

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-3243/21-01-05

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Hans Turck GmbH & Co. KG

Witzlebenstr. 7

45472 Mülheim an der Ruhr / GERMANY

Phone:

Contact: Matthias Linde

e-mail: matthias.linde@turck.com Phone: +49 2353 709-6198

Manufacturer

Hans Turck GmbH & Co. KG

Witzlebenstr. 7

45472 Mülheim an der Ruhr / GERMANY

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I;

Part 15 Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Radar Distance Sensor

Model name: DR15S-M30E-IOL8X2-H1141 / DR15S-M30E-UPN8X2-H1141

Frequency: YQ7-DRXXX-M30E Frequency: 122 GHz - 123 GHz

Technology tested: FMCW Radar
Antenna: Integrated antenna

Power supply: 24 V DC by external power supply

Temperature range: -25°C to +65°C

Radio Communications & EMC

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Meheza Walla	Thomas Vogler	
Lab Manager	Lab Manager	

Radio Communications & EMC

Table of contents

1	Table of contents		2
2	General information		3
	2.2 Application details	ntracted	3
3	Test standard/s, references and	accreditations	4
4	Test environment		4
5	Reporting statements of confo	mity – decision rule	5
6	Test item		6
	6.1 General description		6
7	Sequence of testing		7
	7.2 Sequence of testing radi7.3 Sequence of testing radi7.4 Sequence of testing radi	ated spurious 9 kHz to 30 MHzated spurious 30 MHz to 1 GHzated spurious 1 GHz to 18 GHzated spurious above 18 GHz	8 9 0
8	Description of the test setup		2
	8.2 Radiated measurements 8.3 Radiated measurements 8.4 Radiated measurements 8.5 Radiated power measure	chamber	4 5 6
9	Measurement uncertainty	1	9
10	0 Far field consideration for mo	asurements above 18 GHz2	:0
11	1 Measurement results	2	:1
	11.1 Summary	2	:1
12	2 Measurement results	2	2
	12.2 Maximum E.I.R.P.12.3 Spurious emissions radi12.3.1 Spurious emissions radi	22	25 29 31
13	3 Conducted spurious emissio	ns < 30 MHz5	8
14	4 Glossary	6	1
15	5 Document history		2
16	6 Accreditation Certificate – D-	PL-12076-01-05	2

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2021-09-16
Date of receipt of test item: 2022-01-19
Start of test: 2022-01-20
End of test: 2022-02-23

Person(s) present during the test: --

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 62

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

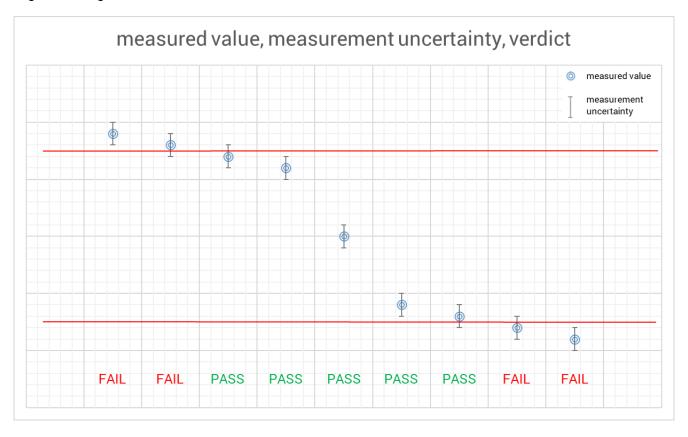
Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

Guidance	Version	Description
		American National Standard for Methods of Measurement of
ANSI C63.4-2017	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic
		Equipment in the Range of 9 kHz to 40 GHz
ANCI 002 40 2042	1	American National Standard of Procedures for Compliance
ANSI C63.10-2013	-/-	Testing of Unlicensed Wireless Devices
ANSI C63.26-2015	-/-	American National Standard for Compliance Testing of
		Transmitters Used in Licensed Radio Services

Accreditation	Description	
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +65 °C during high temperature tests -25 °C during low temperature tests		
Relative humidity content	:		50 %		
Barometric pressure			1006 hpa		
Power supply	:	V_{nom}	24 V DC by external power supply		


© CTC advanced GmbH Page 4 of 62

5 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

© CTC advanced GmbH Page 5 of 62

Test item 6

General description 6.1

Kind of test item	:	Radar Distance Sensor
Model name:	:	DR15S-M30E-IOL8X2-H1141 / DR15S-M30E-UPN8X2-H1141
S/N serial number	:	n.a.
Hardware status	:	Frontend: LP 7534/0, SL 12869801, ECO 8000606104 Backend: LP 7842/0, SL 12896701, ECO 8000777004
Software status	:	n.a.
Firmware status	:	Frontend 2.1.2.0, Backend 1.0.1.0
Frequency band	:	122 GHz – 123 GHz
Type of modulation	:	FMCW
Number of channels	:	1
Antenna	:	Integrated antenna
Power supply	:	24 V DC by external power supply
Temperature range	:	-25°C to +65°C

6.2 Additional information

Test setup and EUT photos are included in test report: 1-3243/21-01-01_AnnexA

1-3243/21-01-01_AnnexB 1-3243/21-01-01_AnnexD

© CTC advanced GmbH Page 6 of 62

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 7 of 62

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 8 of 62

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 9 of 62

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 10 of 62

7.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

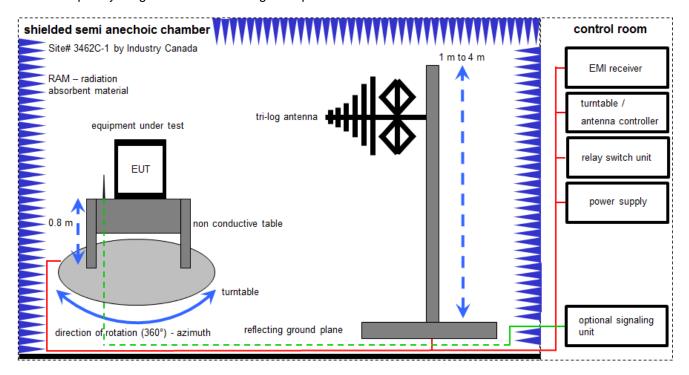
© CTC advanced GmbH Page 11 of 62

8 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval	-	-
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 12 of 62

8.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

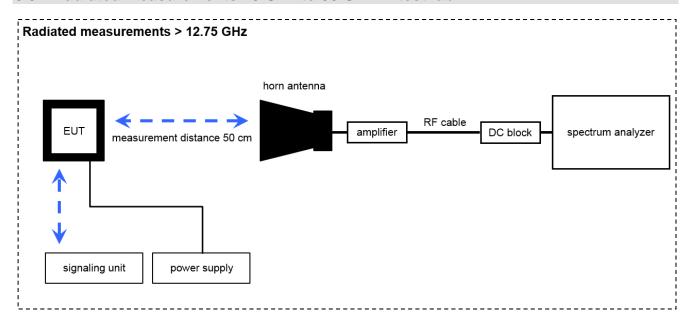
Measurement distance: tri-log antenna 10 meter

Equipment table:

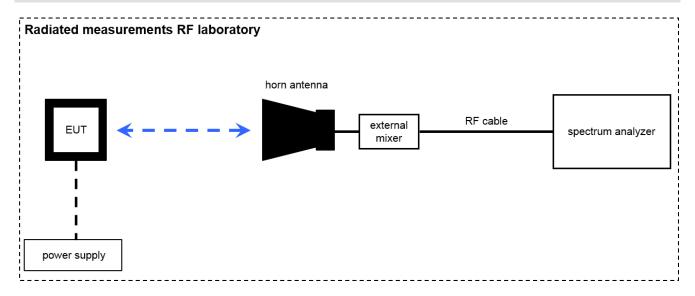
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI3	R&S	100083	300003312	k	09.12.2021	31.12.2022
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vIKI!	14.01.2020	31.01.2022
9	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
10	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	08.12.2021	31.12.2022

