Edge C | 810/1909.8         | 0.593        | 1.208          | 0.716        |  |
|                                                              |                |        | 512/1850.2         | 0.716        | 1.216          | 0.871        |  |
|                                                              |                | Edge D | 661/1880.0         | 0.719        | 1.208          | 0.869        |  |
|                                                              |                | Ŭ      | 810/1909.8         | 0.721        | 1.208          | 0.871        |  |
|                                                              |                |        | 810/1909.8(Repeat) | 0.720        | 1.208          | 0.870        |  |

Note: When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05r02)

•  $\leq$  0.8 W/kg, when the transmission band is  $\leq$  100 MHz

•  $\leq$  0.6 W/kg, when the transmission band is between 100 MHz and 200 MHz

•  $\leq$  0.4 W/kg, when the transmission band is  $\geq$  200 MHz

#### **10.2 Conclusion**

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6 of this report. Maximum localized SAR is **below** exposure limits specified in the relevant standards.



### 11 Measurement Uncertainty

| No. | Uncertainty Component                                                                     | Туре | Uncertainty<br>Value (%) | Probability<br>Distribution | k          | ci  | Standard<br>Uncertainty<br>(%) ui(%) | Degree of<br>freedom<br>Veff or vi |
|-----|-------------------------------------------------------------------------------------------|------|--------------------------|-----------------------------|------------|-----|--------------------------------------|------------------------------------|
|     |                                                                                           |      | Measure                  | ement System                |            |     |                                      |                                    |
| 1   | -Probe Calibration                                                                        | В    | 5.8                      | Ν                           | 1          | 1   | 5.8                                  | 8                                  |
| 2   | -Axial isotropy                                                                           | В    | 3.5                      | R                           | $\sqrt{3}$ | 0.5 | 1.43                                 | ∞                                  |
| 3   | -Hemispherical Isotropy                                                                   | В    | 5.9                      | R                           | $\sqrt{3}$ | 0.5 | 2.41                                 | œ                                  |
| 4   | -Boundary Effect                                                                          | В    | 1                        | R                           | $\sqrt{3}$ | 1   | 0.58                                 | ∞                                  |
| 5   | -Linearity                                                                                | В    | 4.7                      | R                           | $\sqrt{3}$ | 1   | 2.71                                 | 8                                  |
| 6   | -System Detection Limits                                                                  | В    | 1.0                      | R                           | $\sqrt{3}$ | 1   | 0.58                                 | 8                                  |
| 7   | Modulation response                                                                       | В    | 3                        | Ν                           | 1          | 1   | 3.00                                 |                                    |
| 8   | -Readout Electronics                                                                      | В    | 0.5                      | Ν                           | 1          | 1   | 0.50                                 | 8                                  |
| 9   | -Response Time                                                                            | В    | 1.4                      | R                           | $\sqrt{3}$ | 1   | 0.81                                 | ∞                                  |
| 10  | -Integration Time                                                                         | В    | 3.0                      | R                           | $\sqrt{3}$ | 1   | 1.73                                 | ∞                                  |
| 11  | -RF Ambient Conditions                                                                    | В    | 3.0                      | R                           | $\sqrt{3}$ | 1   | 1.73                                 | ∞                                  |
| 12  | -Probe Position Mechanical tolerance                                                      | В    | 1.4                      | R                           | $\sqrt{3}$ | 1   | 0.81                                 | ∞                                  |
| 13  | -Probe Position with respect to Phantom Shell                                             | В    | 1.4                      | R                           | $\sqrt{3}$ | 1   | 0.81                                 | ×                                  |
| 14  | -Extrapolation,<br>Interpolation and Integration<br>Algorithms for Max. SAR<br>evaluation | В    | 2.3                      | R                           | $\sqrt{3}$ | 1   | 1.33                                 | œ                                  |
|     |                                                                                           |      | Uncertair                | nties of the DU             | Г          |     |                                      |                                    |
| 15  | -Position of the DUT                                                                      | A    | 2.6                      | Ν                           | $\sqrt{3}$ | 1   | 2.6                                  | 5                                  |
| 16  | -Holder of the DUT                                                                        | A    | 3                        | Ν                           | $\sqrt{3}$ | 1   | 3.0                                  | 5                                  |



Report No. SET2015-12282

| 17  | <ul> <li>Output Power Variation</li> <li>SAR drift measurement</li> </ul>            | В | 5.0           | R            | $\sqrt{3}$ | 1   | 2.89  | 8 |
|-----|--------------------------------------------------------------------------------------|---|---------------|--------------|------------|-----|-------|---|
|     |                                                                                      | Р | hantom and Ti | ssue Paramet | ers        |     |       |   |
| 18  | <ul> <li>Phantom</li> <li>Uncertainty(shape and<br/>thickness tolerances)</li> </ul> | В | 4             | R            | $\sqrt{3}$ | 1   | 2.31  | ∞ |
| 19  | Uncertainty in SAR<br>correction for deviation(in<br>permittivity and conductivity)  | В | 2             | Ν            | 1          | 1   | 2.00  |   |
| 20  | <ul> <li>Liquid Conductivity Target</li> <li>tolerance</li> </ul>                    | В | 2.5           | R            | $\sqrt{3}$ | 0.6 | 1.95  | 8 |
| 21  | <ul> <li>Liquid Conductivity</li> <li>measurement Uncertainty)</li> </ul>            | В | 4             | Z            | $\sqrt{3}$ | 1   | 0.92  | 9 |
| 22  | <ul> <li>Liquid Permittivity Target<br/>tolerance</li> </ul>                         | В | 2.5           | R            | $\sqrt{3}$ | 0.6 | 1.95  | 8 |
| 23  | <ul> <li>Liquid Permittivity</li> <li>measurement uncertainty</li> </ul>             | В | 5             | Ν            | $\sqrt{3}$ | 1   | 1.15  | 8 |
| Con | nbined Standard Uncertainty                                                          |   |               | RSS          |            |     | 10.63 |   |
| (0  | Expanded uncertainty<br>Confidence interval of 95 %)                                 |   |               | K=2          |            |     | 21.26 |   |

### System Check Uncertainty

| No. | Uncertainty Component    | Туре | Uncertainty<br>Value (%) | Probability<br>Distribution | k          | ci  | Standard<br>Uncertainty<br>(%) ui(%) | Degree of<br>freedom<br>Veff or vi |
|-----|--------------------------|------|--------------------------|-----------------------------|------------|-----|--------------------------------------|------------------------------------|
|     |                          | _    | Measure                  | ement System                |            |     |                                      |                                    |
| 1   | -Probe Calibration       | В    | 5.8                      | Ν                           | 1          | 1   | 5.8                                  | ∞                                  |
| 2   | -Axial isotropy          | В    | 3.5                      | R                           | $\sqrt{3}$ | 0.5 | 1.43                                 | ∞                                  |
| 3   | -Hemispherical Isotropy  | В    | 5.9                      | R                           | $\sqrt{3}$ | 0.5 | 2.41                                 | ∞                                  |
| 4   | -Boundary Effect         | В    | 1                        | R                           | $\sqrt{3}$ | 1   | 0.58                                 | ∞                                  |
| 5   | -Linearity               | В    | 4.7                      | R                           | $\sqrt{3}$ | 1   | 2.71                                 | ∞                                  |
| 6   | -System Detection Limits | В    | 1                        | R                           | $\sqrt{3}$ | 1   | 0.58                                 | ∞                                  |
| 7   | Modulation response      | В    | 0                        | Ν                           | 1          | 1   | 0.00                                 |                                    |



| 8   | -Readout Electronics                                                                                                  | В | 0.5           | Ν               | 1          | 1   | 0.50  | × |
|-----|-----------------------------------------------------------------------------------------------------------------------|---|---------------|-----------------|------------|-----|-------|---|
| 9   | -Response Time                                                                                                        | В | 0.00          | R               | $\sqrt{3}$ | 1   | 0.00  | 8 |
| 10  | -Integration Time                                                                                                     | В | 1.4           | R               | $\sqrt{3}$ | 1   | 0.81  | 8 |
| 11  | -RF Ambient Conditions                                                                                                | В | 3.0           | R               | $\sqrt{3}$ | 1   | 1.73  | 8 |
| 12  | -Probe Position Mechanical<br>tolerance                                                                               | В | 1.4           | R               | $\sqrt{3}$ | 1   | 0.81  | 8 |
| 13  | <ul> <li>Probe Position with respect<br/>to Phantom Shell</li> </ul>                                                  | В | 1.4           | R               | $\sqrt{3}$ | 1   | 0.81  | 8 |
| 14  | <ul> <li>Extrapolation, Interpolation</li> <li>and Integration Algorithms for</li> <li>Max. SAR evaluation</li> </ul> | В | 2.3           | R               | $\sqrt{3}$ | 1   | 1.33  | 8 |
|     |                                                                                                                       |   | Uncertair     | nties of the DU | Г          |     |       |   |
| 15  | Deviation of experimental<br>source from numberical<br>source                                                         | A | 4             | N               | 1          | 1   | 4.00  | 5 |
| 16  | Input Power and SAR drift measurement                                                                                 | А | 5             | R               | $\sqrt{3}$ | 1   | 2.89  | 5 |
| 17  | Dipole Axis to Liquid<br>Distance                                                                                     | В | 2             | R               | $\sqrt{3}$ | 1   | 1.2   | 8 |
|     |                                                                                                                       | Р | hantom and Ti | ssue Paramet    | ers        |     |       |   |
| 18  | <ul> <li>Phantom</li> <li>Uncertainty(shape and<br/>thickness tolerances)</li> </ul>                                  | В | 4             | R               | $\sqrt{3}$ | 1   | 2.31  | 8 |
| 19  | Uncertainty in SAR correction<br>for deviation(in permittivity<br>and conductivity)                                   | В | 2             | N               | 1          | 1   | 2.00  |   |
| 20  | <ul> <li>Liquid Conductivity Target</li> <li>–tolerance</li> </ul>                                                    | В | 2.5           | R               | $\sqrt{3}$ | 0.6 | 1.95  | 8 |
| 21  | -Liquid Conductivity<br>-measurement Uncertainty)                                                                     | В | 4             | Ν               | $\sqrt{3}$ | 1   | 0.92  | 9 |
| 22  | <ul> <li>Liquid Permittivity Target<br/>tolerance</li> </ul>                                                          | В | 2.5           | R               | $\sqrt{3}$ | 0.6 | 1.95  | 8 |
| 23  | <ul> <li>Liquid Permittivity</li> <li>measurement uncertainty</li> </ul>                                              | В | 5             | Ν               | $\sqrt{3}$ | 1   | 1.15  | 8 |
| Cor | nbined Standard Uncertainty                                                                                           |   |               | RSS             |            |     | 10.15 |   |
| (   | Expanded uncertainty<br>Confidence interval of 95 %)                                                                  |   |               | K=2             |            |     | 20.29 |   |