© CTC advanced GmbH Page 13 of 62

8.2 Radiated measurements fully anechoic chamber

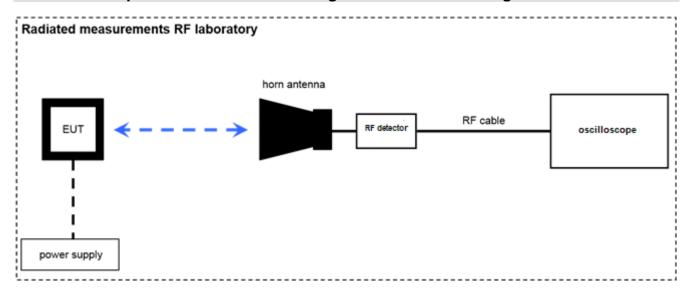

Equipment table (Chamber C):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	09.12.2020	31.12.2023
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	01.07.2021	30.06.2023
3	n. a.	Anechoic chamber	FAC 3/5m	MWB/TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2021	29.09.2023
5	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	12.03.2021	11.03.2023
6	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
7	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
8	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	31.12.2022
9	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
14	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
15	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-


© CTC advanced GmbH Page 14 of 62

8.3 Radiated measurements 18 GHz to 50 GHz in test lab

8.4 Radiated measurements > 50 GHz in test lab



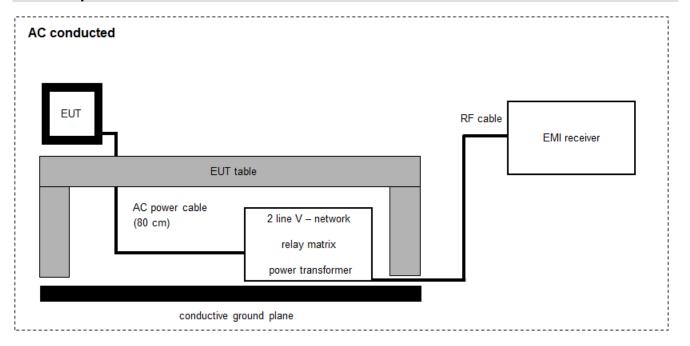
Note: conversion loss of mixer is already included in analyzer value.

© CTC advanced GmbH Page 15 of 62

8.5 Radiated power measurements using RF detector according to ANSI C63.10-2013

Note: EUT is replaced by reference source for substitution measurement

© CTC advanced GmbH Page 16 of 62


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vIKI!	18.02.2019	17.02.2022
2	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
3	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
4	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
6	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
8	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 217-330 GHz	32240-20	Flann	233278	300004960	ne	-/-	-/-
10	n. a.	Standard Gain Horn 325-500 GHz	570240-20	Flann	273569	300006097	ne	-/-	-/-
11	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	09.03.2020	08.03.2022
12	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	101555	300004691	k	21.01.2021	20.01.2022
14	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	22.07.2021	21.07.2022
15	n.a.	Harmonic Mixer 3- port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	15.06.2021	14.06.2022
16	n. a.	Harmonic Mixer 3- Port, 110-170 GHz	FS-Z170	Radiometer Physics GmbH	100014	300004156	k	11.06.2021	10.06.2022
17	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	22.07.2021	21.07.2022
18	n. a.	Harmonic Mixer 3- Port, 220-325 GHz	SAM-325	Radiometer Physics GmbH	100002	300004158	k	22.07.2021	21.07.2022
19	n.a.	Harmonic Mixer 325- 500GHz	FS-Z500	Radiometer Physics GmbH	101016	300006096	k	14.06.2021	13.06.2022
20	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	30.06.2021	29.06.2022
21	n.a.	Std. Gain Horn Antenna 90-140 GHz	COR 90_140	Thomson CSF		300000799	ev	-/-	-/-
22	n.a.	F-Band Positive Amplitude Detector	SFD-903144-08SF- P1	Sage Millimeter Inc.	07354-1	300006119	ev	-/-	-/-
23	n.a.	SG Extension Module 110 - 170 GHz	E8257DV06	VDI	US53250018	300005540	ev	-/-	-/-
24	n.a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
25	n.a.	Synthesized Sweeper 10 MHz - 40 GHz	83640A	HP	3119A00458	300002266	vIKI!	10.12.2021	31.12.2023
26	n.a.	Oscilloscope	DPO5054	Tektronix	C010174	300004169	vIKI!	07.12.2021	31.12.2023

© CTC advanced GmbH Page 17 of 62

8.6 AC power-line conducted emissions

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	-/-	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	14.12.2021	31.12.2023
2	-/-	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	-/-	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2021	31.12.2022
4	-/-	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-

© CTC advanced GmbH Page 18 of 62

9 Measurement uncertainty

Measurement uncertainty			
Test case	Uncertainty		
Spectrum bandwidth	span/1000		
Output power	± 3 dB		
Spurious emissions radiated below 30 MHz	± 3 dB		
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB		
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB		
Spurious emissions radiated above 12.75 GHz	± 4.5 dB		
DC and low frequency voltages	±3%		
Temperature	±1 °C		
Humidity	± 3 %		

© CTC advanced GmbH Page 19 of 62

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2/\lambda$

with

D_{ff} Far field distance D Antenna dimension

λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
90 - 140	140	1.02	0.22	9.46
110-170	170	0.85	0.18	8.19
140-220	220	0.68	0.14	6.78
220-325	325	0.43	0.09	4.11
325-500	500	0.26	0.06	2.29

In band measurement (EIRP, OBW):

Tradilancy	Highest measured frequency in GHz	Antenna dimension in cm	Wavelength in cm	far field distance in cm
110 - 170	123	1	0.24	8.33

© CTC advanced GmbH Page 20 of 62

11 Measurement results

11.1 Summary

×	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC 47 CFR Part 15 / IC RSS-210	see below	2022-03-15	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Results (max.)
§15.215	Occupied bandwidth	Nominal	Nominal	\boxtimes				complies
§15.258(b) (1) / (3)	Maximum E.I.R.P.	Nominal	Nominal	\boxtimes				complies
§15.258(c)	Spurious Emissions	Nominal	Nominal	\boxtimes				complies
§15.255(d)	Frequency stability	Extreme Nominal	Extreme Nominal	\boxtimes				complies

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 21 of 62

12 Measurement results

12.1 Occupied bandwidth

Description:

Measurement of the Bandwidth of the wanted signal.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Sweep time:	1 s	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	See plot	
Trace-Mode:	Max Hold	

Limits:

FCC
CFR Part 15.258
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:
Frequency range
116 GHz – 123 GHz

Measurement results:

Test condition T _{nom} / V _{nom}	F _∟ in GHz	F _H in GHz	Occupied bandwidth in MHz
20 dB OBW	122.016 900	122.942 400	925.5
99% OBW	122.024 781	122.934 946	910.2
Measurement uncertainty		± span/1000	

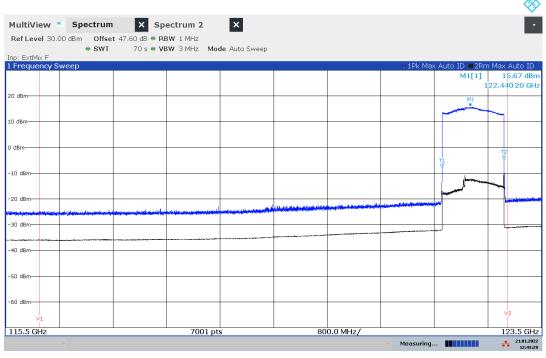
Result: The measurement is passed.