### **12 MAIN TEST INSTRUMENTS**

| EQUIPMENT               | TYPE          | Series No.             | Calibration<br>Date | calibration<br>period |
|-------------------------|---------------|------------------------|---------------------|-----------------------|
| System Simulator        | E5515C        | GB 47200710            | 2015/06/10          | 1 Year                |
| SAR Probe               | SATIMO        | SN_04/13_EP166         | 2015/08/10          | 1 Year                |
| Dipole                  | SID835        | SN09/13 DIP0G835-217   | 2014/08/28          | 2 Years               |
| Dipole                  | SID1900       | SN09/13 DIP1G900-218   | 2014/08/28          | 2 Years               |
| Vector Network Analyzer | ZVB8          | A0802530               | 2015/06/08          | 1 Year                |
| Signal Generator        | SMR27         | A0304219               | 2015/06/08          | 1 Year                |
| Power Meter             | NRP2          | A140401673             | 2015/03/27          | 1 Year                |
| Power Sensor            | NPR-Z11       | 1138.3004.02-114072-nq | 2015/03/27          | 1 Year                |
| Amplifier               | Nucletudes    | 143060                 | 2015/03/27          | 1 Year                |
| Directional Coupler     | DC6180A       | 305827                 | 2015/03/27          | 1 Year                |
| Power Meter             | NRVS          | A0802531               | 2015/03/27          | 1 Year                |
| Power Sensor            | NRV-Z4        | 100069                 | 2015/03/27          | 1 Year                |
| Multimeter              | Keithley-2000 | 4014020                | 2015/03/27          | 1 Year                |



### **ANNEX A**

of

### **CCIC-SET**

### **CONFORMANCE TEST REPORT FOR**

### HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-12282

**GPS** Locator

Type Name: GL300

Hardware Version: V1.02

Software Version: GL300NR00A01V80M128\_MXIC\_ATS0

**TEST LAYOUT** 

This Annex consists of 5 pages

**Date of Report: 2015-09-25** 





Fig.1 COMO SAR Test System



Fig.2 Body (Back upside,0mm separation)



Fig.3 Body (Face upside,0mm separation)



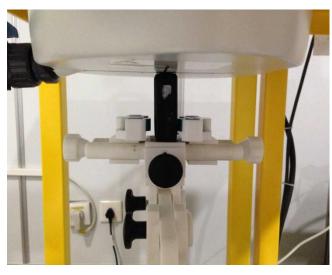



Fig.4 Body Edge A(Right upside,0mm separation)

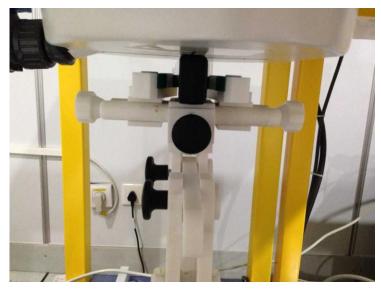



Fig.5 Body Edge B(Right upside,0mm separation)

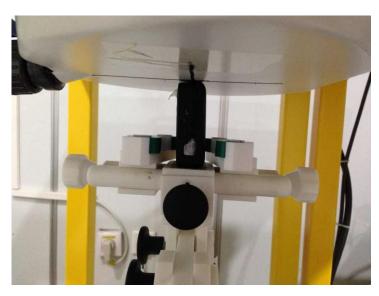



Fig.6 Body Edge C(Down,0mm separation)



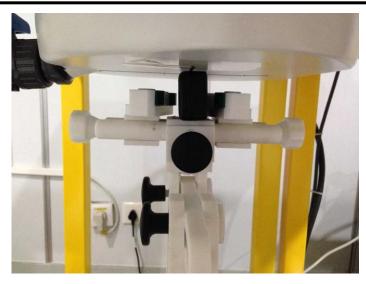



Fig.7 Body Edge D(Left upside,0mm separation)



### Fig.8 Body Liquid of 835MHz(15cm)



Fig.9 Body Liquid of 1900MHz(15cm)



### ANNEX B

of

### **CCIC-SET**

### **CONFORMANCE TEST REPORT FOR**

### HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-12282

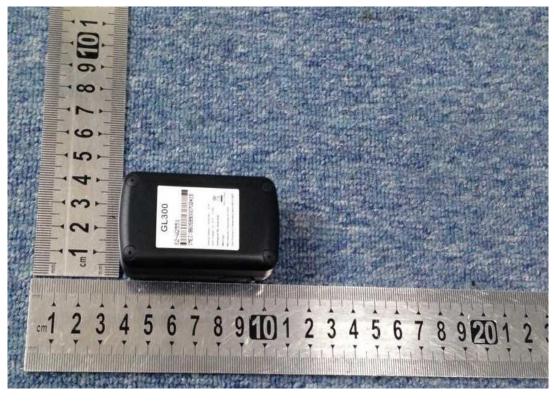
**GPS Locator** 

Type Name: GL300

Hardware Version: V1.02

Software Version: GL300NR00A01V80M128\_MXIC\_ATS0

**Sample Photographs** 


This Annex consists of 2 pages



#### 1. Appearance



Appearance and size (obverse)



#### Appearance and size (reverse)







### ANNEX C

of

### **CCIC-SET**

### **CONFORMANCE TEST REPORT FOR**

### HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-12282

**GPS Locator** 

Type Name: GL300

Hardware Version: V1.02

Software Version: GL300NR00A01V80M128\_MXIC\_ATS0

System Performance Check Data and Highest SAR Plots

This Annex consists of 8 pages

Date of Report: 2015-09-25



### System Performance Check (Body, 835MHz)

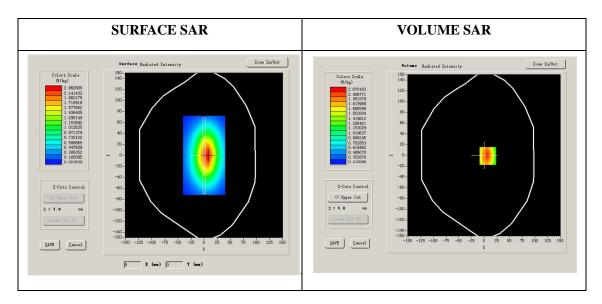
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 09/09/2015

Measurement duration: 20 minutes 12 seconds


#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |  |  |
|-----------------|-------------------|--|--|
| Phantom         | Flat Plane        |  |  |
| Device Position | Dipole            |  |  |
| Band            | 835MHz            |  |  |
| Channels        |                   |  |  |
| Signal          | CW                |  |  |

#### **B. SAR Measurement Results**

Band SAR

| E-Field Probe                     | SATIMO SN_04/13_EP166 |
|-----------------------------------|-----------------------|
| Frequency (MHz)                   | 835                   |
| Relative permittivity (real part) | 54.73                 |
| <b>Relative permittivity</b>      | 20.48                 |
| Conductivity (S/m)                | 0.95                  |
| Power drift (%)                   | 2.30                  |
| Ambient Temperature:              | 22.2 °C               |
| Liquid Temperature:               | 22.5 °C               |
| ConvF:                            | 5.82                  |
| Duty factor:                      | 1:1                   |



#### Maximum location: X=7.00, Y=-1.00

| SAR 10g (W/Kg) | 1.602024 |
|----------------|----------|
| SAR 1g (W/Kg)  | 2.524318 |



### System Performance Check (Body, 1900MHz)

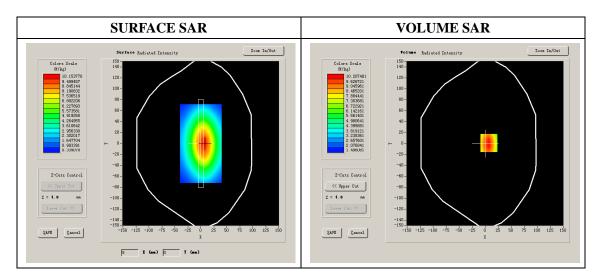
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 10/09/2015

Measurement duration: 21 minutes 34 seconds


#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |  |  |
|-----------------|-------------------|--|--|
| Phantom         | Validation plane  |  |  |
| Device Position | Dipole            |  |  |
| Band            | 1900MHz           |  |  |
| Channels        |                   |  |  |
| Signal          | CW                |  |  |