© CTC advanced GmbH Page 22 of 62

Plot 1: 20 dB OBW, operating frequency band

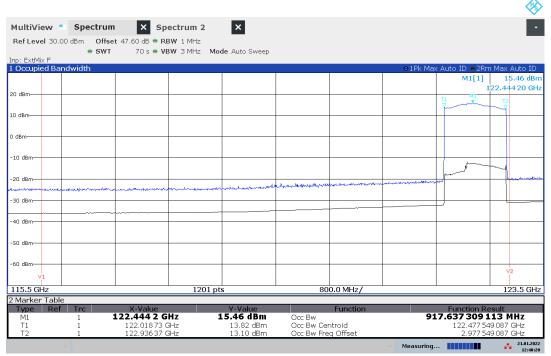
12:09:08 21.01.2022

Plot 2: 99% OBW, operating frequency band



12:03:59 21.01.2022

© CTC advanced GmbH Page 23 of 62



Plot 3: 20% OBW, complete band

12:43:30 21.01.2022

Plot 4: OBW, complete band

12:40:20 21.01.2022

© CTC advanced GmbH Page 24 of 62

12.2 Maximum E.I.R.P.

Description:

Measurement of the maximum radiated e.i.r.p. of the wanted signal.

Measurement:

Measurement parameter			
Detector: Pos-Peak (RF-Detector)			
Video bandwidth: 10 MHz			
Trace-Mode:	Max Hold		

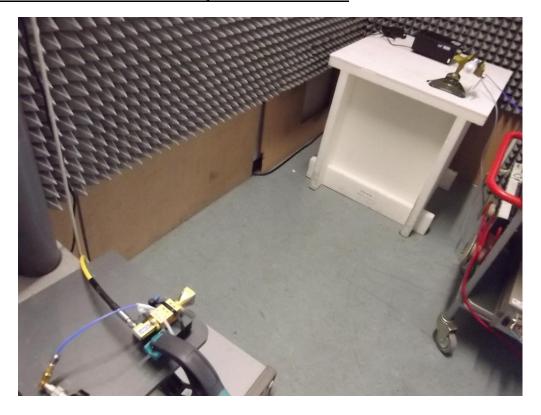
Limits: FCC Part 15.258 (b)

Emission levels within the 116-123 GHz, 174.8-182 GHz, 185-190 GHz and 244-246 GHz bands shall not exceed the following equivalent isotropically radiated power (EIRP) limits as measured during the transmit interval:

The average power of any emission shall not exceed 40 dBm and the peak power of any emission shall not exceed 43 dBm.

The peak power shall be measured with a detection bandwidth that encompasses the entire occupied bandwidth within the intended band of operation, e.g., 116-123 GHz, 174.8-182 GHz, 185-190 GHz or 244-246 GHz. The average emission levels shall be measured over the actual time period during which transmission occurs.

Measurement results:


Test condition	Max E.I.R.P. 10 MHz VBW	Average E.I.R.P. 10 MHz VBW	
T _{nom} / V _{nom}	15.9 dBm	15.9 dBm	
Measurement uncertainty	± 3 dB		

Test condition	Duty cycle
T _{nom} / V _{nom}	0.99

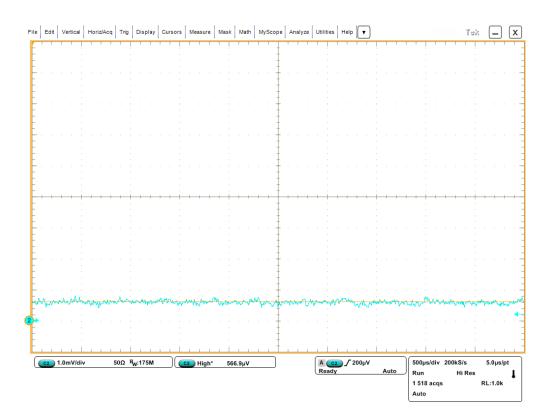
© CTC advanced GmbH Page 25 of 62

Description of the E.I.R.P. measurement by substitution method:

- 1) EUT emission measured with RF-detector:
 - Measurement distance: d = 1 m
 - Maximum readout value on oscilloscope: V = 0.59 mV
- 2) Substitution of EUT by a CW reference source with a frequency of f = 122 GHz and a fixed output power of $P_{ref} = 28.4$ dBm
 - Readout value on oscilloscope adjusted by far field attenuation, 0.59 mV found at 4.2m distance
- 3) Calculation of the Max E.I.R.P. of the EUT:
 - Free space loss: $FSL(d) = 20 \times log(4 \times \pi \times d \times f/c)$, c: speed of light
 - Max E.I.R.P. = P_{ref} FSL(4.2 m) + FSL (1 m) = 15.9 dBm
- 4) Calculation of the Average E.I.R.P. of the EUT:
 - Measured duty cycle of the EUT: 100 %
 - Average E.I.R.P. = Max E.I.R.P. + 10 x log(1) = 15.9 dBm

© CTC advanced GmbH Page 26 of 62

Setup of the substitution:


- 1) Synthesized Sweeper 10 MHz 40 GHz
- 2) SG Extension Module 110 170 GHz & Std. Gain Horn Antenna 114-173 GHz
- 3) F-Band Positive Amplitude Detector & Std. Gain Horn Antenna 90-140 GHz

© CTC advanced GmbH Page 27 of 62

Oscilloscope measurement:

© CTC advanced GmbH Page 28 of 62

12.3 Spurious emissions radiated

Description:

Measurement of the radiated spurious emissions.

Measurement:

Measurement parameter							
Detector:	Quasi Peak / Pos-Peak / RMS						
Sweep time:	Auto						
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz						
Video bandwidth:	Auto						
Frequency range:	30 MHz to 500 GHz						
Trace-Mode:	Max Hold						

<u>Limits:</u> FCC Part 15.258 / RSS-210

- (c) Spurious emissions shall be limited as follows:
- (1) The power density of any emissions outside the band of operation, e.g., 116-123 GHz, 174.8-182 GHz, 185-190 GHz or 244-246 GHz, shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

FCC / IC								
CI	CFR Part 15.209(a) / RSS-210 / RSS-Gen							
	Radiated emission limits							
Frequency (MHz)	Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)							
0.009 – 0.490	2400/F(kHz)	300						
0.490 – 1.705	24000/F(kHz)	30						
1.705 – 30.0	30	30						
30 – 88	100	3						
88 – 216	150	3						
216 – 960	200	3						
Above 960	500	3						

⁽³⁾ Between 40 GHz and the highest frequency specified in § 15.33, the level of these emissions shall not exceed 90 pW/cm² at a distance of 3 meters.

(4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

© CTC advanced GmbH Page 29 of 62

<u>Limit conversion:</u> ANSI C63.10-2013 9.6

Power density at the distance specified by the limit: PD [W/m²] Equivalent isotropically radiated power: EIRP [dBm] Distance at which the power density limit is specified: d [m]

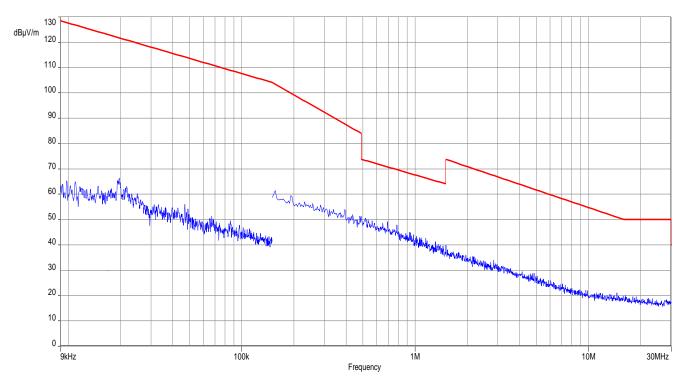
 $EIRP[dBm] = 10 \times log(4 \times \pi \times d^2 \times PD[W/m^2])$

According to this formula, an emission limit of $PD = 90 \text{ pW/cm}^2$ at a distance of 3 meters corresponds to EIRP = -10 dBm.

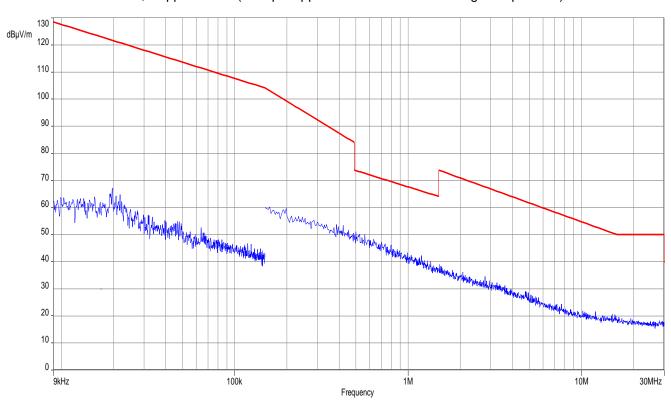
Measurement results:

Note:

Measurements were performed in normal operation mode (frequency sweep) and in stopped mode (frequency sweep stopped at three positions within the range of operation: near top, near middle, near bottom) in accordance with §15.31(c), (m).

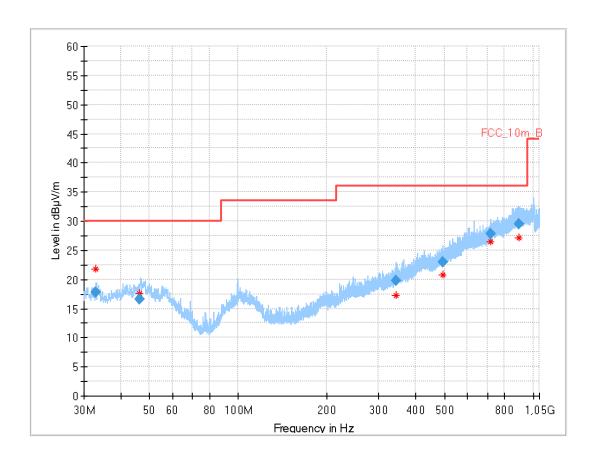

If the results in the cases of the stopped frequency sweep are comparable, only the results with a stop in the middle of the operating frequency range are shown below.

© CTC advanced GmbH Page 30 of 62



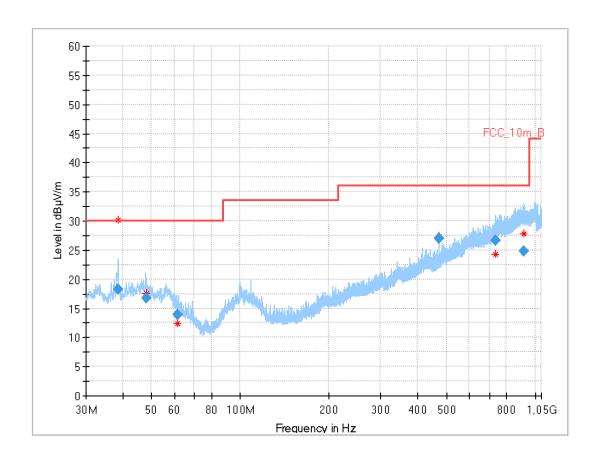
12.3.1 Spurious emissions radiated

Plot 5: 9 kHz - 30 MHz, normal mode


Plot 6: 9 kHz – 30 MHz, stopped mode (sweep stopped in the middle of the range of operation)

© CTC advanced GmbH Page 31 of 62

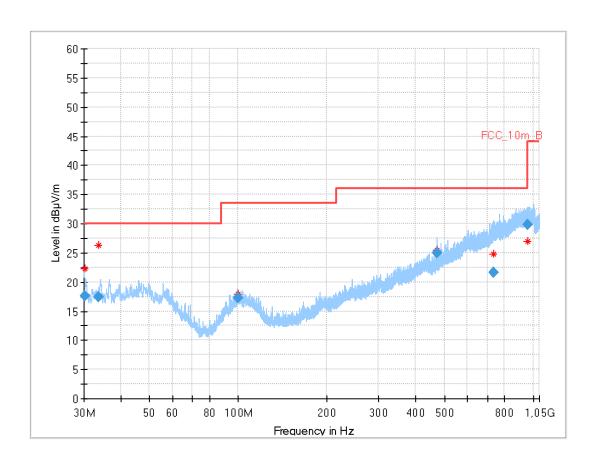
Plot 7: 30 MHz – 1 GHz, stopped mode (sweep stopped at the bottom of the range of operation)


Final_Result

Frequency (MHz)	QuasiPe ak (dBµV/m	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB/m)
32.939	17.75	30.0	12.3	1000	120.0	152.0	Н	148	13
46.383	16.60	30.0	13.4	1000	120.0	142.0	٧	-32	15
343.742	19.74	36.0	16.3	1000	120.0	195.0	٧	-37	17
493.614	23.03	36.0	13.0	1000	120.0	191.0	٧	-37	20
719.997	27.86	36.0	8.1	1000	120.0	195.0	٧	-37	23
895.893	29.56	36.0	6.4	1000	120.0	108.0	٧	113	25

© CTC advanced GmbH Page 32 of 62

Plot 8: 30 MHz – 1 GHz, stopped mode (sweep stopped in the middle of the range of operation)


Final Result

_									
Frequency	QuasiPe	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimut	Corr.
(MHz)	ak	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		h	(dB/m
	(dBµV/m							(deg))
38.584	18.32	30.0	11.7	1000	120.0	122.0	٧	241	14
47.961	16.79	30.0	13.2	1000	120.0	103.0	٧	232	15
61.372	13.88	30.0	16.1	1000	120.0	195.0	Н	217	12
472.008	26.96	36.0	9.0	1000	120.0	98.0	٧	7	19
735.584	26.62	36.0	9.4	1000	120.0	195.0	Н	209	23
917.263	24.87	36.0	11.1	1000	120.0	104.0	Н	52	26

© CTC advanced GmbH Page 33 of 62

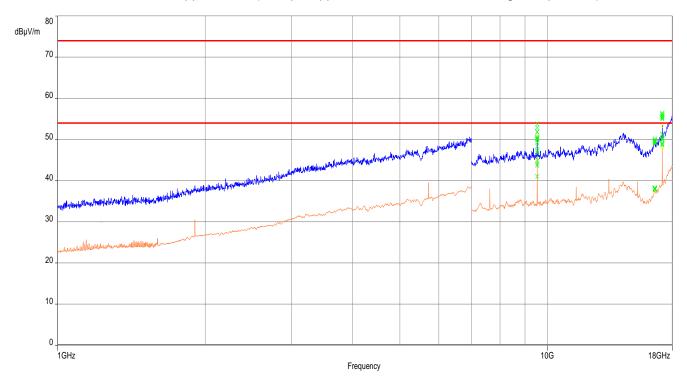
Plot 9: 30 MHz – 1 GHz, stopped mode (sweep stopped at the top of the range of operation)

Final_Result

Frequency	QuasiPe	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimut	Corr.
(MHz)	ak	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		h	(dB/m
	(dBµV/m							(deg))
30.275	17.59	30.0	12.4	1000	120.0	133.0	Н	232	13
33.537	17.37	30.0	12.6	1000	120.0	147.0	Н	232	13
99.525	17.32	33.5	16.2	1000	120.0	195.0	٧	-30	13
472.020	24.89	36.0	11.1	1000	120.0	104.0	٧	-37	19
734.446	21.57	36.0	14.4	1000	120.0	195.0	٧	1	23
958.073	29.88	36.0	6.1	1000	120.0	166.0	Н	142	25