#### **B. SAR Measurement Results**

Band SAR

| E-Field Probe                     | SATIMO SN_04/13_EP166 |
|-----------------------------------|-----------------------|
| Frequency (MHz)                   | 1900                  |
| Relative permittivity (real part) | 52.24                 |
| Relative permittivity             | 14.21                 |
| Conductivity (S/m)                | 1.50                  |
| Power Drift (%)                   | 3.21                  |
| Ambient Temperature:              | 22.1 °C               |
| Liquid Temperature:               | 22.6 °C               |
| ConvF:                            | 5.43                  |
| Duty factor:                      | 1:1                   |

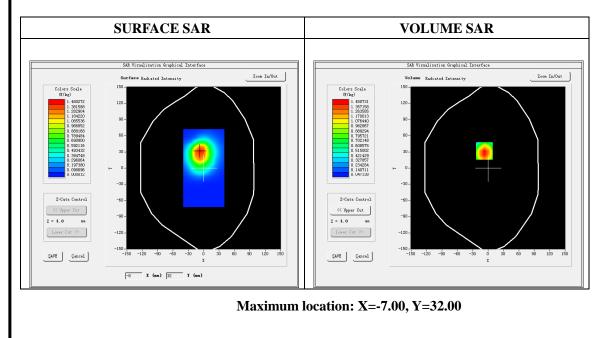


#### Maximum location: X=1.00, Y=6.00

| SAR 10g (W/Kg) | 5.275413  |
|----------------|-----------|
| SAR 1g (W/Kg)  | 10.134515 |

# GPRS 850, Face, Middle

Type: Phone measurement


Date of measurement: 09/09/2015

Measurement duration: 8 minutes 8 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| The Experimental conditions.           |                            |  |  |  |
|----------------------------------------|----------------------------|--|--|--|
| Area Scan                              | dx=8mm dy=8mm              |  |  |  |
| ZoomScan                               | 5x5x7,dx=8mm dy=8mm dz=5mm |  |  |  |
| Phantom                                | Validation plane           |  |  |  |
| Device Position                        | Face                       |  |  |  |
| Band                                   | CUSTOM (GPRS850_4Tx)       |  |  |  |
| Channels                               | 251                        |  |  |  |
| Signal                                 | GPRS(Duty cycle: 1:2)      |  |  |  |
| B.SAR Measurement Results              |                            |  |  |  |
| E-Field Probe                          | SATIMO SN_04/13_EP166      |  |  |  |
| Frequency (MHz)                        | 848.8                      |  |  |  |
| Relative permittivity (real part)      | 54.73                      |  |  |  |
| Relative permittivity (imaginary part) | 20.48                      |  |  |  |
| Conductivity (S/m)                     | 0.95                       |  |  |  |
| Variation (%)                          | 3.89                       |  |  |  |
| ConvF:                                 | 5.82                       |  |  |  |
|                                        |                            |  |  |  |



| SAR 10g (W/Kg) | 0.679821 |
|----------------|----------|
| SAR 1g (W/Kg)  | 1.193945 |



Report No. SET2015-12282

| Z (mm)     | 0.00                                                                          | 4.00   | 9.00                    | 14.00         | 19.00  |
|------------|-------------------------------------------------------------------------------|--------|-------------------------|---------------|--------|
| SAR (W/Kg) | 1.9377                                                                        | 1.4507 | 0.9941                  | 0.6711        | 0.4446 |
|            | 1.9-<br>1.6-<br>1.4-<br>1.2-<br>1.0-<br>1.0-<br>0.8-<br>0.6-<br>0.3-<br>0.2 4 |        | 14 16 18 20 2<br>Z (mm) | 2 24 26 28 30 |        |

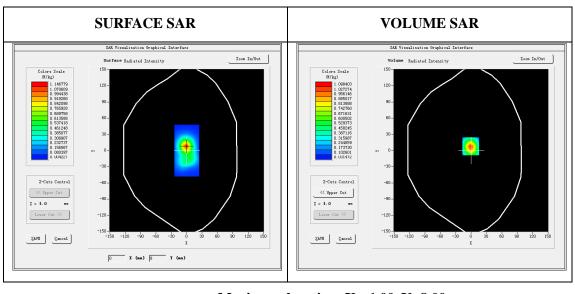
| 3D screen shot | Hot spot position |
|----------------|-------------------|
|                |                   |
|                |                   |
|                |                   |

Page 37 of 72

### Report No. SET2015-12282

# GPRS1900, BACK, High

Type: Phone measurement


Date of measurement: 10/09/2015

Measurement duration: 7 minutes 31 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Area Scan                              | dx=8mm dy=8mm              |  |  |  |
|----------------------------------------|----------------------------|--|--|--|
| ZoomScan                               | 5x5x7,dx=8mm dy=8mm dz=5mm |  |  |  |
| Phantom                                | Validation plane           |  |  |  |
| Device Position                        | Body                       |  |  |  |
| Band                                   | CUSTOM (GPRS1900_4Tx)      |  |  |  |
| Channels                               | 810                        |  |  |  |
| Signal                                 | GPRS (Duty cycle: 1:2)     |  |  |  |
| <b>B. SAR Measurement Results</b>      |                            |  |  |  |
| E-Field Probe                          | SATIMO SN_04/13_EP166      |  |  |  |
| Frequency (MHz)                        | 1909.8                     |  |  |  |
| Relative permittivity (real part)      | 52.24                      |  |  |  |
| Relative permittivity (imaginary part) | 14.21                      |  |  |  |
| Conductivity (S/m)                     | 1.50                       |  |  |  |
| Variation (%)                          | -0.60                      |  |  |  |
| ConvF:                                 | 5.43                       |  |  |  |



## Maximum location: X=-1.00, Y=8.00

SAR Peak: 1.37 W/kg

| SAR 10g (W/Kg) | 0.603625 |
|----------------|----------|
| SAR 1g (W/Kg)  | 1.065811 |





Report No. SET2015-12282

| Z (mm)     | 0.00                                                                          | 4.00 | 9.00                    | 14.00         | 19.00  |
|------------|-------------------------------------------------------------------------------|------|-------------------------|---------------|--------|
| SAR (W/Kg) | SAR (W/Kg) 1.3598                                                             |      | 0.8224                  | 0.5971        | 0.4154 |
|            | 1.4-<br>1.2-<br>1.0-<br>1.0-<br>1.0-<br>0.8-<br>0.6-<br>0.4-<br>0.3-<br>0.2 4 |      | 14 16 18 20 2<br>Z (mm) | 2 24 26 28 30 |        |

| 3D screen shot | Hot spot position |
|----------------|-------------------|
|                |                   |
|                |                   |
|                |                   |





# ANNEX D

of

# **CCIC-SET**

# **CONFORMANCE TEST REPORT FOR**

# HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-12282

**GPS Locator** 

Type Name: GL300

Hardware Version: V1.02

Software Version: GL300NR00A01V80M128\_MXIC\_ATS0

# **Calibration Certificate of Probe and Dipoles**

This Annex consists of 33 pages

**Date of Report: 2015-09-25** 



Probe Calibration Ceriticate



**COMOSAR E-Field Probe Calibration Report** 

Ref: ACR.227.15.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 04/13 EP166

> Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national methology institutions.



|               | Nam e         | Function        | Date      | Signature     |
|---------------|---------------|-----------------|-----------|---------------|
| Prepared by : | Jérôme LUC    | Product Manager | 8/11/2015 | JS            |
| Checked by :  | Jérôme LUC    | Product Manager | 8/11/2015 | JS            |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 8/11/2015 | fim nuthowshi |

|                | Custom er Name  |
|----------------|-----------------|
|                | CCIC SOUTHERN   |
|                | ELECTRONIC      |
| Distribution : | PRODUCT         |
| Distribution : | TESTING         |
|                | (SHENZHEN) Co., |
|                | Ltd             |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| А     | 8/11/2015 | Initial release |
|       |           |                 |
|       |           |                 |
|       |           |                 |

Page: 2/9



### TABLE OF CONTENTS

| 1 | Dev  | ice Under Test              | 4 |
|---|------|-----------------------------|---|
| 2 | Proc | luct Description            | 4 |
|   | 2.1  | General Information         | 4 |
| 3 | Mea  | surement Method             | 4 |
|   | 3.1  | Linearity                   | 4 |
|   | 3.2  | Sensitivity                 |   |
|   | 3.3  | Lower Detection Limit       | 5 |
|   | 3.4  | Isotropy                    | 5 |
|   | 3.5  | Boundary Effect             | 5 |
| 4 | Mea  | surement Uncertainty        | 5 |
| 5 | Cali | bration Measurement Results | 6 |
|   | 5.1  | Sensitivity in air          | 6 |
|   | 5.2  | Linearity                   | 7 |
|   | 5.3  | Sensitivity in liquid       | 7 |
|   | 5.4  | Isotropy                    |   |
| б | List | of Equipment                | 9 |

Page: 3/9



1

#### DEVICE UNDER TEST

| Device Under Test                            |                       |  |  |  |
|----------------------------------------------|-----------------------|--|--|--|
| Device Type COMOSAR DOSIMETRIC E FIELD PROBE |                       |  |  |  |
| Manufacturer                                 | Satimo                |  |  |  |
| Model                                        | SSE5                  |  |  |  |
| Serial Number                                | SN 04/13 EP166        |  |  |  |
| Product Condition (new / used)               | Used                  |  |  |  |
| Frequency Range of Probe                     | 0.7 GHz-3 GHz         |  |  |  |
| Resistance of Three Dipoles at Connector     | Dipole 1: R1=0.231 MΩ |  |  |  |
|                                              | Dipole 2: R2=0.225 MΩ |  |  |  |
|                                              | Dipole 3: R3=0.228 MΩ |  |  |  |

A yearly calibration interval is recommended.