© CTC advanced GmbH Page 34 of 62

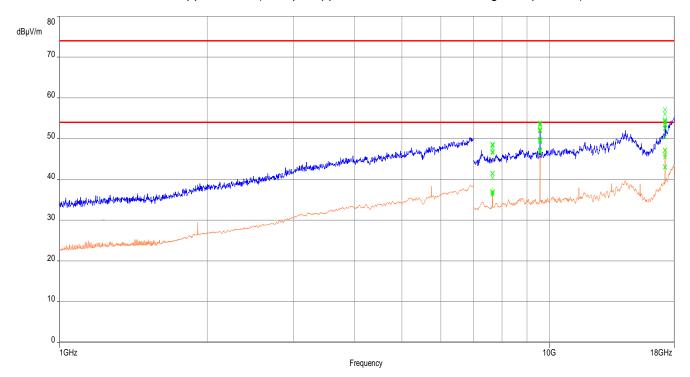
Plot 10: 1 GHz - 18 GHz, normal mode



Frequency (MHz)	Peak (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Average (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)
9600	53.9	74	20.1	41.3	54	12.7
17260	57.1	74	16.9	42.1	54	11.9

© CTC advanced GmbH Page 35 of 62

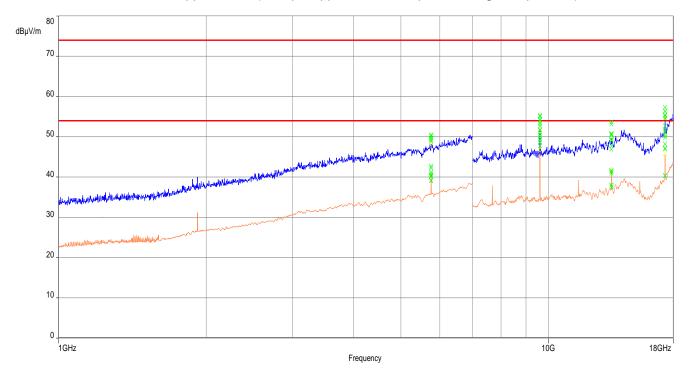
Plot 11: 1 GHz – 18 GHz, stopped mode (sweep stopped near the bottom of the range of operation)



Frequency (MHz)	Peak (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Average (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)
9532.6	53.7	74	20.3	50.3	54	3.7
16566	50.1	74	23.9	38.2	54	15.8
17158.5	56.4	74	17.6	51.2	54	2.8

© CTC advanced GmbH Page 36 of 62

Plot 12: 1 GHz – 18 GHz, stopped mode (sweep stopped in the middle of the range of operation)

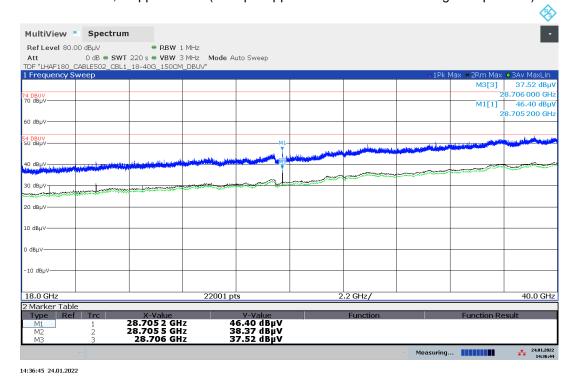


Frequency (MHz)	Peak (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Average (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)
7654.9	48.6	74	25.4	41.5	54	12.5
9568.5	53.8	74	20.2	49.8	54	4.2
17223	57.1	74	16.9	52.5	54	1.5

© CTC advanced GmbH Page 37 of 62

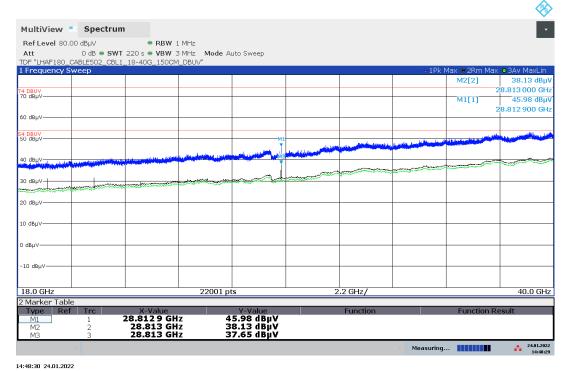
Plot 13: 1 GHz – 18 GHz, stopped mode (sweep stopped near the top of the range of operation)

Frequency (MHz)	Peak (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Average (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)
5763	50.4	74	23.6	42.6	54	11.4
9604	55.2	74	18.8	51.7	54	2.3
13446	53.2	74	20.8	47.7	54	6.3
17288	57.3	74	16.7	51.2	54	2.8

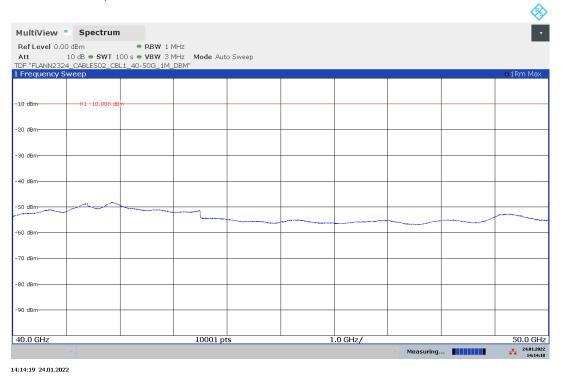

© CTC advanced GmbH Page 38 of 62

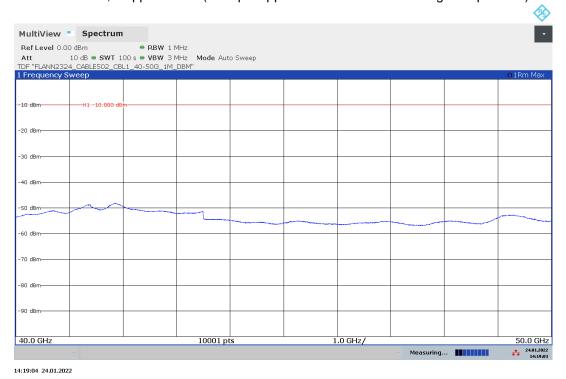
Plot 14: 18 GHz - 40 GHz, normal mode

Plot 15: 18 GHz – 40 GHz, stopped mode (sweep stopped in the middle of the range of operation)

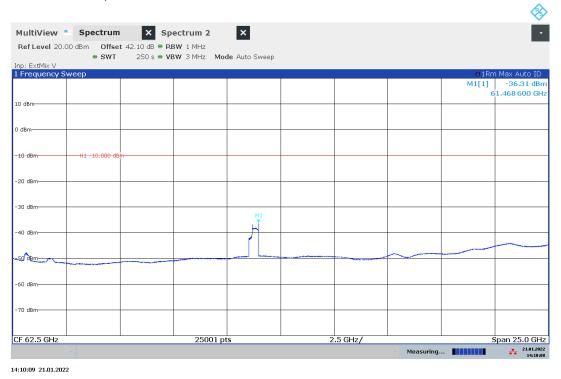

© CTC advanced GmbH Page 39 of 62

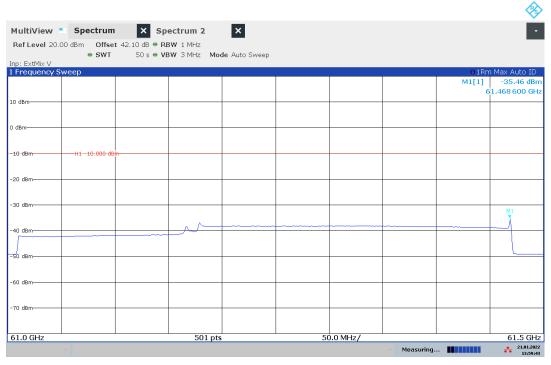
Plot 16: 18 GHz – 40 GHz, stopped mode (sweep stopped near the bottom edge of the range of operation)


Plot 17: 18 GHz - 40 GHz, stopped mode (sweep stopped near the top edge of the range of operation)


© CTC advanced GmbH Page 40 of 62

Plot 18: 40 GHz - 50 GHz, normal mode

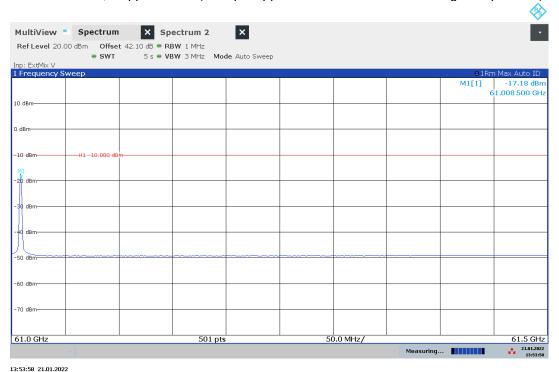

Plot 19: 40 GHz – 50 GHz, stopped mode (sweep stopped in the middle of the range of operation)


© CTC advanced GmbH Page 41 of 62

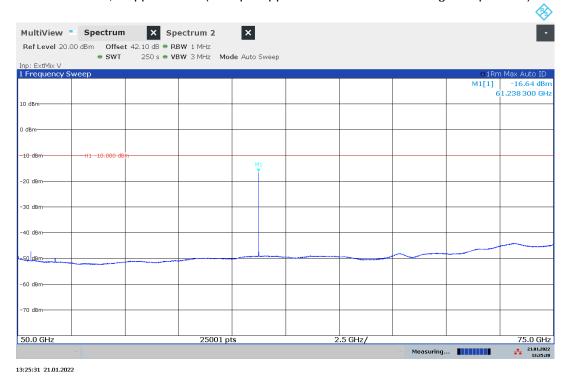
Plot 20: 50 GHz - 75 GHz, normal mode

Plot 21: 50 GHz - 75 GHz, normal mode

13:59:44 21.01.2022

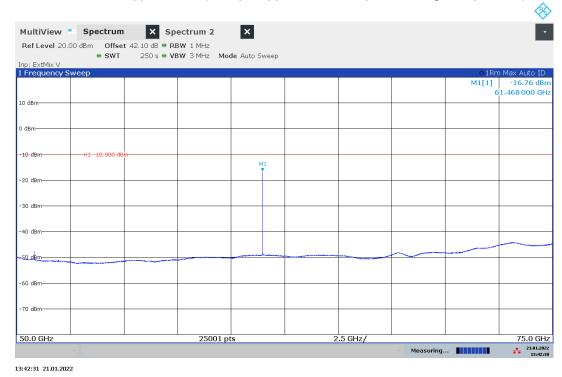

© CTC advanced GmbH Page 42 of 62

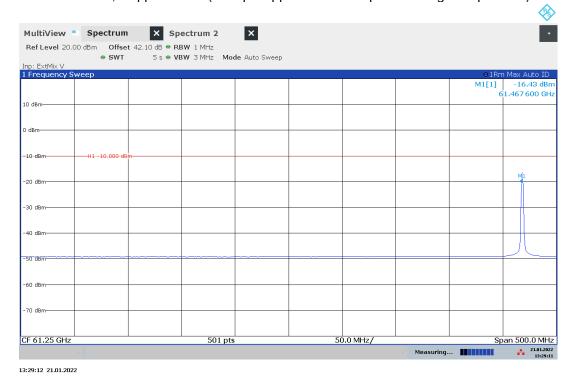
Plot 22: 50 GHz – 75 GHz, stopped mode (sweep stopped near the bottom of the range of operation)


Plot 23: 50 GHz – 75 GHz, stopped mode (sweep stopped near the bottom of the range of operation)

© CTC advanced GmbH Page 43 of 62

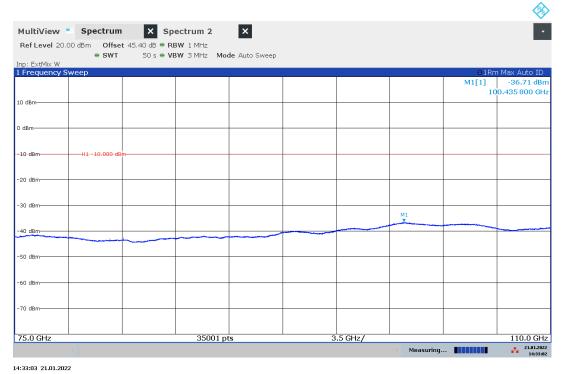
Plot 24: 50 GHz – 75 GHz, stopped mode (sweep stopped in the middle of the range of operation)


Plot 25: 50 GHz – 75 GHz, stopped mode (sweep stopped in the middle of the range of operation)

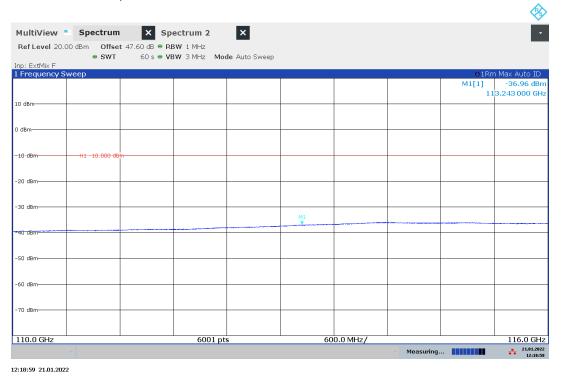

© CTC advanced GmbH Page 44 of 62

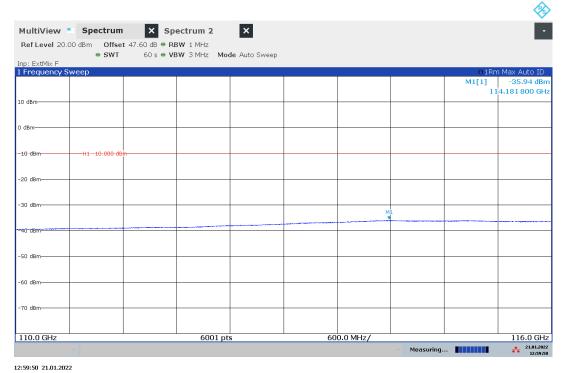
Plot 26: 50 GHz – 75 GHz, stopped mode (sweep stopped near the top of the range of operation)

Plot 27: 50 GHz – 75 GHz, stopped mode (sweep stopped near the top of the range of operation)

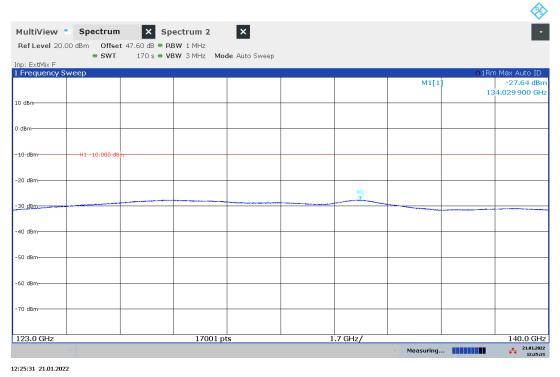

© CTC advanced GmbH Page 45 of 62

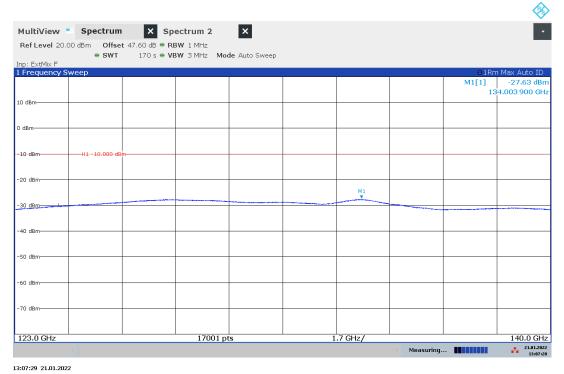
Plot 28: 75 GHz -110 GHz, normal mode


Plot 29: 75 GHz – 110 GHz, stopped mode (sweep stopped in the middle of the range of operation)