#### 2 PRODUCT DESCRIPTION

#### 2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.



Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

| Probe Length                               | 330 mm |
|--------------------------------------------|--------|
| Length of Individual Dipoles               | 4.5 mm |
| Maximum external diameter                  | 8 mm   |
| Probe Tip External Diameter                | 5 mm   |
| Distance between dipoles / probe extremity | 2.7 mm |

#### 3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

#### 3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

#### Page: 4/9



#### 3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

#### 3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

#### 3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis  $(0^{\circ}-180^{\circ})$  in 15° increments. At each step the probe is rotated about its axis  $(0^{\circ}-360^{\circ})$ .

#### 3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

#### 4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

| Uncertainty analysis of the probe calibration in waveguide |                          |                             |            |    |                             |  |  |
|------------------------------------------------------------|--------------------------|-----------------------------|------------|----|-----------------------------|--|--|
| ERROR SOURCES                                              | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor    | ci | Standard<br>Uncertainty (%) |  |  |
| Incident or forward power                                  | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |  |  |
| Reflected power                                            | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |  |  |
| Liquid conductivity                                        | 5.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 2.887%                      |  |  |
| Liquid permittivity                                        | 4.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 2.309%                      |  |  |
| Field homogeneity                                          | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |  |  |
| Field probe positioning                                    | 5.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 2.887%                      |  |  |
| Field probe linearity                                      | 3.00%                    | Rectangular                 | $\sqrt{3}$ | 1  | 1.732%                      |  |  |

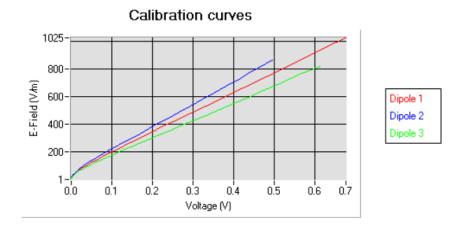
#### Page: 5/9



| Combined standard uncertainty                              |  |  | 5.831% |
|------------------------------------------------------------|--|--|--------|
| <b>Expanded uncertainty</b><br>95 % confidence level k = 2 |  |  | 12.0%  |

#### 5 CALIBRATION MEASUREMENT RESULTS

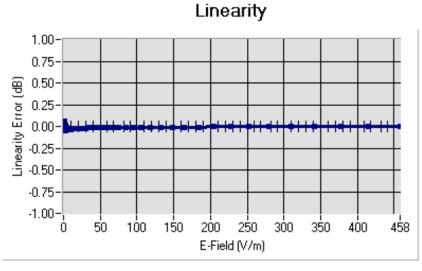
| Calibration Parameters |       |
|------------------------|-------|
| Liquid Temperature     | 21 °C |
| Lab Temperature        | 21 °C |
| Lab Humidity           | 45 %  |


#### 5.1 SENSITIVITY IN AIR

| Norms dipole $1 (\mu V/(V/m)^2)$ | Normy dipole $2 (\mu V/(V/m)^2)$ | Normz dipole $3 (\mu V/(V/m)^2)$ |
|----------------------------------|----------------------------------|----------------------------------|
| 8.57                             | 4.83                             | 7.15                             |

| DCP dipole 1 | DCP dipole 2 | DCP dipole 3 |
|--------------|--------------|--------------|
| (mV)         | (mV)         | (mV)         |
| 92           | 90           | 95           |

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:


$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$



#### Page: 6/9



#### 5.2 LINEARITY



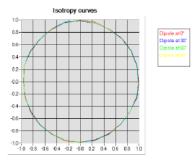
Linearity: 1+/-1.55% (+/-0.07dB)

#### 5.3 <u>SENSITIVITY IN LIQUID</u>

| Liquid | <u>Frequency</u><br>(MHz +/-<br>100MHz) | <u>Permittivity</u> | <u>Epsilon (S/m)</u> | <u>ConvF</u> |
|--------|-----------------------------------------|---------------------|----------------------|--------------|
| HL850  | 835                                     | 42.80               | 0.89                 | 5.69         |
| BL850  | 835                                     | 53.45               | 0.96                 | 5.82         |
| HL900  | 900                                     | 42.47               | 0.96                 | 5.34         |
| BL900  | 900                                     | 56.68               | 1.08                 | 5.55         |
| HL1800 | 1800                                    | 41.30               | 1.38                 | 4.75         |
| BL1800 | 1800                                    | 53.27               | 1.51                 | 4.96         |
| HL1900 | 1900                                    | 41.09               | 1.42                 | 5.25         |
| BL1900 | 1900                                    | 54.20               | 1.54                 | 5.43         |
| HL2000 | 2000                                    | 39.72               | 1.43                 | 4.81         |
| BL2000 | 2000                                    | 53.90               | 1.53                 | 4.95         |
| HL2450 | 2450                                    | 39.05               | 1.77                 | 4.93         |
| BL2450 | 2450                                    | 52.98               | 1.93                 | 5.09         |
| HL2600 | 2600                                    | 38.35               | 1.92                 | 5.08         |
| BL2600 | 2600                                    | 51.82               | 2.19                 | 5.22         |

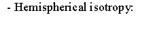
#### LOWER DETECTION LIMIT: 7mW/kg

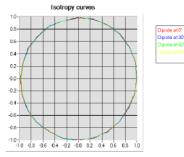
Page: 7/9




#### Report No. SET2015-12282

#### 5.4 ISOTROPY


#### <u>HL900 MHz</u>


| - Axial isotropy:         | 0.04 dB            |
|---------------------------|--------------------|
| - Hemispherical isotropy: | $0.07~\mathrm{dB}$ |



#### <u>HL1800 MHz</u>

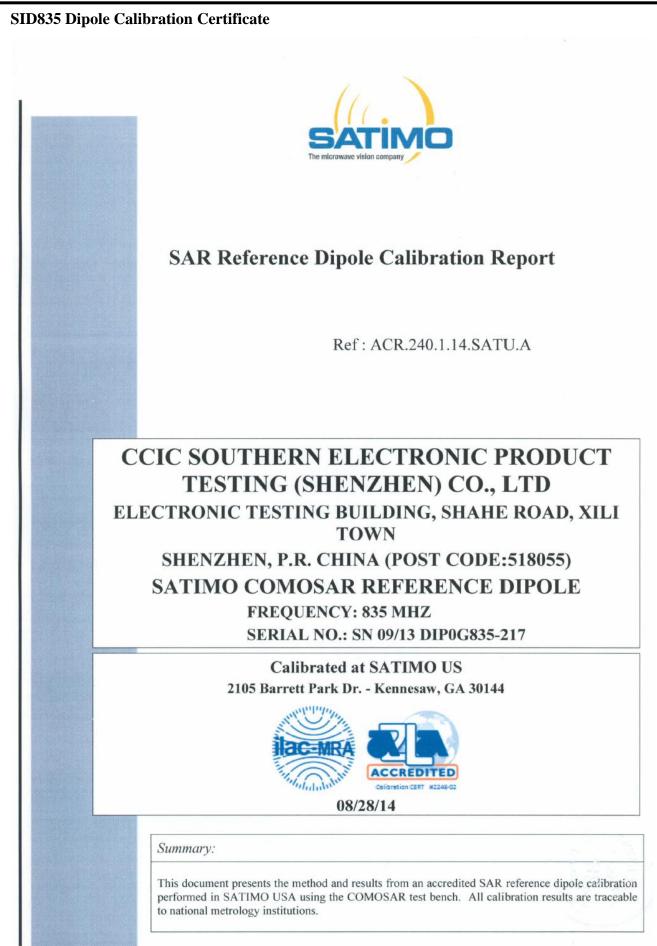
| - | Ax1a | 11 | sotr | op | y: |  |
|---|------|----|------|----|----|--|
|   |      |    |      |    |    |  |





0.05 dB 0.07 dB

#### Page: 8/9




#### 6 LIST OF EQUIPMENT

| Equipment Summary Sheet          |                         |                    |                                                  |                                                  |  |  |
|----------------------------------|-------------------------|--------------------|--------------------------------------------------|--------------------------------------------------|--|--|
| Equipment<br>Description         | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                      | Next Calibration<br>Date                         |  |  |
| Flat Phantom                     | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                   | Validated. No cal<br>required.                   |  |  |
| COMOSAR Test Bench               | Version 3               | NA                 | Validated. No cal<br>required.                   | Validated. No cal<br>required.                   |  |  |
| Network Analyzer                 | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                          | 02/2016                                          |  |  |
| Reference Probe                  | Satimo                  | EP 94 SN 37/08     | 10/2014                                          | 10/2015                                          |  |  |
| Multimeter                       | Keithley 2000           | 1188656            | 12/2013                                          | 12/2016                                          |  |  |
| Signal Generator                 | Agilent E4438C          | MY49070581         | 12/2013                                          | 12/2016                                          |  |  |
| Amplifier                        | Aethercomm              | SN 046             | Characterized prior to<br>test. No cal required. | Characterized prior to<br>test. No cal required. |  |  |
| Power Meter                      | HP E4418A               | US38261498         | 12/2013                                          | 12/2016                                          |  |  |
| Power Sensor                     | HP ECP-E26A             | US37181460         | 12/2013                                          | 12/2016                                          |  |  |
| Directional Coupler              | Narda 4216-20           | 01386              | Characterized prior to<br>test. No cal required. | Characterized prior to<br>test. No cal required. |  |  |
| Waveguide                        | Mega Industries         | 069Y7-158-13-712   | Validated. No cal<br>required.                   | Validated. No cal<br>required.                   |  |  |
| Waveguide Transition             | Mega Industries         | 069Y7-158-13-701   | Validated. No cal<br>required.                   | Validated. No cal<br>required.                   |  |  |
| Wa∨eguide Termination            | Mega Industries         | 069Y7-158-13-701   | Validated. No cal<br>required.                   | Validated. No cal<br>required.                   |  |  |
| Temperature / Humidity<br>Sensor | Control Company         | 11-661-9           | 8/2013                                           | 8/2016                                           |  |  |

Page: 9/9









Ref: ACR.240.1.14.SATU.A

|               | Name          | Function        | Date      | Signature     |
|---------------|---------------|-----------------|-----------|---------------|
| Prepared by : | Jérôme LUC    | Product Manager | 8/29/2014 | JES           |
| Checked by :  | Jérôme LUC    | Product Manager | 8/29/2014 | Jes           |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 8/29/2014 | him Buthowski |

|                | Customer Name   |
|----------------|-----------------|
|                | CCIC SOUTHERN   |
|                | ELECTRONIC      |
| Distil         | PRODUCT         |
| Distribution : | TESTING         |
|                | (SHENZHEN) Co., |
|                | Ltd             |

| Date      | Modifications   |
|-----------|-----------------|
| 8/29/2014 | Initial release |
|           |                 |
|           |                 |
|           |                 |
|           |                 |

Page: 2/11





Ref: ACR.240.1.14.SATU.A

#### TABLE OF CONTENTS

| 1 | Intro | duction4                                 |   |
|---|-------|------------------------------------------|---|
| 2 | Dev   | ice Under Test                           |   |
| 3 | Prod  | luct Description4                        |   |
|   | 3.1   | General Information                      | 4 |
| 4 | Mea   | surement Method                          |   |
|   | 4.1   | Return Loss Requirements                 | 5 |
|   | 4.2   | Mechanical Requirements                  | 5 |
| 5 | Mea   | surement Uncertainty                     |   |
|   | 5.1   | Return Loss                              | 5 |
|   | 5.2   | Dimension Measurement                    | 5 |
|   | 5.3   | Validation Measurement                   |   |
| 6 | Cali  | bration Measurement Results              |   |
|   | 6.1   | Return Loss and Impedance In Head Liquid | 6 |
|   | 6.2   | Return Loss and Impedance In Body Liquid | 6 |
|   | 6.3   | Mechanical Dimensions                    | 6 |
| 7 | Vali  | dation measurement                       |   |
|   | 7.1   | Head Liquid Measurement                  | 7 |
|   | 7.2   | SAR Measurement Result With Head Liquid  | 8 |
|   | 7.3   | Body Liquid Measurement                  | 9 |
|   | 7.4   | SAR Measurement Result With Body Liquid  |   |
| 8 | List  | of Equipment                             |   |

Page: 3/11





Ref: ACR.240.1.14.SATU.A

#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| Device Under Test              |                                  |  |
|--------------------------------|----------------------------------|--|
| Device Type                    | COMOSAR 835 MHz REFERENCE DIPOLE |  |
| Manufacturer                   | Satimo                           |  |
| Model                          | SID835                           |  |
| Serial Number                  | SN 09/13 DIP0G835-217            |  |
| Product Condition (new / used) | used                             |  |

A yearly calibration interval is recommended.

### **3 PRODUCT DESCRIPTION**

#### 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 – Satimo COMOSAR Validation Dipole

#### Page: 4/11



Ref: ACR.240.1.14.SATU.A

#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

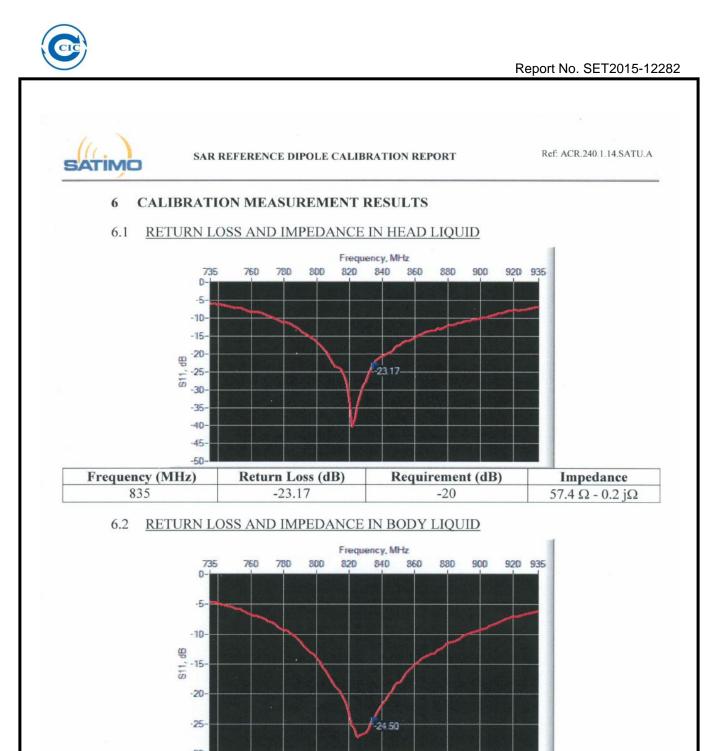
#### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:


| Length (mm) | Expanded Uncertainty on Length |
|-------------|--------------------------------|
| 3 - 300     | 0.05 mm                        |

#### 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 20.3 %               |
| 10 g        | 20.1 %               |

Page: 5/11



| Impedance                   | Requirement (dB) | Return Loss (dB) | Frequency (MHz) |
|-----------------------------|------------------|------------------|-----------------|
| $55.0 \Omega + 3.9 i\Omega$ | 20               | -24.50           | 025             |

#### 6.3 MECHANICAL DIMENSIONS

| Frequency MHz | Ln          | าท       | h m         | m        | d r        | nm       |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. | PASS     | 89.8 ±1 %.  | PASS     | 3.6 ±1 %.  | PASS     |

Page: 6/11



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.1.14.SATU.A

| 900  | 149.0 ±1 %. | 83.3 ±1 %. | 3.6 ±1 %. |
|------|-------------|------------|-----------|
| 1450 | 89.1 ±1 %.  | 51.7 ±1 %. | 3.6 ±1 %. |
| 1500 | 80.5 ±1 %.  | 50.0 ±1 %. | 3.6 ±1 %. |
| 1640 | 79.0 ±1 %.  | 45.7 ±1 %. | 3.6 ±1 %. |
| 1750 | 75.2 ±1 %.  | 42.9 ±1 %. | 3.6 ±1 %. |
| 1800 | 72.0 ±1 %.  | 41.7 ±1 %. | 3.6 ±1 %. |
| 1900 | 68.0 ±1 %.  | 39.5 ±1 %. | 3.6 ±1 %. |
| 1950 | 66.3 ±1 %.  | 38.5 ±1 %. | 3.6 ±1 %. |
| 2000 | 64.5 ±1 %.  | 37.5 ±1 %. | 3.6 ±1 %. |
| 2100 | 61.0 ±1 %.  | 35.7 ±1 %. | 3.6 ±1 %. |
| 2300 | 55.5 ±1 %.  | 32.6 ±1 %. | 3.6 ±1 %. |
| 2450 | 51.5 ±1 %.  | 30.4 ±1 %. | 3.6 ±1 %. |
| 2600 | 48.5 ±1 %.  | 28.8 ±1 %. | 3.6 ±1 %. |
| 3000 | 41.5 ±1 %.  | 25.0 ±1 %. | 3.6 ±1 %. |
| 3500 | 37.0±1 %.   | 26.4 ±1 %. | 3.6 ±1 %. |
| 3700 | 34.7±1 %.   | 26.4 ±1 %. | 3.6 ±1 %. |

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

| Frequency<br>MHz | Relative per | mittivity ( $\varepsilon_r'$ ) | Conductiv | ity (σ) S/m |
|------------------|--------------|--------------------------------|-----------|-------------|
|                  | required     | measured                       | required  | measured    |
| 300              | 45.3 ±5 %    |                                | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %    |                                | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %    |                                | 0.89 ±5 % |             |
| 835              | 41.5 ±5 %    | PASS                           | 0.90 ±5 % | PASS        |
| 900              | 41.5 ±5 %    | 1<br>1                         | 0.97 ±5 % | -           |
| 1450             | 40.5 ±5 %    |                                | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %    |                                | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %    |                                | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %    |                                | 1.37 ±5 % |             |
| 1800             | 40.0 ±5 %    |                                | 1.40 ±5 % |             |
| 1900             | 40.0 ±5 %    |                                | 1.40 ±5 % |             |
| 1950             | 40.0 ±5 %    |                                | 1.40 ±5 % |             |
| 2000             | 40.0 ±5 %    |                                | 1.40 ±5 % |             |

#### 7.1 HEAD LIQUID MEASUREMENT

| Dagar | 7/11 |
|-------|------|
| Page: | //11 |



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.1.14.SATU.A

| 2100 | 39.8 ±5 % | 1.49 ±5 % |
|------|-----------|-----------|
| 2300 | 39.5 ±5 % | 1.67 ±5 % |
| 2450 | 39.2 ±5 % | 1.80 ±5 % |
| 2600 | 39.0 ±5 % | 1.96 ±5 % |
| 3000 | 38.5 ±5 % | 2.40 ±5 % |
| 3500 | 37.9 ±5 % | 2.91 ±5 % |

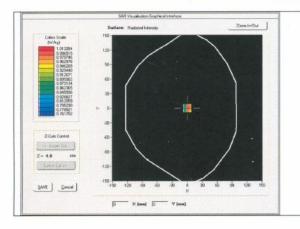
#### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

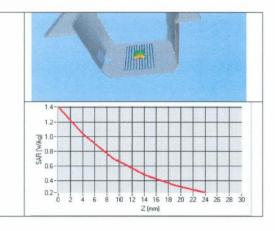
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                 |
|-------------------------------------------|--------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                             |
| Probe                                     | SN 18/11 EPG122                            |
| Liquid                                    | Head Liquid Values: eps': 42.3 sigma: 0.92 |
| Distance between dipole center and liquid | 15.0 mm                                    |
| Area scan resolution                      | dx=8mm/dy=8mm                              |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                        |
| Frequency                                 | 835 MHz                                    |
| Input power                               | 20 dBm                                     |
| Liquid Temperature                        | 21 °C                                      |
| Lab Temperature                           | 21 °C                                      |
| Lab Humidity                              | 45 %                                       |

| Frequency<br>MHz | 1 g SAR ( | (W/kg/W)    | 10 g SAR | (W/kg/W)    |
|------------------|-----------|-------------|----------|-------------|
|                  | required  | measured    | required | measured    |
| 300              | 2.85      |             | 1.94     |             |
| 450              | 4.58      |             | 3.06     |             |
| 750              | 8.49      |             | 5.55     |             |
| 835              | 9.56      | 9.77 (0.98) | 6.22     | 6.30 (0.63) |
| 900              | 10.9      |             | 6.99     |             |
| 1450             | 29        |             | 16       |             |
| 1500             | 30.5      |             | 16.8     |             |
| 1640             | 34.2      |             | 18.4     |             |
| 1750             | 36.4      |             | 19.3     |             |
| 1800             | 38.4      |             | 20.1     |             |
| 1900             | 39.7      |             | 20.5     |             |
| 1950             | 40.5      |             | 20.9     |             |
| 2000             | 41.1      |             | 21.1     | 0           |
| 2100             | 43.6      |             | 21.9     |             |
| 2300             | 48.7      |             | 23.3     |             |

#### Page: 8/11




#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.1.14.SATU.A

| 2450 | 52.4 | 24   |
|------|------|------|
| 2600 | 55.3 | 24.6 |
| 3000 | 63.8 | 25.7 |
| 3500 | 67.1 | 25   |





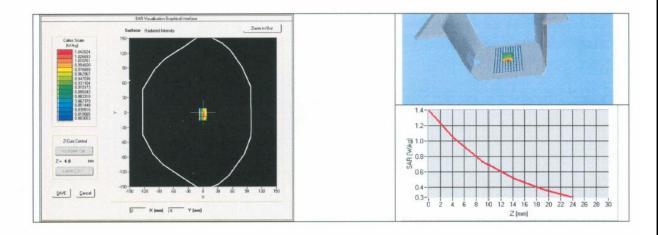
### 7.3 BODY LIQUID MEASUREMENT

| Frequency<br>MHz | Relative permittivity ( $\epsilon_r$ ) |          | Conductivity (o) S/m |          |
|------------------|----------------------------------------|----------|----------------------|----------|
|                  | required                               | measured | required             | measured |
| 150              | 61.9 ±5 %                              |          | 0.80 ±5 %            |          |
| 300              | 58.2 ±5 %                              |          | 0.92 ±5 %            |          |
| 450              | 56.7 ±5 %                              |          | 0.94 ±5 %            |          |
| 750              | 55.5 ±5 %                              |          | 0.96 ±5 %            |          |
| 835              | 55.2 ±5 %                              | PASS     | 0.97 ±5 %            | PASS     |
| 900              | 55.0 ±5 %                              |          | 1.05 ±5 %            |          |
| 915              | 55.0 ±5 %                              |          | 1.06 ±5 %            |          |
| 1450             | 54.0 ±5 %                              |          | 1.30 ±5 %            |          |
| 1610             | 53.8 ±5 %                              |          | 1.40 ±5 %            |          |
| 1800             | 53.3 ±5 %                              |          | 1.52 ±5 %            |          |
| 1900             | 53.3 ±5 %                              |          | 1.52 ±5 %            |          |
| 2000             | 53.3 ±5 %                              |          | 1.52 ±5 %            |          |
| 2100             | 53.2 ±5 %                              |          | 1.62 ±5 %            |          |
| 2450             | 52.7 ±5 %                              |          | 1.95 ±5 %            |          |
| 2600             | 52.5 ±5 %                              |          | 2.16 ±5 %            |          |
| 3000             | 52.0 ±5 %                              |          | 2.73 ±5 %            |          |
| 3500             | 51.3 ±5 %                              |          | 3.31 ±5 %            |          |
| 5200             | 49.0 ±10 %                             |          | 5.30 ±10 %           |          |
| 5300             | 48.9 ±10 %                             |          | 5.42 ±10 %           |          |
| 5400             | 48.7 ±10 %                             |          | 5.53 ±10 %           |          |

Page: 9/11



SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.240.1.14.SATU.A

| 5500 | 48.6 ±10 % |     | 5.65 ±10 % |  |
|------|------------|-----|------------|--|
| 5600 | 48.5 ±10 % | - i | 5.77 ±10 % |  |
| 5800 | 48.2 ±10 % |     | 6.00 ±10 % |  |

### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                                  | OPENSAR V4                                 |
|-------------------------------------------|--------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                             |
| Probe                                     | SN 18/11 EPG122                            |
| Liquid                                    | Body Liquid Values: eps': 54.1 sigma: 0.97 |
| Distance between dipole center and liquid | 15.0 mm                                    |
| Area scan resolution                      | dx=8mm/dy=8mm                              |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                        |
| Frequency                                 | 835 MHz                                    |
| Input power                               | 20 dBm                                     |
| Liquid Temperature                        | 21 °C                                      |
| Lab Temperature                           | 21 °C                                      |
| Lab Humidity                              | 45 %                                       |

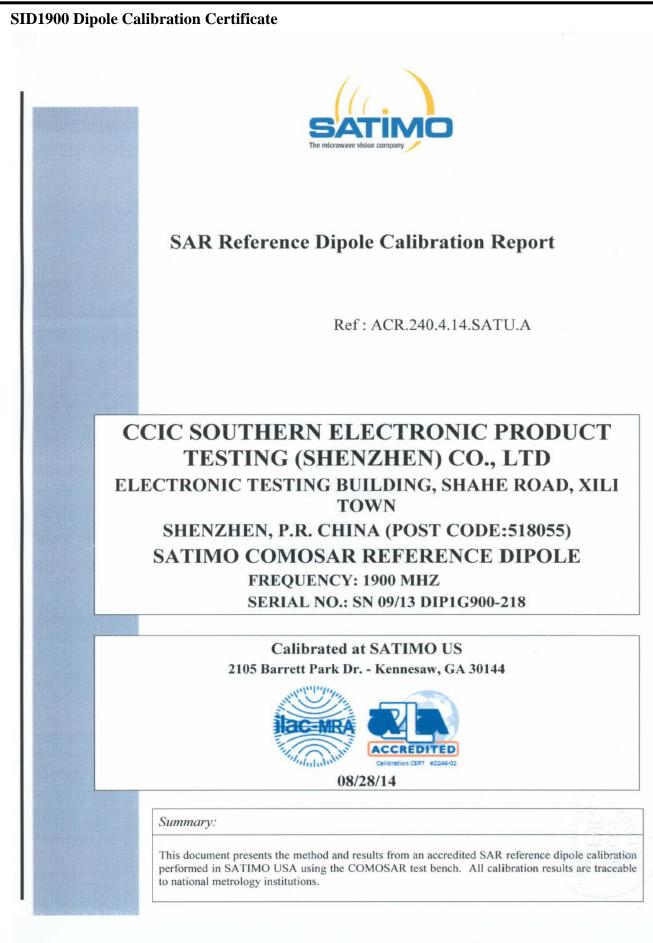
| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |  |
|------------------|------------------|-------------------|--|
|                  | measured         | measured          |  |
| 835              | 10.31 (1.03)     | 6.74 (0.67)       |  |



#### Page: 10/11






Ref: ACR.240.1.14.SATU.A

### 8 LIST OF EQUIPMENT

| Equipment Summary Sheet            |                         |                    |                                               |                                                |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|------------------------------------------------|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                       |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No ca<br>required.                  |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No ca<br>required.                  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                        |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2013                                       | 12/2016                                        |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2013                                       | 10/2014                                        |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2013                                       | 12/2016                                        |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2013                                       | 12/2016                                        |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior t<br>test. No cal required |
| Power Meter                        | HP E4418A               | US38261498         | 12/2013                                       | 12/2016                                        |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2013                                       | 12/2016                                        |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior t test. No cal required    |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2012                                        | 8/2015                                         |

Page: 11/11







SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.4.14.SATU.A

|               | Name          | Function        | Date      | Signature       |
|---------------|---------------|-----------------|-----------|-----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 8/29/2014 | JES             |
| Checked by :  | Jérôme LUC    | Product Manager | 8/29/2014 | JES             |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 8/29/2014 | them Putthoushi |

|                | Customer Name                                                               |
|----------------|-----------------------------------------------------------------------------|
| Distribution : | CCIC SOUTHERN<br>ELECTRONIC<br>PRODUCT<br>TESTING<br>(SHENZHEN) Co.,<br>Ltd |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| A     | 8/29/2014 | Initial release |
|       |           |                 |
|       |           |                 |
|       |           |                 |
|       |           |                 |

Page: 2/11





Ref: ACR.240.4.14.SATU.A

#### **TABLE OF CONTENTS**

| 1 | Intro | oduction                                 |    |
|---|-------|------------------------------------------|----|
| 2 | Dev   | ice Under Test                           |    |
| 3 | Proc  | luct Description                         |    |
|   | 3.1   | General Information                      | 4  |
| 4 | Mea   | surement Method                          |    |
|   | 4.1   | Return Loss Requirements                 | 5  |
|   | 4.2   | Mechanical Requirements                  |    |
| 5 | Mea   | surement Uncertainty                     |    |
|   | 5.1   | Return Loss                              | 5  |
|   | 5.2   | Dimension Measurement                    | 5  |
|   | 5.3   | Validation Measurement                   | 5  |
| 6 | Cali  | bration Measurement Results              |    |
|   | 6.1   | Return Loss and Impedance In Head Liquid | 6  |
|   | 6.2   | Return Loss and Impedance In Body Liquid | 6  |
|   | 6.3   | Mechanical Dimensions                    | 6  |
| 7 | Vali  | dation measurement                       |    |
|   | 7.1   | Head Liquid Measurement                  | 7  |
|   | 7.2   | SAR Measurement Result With Head Liquid  |    |
|   | 7.3   | Body Liquid Measurement                  | 9  |
|   | 7.4   | SAR Measurement Result With Body Liquid  | 10 |
| 8 | List  | of Equipment                             |    |

Page: 3/11





Ref: ACR.240.4.14.SATU.A

### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| Device Under Test              |                                   |  |
|--------------------------------|-----------------------------------|--|
| Device Type                    | COMOSAR 1900 MHz REFERENCE DIPOLE |  |
| Manufacturer                   | Satimo                            |  |
| Model                          | SID1900                           |  |
| Serial Number                  | SN 09/13 DIP1G900-218             |  |
| Product Condition (new / used) | Used                              |  |

A yearly calibration interval is recommended.

#### **3 PRODUCT DESCRIPTION**

#### 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 – Satimo COMOSAR Validation Dipole





SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.4.14.SATU.A

#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

#### 5.2 DIMENSION MEASUREMENT

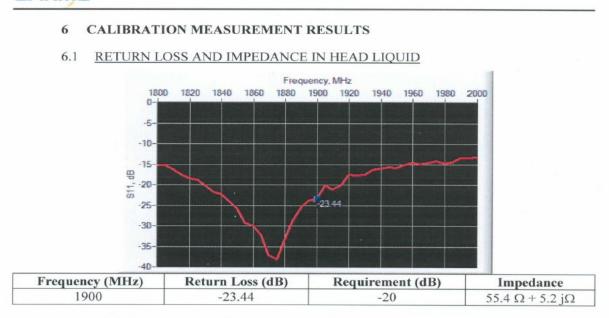
The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |
|-------------|--------------------------------|
| 3 - 300     | 0.05 mm                        |

#### 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | <b>Expanded Uncertainty</b> |
|-------------|-----------------------------|
| 1 g         | 20.3 %                      |
| 10 g        | 20.1 %                      |


Page: 5/11





#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.4.14.SATU.A



#### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID



#### 6.3 MECHANICAL DIMENSIONS

| Frequency MHz | Ln          | nm       | h mm        |          | d r        | d mm     |  |
|---------------|-------------|----------|-------------|----------|------------|----------|--|
|               | required    | measured | required    | measured | required   | measured |  |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |  |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |  |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |  |
| 835           | 161.0 ±1 %. |          | 89.8 ±1 %.  |          | 3.6 ±1 %.  |          |  |

#### Page: 6/11



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.4.14.SATU.A

| 900  | 149.0 ±1 %. |      | 83.3 ±1 %. |      | 3.6 ±1 %. |     |
|------|-------------|------|------------|------|-----------|-----|
| 1450 | 89.1 ±1 %.  |      | 51.7 ±1 %. |      | 3.6 ±1 %. |     |
| 1500 | 80.5 ±1 %.  |      | 50.0 ±1 %. |      | 3.6 ±1 %. |     |
| 1640 | 79.0 ±1 %.  |      | 45.7 ±1 %. |      | 3.6 ±1 %. |     |
| 1750 | 75.2 ±1 %.  |      | 42.9 ±1 %. |      | 3.6 ±1 %. |     |
| 1800 | 72.0 ±1 %.  |      | 41.7 ±1 %. |      | 3.6 ±1 %. |     |
| 1900 | 68.0 ±1 %.  | PASS | 39.5 ±1 %. | PASS | 3.6 ±1 %. | PAS |
| 1950 | 66.3 ±1 %.  |      | 38.5 ±1 %. |      | 3.6 ±1 %. |     |
| 2000 | 64.5 ±1 %.  |      | 37.5 ±1 %. |      | 3.6 ±1 %. |     |
| 2100 | 61.0 ±1 %.  |      | 35.7 ±1 %. |      | 3.6 ±1 %. |     |
| 2300 | 55.5 ±1 %.  |      | 32.6 ±1 %. |      | 3.6 ±1 %. |     |
| 2450 | 51.5 ±1 %.  |      | 30.4 ±1 %. |      | 3.6 ±1 %. |     |
| 2600 | 48.5 ±1 %.  |      | 28.8 ±1 %. |      | 3.6 ±1 %. |     |
| 3000 | 41.5 ±1 %.  |      | 25.0 ±1 %. |      | 3.6 ±1 %. |     |
| 3500 | 37.0±1 %.   |      | 26.4 ±1 %. |      | 3.6 ±1 %. |     |
| 3700 | 34.7±1 %.   |      | 26.4 ±1 %. |      | 3.6 ±1 %. |     |

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

| Frequency<br>MHz | Relative permittivity ( $\epsilon_r'$ ) |          | Conductivity (a) S/m |          |
|------------------|-----------------------------------------|----------|----------------------|----------|
|                  | required                                | measured | required             | measured |
| 300              | 45.3 ±5 %                               |          | 0.87 ±5 %            |          |
| 450              | 43.5 ±5 %                               |          | 0.87 ±5 %            |          |
| 750              | 41.9 ±5 %                               |          | 0.89 ±5 %            |          |
| 835              | 41.5 ±5 %                               |          | 0.90 ±5 %            |          |
| 900              | 41.5 ±5 %                               |          | 0.97 ±5 %            |          |
| 1450             | 40.5 ±5 %                               |          | 1.20 ±5 %            |          |
| 1500             | 40.4 ±5 %                               |          | 1.23 ±5 %            |          |
| 1640             | 40.2 ±5 %                               |          | 1.31 ±5 %            |          |
| 1750             | 40.1 ±5 %                               |          | 1.37 ±5 %            |          |
| 1800             | 40.0 ±5 %                               |          | 1.40 ±5 %            |          |
| 1900             | 40.0 ±5 %                               | PASS     | 1.40 ±5 %            | PASS     |
| 1950             | 40.0 ±5 %                               |          | 1.40 ±5 %            |          |
| 2000             | 40.0 ±5 %                               |          | 1.40 ±5 %            |          |

#### 7.1 HEAD LIQUID MEASUREMENT

#### Page: 7/11



ATIMC

#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.4.14.SATU.A

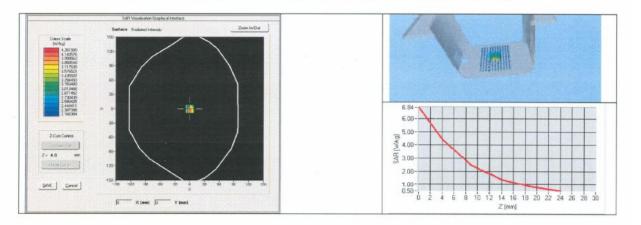
| 2100 | 39.8 ±5 % | 1.49 ±5 % |
|------|-----------|-----------|
| 2300 | 39.5 ±5 % | 1.67 ±5 % |
| 2450 | 39.2 ±5 % | 1.80 ±5 % |
| 2600 | 39.0 ±5 % | 1.96 ±5 % |
| 3000 | 38.5 ±5 % | 2.40 ±5 % |
| 3500 | 37.9 ±5 % | 2.91 ±5 % |

#### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                 |  |
|-------------------------------------------|--------------------------------------------|--|
| Phantom                                   | SN 20/09 SAM71                             |  |
| Probe                                     | SN 18/11 EPG122                            |  |
| Liquid                                    | Head Liquid Values: eps': 41.1 sigma: 1.42 |  |
| Distance between dipole center and liquid |                                            |  |
| Area scan resolution                      | dx=8mm/dy=8mm                              |  |
| n Scan Resolution dx=8mm/dy=8m/dz=5mm     |                                            |  |
| Frequency                                 | 1900 MHz                                   |  |
| Input power                               | 20 dBm                                     |  |
| Liquid Temperature                        | 21 °C                                      |  |
| Lab Temperature                           | 21 °C                                      |  |
| Lab Humidity                              | 45 %                                       |  |

| Frequency<br>MHz | 1 g SAR  | (W/kg/W)     | 10 g SAR | (W/kg/W)     |
|------------------|----------|--------------|----------|--------------|
|                  | required | measured     | required | measured     |
| 300              | 2.85     |              | 1.94     |              |
| 450              | 4.58     |              | 3.06     |              |
| 750              | 8.49     |              | 5.55     |              |
| 835              | 9.56     |              | 6.22     |              |
| 900              | 10.9     |              | 6.99     |              |
| 1450             | 29       |              | 16       |              |
| 1500             | 30.5     |              | 16.8     |              |
| 1640             | 34.2     |              | 18.4     |              |
| 1750             | 36.4     |              | 19.3     |              |
| 1800             | 38.4     |              | 20.1     |              |
| 1900             | 39.7     | 40.37 (4.04) | 20.5     | 20.62 (2.06) |
| 1950             | 40.5     |              | 20.9     |              |
| 2000             | 41.1     |              | 21.1     | 1.1.1        |
| 2100             | 43.6     |              | 21.9     |              |
| 2300             | 48.7     |              | 23.3     |              |


#### Page: 8/11



#### SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.240.4.14.SATU.A

| 2450 | 52.4 | 24   |
|------|------|------|
| 2600 | 55.3 | 24.6 |
| 3000 | 63.8 | 25.7 |
| 3500 | 67.1 | 25   |



#### 7.3 BODY LIQUID MEASUREMENT

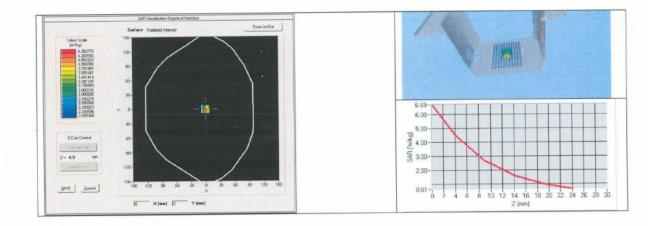
| Frequency<br>MHz | Relative per | mittivity (ε,') | Conductiv  | i <b>ty (</b> ơ) S/m |
|------------------|--------------|-----------------|------------|----------------------|
|                  | required     | measured        | required   | measured             |
| 150              | 61.9 ±5 %    |                 | 0.80 ±5 %  |                      |
| 300              | 58.2 ±5 %    |                 | 0.92 ±5 %  |                      |
| 450              | 56.7 ±5 %    |                 | 0.94 ±5 %  |                      |
| 750              | 55.5 ±5 %    |                 | 0.96 ±5 %  |                      |
| 835              | 55.2 ±5 %    |                 | 0.97 ±5 %  |                      |
| 900              | 55.0 ±5 %    |                 | 1.05 ±5 %  |                      |
| 915              | 55.0 ±5 %    |                 | 1.06 ±5 %  |                      |
| 1450             | 54.0 ±5 %    |                 | 1.30 ±5 %  |                      |
| 1610             | 53.8 ±5 %    |                 | 1.40 ±5 %  |                      |
| 1800             | 53.3 ±5 %    |                 | 1.52 ±5 %  |                      |
| 1900             | 53.3 ±5 %    | PASS            | 1.52 ±5 %  | PASS                 |
| 2000             | 53.3 ±5 %    |                 | 1.52 ±5 %  |                      |
| 2100             | 53.2 ±5 %    |                 | 1.62 ±5 %  |                      |
| 2450             | 52.7 ±5 %    |                 | 1.95 ±5 %  |                      |
| 2600             | 52.5 ±5 %    |                 | 2.16 ±5 %  |                      |
| 3000             | 52.0 ±5 %    |                 | 2.73 ±5 %  |                      |
| 3500             | 51.3 ±5 %    |                 | 3.31 ±5 %  |                      |
| 5200             | 49.0 ±10 %   |                 | 5.30 ±10 % |                      |
| 5300             | 48.9 ±10 %   |                 | 5.42 ±10 % |                      |
| 5400             | 48.7 ±10 %   |                 | 5.53 ±10 % |                      |

#### Page: 9/11





#### SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.240.4.14.SATU.A

| 5500 | 48.6 ±10 % | 5.65 ±10 % |
|------|------------|------------|
| 5600 | 48.5 ±10 % | 5.77 ±10 % |
| 5800 | 48.2 ±10 % | 6.00 ±10 % |

## 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                                  | OPENSAR V4                                 |  |  |
|-------------------------------------------|--------------------------------------------|--|--|
| Phantom                                   | SN 20/09 SAM71                             |  |  |
| Probe                                     | SN 18/11 EPG122                            |  |  |
| Liquid                                    | Body Liquid Values: eps': 54.2 sigma: 1.54 |  |  |
| Distance between dipole center and liquid | 10.0 mm                                    |  |  |
| Area scan resolution                      | dx=8mm/dy=8mm                              |  |  |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                        |  |  |
| Prequency 1900 MHz                        |                                            |  |  |
| Input power 20 dBm                        |                                            |  |  |
| Liquid Temperature                        | 21 °C                                      |  |  |
| ab Temperature 21 °C                      |                                            |  |  |
| Lab Humidity                              | 45 %                                       |  |  |

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 1900             | 40.81 (4.08)     | 21.21 (2.12)      |



#### Page: 10/11





Ref: ACR.240.4.14.SATU.A

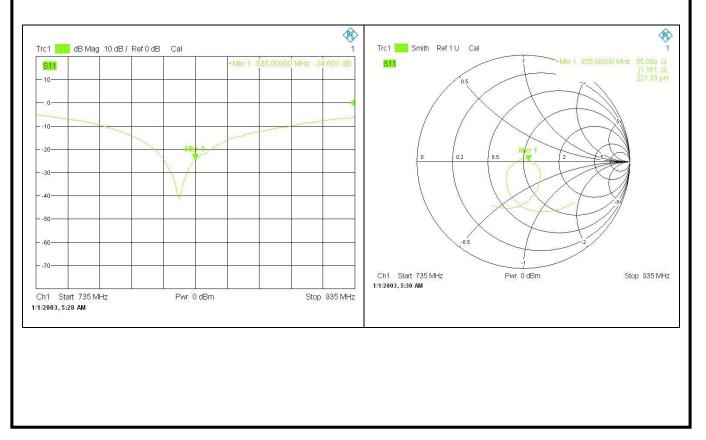
### 8 LIST OF EQUIPMENT

| Equipment Summary Sheet            |                         |                    |                                               |                                               |  |  |  |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|--|--|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |  |  |  |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No ca<br>required.                 |  |  |  |  |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No ca<br>required.                 |  |  |  |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                       |  |  |  |  |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2013                                       | 12/2016                                       |  |  |  |  |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2013                                       | 10/2014                                       |  |  |  |  |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2013                                       | 12/2016                                       |  |  |  |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2013                                       | 12/2016                                       |  |  |  |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. |                                               |  |  |  |  |
| Power Meter                        | HP E4418A               | US38261498         | 12/2013                                       | 12/2016                                       |  |  |  |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2013                                       | 12/2016                                       |  |  |  |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |  |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2012                                        | 8/2015                                        |  |  |  |  |

#### Page: 11/11



# <Justification of the extended calibration>


Referring to KDB 450824, if dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

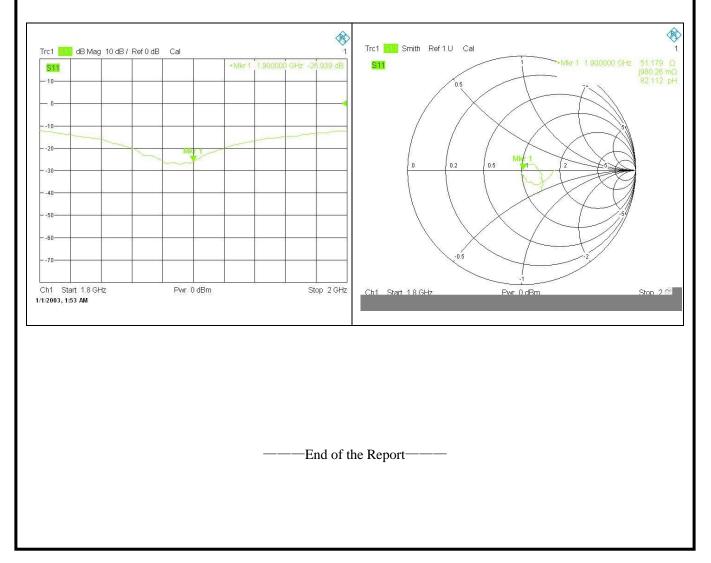
| Body 835MHz            |                  |           |           |            |  |  |  |
|------------------------|------------------|-----------|-----------|------------|--|--|--|
| Date of<br>Measurement | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) |  |  |  |
| 2014.08.28             | -24.50           | -         | 55.00     | -          |  |  |  |
| 2015.08.26             | -24.60           | -2.28     | 55.06     | 0.06       |  |  |  |

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

### <Dipole Verification Data>

## Body 835MHz






| Body 1900MHz           |                  |           |           |            |  |  |  |
|------------------------|------------------|-----------|-----------|------------|--|--|--|
| Date of<br>Measurement | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) |  |  |  |
| 2014.08.28             | -27.36           | -         | 51.70     | -          |  |  |  |
| 2015.08.26             | -26.94           | 10.15     | 51.18     | -0.52      |  |  |  |

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

## <Dipole Verification Data>

## Body 1900MHz