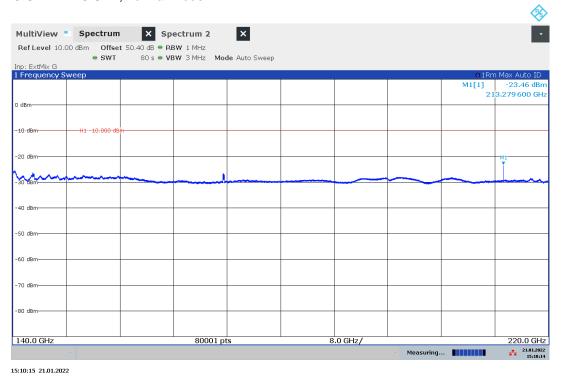

© CTC advanced GmbH Page 46 of 62

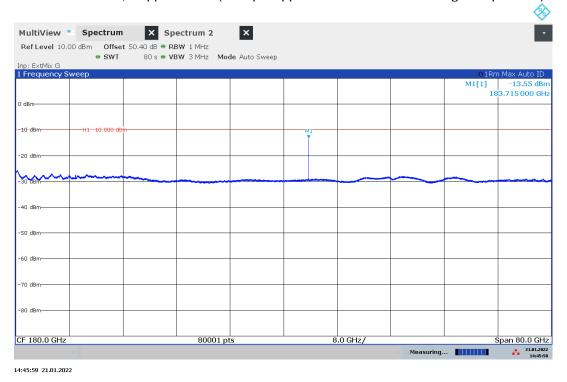
Plot 30: 110 GHz - 116 GHz, normal mode


Plot 31: 110 GHz – 116 GHz, stopped mode (sweep stopped near the bottom of the range of operation)

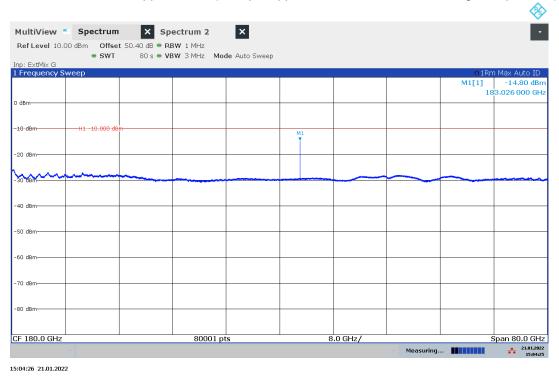

© CTC advanced GmbH Page 47 of 62

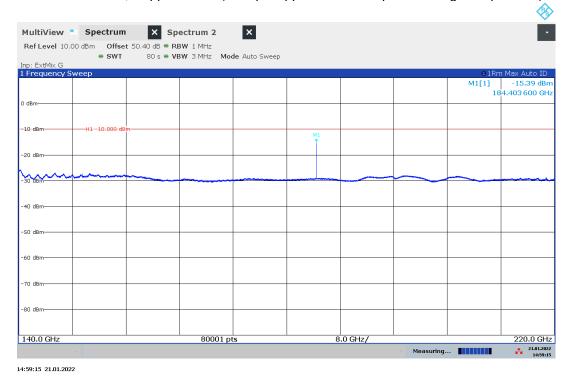
Plot 32: 123 GHz - 140 GHz, normal mode


Plot 33: 123 GHz – 140 GHz, stopped mode (sweep stopped near the top of the range of operation)

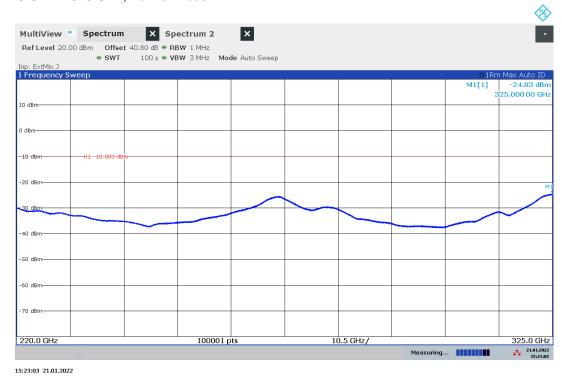

© CTC advanced GmbH Page 48 of 62

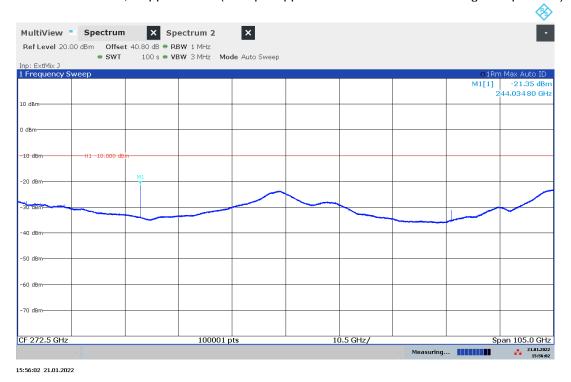
Plot 34: 140 GHz - 220 GHz, normal mode


Plot 35: 140 GHz – 220 GHz, stopped mode (sweep stopped in the middle of the range of operation)

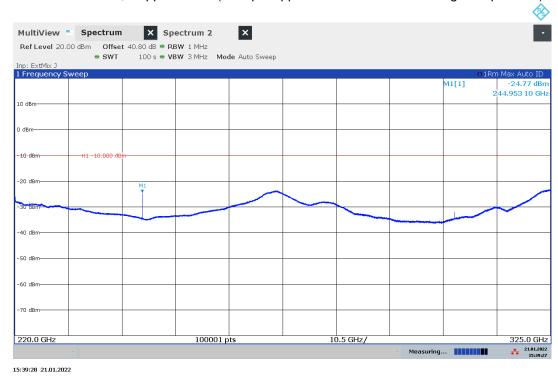

© CTC advanced GmbH Page 49 of 62

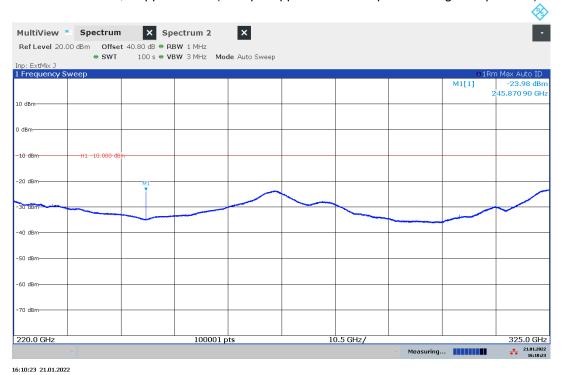
Plot 36: 140 GHz – 220 GHz, stopped mode (sweep stopped near the bottom of the range of operation)


Plot 37: 140 GHz – 220 GHz, stopped mode (sweep stopped near the top of the range of operation)

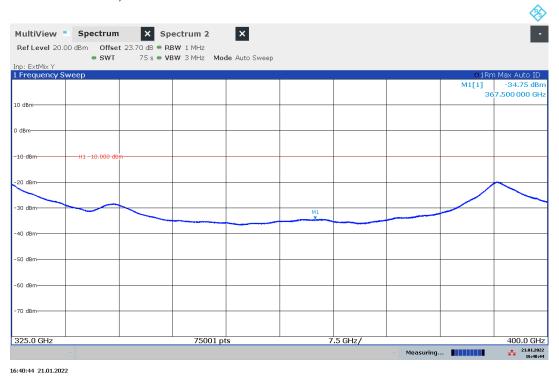

© CTC advanced GmbH Page 50 of 62

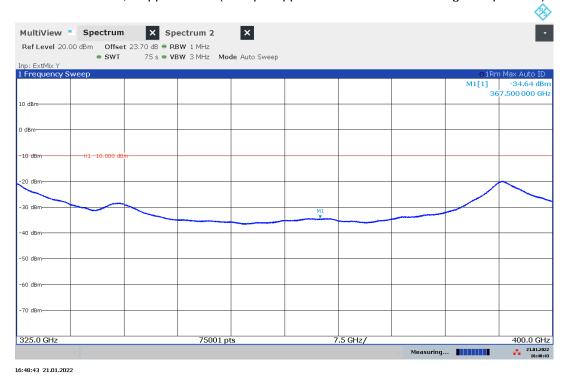
Plot 38: 220 GHz - 325 GHz, normal mode


Plot 39: 220 GHz – 325 GHz, stopped mode (sweep stopped near the bottom of the range of operation)


© CTC advanced GmbH Page 51 of 62

Plot 40: 220 GHz – 325 GHz, stopped mode (sweep stopped in the middle of the range of operation)


Plot 41: 220 GHz – 325 GHz, stopped mode (sweep stopped near the top of the range of operation)


© CTC advanced GmbH Page 52 of 62

Plot 42: 325 GHz - 400 GHz, normal mode

Plot 43: 325 GHz – 400 GHz, stopped mode (sweep stopped in the middle of the range of operation)

© CTC advanced GmbH Page 53 of 62

Test report no.: 1-3243/21-01-05

12.4 Frequency Stability

Description:

§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Measurement:

 f_C is the point in the radiation where the power is at maximum. The frequency points where the power falls 10 dB below the f_C level and above f_C level are designated as f_L and f_H respectively. The operating frequency range (i.e. the frequency band of operation) is defined as f_H - f_L .

Measurement parameter					
Detector:	Peak				
Sweep time:	100 s				
Resolution bandwidth:	1 MHz				
Video bandwidth:	3 MHz				
Span:	2 GHz				
Trace-Mode:	Max Hold				
Temperature:	-20 °C / +50 °C				
Voltage:	20.4 V / 24 V / 27.6 V				

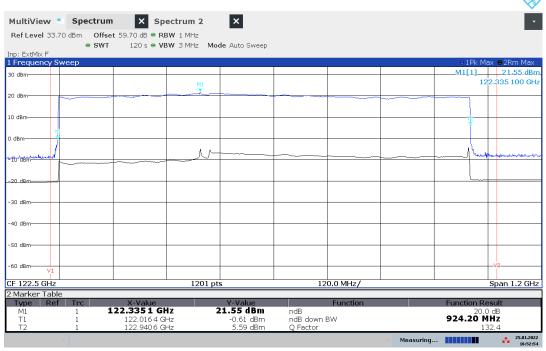
Limits:

FCC
CFR Part 15.258 (d)
The occupied bandwidth from intentional radiators operated within the specified frequency band shall comply with the following:
Frequency range
116 GHz – 123 GHz (regulatory) 122 – 123 GHz (EUT)

© CTC advanced GmbH Page 54 of 62

Test report no.: 1-3243/21-01-05

Measurement Results:


Test Conditions	Transmitter Fre	Occupied Bandwidth [MHz]	
	f _L	f _H	[IVITIZ]
-25 °C / V _{nom}	122.016 4	122.940 6	924.20
-20 °C / V _{nom}	122.016 4	122.940 6	924.20
-10 °C / V _{nom}	122.017 4	122.941 6	924.20
0 °C / V _{nom}	122.017 4	122.941 6	924.20
10 °C / V _{nom}	122.017 4	122.942 6	925.20
20 °C / V _{min}	122.017 4	122.942 6	925.20
20 °C / V _{nom}	122.017 4	122.942 6	925.20
20 °C / V _{max}	122.017 4	122.942 6	925.20
30 °C / V _{nom}	122.017 4	122.942 6	925.20
40 °C / V _{nom}	122.017 4	122.942 6	925.20
50 °C / V _{nom}	122.017 4	122.942 6	925.20
55 °C / V _{nom}	122.017 4	122.942 6	925.20
65 °C / V _{nom}	122.017 4	122.942 6	925.20

Result: The measurement is passed.

© CTC advanced GmbH Page 55 of 62

Plot 44: Occupied Bandwidth at -20 °C / V_{nom}

16:52:55 25.01.2022

Plot 45: Occupied Bandwidth at +50 °C / V_{nom}

17:57:14 25.01.2022

© CTC advanced GmbH Page 56 of 62

Plot 46: Occupied Bandwidth at 20 °C / V_{min}

Plot 47: Occupied Bandwidth at 20 °C / V_{max}

© CTC advanced GmbH Page 57 of 62

Test report no.: 1-3243/21-01-05

13 Conducted spurious emissions < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

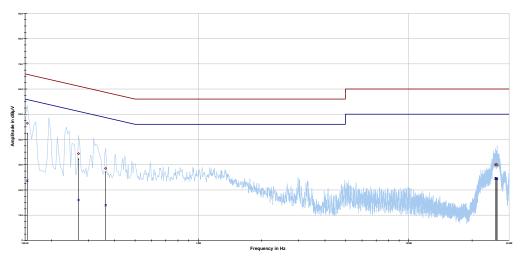
Measurement parameter					
Detector:	Peak - Quasi Peak / Average				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace-Mode:	Max Hold				

Limits:

FCC			IC
CFR Part 15.207(a)		RSS-Gen 8.8	
	Conducted Spurious	Emissions < 30 MHz	
Frequency (MHz)	Quasi-Peak (dBµV/m)		Average (dBµV/m)
0.15 – 0.5	79 to 69* (Class A) 66 to 56* (Class B)		79 to 69* (Class A) 56 to 46* (Class B)
0.5 – 5	73 (Cl 56 (Cl		63 (Class A) 46 (Class B)
5 – 30.0	73 (Cl 60 (Cl		63 (Class A) 50 (Class B)

^{*}Decreases with the logarithm of the frequency

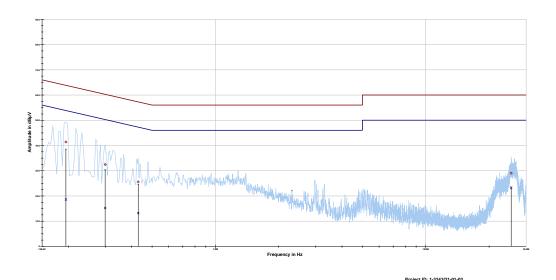
Measurement results:


See plots below.

© CTC advanced GmbH Page 58 of 62

Plot 48: Neutral line

Project ID: 1-3243/21-01-03


Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.153731	46.43	19.37	65.796	23.64	32.26	55.893
0.269400	34.36	26.78	61.136	15.99	36.60	52.589
0.362681	28.52	30.15	58.667	13.92	36.00	49.923
25.817269	29.98	30.02	60.000	24.41	25.59	50.000
26.123231	30.12	29.88	60.000	24.43	25.57	50.000
26.317256	29.84	30.16	60.000	24.41	25.59	50.000

© CTC advanced GmbH Page 59 of 62

Plot 49: Phase line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.194775	41.37	22.46	63.830	18.56	36.16	54.721
0.299250	32.44	27.82	60.264	15.19	36.54	51.736
0.429844	25.57	31.68	57.256	13.18	34.82	48.004
25.477725	29.04	30.96	60.000	23.33	26.67	50.000

© CTC advanced GmbH Page 60 of 62

Test report no.: 1-3243/21-01-05

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 61 of 62

Test report no.: 1-3243/21-01-05

15 Document history

Version	Applied changes	Date of release
	Initial release - Draft	2022-03-08
	Initial Release	

16 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBy Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) The accreditation extilicate shall only apply in connection with the notice of accreditation of 09.05.2020 with the accreditation number D-PL-12076-61. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of O5 pages. Registration number of the certificate: D-PL-12076-01-05 The certificate shall not be shallowed based of decade Aktreditorrungstake Gmb4. The certificate interests as the same reflects the assets of the late of the date of laste. The current status of the stope of the status of the stope of the status of the stope of the status and the status of the status o	Office Berlin Spittelimarkt 10 Europa-Alies 52 60327 Frankfurt am Main Spittelimarkt 10 Spi

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf