

TEST REPORT

Report Reference No	TRE15030027	R/C: 48884	
FCC ID:	YPVITALCOMJOIN		
Applicant's name:	ITALCOM GROUP		
Address	1728 Coral Way, Coral Gables	, Miami, Florida, United States	
Manufacturer	UTCOM TECHNOLOGY CO.,I	LIMITED	
Address:	C1105-1107,Tiley Central Plaza District,Shenzhen 518054	,No3 Haide Road,Nanshan	
Test item description:	mobile phone		
Trade Mark:	NYX		
Model/Type reference:	JOIN		
Listed Model(s)	1		
Standard:	ANSI C95.1–1999 47CFR §2.1093		
Date of receipt of test sample	Mar. 06, 2015		
Date of testing	Mar. 07, 2015 ~ Mar. 13, 2015		
Date of issue	Mar. 15, 2015		
Result	PASS		
Compiled by (position+printed name+signature):	File administrators May Hu	may the	
Supervised by (position+printed name+signature):	Test Engineer Jerome Luo	Jerome lus	
Approved by (position+printed name+signature):	Manager Hans Hu	Hours Mu	
Testing Laboratory Name :	Shenzhen Huatongwei Interna	ational Inspection Co., Ltd	
Address	Keji Nan No.12 Road, Hi-tech P	ark, Shenzhen, China	
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.			

Contents

<u>1.</u>	TEST STANDARDS	3
<u>2.</u>	SUMMARY	4
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	EUT configuration	5
2.4.	Modifications	5
<u>3.</u>	TEST ENVIRONMENT	6
3.1.	Address of the test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	7
<u>4.</u>	SAR MEASUREMENTS SYSTEM CONFIGURATION	8
4.1.	SAR Measurement Set-up	8
4.2.	DASY5 E-field Probe System	9
4.3.	Phantoms	10
4.4.	Device Holder	10
4.5. 16	Scanning Procedure Data Storage and Evaluation	11
4.0.	Data Storage and Evaluation	
<u>5.</u>	SAR MEASUREMENT PROCEDURE	13
5.1.	SAR System Validation	13
5.1.1.	Purpose	13
5.1.2.	Tissue Dielectric Parameters for Head and Body Phantoms	13
5.1.3.	Lissue equivalent liquid properties	13
5.1.4.	SAR System Validation	15
5.1.5.	SAR bystem valuation result SAR measurement procedure	23
5.2.1.	Tests to be performed	23
5.2.2.	General Measurement Procedure	24
5.2.3.	Conducted Power Measurement	25
5.2.4.	SAR Measurement	25
5.2.5.	4.10.8 Area Scan Based 1-g SAR	29
5.2.6.	General description of test procedures	29
5.3.	SAR Limits	30
<u>6.</u>	TEST CONDITIONS AND RESULTS	31
6.1.	Conducted Power Results	31
6.2.	Simultaneous TX SAR Considerations	36
6.3.	SAR Measurement Results	40
6.4.	SAR Measurement Variability	42
6.5.	Equipments Used during the Test	54
<u>7.</u>	MEASUREMENT UNCERTAINTY	55
<u>8.</u>	TEST SETUP PHOTOS	56
<u>9.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	6 1

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

<u>KDB 447498 D01 Mobile Portable RF Exposure v05r02:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v02:SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

KDB248227: SAR measurement procedures for 802.112abg transmitters

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB941225 D01 Test Reduction GSM_GPRS_EDGE V01 : 3G SAR MEAUREMENT PROCEDURES KDB941225 D06 Hot Spot SAR v02: SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES

KD648474 D04, Handset SAR v01r02: SAR Evaluation Considerations for Wireless Handsets

2. <u>SUMMARY</u>

2.1. Client Information

Applicant:	ITALCOM GROUP
Address:	1728 Coral Way, Coral Gables, Miami, Florida, United States
Manufacturer: UTCOM TECHNOLOGY CO.,LIMITED	
Address: C1105-1107, Tiley Central Plaza, No3 Haide Road, Nanshan District, 518054	

2.2. Product Description

Name of EUT	mobile phone		
Trade Mark:	NYX		
Model No.:	JOIN		
Listed Model(s):	/		
Power supply:	DC 3.7V From internal battery		
Adapter information:	Input:AC 100-240V 50/60Hz 0.15A		
	Output:DC 5V 500mA		
Maximum SAR Value			
Separation Distance:	Head: 0mm		
	Body: 10mm		
Max Report SAR Value (1g):	Head: 0.515 W/Kg		
	Body: 0.601 W/Kg		
2G:			
Support Network:	GSM, GPRS, EGPRS		
Support Band:	GSM850, DCS1900		
Modulation:	GSM/GPRS: GMSK		
	EGPRS: GMSK		
Transmit Frequency:	GSM850: 824.20MHz-848.80MHz		
	PCS1900: 1850.20MHz-1909.80MHz		
Receive Frequency:	GSM850: 869.20MHz-893.80MHz		
	PCS1900: 1930.20MHz-1989.80MHz		
GPRS Class:	12		
EGPRS Class:			
Antenna type:	Intergal Antenna		
Antenna gain:	GSM850:1.0dBi		
Software version:	Software version: JUIN_AMXNYX_VUU1R		
Operation Band:	FDD Band II and FDD Band V		
Power Class:	Power Class 3		
Modilation Type:	QPSK for WCDMA/HSUPA/HSDPA		
WCDMA Release Version:	Release 7		
HSDPA Release Version:	Category 14		
HSUPA Release Version:	Category 6		
DC-HSUPA Release	Not Supported		

Version:	
Antenna type:	Intergal Antenna
Antenna gain:	Band II:1.0, Band V: 1.0dBi
WIFI	
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)
Modulation:	802.11b: DSSS (DBPSK / DQPSK / CCK)
	802.11g/n(H20)/n(H40): OFDM (BPSK / QPSK / 16QAM / 64QAM)
Operation frequency:	802.11b/g/n(H20): 2412MHz~2462MHz
	802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/g/n(H20): 11
	802.11n(H40): 7
Channel separation:	5MHz
Antenna type:	Internal Antenna
Antenna gain:	1.0dBi
Bluetooth	
Version:	Supported BT3.0+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Internal Antenna
Antenna gain:	1.0 dBi

2.3. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\, \odot \,$ supplied by the lab

Ο	PowerCable	Length (m) :	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer :	/
		Model No. :	/

2.4. Modifications

No modifications were implemented to meet testing criteria.

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd. Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept 30, 2015.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date Jul. 01, 2012, valid time is until Jun. 01, 2015.

IC-Registration No.: 5377A

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-anechoic chamber (12.2m×7.95m×6.7m) of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.:R-2484. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 29, 2015.

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C	
Humidity:	40-65 %	
Atmospheric pressure:	950-1050mbar	

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld mobile phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

Report No.: TRE15030027

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion f	actor ConvFi
- Diode compi	ression point Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)Ui = input signal of channel i (i = x, y, z)cf = crest factor of exciting field (DASY parameter) dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{array}{rll} \mathsf{E}-\operatorname{field probes}: & E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}} \\ & \mathsf{H}-\operatorname{field probes}: & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \\ & \mathsf{With} & \mathsf{Vi} & = \operatorname{compensated signal of channel i} & (\mathsf{i} = \mathsf{x}, \mathsf{y}, \mathsf{z}) \\ & \mathsf{Normi} & = \operatorname{sensor sensitivity of channel i} & (\mathsf{i} = \mathsf{x}, \mathsf{y}, \mathsf{z}) \\ & \mathsf{[mV/(V/m)2] for E-field Probes} \\ & \mathsf{ConvF} & = \operatorname{sensitivity enhancement in solution} \\ & \mathsf{aij} & = \operatorname{sensor sensitivity factors for H-field probes} \\ & \mathsf{f} & = \operatorname{carrier frequency [GHz]} \\ & \mathsf{Ei} & = \operatorname{electric field strength of channel i in V/m} \\ & \mathsf{Hi} & = \operatorname{magnetic field strength of channel i in A/m} \\ \end{array}$$

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR	= local specific absorption rate in mW/g
Eto	t = total field strength in V/m
σ	= conductivity in [mho/m] or [Siemens/m]
ρ	= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

5. SAR Measurement Procedure

5.1. SAR System Validation

5.1.1. Purpose

- > To verify the simulating liquids are valid for testing.
- > To verify the performance of testing system is valid for testing.

5.1.2. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.The table 3 and table 4 show the detail solition.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Table 3: TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS				
Target Frequency	He	ad	В	ody
(MHz)	٤r	σ(s/m)	٤r	σ(s/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

5.1.3. Tissue equivalent liquid properties

Dielectric performance of Head tissue simulating liquid				
Frequency	Description	DielectricParameters		Temp
(MHz)		٤r	σ(s/m)	°C
835	Recommended result ±5% window	41.50 39.42 to 43.58	0.90 0.86 to 0.95	/
000	Measurement value 2015-03-07	40.96	0.97	21
1900	Recommended result ±5% window	40.0 38.00 to 42.00	1.40 1.33 to 1.47	/
1900	Measurement value 2015-03-10	39.83	1.41	21
2450	Recommended result ±5% window	39.2 37.24 to 41.16	1.80 1.71 to 1.89	/
2400	Measurement value 2015-03-13	40.58	1.76	21

	Dielectric performance of Body tissue simulating liquid								
Frequency	Description	DielectricPa	arameters	Temp					
(MHz)	Description	٤r	σ(s/m)	°C					
835	Recommended result ±5% window	55.2 54.43 to 57.98	0.97 0.92 to 1.02	/					
835 -	Measurement value 2015-03-07	55.13	0.96	21					
1000	Recommended result ±5% window	53.3 50.64 to 55.97	1.52 1.44 to 1.60	/					
1000	Measurement value 2015-03-10	54.64	1.49	21					
2400	Recommended result ±5% window	52.7 50.07 to 55.34	1.95 1.85 to 2.05	/					
2400	Measurement value 2015-03-13	53.47	1.98	21					

5.1.4. SAR System Validation

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 24 dBm (250Mw) before dipole is connected.

Photo of Dipole Setup

5.1.5. SAR System Validation Result

	System Validation Result for Head								
Frequency	Description	SAR(W/kg)	Temp					
(MHz)	Description	1g	10g	°C					
925	Recommended result ±10% window	2.38 2.14-2.62	1.55 1.40-1.71	/					
835	Measurement value 2015-03-07	2.32	1.48	21					
	Recommended result ±10% window	9.71 8.74 – 10.68	5.08 4.57 – 5.59	/					
1900	Measurement value 2015-03-10	9.53	4.96	21					
2450	Recommended result ±10% window	13.0 11.7-13.13	6.05 5.45 – 6.66	/					
	Measurement value 2015-03-13	12.47	5.83	21					

System Validation Result for Body								
Frequency	Description	SAR(W/kg)	Temp				
(MHz)	Description	1g	10g	°C				
925	Recommended result ±10% window	2.32 2.09-2.55	1.54 1.39-1.69	/				
835	Measurement value 2015-03-07	2.25	1.48	21				
	Recommended result ±10% window	9.98 8.98-10.98	5.26 4.73-5.79	/				
1900	Measurement value 2015-03-10	9.71	5.13	21				
0.400	Recommended result ±10% window	12.9 12.77-13.03	5.98 5.38-6.58	/				
2400	Measurement value 2015-03-13	12.53	5.69	21				

Note:

the graph results see follow.
 Recommended Values used derive from the calibration certificate and 250 mW is used asfeeding power to the calibrated dipole.

System Performance Check at 835 MHz Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134 Date/Time: 03/07/2015 AM

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.97 S/m; ϵ_r = 40.96; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV3 - SN3842; ConvF(8.83, 8.83, 8.83); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.58 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.994 V/m; Power Drift = 0.082 dB Peak SAR (extrapolated) = 3.542 W/kg SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.48 mW/g

Maximum value of SAR (measured) = 2.59 mW/g

System Performance Check 835MHz Head 250mW

System Performance Check at 835 MHz Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134 Date/Time: 03/07/2015AM

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.96 S/m; ϵ_r = 55.13; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3842; ConvF(9.09, 9.09, 9.09); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.15 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.528 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.262 W/kg SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.48 mW/g

Maximum value of SAR (measured) = 3.24 mW/g

System Performance Check 835MHz Body 250mW

System Performance Check at 1900 MHz Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150 Date/Time: 03/10/2015AM

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1900 MHz; σ = 1.41S/m; ϵ r = 39.83; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3842; ConvF(7.55, 7.55, 7.55); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 10.65 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.818 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 12.352 W/kg SAR(1 g) = 9.53 W/kg; SAR(10 g) = 4.96 W/kg

Maximum value of SAR (measured) = 12.43 W/kg

System Performance Check 1900MHz Head250mW

System Performance Check at 1900 MHz Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150 Date/Time: 03/10/2015AM

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1900 MHz; σ = 1.49S/m; ϵ r =54.64; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3842; ConvF(7.43, 7.43, 7.43); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 11.46 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.816 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 16.826 W/kg SAR(1 g) = 9.71 mW/g; SAR(10 g) = 5.13 mW/g

Maximum value of SAR (measured) = 16.34 mW/g

System Performance Check 1900MHz Body250mW

System Performance Check at 2450 MHz Head

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884 Date/Time: 03/13/2015AM

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.76S/m; ϵ_r = 40.58; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3842; ConvF(7.26, 7.26, 7.26); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm Maximum value of SAR (interpolated) = 14.9 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.714 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 26.08 mW/g SAR(1 g) = 12.47 mW/g; SAR(10 g) = 5.83 mW/g

Maximum value of SAR (measured) = 14.8 mW/g

System Performance Check 2450MHz Head250mW

System Performance Check at 2450 MHz Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884 Date/Time: 03/13/2015AM

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.98S/m; ϵ_r = 53.47; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3842; ConvF(6.93, 6.93, 6.93); Calibrated: 06/06/2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm Maximum value of SAR (interpolated) = 13.15 mW/g Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.986 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 16.08 mW/g SAR(1 g) = 12.53 mW/g; SAR(10 g) = 5.69 mW/g

Maximum value of SAR (measured) = 16.08 mW/g

System Performance Check 2450MHz Body250mW

5.2. SAR measurement procedure

5.2.1. Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. Step 1: The tests shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

a).all device positions (cheek and tilt, for both left and right sides of the SAM phantom;

b). all configurations for each device position in a), e.g., antenna extended and retracted, and

c). all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

5.2.2. General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤3 GHz	> 3 GHz	
Maximum distance from (geometric center of pro	n closest me be sensors)	asurement point to phantom surface	5 ± 1 mm	$\% \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle t normal at the measurem	from probe : ient location	axis to phantom surface	30°±1°	20°±1°	
			$ \leq 2 \text{ GHz:} \leq 15 \text{ mm} \\ 2 - 3 \text{ GHz:} \leq 12 \text{ mm} $	$\begin{array}{l} 3-4 \hspace{0.1 cm} \text{GHz} \leq 12 \hspace{0.1 cm} \text{mm} \\ \\ 4-6 \hspace{0.1 cm} \text{GHz} \leq 10 \hspace{0.1 cm} \text{mm} \end{array}$	
Maximum area scan spa	atial resoluti	on: Δx _{Arta} , Δy _{Arta}	When the x or y dimension of t measurement plane orientation, measurement resolution must b dimension of the test device with point on the test device.	he test device, in the is smaller than the above, the $e \le$ the corresponding x or y th at least one measurement	
Maximum 200m scan 53	patial resolu	tion: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz} \leq 8 \text{ mm}$ 2 - 3 GHz $\leq 5 \text{ mm}$	3 - 4 GHz: ≤ 5 mm 4 - 6 GHz: ≤ 4 mm	
1	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimun room sean volume	x, y, z		≥ 30 mm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm	

Note: 5 is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

5.2.3. Conducted Power Measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously

Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

5.2.4. SAR Measurement

5.2.4.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using E5515C the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

5.2.4.2 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the High, Middle and Low channel according to the procedures described in section 5.2 of 3GPP TS 34. 121, using the appropriate RMC or AMR with TPC(transmit power control) set to all up bits for WCDMA/HSDPA or applying the required inner loop power control procedures to the maximum output power while HSUPA is active. Results for all applicable physical channel configuration (DPCCH, DPDCH_n and spreading codes, HSDPA, HSPA) should be tabulated in the SAR report. All configuration that are not supported by the DUT or can not be measured due to technical or equipment limitations should be clearly identified

Head SAR Measurements

SAR for head exposure configurations in voice mode is measured using a 12.2kbps RMC with TPC bits configured to all up bits. SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2kbps AMR is less than 1/4 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2kbps AMR with a 3.4 kbps SRB(Signaling radio bearer) using the exposure configuration that results in the highest SAR in 12.2kbps RMC for that RF channel.

Body SAR Measurements

SAR for body exposure configurations in voice and data modes is measured using 12.2kbps RMC with TPC bits configured to all up bits. SAR for other spreading codes and multiple DPDCHn, when supported by the DUT, are not required when the maximum average output of each RF channel, for each spreading code and

Report No.: TRE15030027

DPDCHn configuration, are less than 1/4 dB higher than those measured in 12.2kbps RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCHn using the exposure configuration that results in the highest SAR with 12.2 kbps RMC. When more than 2 DPDCHn are supported by the DUT, it may be necessary to configure additional DPDCH_n for a DUT using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

HSDPA Test Configuration

SAR for body exposure configurations is measured according to the 'Body SAR Measurements' procedures of that section. In addition, body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least ¼ dB higher than that measured without HSDPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β_c , β_d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-set	β _c	β_d	β _d (SF)	β₀/β _d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)		
1	2/15	15/15	64	2/15	4/15	0.0	0.0		
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0		
3	15/15	8/15	64	15/8	30/15	1.5	0.5		
4	15/15	4/15	64	15/4	30/15	1.5	0.5		

Table 2: Subtests for	or UMTS Release	5 HSDPA
-----------------------	-----------------	---------

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI}=8 \Leftrightarrow A_{hs} = \overline{\beta_{hs}/\beta_c}=30/15 \Leftrightarrow 30/15 \Leftrightarrow \beta_c$

Note2: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.

Note3:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Sub- set	β _c	β_d	β _d (SF)	β₀/β _d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	5 15/15 ⁽⁴⁾ 15/15 ⁽⁴⁾ 64 15/15 ⁽⁴⁾ 30/15 24/15 134/15 4 1 1.0 0.0 21 81												
N N	Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$. Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.												

Table 3: Sub-Test 5 Setup for Release 6 HSUPA

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1 4502
2	2	4	10	4	14484	1.4092
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	2		11484	5.76
(No DPDCH)	4	4	10	2 352 & 2 354	20000	2.00
7	4	8	2	2 SF2 & 2 SF4	22996	?
(No DPDCH)	4	4	10		20000	?
NOTE: When 4	codes are transn	nitted in paralle	l, two codes	shall be transmitted	with SF2 and two	vith SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

HSPA, HSPA+ and DC-HSDPA Test Configuration

measurement is required for HSPA, HSPA+ or DC-HSDPA, a KDB inquiry is required to confirm that the wireless mode configurations in the test setup have remained stable throughout the SAR measurements.35 Without prior KDB confirmation to determine the SAR results are acceptable, a PBA is required for TCB approval.

SAR test exclusion for HSPA, HSPA+ and DC-HSDPA is determined according to the following:

1) The HSPA procedures are applied to configure 3GPP Rel. 6 HSPA devices in the required sub-test mode(s) to determine SAR test exclusion.

2) SAR is required for Rel. 7 HSPA+ when SAR is required for Rel. 6 HSPA; otherwise, the 3G SAR test reduction procedure is applied to (uplink) HSPA+ with 12.2 kbps RMC as the primary mode.36 Power is measured for HSPA+ that supports uplink 16 QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction.

3) SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

4) Regardless of whether a PBA is required, the following information must be verified and included in the SAR report for devices supporting HSPA, HSPA+ or DC-HSDPA: a) The output power measurement results and applicable release version(s) of 3GPP TS 34.121.

i) Power measurement difficulties due to test equipment setup or availability must be resolved between the grantee and its test lab.

b) The power measurement results are in agreement with the individual device implementation and specifications. When Enhanced MPR (E-MPR) applies, the normal MPR targets may be modified according to the Cubic Metric (CM) measured by the device, which must be taken into consideration.

c) The UE category, operating parameters, such as the β and Δ values used to configure the device for testing, power setback procedures described in 3GGPP TS 34.121 for the power measurements, and HSPA/HSPA+ channel conditions (active and stable) for the entire duration of the measurement according to the required E-TFCI and AG index values.

5) When SAR measurement is required, the test configurations, procedures and power measurement results must be clearly described to confirm that the required test parameters are used, including E-TFCI and AG index stability and output power conditions.

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation
Category 1	5	3	7298	19200			
Category 2	5	3	7298	28800			
Category 3	5	2	7298	28800			
Category 4	5	2	7298	38400			
Category 5	5	1	7298	57600	OPSK 160AM		
Category 6	5	1	7298	67200	GFSR, TOGANT	Not	
Category 7	10	1	14411	115200		applicable	
Category 8	10	1	14411	134400		(MIMO not	
Category 9	15	1	20251	172800		supported)	
Category 10	15	1	27952	172800		cappentea)	
Category 11	5	2	3630	14400	OPSK		
Category 12	5	1	3630	28800	QFOR		Not
Category 13	15	1	35280	259200	QPSK,		applicable
Category 14	15	1	42192	259200	16QAM, 64QAM		(dual cell
Category 15	15	1	23370	345600	ODCK A	COALL	operation
Category 16	15	1	27952	345600	QPSK, T	DQAM	supported)
Category 17	15	1	35280	259200	QPSK, 16QAM, 64QAM	-	oupportouy
NOTE 2			23370	345600	-	QPSK, 16QAM	
Category 18	15	1	42192	259200	QPSK, 16QAM, 64QAM	-	
NOTES			27952	345600	-	QPSK, 16QAM	
Category 19	15	1	35280	518400	ODEK 4004	M GAOAM	
Category 20	15	1	42192	518400	UPSK, TOUAL	WI, 04QAWI	
Category 21	15	1	23370	345600			QPSK,
Category 22	15	1	27952	345600]		16QAM
Category 23	15	1	35280	518400	-	-	QPSK,
Category 24	15	1	42192	518400			16QAM, 64QAM

Table 5: HS-DSCH UE category

Wi-Fi Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 14.5 for 802.11 b mode by software. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.1 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

5.2.5. 4.10.8 Area Scan Based 1-g SAR

Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

5.2.6. General description of test procedures

- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- 6. WLAN was tested in 802.11a/b mode with 1 MBit/s and 6 MBit/s. According to KDB 248227 the SAR testing for 802.11g/n is not required since the maximum power of 802.11g/n is less ¼ dB higher than maximum power of 802.11a/b.
- 7. Required WLAN test channels were selected according to KDB 248227
- 8. According to FCC KDB pub 941225 D06 this device has been tested with 10 mm distance to the phantom for operation in WLAN hot spot mode.
- Per FCC KDB pub 941225 D06 the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WLAN hot spot function.
- 10. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 11. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

• \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz • \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
 12. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices
- that are designed to operate in technologies with tight tolerances for maximum output power variations

across channels in the band. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

- 13. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.
- 14. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)
- 15. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.
- Per KDB648474 D04 require for phablet SAR test considerations, For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 17. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

 $\Box \cap O \cup (a, b) \neq (A, a, T)$

5.3. SAR Limits

	SAR	(W/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

6. TEST CONDITIONS AND RESULTS

6.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

	···· ·································								
	GSM850								
		Burst Co	nducted Pow	/er (dBm)	D' 1414	Avera	ager Power (dBm)	
Мс	ode	CH128	CH190	CH251	Division Factors	CH128	CH190	CH251	
		824.2MHz	836.6MHz	848.8MHz	1 401010	824.2MHz	836.6MHz	848.8MHz	
GS	SM	32.72	32.48	32.15	-9.03	23.69	23.45	23.12	
	1TXslot	33.19	32.99	32.73	-9.03	24.16	23.96	23.70	
GPRS	2TXslots	31.37	31.03	31.95	-6.02	25.35	25.01	25.93	
(GMSK)	3TXslots	30.42	30.31	30.03	-4.26	26.16	26.05	25.77	
	4TXslots	29.58	29.32	29.38	-3.01	26.57	26.31	26.37	
	1TXslot	33.18	33.01	32.72	-9.03	24.15	23.98	23.69	
EGPRS	2TXslots	31.22	31.01	31.04	-6.02	25.20	24.99	25.02	
(GMSK)	3TXslots	30.45	30.27	30.20	-4.26	26.19	26.01	25.94	
	4TXslots	29.51	29.36	29.27	-3.01	26.50	26.35	26.26	

The o	conducted	power	measurement	results
-------	-----------	-------	-------------	---------

	DCS1900							
		Burst Conducted Power (dBm)			Distant	Averager Power (dBm)		
M	ode	CH512	CH661	CH810	Factors	CH512	CH661	CH810
		1850.2MHz	1880.0MHz	1909.8MHz		1850.2MHz	1880.0MHz	1909.8MHz
G	SM	29.01	29.02	29.15	-9.03	19.98 19.99 20.12		20.12
	1TXslot	28.98	28.98	29.12	-9.03	19.95	19.95	20.09
GPRS	2TXslots	27.24	27.30	27.15	-6.02	21.22	21.28	21.13
(GMSK)	3TXslots	26.34	26.41	26.36	-4.26	22.08	22.15	22.10
	4TXslots	25.42	25.74	25.67	-3.01	22.41	22.73	22.66
	1TXslot	29.03	29.23	29.14	-9.03	20.00	20.20	20.11
EGPRS	2TXslots	27.32	27.43	27.38	-6.02	21.30	21.41	21.36
(GMSK)	3TXslots	26.48	26.27	26.39	-4.26	22.22	22.01	22.13
	4TXslots	25.56	25.45	25.59	-3.01	22.55	22.44	22.58

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB 2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB 3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB 4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for GPRS850 and GPRS1900.

WCDMA								
		Conducted Power (dBm)						
Ma	do	FDD Band V			FDD Band II			
IVIO	ue	CH4132	CH4183	CH4233	CH9262	CH9400	CH9538	
		826.4	836.6	846.6	1852.4	1880.0	1907.6	
AMR 1	2.2K	21.92	21.69	21.51	22.04	21.88	22.19	
RMC 1	RMC 12.2K 21.74 21.74 21.54 22.32 21.95		22.35					
	Subtest-1	21.92	21.87	21.87	22.36	21.52	22.53	
	Subtest-2	21.85	21.63	21.73	22.52	21.51	22.46	
пзрра	Subtest-3	21.77	21.78	21.76	22.47	21.46	22.13	
	Subtest-4	21.43	21.60	21.63	22.10	21.38	22.16	
	Subtest-1	21.98	21.83	21.97	22.33	21.54	22.35	
	Subtest-2	21.83	21.67	21.92	22.26	21.46	22.36	
HSUPA	Subtest-3	21.76	21.81	21.88	22.23	21.33	22.44	
	Subtest-4	21.62	21.57	21.72	22.12	21.28	22.32	
	Subtest-5	21.89	21.69	21.87	22.17	21.44	22.16	

Note :When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

WIFI					
Mode	Channel	Frequency (MHz)	Conducted power (dBm)	Test data rate	
	01	2412	12.03	1 Mbps	
802.11b	06	2437	12.25	1 Mbps	
	11	2462	12.30	1 Mbps	
802.11g	01	2412	8.22	6 Mbps	
	06	2437	8.31	6 Mbps	
	11	2462	8.47	6 Mbps	
	01	2412	8.21	6.5 Mbps	
802.11n(H20)	06	2437	8.57	6.5 Mbps	
	11	2462	8.61	6.5 Mbps	
	03	2422	6.02	13.5 Mbps	
802.11n(H40)	06	2442	6.24	13.5 Mbps	
	09	2452	6.31	13.5 Mbps	

Note:SAR is not required for 802.11b/g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should not be tested for "802.11b/g/n".

Bluetooth					
Mode	Channel	Frequency (MHz)	Conducted power (dBm)		
	00	2402	0.27		
GFSK	39	2441	0.38		
	78	2480	0.39		
	00	2402	-1.02		
π/4DQPSK	39	2441	-1.11		
	78	2480	-1.32		
	00	2402	-1.14		
8DPSK	39	2441	-1.19		
	78	2480	-1.03		

Manufacturing tolerance

GSM Speech						
	GSM 850 (GMSK) (Average)					
Channel	Channel Channel 128 Channel 190 Channel 251					
Target (dBm)	32.00	32.00	32.00			
Tolerance ±(dB)	1	1	1			
	GSM 1900 (GMSK) (Peak)					
Channel	Channel 512	Channel 661	Channel 810			
Target (dBm)	29.00	29.00	29.00			
Tolerance ±(dB)	1	1	1			

GSM 850 GPRS (GMSK) (Average)				
Cha	nnel	128	190	251
1 Tyclot	Target (dBm)	32.50	32.50	32.50
1 TXSIOT	Tolerance ±(dB)	1	1	1
2 Tyclot	Target (dBm)	31.0	31.0	31.0
2 Txslot	Tolerance ±(dB)	1	1	1
2 Tyclot	Target (dBm)	30.0	30.0	30.0
5 1 XSIUL	Tolerance ±(dB)	1	1	1
4 Tyclot	Target (dBm)	29.0	29.0	29.0
4 1 XSIOL	Tolerance ±(dB)	1	1	1
	GSM 8	50 EDGE (GMSK) (Av	verage)	
Cha	nnel	128	190	251
1 Tyelot	Target (dBm)	32.50	32.50	32.50
1 1 1 3 0 1	Tolerance ±(dB)	1	1	1
2 Tyclot	Target (dBm)	31.0	31.0	31.0
ZIXSIOT	Tolerance ±(dB)	1	1	1
3 Tyclot	Target (dBm)	30.0	30.0	30.0
5 1 × 5101	Tolerance ±(dB)	1	1	1
4 Tyclot	Target (dBm)	29.0	29.0	29.0
4 1 1 3 10 1	Tolerance ±(dB)	1	1	1
	GSM 1	900 GPRS (GMSK) (A	verage)	
Cha	nnel	512	661	810
1 Tyslot	Target (dBm)	28.5	28.5	28.5
1 1 1 3 0 1	Tolerance ±(dB)	1	1	1
2 Tyclot	Target (dBm)	27.0	27.0	27.0
2 1 1 3 101	Tolerance ±(dB)	1	1	1
3 Tyclot	Target (dBm)	26.0	26.0	26.0
5 1 85101	Tolerance ±(dB)	1	1	1
4 Tyelot	Target (dBm)	25.0	25.0	25.0
4 1 7 2101	Tolerance ±(dB)	1	1	1
	GSM	1900 EDGE (GMSK) (Peak)	
Cha	nnel	512	661	810

Report No.: TRE15030027

Page 34 of 61

1 Typlot	Target (dBm)	28.5	28.5	28.5
I TXSIOL	Tolerance ±(dB)	1	1	1
2 Txslot	Target (dBm)	27.0	27.0	27.0
	Tolerance ±(dB)	1	1	1
3 Txslot	Target (dBm)	26.0	26.0	26.0
	Tolerance ±(dB)	1	1	1
4 Typlot	Target (dBm)	25.0	25.0	25.0
4 1 X SIUL	Tolerance ±(dB)	1	1	1

	UMTS				
	UMTS	Band V			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
· · · · · · · · · · · · · · · · · · ·	UMTSBand V HS	SDPA(sub-test 1)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
· · · · · · · · · · · · · · · · · · ·	UMTSBand V HS	SDPA(sub-test 2)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
, , , , , , , , , , , , , , , , ,	UMTS Band V H	SDPA(sub-test 3)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
, , , , , , , , , , , , , , , , ,	UMTSBand V HS	SDPA(sub-test 4)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
, , , , , , , , , , , , , , , , ,	UMTSBand V HS	SUPA(sub-test 1)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
	UMTSBand V HS	SUPA(sub-test 2)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
	UMTSBand V HS	SUPA(sub-test 3)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
	UMTS Band V H	SUPA(sub-test 4)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
`, , , , , , , , , , , , , , , , ,	UMTSBand V HS	SUPA(sub-test 5)			
Channel	Channel 4132	Channel 4183	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
	UMTS	Band II			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
`, , , , , , , , , , , , , , , , ,	UMTSBand II HS	SDPA(sub-test 1)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
	UMTS Band II H	SDPA(sub-test 2)	·		
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance +(dB)	1	1	1		

1 1 UMTSBand II HSDPA(sub-test 3)

Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance +(dB)	1	1	1		
		SDPA(sub-test 4)			
Channal	Channel 0262	Channel 0400	Channel 0529		
Channel	Channel 9262	Channel 9400	Channel 9556		
l arget (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
	UMTSBand II HS	SUPA(sub-test 1)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
UMTSBand II HSUPA(sub-test 2)					
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
	UMTSBand II HS	SUPA(sub-test 3)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
	UMTSBand II HS	SUPA(sub-test 4)			
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
UMTSBand II HSUPA(sub-test 5)					
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		

WLAN					
	802.11b (Average)				
Channel	Channel 1	Channel 6	Channel 11		
Target (dBm)	12.0	12.0	12.0		
Tolerance ±(dB)	1	1	1		
	802.11g (Average)			
Channel	Channel 1	Channel 6	Channel 11		
Target (dBm)	8.0	8.0	8.0		
Tolerance ±(dB)	1	1	1		
	802.11n(20M	Hz) (Average)			
Channel	Channel 1	Channel 6	Channel 11		
Target (dBm)	8.0	8.0	8.0		
Tolerance ±(dB)	1	1	1		
802.11n(40MHz) (Average)					
Channel	Channel 3	Channel 6	Channel 9		
Target (dBm)	6.0	6.0	6.0		
Tolerance ±(dB)	1	1	1		

Bluetooth					
	GFSK (A	Average)			
Channel	Channel 00	Channel 39	Channel 78		
Target (dBm)	0.00	0.00	0.00		
Tolerance ±(dB)	1	1	1		
8DPSK (Average)					
Channel	Channel 00	Channel 39	Channel 78		
Target (dBm)	-1.00	-1.00	-1.00		
Tolerance ±(dB)	1	1	1		
	π/4DQPSK (Average)				
Channel	Channel 00	Channel 39	Channel 78		
Target (dBm)	-1.00	-1.00	-1.00		
Tolerance ±(dB)	1	1	1		

6.2. Simultaneous TX SAR Considerations

5.2.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the BT module has a antenna; GSM and WCDMA module sharing same antenna, So we can get following combination that can transmit signal simultaneously.

Application Simultaneous Transmission information:

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)	
	850	VO	Vec WI AN or BT/BLE	NI/A	
GSM	1900	VO	Tes, WLAN OF BT/BLE	IN/A	
	GPRS/EDGE	DT	Yes,WLAN or BT/BLE	N/A	
UMTS	Band II/Band V	DT	Yes,WLAN or BT/BLE	N/A	
WLAN	2450	DT	Yes,GSM,GPRS,EDGE,UMTS	Yes	
BT/BLE	2450	DT	Yes,GSM,GPRS,EDGE, UMTS	N/A	
Note:VO-Voice Service only;DT-Digital Transport					

Note: BT and WLAN can be active at the same time, but only with interleaving of packages switched on board level. That means that they don't transmit at the same time.

BLE-Bluetooth low energy;

BT- Classical Bluetooth
5.2.2 Transmit Antenna and SAR Mesurement Positions

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 150mm<160mm, it is not considered a "Phablet" device.

2). According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

Hotspot mode SAK measurement positions												
mode front rear left egde right egde top egde bottom egde												
GSM 850	yes	yes	yes	yes	no	yes						
GSM 1900	yes	yes	yes	yes	no	yes						
UMTS FDD Band II	yes	yes	yes	yes	no	yes						
UMTS FDD Band V	yes	yes	yes	yes	no	yes						
WiFi240	yes	yes	no	yes	yes	no						

Hotspot mode SAR measurement positions

5.2.2 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by::

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [\checkmark f(GHz)] \leq 3.0 for 1-g SARand \leq 7.5 for 10-g extremity SAR, where

•f(GHz) is the RF channel transmit frequency in GHz

•Power and distance are rounded to the nearest mW and mm before calculation

•The result is rounded to one decimal place for comparison

•3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

	Standalone SAR test exclusion considerations													
Communication system	Frequency (MHz)	Configuration	Maximum Average Power (dBm)	Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR Exclusion							
	925	Head	33.00	5	364.6	3.0	no							
G2101 020	030	Body	33.00	33.00 10 182.3		3.0	no							
CSM 1000	1000	Head	30.00	5	276.0	3.0	no							
63101 1900	1900	Body	29.00	10	109.6	3.0	no							
	1000	Head	22.00	5	219.2	3.0	no							
	1900	Body	22.00	10	109.6	3.0	no							
LIMTS Bond V	025	Head	22.00	5	36.5	3.0	no							
UNITS Banu V	000	Body	22.00	10	18.2	3.0	no							
M/:F: 0450	2450	Head	13.00	5	6.2	3.0	no							
VVIII 2450	2450	Body	13.00	10	3.1	3.0	no							
Blueteeth	2450	Head	1.00	5	0.5	3.0	yes							
Divelooti	2450	Body	1.00	10	0.3	3.0	yes							

Note:

- 1. Maximum average power including tune-up tolerance;
- 2. Bluetooth including BLE and classical Bluetooth;
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

5.2.4 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

•(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√f(GHz)/x] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

•0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$(SAR_1 + SAR_2)^{1.5}$$

Ratio= $\frac{1}{(\text{peak location separation,mm})}$ - < 0.04

	Estimated stand alone SAR												
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)								
Bluetooth	2450	Head	2.00	5.00	0.065								
Bluetooth	2450	Hotspot	2.00	10.00	0.033								
Bluetooth	2450	Body Worn	2.00	10.00	0.033								

5.2.5 Evaluation of Simultaneous SAR

	Simultaneous transmission SAR forWiFi and GSM/UMTS (Hotspot Open)														
Test Position	SAR Type	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	UMTS Band II Reported SAR _{1-g} (W/Kg)	UMTS Band V Reported SAR _{1-g} (W/Kg)	WiFi Reported SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-α} (W/Kg)	SAR _{1-q} Limit (W/Kg)	Peak location separation ratio	Simut. Meas. Required					
Left/touch	1-g	0.470	0.503	0.349	0.266	0.261	0.764	1.6	no	no					
Left/Tilt	1-g	0.515	0.480	0.328	0.250	0.226	0.741	1.6	no	no					
Right/ touch	1-g	0.437	0.409	0.304	0.289	0.194	0.631	1.6	no	no					
Right/Tilt	1-g	0.447	0.439	0.290	0.303	0.207	0.654	1.6	no	no					
Rear Side	1-g	0.601	0.516	0.419	0.374	0.327	0.928	1.6	no	no					
Front Side	1-g	0.510	0.418	0.325	0.282	0.254	0.764	1.6	no	no					
Left Side	1-g	0.579	0.479	0.377	0.337	N/A	0.579	1.6	no	no					
Right Side	1-g	0.564	0.498	0.371	0.362	0.296	0.860	1.6	no	no					
Bottom	1-g	0.586	0.464	0.386	0.359	N/A	0.586	1.6	no	no					
Тор	1-g	N/A	N/A	N/A	N/A	0.302	0.302	1.6	no	no					

Simultaneous transmission SAR for Bluetooth and GSM/UMTS (Hotspot Open)														
Test Position	SAR Type	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	UMTS Band II Reported SAR _{1-q} (W/Kg)	UMTS Band V Reported SAR _{1-q} (W/Kg)	Bluetooth Estimated SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut. Meas. Required				
Left/touch	1-g	0.470	0.503	0.349	0.266	0.065	0.569	1.6	no	no				
Left/Tilt	1-g	0.515	0.480	0.328	0.250	0.065	0.580	1.6	no	no				
Right/ touch	1-g	0.437	0.409	0.304	0.289	0.065	0.502	1.6	no	no				
Left/touch	1-g	0.447	0.439	0.290	0.303	0.065	0.512	1.6	no	no				
Rear Side	1-g	0.601	0.516	0.419	0.374	0.033	0.634	1.6	no	no				
Front Side	1-g	0.510	0.418	0.325	0.282	0.033	0.543	1.6	no	no				
Left Side	1-g	0.579	0.479	0.377	0.337	0.033	0.612	1.6	no	no				
Right Side	1-g	0.564	0.498	0.371	0.362	0.033	0.597	1.6	no	no				
Bottom	1-g	0.586	0.464	0.386	0.359	0.033	0.619	1.6	no	no				
Тор	1-g	N/A	N/A	N/A	N/A	0.033	N/A	1.6	no	no				

Note:1. The WiFi and BT share same antenna, so cannot transmit at same time.

2. The value with blue color is the maximum values of standalone

3. The value with green color is the maximum values of $\sum SAR_{1-g}$

6.3. SAR Measurement Results

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR=Measured SAR* Scaling factor

Where P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

The product with 2 SIMs and 2 SIMs (SIM1 and SIM2) can not used Simultaneous, we tested 2 SIMs (SIM1 and SIM2) and recorded worst case at SIM 1

Duty Cycle									
Test Mode	Duty Cycle								
Speech for GSM850/1900	1:8.3								
GPRS for GSM850/1900	1:2								
WCDMA 850/1900	1:1								
WiFi 2450	1:1								

SAR Values (GSM850-Head)

Test F	requency		Test	Maximum	Conducted	Measurement	Power	Scaling	Reported	SAR	Ref.
Ch	MHz	Side	Position	Power (dBm)	Power (dBm)	SAR over 1g(W/kg)	drift	Factor	SAR over 1g(W/kg)	1g (W/kg)	Plot #
190	836.60	Left	Touch	33.00	32.48	0.416	-0.15	1.13	0.470	1.60	
190	836.60	Left	Tilt	33.00	32.48	0.456	-0.06	1.13	0.515	1.60	1
190	836.60	Right	Touch	33.00	32.48	0.387	-0.11	1.13	0.437	1.60	
190	836.60	Right	Tilt	33.00	32.48	0.396	-0.13	1.13	0.447	1.60	

SAR Values (GSM850-Body)

Test F	requency	Mode		Maximum	Conducted	Measurement			Reported	SAR	Rof
Ch	MHz	(number of timeslots)	Test Position	Allowed Power (dBm)	Power (dBm)	SAR over 1g(W/kg)	Power drift	Scaling Factor	SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #
190	836.60	GPRS (4)	Back	30.00	29.32	0.514	-0.13	1.17	0.601	1.60	2
190	836.60	GPRS (4)	Front	30.00	29.32	0.436	-0.06	1.17	0.510	1.60	
190	836.60	GPRS (4)	Left	30.00	29.32	0.495	0.01	1.17	0.579	1.60	
190	836.60	GPRS (4)	Right	30.00	29.32	0.482	-0.05	1.17	0.564	1.60	
190	836.60	GPRS (4)	Bottom	30.00	29.32	0.501	-0.09	1.17	0.586	1.60	
N/A	N/A	N/A	Тор	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
190	836.60	EGPRS (4)	Rear	30.00	29.36	0.455	-0.12	1.16	0.528	1.60	

Note:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based timeaveraged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reportedSAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

Test I	Frequency		_	Maximum	Conducted	Measurement	_		Reported	SAR	Ref.
Ch	MHz	Side	Test Position	Allowed Power (dBm)	Power (dBm)	SAR over 1g(W/kg)	Power drift	Scaling Factor	SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #
661	1880.0	Left	Touch	30.00	29.02	0.402	-0.11	1.25	0.503	1.60	3
661	1880.0	Left	Tilt	30.00	29.02	0.384	-0.15	1.25	0.480	1.60	
661	1880.0	Right	Touch	30.00	29.02	0.327	-0.06	1.25	0.409	1.60	
661	1880.0	Right	Tilt	30.00	29.02	0.351	-0.17	1.25	0.439	1.60	

SAR Values (PCS1900-Head)

SAR Values (PCS1900-Body)

Test F	Frequency	Mode		Maximum	Conducted	Measurement			Penarted	SAR	Pof
Ch	MHz	(number of timeslots)	Test Position	Allowed Power (dBm)	Power (dBm)	SAR over 1g(W/kg)	Power drift	Scaling Factor	SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #
661	1880.0	GPRS (4)	Back	26.00	25.74	0.487	-0.11	1.06	0.516	1.60	4
661	1880.0	GPRS (4)	Front	26.00	25.74	0.394	-0.02	1.06	0.418	1.60	
661	1880.0	GPRS (4)	Left	26.00	25.74	0.452	-0.16	1.06	0.479	1.60	
661	1880.0	GPRS (4)	Right	26.00	25.74	0.470	-0.07	1.06	0.498	1.60	
661	1880.0	GPRS (4)	Bottom	26.00	25.74	0.438	-0.11	1.06	0.464	1.60	
N/A	N/A	N/A	Тор	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
661	1880.0	EGPRS (4)	Rear	26.00	25.45	0.429	-0.15	1.14	0.489	1.60	

Note:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. When multiple slots are used, SAR should be tested to account for the maximum source-based timeaveraged output power.

4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reportedSAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

SAR Values (WCDMA Band V-Head)

Test Fi	requency			Maximum	Conducted	Measurement			Reported	SAR	Rof
Ch	MHz	Side	Test Position	Allowed Power (dBm)	Power (dBm)	SAR over 1g(W/kg)	Power drift	Scaling Factor	SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #
4182	836.40	Left	Touch	22.00	21.69	0.326	-0.14	1.07	0.349	1.60	5
4182	836.40	Left	Tilt	22.00	21.69	0.307	-0.09	1.07	0.328	1.60	
4182	836.40	Right	Touch	22.00	21.69	0.284	-0.11	1.07	0.304	1.60	
4182	836.40	Right	Tilt	22.00	21.69	0.271	-0.06	1.07	0.290	1.60	

SAR Values (WCDMABand V-Body) Test Frequency Maximum Measurement SAR Conducted Reported Mode Ref. Test Allowed SAR Power Scaling limit (number of SAR over Plot Power Ch MHz Position Power over drift Factor 1g timeslots) (dBm) 1g(W/kg) # (W/kg) (dBm) 1g(W/kg) 4182 836.40 RMC 21.69 1.07 0.419 6 Back 22.00 0.392 -0.07 1.60 4182 836.40 RMC Front 22.00 21.69 0.304 -0.07 1.07 0.325 1.60 ---4182 836.40 RMC Left 22.00 21.69 0.352 -0.15 1.07 0.377 1.60 ---4182 836.40 RMC Right 22.00 21.69 0.347 -0.06 1.07 0.371 1.60 --4182 836.40 0.386 RMC Bottom 22.00 21.69 0.361 -0.03 1.07 1.60 ---N/A N/A N/A N/A N/A Тор N/A N/A N/A N/A N/A N/A

Note:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reportedSAR was \leq 1.2 W/kg, no additional SAR evaluations using a headset cable were required. 4.When the maximum output power and tune-up tolerance specified for production units in a secondary mode is \leq ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

Test F	requency			Maximum	Conducted	Mossuramont			Peparted	SAR	Pof
Ch	MHz	Side	Test Position	Allowed Power (dBm)	Power (dBm)	SAR over 1g(W/kg)	Power drift	Scaling Factor	SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #
9400	1880.0	Left	Touch	22.00	21.88	0.258	-0.06	1.03	0.266	1.60	
9400	1880.0	Left	Tilt	22.00	21.88	0.243	-0.18	1.03	0.250	1.60	
9400	1880.0	Right	Touch	22.00	21.88	0.281	-0.12	1.03	0.289	1.60	
9400	1880.0	Right	Tilt	22.00	21.88	0.294	-0.15	1.03	0.303	1.60	7

SAR Values (WCDMA Band II -Head)

Test F	requency	Mode Tast		Maximum	Conducted	Conducted Measurement				SAR	Pof
Ch	MHz	(number of timeslots)	Test Position	Allowed Power (dBm)	Power (dBm)	SAR over 1g(W/kg)	Power drift	Scaling Factor	SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #
9400	1880.0	RMC	Back	22.00	21.88	0.363	-0.12	1.03	0.374	1.60	8
9400	1880.0	RMC	Front	22.00	21.88	0.274	-0.00	1.03	0.282	1.60	
9400	1880.0	RMC	Left	22.00	21.88	0.327	-0.05	1.03	0.337	1.60	
9400	1880.0	RMC	Right	22.00	21.88	0.351	-0.17	1.03	0.362	1.60	
9400	1880.0	RMC	Bottom	22.00	21.88	0.349	-0.13	1.03	0.359	1.60	
N/A	N/A	N/A	Тор	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

SAR Values (WCDMA Band II -Body)

Note:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reportedSAR was \leq 1.2 W/kg, no additional SAR evaluations using a headset cable were required. 4.When the maximum output power and tune-up tolerance specified for production units in a secondary mode is \leq 1/4 dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

				Maximum	Conducted			SAR _{1-g} res	ults(W/kg)	D .(
Ch.	Freq. (MHz)	Service	Test Position	Allowed Power (dBm)	Power (dBm)	Power drift	Scaling Factor	Measured	Reported	Ref. Plot #
measured / reported SAR numbers - Head										
6	2437	DSSS	Left/Cheek	12.00	11.25	-0.03	1.19	0.261	0.311	9
6	2437	DSSS	Left/Tilt	12.00	11.25	-0.02	1.19	0.226	0.269	N/A
6	2437	DSSS	Right/Cheek	12.00	11.25	-0.10	1.19	0.194	0.231	N/A
6	2437	DSSS	Right/Tilt	12.00	11.25	-0.05	1.19	0.207	0.246	N/A
		meas	ured / reported	d SAR numb	ers - Body (ho	tspot op	oen, dista	nce 10mm)		
6	2437	DSSS	Rear Side	12.00	11.25	-0.01	1.19	0.327	0.389	10
6	2437	DSSS	Front Side	12.00	11.25	-0.05	1.19	0.254	0.302	N/A
N/A	N/A	N/A	Left Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6	2437	DSSS	Right Side	12.00	11.25	-0.05	1.19	0.296	0.352	N/A
6	2437	DSSS	Bottom Side	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	Top Side	12.00	11.25	-0.02	1.19	0.302	0.359	N/A

Table 11: SAR Values [WiFi 802.11b/g/n]

Note:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

6.4. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \ge 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

 Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

SAR Test Data Plots

GSM850 Left Head Tilt Middle Channel

Maximum value of SAR (measured) = 0.466W/kg

Communication System: Customer System; Frequency:836.6 MHz;Duty Cycle:1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.93 S/m; ϵ_r = 42.55; ρ = 1000 kg/m³

Phantom section : Left Head Section Probe: EX3DV3 - SN3842; ConvF(8.83, 8.83, 8.83); Calibrated: 06/06/2014; Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1):Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.359 W/kg Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.224 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.467W/kg SAR(1 g) = 0.456W/kg; SAR(10 g) = 0.328W/kg

 dB
 -4.70

 -9.39
 -14.09

 -18.78
 -23.48

Plot 1:Left Head Title (GSM850 Middle Channel)

Z-Scan at power reference point-Left Head Tilt (GSM850 MiddleChannel)

GSM850 GPRS 4TS Body Back Side Middle Channel

Communication System: Customer System; Frequency:836.6 MHz;Duty Cycle:1:2 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 55.13$; $\rho = 1000$ kg/m³

Phantom section : Body- worn Probe: EX3DV4 - SN3842; ConvF(9.09, 9.09, 9.09); Calibrated: 06/06/2014; Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1):Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.592 W/kg Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.516 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.735W/kg SAR(1 g) = 0.514W/kg; SAR(10 g) = 0.389W/kg

Maximum value of SAR (measured) = 0.730W/kg

Plot 2:Body BackSide (GSM850 GPRS 4TS Middle Channel)

Z-Scan at power reference point-Body Back Side (GSM850 GPRS 4TS Middle Channel)

PCS1900 Left Head Touch Middle Channel

Communication System: Customer System; Frequency:1880.0 MHz;Duty Cycle:1:8.3 Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 40.90$; $\rho = 1000 \text{ kg/m}^3$

Phantom section : Left Head Section Probe: EX3DV4 - SN3842; ConvF(7.55, 7.55, 7.55); Calibrated: 06/06/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1):Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.426 W/kg Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.315 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.468W/kg SAR(1 g) = 0.402W/kg; SAR(10 g) = 0.273W/kg

Maximum value of SAR (measured) = 0.463W/kg

Plot 3:Left Head Touch (PCS1900 Middle Channel)

Z-Scan at power reference point-Left Head Touch (PCS1900 Middle Channel)

PCS1900 GPRS 4TS Body Back Side Middle Channel

Communication System: Customer System; Frequency:1880.0 MHz;Duty Cycle:1:2 Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.53 \text{ S/m}$; $\epsilon_r = 53.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section : Body- worn Probe: EX3DV4 - SN3842; ConvF(7.43, 7.43, 7.43); Calibrated: 06/06/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2013 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1):Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.435 W/kg Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.348 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.568W/kg SAR(1 g) = 0.487W/kg; SAR(10 g) = 0.351W/kg

Maximum value of SAR (measured) = 0.457 W/kg

Plot 4:Body Back Side (PCS1900 GPRS 4TS Middle Channel)

Z-Scan at power reference point-Body BackSide (PCS1900 GPRS 4TS Middle Channel)

WCDMA Band V Left Head Touch Middle Channel

Communication System: Customer System; Frequency: 836.6MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.90$ S/m; $\varepsilon_r = 42.02$; $\rho = 1000$ kg/m³

Phantom section : Left Head Section Probe: EX3DV4 - SN3842; ConvF(8.83, 8.83, 8.83); Calibrated: 06/06/2014; Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.286 W/kg Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.345 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.324 W/kg SAR(1 g) = 0.326 W/kg; SAR(10 g) = 0.218 W/kg

Maximum value of SAR (measured) = 0.289 W/kg

Plot 5: Left Head Touch (WCDMA Band VMiddle Channel)

Z-Scan at power reference point-Left Head Touch (WCDMA Band VMiddle Channel)

WCDMA Band V RMC Body Back Side Middle Channel

Communication System: Customer System; Frequency: 836.6MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ S/m; $\epsilon_r = 55.52$; $\rho = 1000$ kg/m³

Phantom section : Body- worn Probe: EX3DV4 - SN3842; ConvF(9.09, 9.09, 9.09); Calibrated: 06/06/2014; Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1):Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.413 W/kg Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.140 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.598 W/kg SAR(1 g) = 0.392 W/kg; SAR(10 g) = 0.264 W/kg

Maximum value of SAR (measured) = 0.412 W/kg

Plot 6: Body BackSide (WCDMA Band VRMC Middle Channel)

Z-Scan at power reference point-Body BackSide (WCDMA Band VRMC Middle Channel)

WCDMA Band II Right Head Tilt Middle Channel

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 40.12$; $\rho = 1000$ kg/m³

Phantom section : Right Head Section Probe: EX3DV4 - SN3842; ConvF(7.55, 7.55, 7.55); Calibrated: 06/06/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1):Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.210 W/kg Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.648 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.248 W/kg SAR(1 g) = 0.294W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 0.282 W/kg

Plot 7: Right Head Tilt (WCDMA Band IIMiddle Channel)

Z-Scan at power reference point-Left Head Touch (WCDMA Band IIMiddle Channel)

WCDMA Band II RMC Body Back Side Middle Channel

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.54$ S/m; $\varepsilon_r = 53.27$; $\rho = 1000$ kg/m³

Phantom section : Body- worn Probe: EX3DV4 - SN3842; ConvF(7.43, 7.43, 7.43); Calibrated: 06/06/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1):Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.296 W/kg Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.816 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.427 W/kg SAR(1 g) = 0.363 W/kg; SAR(10 g) = 0.227 W/kg

Maximum value of SAR (measured) = 0.425 W/kg

Plot 8: Body BackSide (WCDMA Band II RMC Middle Channel)

Z-Scan at power reference point-Body BackSide (WCDMA Band IIRMC Middle Channel)

Left Head Cheek (WLAN2450 Middle Channel)

Communication System: Customer System; Frequency:2437.0 MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f =2437.0 MHz; σ = 1.82S/m; ϵ_r = 38.80; ρ = 1000 kg/m³

Phantom section: Left Head Section: Probe: EX3DV4 - SN3842; ConvF(7.26, 7.26, 7.26); Calibrated: 06/06/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (91x51x1): Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.372 W/kg Zoom Scan (6x6x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.235 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.442W/kg SAR(1 g) = 0.261W/kg; SAR(10 g) = 0.128W/kg

Maximum value of SAR (measured) = 0.473 W/kg

Plot 9: Left Head Cheek (WLAN2450 Middle Channel)

Body- worn Rear side (WLAN 802.11b Middle Channel)

Communication System: Customer System; Frequency:2437.0 MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f =2437.0 MHz; σ = 1.82S/m; ϵ_r = 38.80; ρ = 1000 kg/m³

Phantom section : Body- worn Probe: EX3DV4 - SN3842; ConvF(6.93, 6.93, 6.93); Calibrated: 06/06/2014; Electronics: DAE4 Sn1315; Calibrated: 25/11/2014 Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x81x1):Measurement grid: dx=1.50 mm, dy=1.50 mm Maximum value of SAR (interpolated) = 0.542mW/g Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.373 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.463 W/kg SAR(1 g) = 0.327W/kg; SAR(10 g) = 0.175 W/kg

Maximum value of SAR (measured) = 0.516 W/kg

Plot 10:Body- worn Rear side (WLAN802.11bMiddle Channel)

				Calibration			
Test Equipment	Manufacturer	Type/Model	Serial Number	Last	Calibration		
				Calibration	Interval		
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2014/11/25	1		
E-field Probe	SPEAG	EX3DV4	3842	2014/06/06	1		
System Validation Dipole 835V2	SPEAG	D835V2	4d134	2014/12/13	1		
System Validation Dipole 1900V2	SPEAG	D1900V2	5d150	2014/12/12	1		
System Validation Dipole 2450V2	SPEAG	D2450V2	884	2014/12/11	1		
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/		
Power meter	Agilent	E4417A	GB41292254	2014/12/26	1		
Power sensor	Agilent	8481H	MY41095360	2014/12/26	1		
Network analyzer	Agilent	8753E	US37390562	2014/12/25	1		
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	2014/10/23	1		

6.5. Equipments Used during the Test

Note:

1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 50 Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.
- 3) The Probe, Dipole and DAE calibration reference to the ANNEX A.

7. Measurement Uncertainty

No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme	nt System									
1	Probe calibration	В	5.50%	N	1	1	1	5.50%	5.50%	∞
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	œ
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	œ
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	œ
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
8	RF ambient conditions- reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	œ
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	œ
Test Sample	e Related		1	n						1
15	Test sample positioning	А	1.86%	Ν	1	1	1	1.86%	1.86%	∞
16	Device holder uncertainty	А	1.70%	N	1	1	1	1.70%	1.70%	~
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	œ
Phantom an	nd Set-up				T	T		1	1	
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	~
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8
20	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	8
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22	Liquid cpermittivity (meas.)	А	0.16%	N	1	0.64	0.43	0.10%	0.07%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Combined s	tandard uncertainty	$u_c = 1$	$\sum_{i=1}^{22} c_i^2 u_i^2$	/	/	/	/	10.20%	10.00%	œ
Expand (confidenc	ded uncertainty e interval of 95 %)	u,	$_{e} = 2u_{c}$	R	K=2	/	/	20.40%	20.00%	∞

8. Test Setup Photos

Photograph of the depth in the Head Phantom (835MHz)

Photograph of the depth in the Body Phantom (835MHz)

Photograph of the depth in the Head Phantom (1900MHz)

Photograph of the depth in the Body Phantom (1900MHz)

Photograph of the depth in the Head Phantom (2450MHz)

Photograph of the depth in the Body Phantom (2450MHz)

Right Head Tilt Setup Photo

Right Head Touch Setup Photo

Left Head Tilt Setup Photo

Left Head Touch Setup Photo

10mm Body-worn Back Side Setup Photo

10mm Body-worn front Side Setup Photo

10mm Left Side Setup Photo

10mm Right Side Setup Photo

10mm Top Side Setup Photo

10mm Bottom Side Setup Photo

9. External and Internal Photos of the EUT

Reference to the test report No. TRE1503002801

.....End of Report.....

1.1. 3842 Probe Calibration Certificate

Engineering AG eughausstrasse 43, 8004 Zuri	ch, Switzerland	Hac MRA	Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
occedited by the Swiss Accredit he Swiss Accreditation Servic	ation Service (SAS) ce is one of the signatories	Accreditation N	0.: 505 108
Client CIQ-SZ (Aude	n)	Certificate No:	EX3-3842_Jun13
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:38	42	
Calibration procedure(s)	QA CAL-01.v8, C Calibration proce	DA CAL-12.v7, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
Calibration date:	June 6, 2014		
All calibrations have been cond Calibration Equipment used (M	ucted in the closed laborator STE critical for calibration)	y facility: environment temperature (22 \pm 3)°C a	ind humidity < 70%.
All calibrations have been cond Calibration Equipment used (M Primary Standards	In the closed laborator	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	scheduled Calibration
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sector E44198	ID GB41293874 WY41469087	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr.13 (No. 217-01733)	Scheduled Calibration Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator	ID GB41293874 MY41498087 SN: \$5054 (3c)	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737)	Scheduled Calibration Apr-14 Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5277 (20x)	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	ID GB41293874 MY41498087 SN: \$5054 (3c) SN: \$5129 (30b)	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: \$5054(3c) SN: \$5129(30b) SN: 3013	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013, Dec12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	UCted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: \$5054 (3c) SN: \$5054 (3c) SN: \$5129 (30b) SN: \$6129 (30b) SN: 3013 SN: 660	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013, Dec12) 31-Jan-13 (No. DAE4-660, Jan13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	UCted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55027 (20x) SN: 55129 (30b) SN: 3013 SN: 680 ID	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013, Dec12) 31-Jan-13 (No. DAE4-660, Jan13) Check Date (in house)	Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Scheduled Check
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 9648C	UCted in the closed laborator ATE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55029 (30b) SN: 56129 (30b) SN: 56129 (30b) SN: 56129 (30b) SN: 660 ID US3642U01700	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013, Dec12) 31-Jan-13 (No. DAE4-660, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ucted in the closed laborator ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5077 (20x) SN: S5129 (30b) SN: 3013 SN: 680 ID US3642U01700 US37390585	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. DAE4-660, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ucted in the closed laborator STE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30x) SN: 56129 (30x) SN: 5612 ID US3642U01700 US37390585 Name	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. DAE4-660, Jan13) 28-Dec-12 (No. ES3-3013, Dec12) 31-Jan-13 (No. DAE4-660, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12) Function	Ind humidity < 70%. Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by	ucted in the closed laborator ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Jeton Kastrati	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. DAE4-660, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12) Function Laboratory Technician	Ind humidity < 70%. Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 9 dB Attenuator Ref	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Jeton Kastrab Katja Pokovic	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013, Dec12) 31-Jan-13 (No. DAE4-660, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Function Laboratory Technician Technical Manager	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by Approved by:	ATE critical for calibration ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Jeton Kastrab Katja Pokovic	y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013, Dec12) 31-Jan-13 (No. DAE4-660, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Technical Manager	Ind humidity < 70%. Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature Signature Unitsued: June 6, 2014
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by Approved by: This calibration certificate shall	ATE critical for calibration ATE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Jeton Kastrati Katja Pokovic not be reproduced except in	y facility. environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013, Dec12) 31-Jan-13 (No. DAE4-660, Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Technical Manager	Ind humidity < 70%. Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature Signature USUUCASSA

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS S RUBRA O C S

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossan

Giobbuly.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx.y.z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	o rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e. $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3842_Jun13

Page 2 of 11

June 6, 2014

Probe EX3DV4

SN:3842

Manufactured: Repaired: Calibrated: October 25, 2011 June 3, 2014 June 6, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3842_Jun13

Page 3 of 11

June 6, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.35	0.52	0.42	± 10.1 %
DCP (mV) ^B	104.7	100.4	100.5	

Modulation Calibration Parameters

UID	Communication System Name		A	В	С	D	VR	Unc
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	132.3	±3.5 %
		Y	0.0	0.0	1.0		162.7	
		Z	0.0	0.0	1.0		147.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3842_Jun13

Page 4 of 11

June 6, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	10.00	10.00	10.00	0.15	1.10	± 13.4 %
835	41.5	0.91	8.83	8.83	8.83	0.28	1.07	± 12.0 %
900	41.5	0.97	8.78	8.78	8.78	0.32	1.00	± 12.0 %
1810	40.0	1.40	7.68	7.68	7.68	0.38	0.88	± 12.0 %
1900	40.0	1.40	7.55	7.55	7.55	0.50	0.77	± 12.0 %
2450	39.2	1.80	7.26	7.26	7.26	0.71	0.63	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequencies below 3 GHz, the validity of tissue parameters (c and e) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and e) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated target tissue parameters (c and e) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3842_Jun13

Page 5 of 11

June 6, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	10.34	10.34	10.34	0.09	1.00	± 13.4 %
835	55.2	0.98	9.09	9.09	9.09	0.42	0.84	± 12.0 %
900	55.0	1.05	9.16	9.16	9.16	0.47	0.79	± 12.0 %
1810	53.3	1.52	7.78	7.78	7.78	0.50	0.81	± 12.0 %
1900	53.3	1.52	7.43	7.43	7.43	0.29	1.07	± 12.0 %
2450	52.7	1.95	6.93	6.93	6.93	0.80	0.59	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequencies below 3 GHz, the validity of tissue parameters (c and d) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3842_Jun13

Page 6 of 11

June 6, 2014

Page 8 of 11

June 6, 2014

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3842_Jun13

Page 9 of 11

June 6, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-117.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3842_Jun13

Page 11 of 11
1.2. D835V2 Dipole Calibration Ceriticate

Tel: +86-10-6230463 E-mail: Info@emoite	bei Road, Haidian District, 3-2079 Fax: +86-10-6 .com Http://www.en	12304633-2504	12 M
Client CIQ SZ	(Auden)	Certificate No: J14-2-3049	
CALIBRATION	CERTIFICATE	te sagaran pana	
Object	D835V2 -	SN: 4d134	
Calibration Procedure(s)	THOOP	E-02-104	
	Calibration	a procedure for dipole validation kits	
Calibration date:	December	r 13, 2014	
All calibrations have be	en conducted in the c	e ceruticate. Iosed laboratory facility: environment tempera	dure(22±3)
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards	en conducted in the cl sed (M&TE critical for c ID # Cal Date	s certificate. losed laboratory facility: environment tempera celibration) (Celibrated by, Certificate No.) Scheduled	ture(22±3) 1 Celibrati
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD	en conducted in the d sed (M&TE critical for d ID # Cal Date 102093	Iosed laboratory facility: environment tempera celibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443)	iture(22±3) I Celibrati Sep-15
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z	en conducted in the d sed (M&TE critical for d ID # Cel Date 102083 5 100595	a certificate. losed laboratory facility: environment tempera celibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443)	ture(22±3) I Calibrati Sep-15 Sep-11
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z Reference Probe ES30	en conducted in the d sed (M&TE critical for d ID # Cal Date 102093 5 100595 2V3 SN 3149	a certificate. losed laboratory facility: environment tempera celibration) (Celibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep14) 20 Cel 4 (SPEAG, No.ES3-3149_Sep14)	fure(22±3) I Calibration Sep-15 Sep-15 Sep-15
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z Reference Probe ES30 DAE4 Sizeal Construct.	en conducted in the d sed (M&TE critical for d ID # Cal Date 102093 5 100595 2V3 SN 3149 SN 777 2320 MY40020303	a certificate. losed laboratory facility: environment tempera celibration) (Celibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5-Sep-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-New-14 (SPEAG, DAE4-777_Feb14)	ture(22±3) I Calibrati Sep-15 Sep-15 Sep-15 Sep-15 Feb-11 Neu15
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z Reference Probe ES30 DAE4 Signal Generator E44 Network Analyzer E830	en conducted in the d sed (M&TE critical for d ID # Cal Date 102083 5 100595 2V3 SN 3149 SN 777 138C MY49070393 128 MY43021135	a certificate. Iosed laboratory facility: environment tempera celibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5-Sep-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278)	ture(22±3) I Calibration Sep-15 Sep-15 Sep-15 Feb-15 Nov-15 Oct-15
All cellbrations have be and humidity<70%. Callbration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z Reference Probe ES30 DAE4 Signal Generator E44 Network Analyzer E836	en conducted in the d sed (M&TE critical for c ID # Cal Date 100595 2V3 SN 3149 SN 777 138C MY49070393 12B MY43021135	Iosad laboratory facility: environment tempera celibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function Si	ture(22:3) sep-15 Sep-15 Sep-15 Feb-10 Nov-15 Oct-15
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z Reference Probe ES30 DAE4 Signal Generator E44 Network Analyzer E830 Calibrated by:	en conducted in the d sed (M&TE critical for c ID # Cal Date 102093 5 100595 3V3 SN 3149 SN 777 i38C MY49070393 32B MY43021135 Name Zhao Jing	Iosad laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S SAR Test Engineer	sep-15 Sep-15 Sep-16 Sep-16 Feb-10 Nov-15 Oct-15
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z Reference Probe ES30 DAE4 Signal Generator E44 Network Analyzer E830 Calibrated by: Reviewed by:	en conducted in the d sed (M&TE critical for c ID # Cal Date 102093 5 100595 2V3 SN 3149 SN 777 138C MY49070393 32B MY43021135 Name Zhao Jing Qi Dianyuan	s certificate. losed laboratory facility: environment tempera celibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 5-Sep-14 (TMC, No.JZ14-443) 5-Sep-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, No.JZ14-493) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S SAR Test Engineer SAR Project Leader	I Celibration Sep-15 Sep-15 Sep-16 Sep-18 Feb-10 Nov-15 Oct-15 ignature
All calibrations have be and humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z Reference Probe ES30 DAE4 Signal Generator E44 Network Analyzer E830 Calibrated by: Reviewed by: Approved by:	en conducted in the d sed (M&TE critical for c ID # Cal Date 102093 5 100595 2V3 SN 3149 SN 777 138C MY49070393 12B MY43021135 Name Zhao Jing QI Dianyuan Lu Bingsong	Iosad laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S SAR Test Engineer S SAR Project Leader	I Celibration Sep-15 Sep-16 Sep-16 Nov-15 Oct-15 Oct-15 Ignature

Glossan

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB885664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J14-2-3049

Page 2 of 8

		and a g			
Add: No.52 Husyuanbei Road, Haidian Dia Tet: +86-10-82304633-2079 Fax: +86 E-mail: Info@emcite.com Http://www	niet. Be 10-623 w.emcil	sjing, 100191, Ch 04633-2504 e.com	na		
DASY system configuration, as far as not give	in on p	age 1			
DASY Version	D	ASY52		5	2.8.7.1137
Extrapolation Ad	vanced	Extrapolation			
Phantom	Twi	n Phantom			
Distance Dipole Center - TSL	1	5 mm		with	Spacer
Zoom Scan Resolution	dx, dy	. dz = 5 mm			
Frequency	835 M	Hz ± 1 MHz		_	
ad TSL parameters					
The following parameters and calculations we	re app	lied.	Barmitth	-	Conductivity
	-	mperature		may .	0.00 mbaim
Nominal Head TSL parameters	1	22.0 °C	41.0		C DD mhorm
Measured Head TSL parameters	6	2.0 ± 0.2) °C	41.7 ± 0	9.28	0.88 mnom ± 0.9
Head TSL temperature change during te	st	<0.5 °C		_	
AR result with Head TSL		Card	for	-	
SAR everaged over 1 cm ⁻ (1 g) of Head	ISL	Condi	100	-	0.05 million
SAR measured		250 mW in	put power		2.36 mvv / g
SAR for nominal Head TSL parameters		normañze	d to 1W	9.66	mw /g ± 20.6 % (k=2
SAR averaged over 10 cm3 (10 g) of Hea	d TSL	Condi	tion	-	
SAR measured	_	250 mW in	put power		1.55 mW/g
SAR for nominal Head TSL parameters		normalize	ed to 1W	6.27	mW /g ± 20.4 % (k=2
ody TSL parameters		died			
The role of personal state of calconitories		Temperature	Permitti	vity	Conductivity
Nominal Body TSL parameters		22.0 °C	55.2		0.97 mho/m
Measured Body TSL parameters	0	22.0 ± 0.2) *C	56.3 ±	6%	0.97 mho/m ± 6 1
Body TSL temperature change during to	st	+0.5 °C			_
AR result with Body TSL			-	1.1.1	-
SAR averaged over 1 cm ³ (1 g) of Body	TSL	Condi	tion		
SAR measured		250 mW in	put power		2.32 mW/g
SAR for nominal Body TSL parameters		normalize	ed to 1W	9.36	mW /g ± 20.8 % (km
SAR averaged over 10 cm ³ (10 p) of Bo	dy TSL	Cond	tion		
SAR measured	-	250 mW in	put power		1.54 mW/g
	_				

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5Ω + 3.14jΩ	
Return Loss	- 28.1dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2Ω + 2.90jΩ	
Return Loss	- 30.4dB	

General Antenna Parameters and Design

		_
Electrical Delay (one direction)	1.241 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: J14-2-3049

Page 4 of 8

0 dB = 2.80 W/kg = 4.47 dBW/kg

10.58

Certificate No: J14-2-3049

Page 5 of 8

Page 6 of 8

0 dB = 2.69 W/kg = 4.30 dBW/kg

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J14-2-3049

Page 8 of 8

	1.3.	D1900V2	Dipole	Calibration	Ceriticate
--	------	---------	--------	-------------	------------

Tel: +86-10-62304633-3 E-mail: Info@emote.co	2079 Fax: +86-10-6 m Http://www.em	cite.com	校 信 CNAS LO4
Client CIQ SZ (A	uden) ·	Certificate No: J14-2-3052	
CALIBRATION C	ERTIFICATE		
Object	D1900V2	- SN: 5d150	
Calibration Procedure(s)	TMC-OS-	-02-104	
	Calibration	procedure for dipole validation kits	
Calibration date:	December	12, 2014	
units of measurements(Si given on the following pag All calibrations have been	 The measuremen es and are part of the conducted in the cl 	ts and the uncertainties with confidence pro e certificate. losed laboratory facility: environment tempera	obability are
units of measurements(Si given on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards	I). The measurement es and are part of the sounducted in the of a conducted in the of mod (M&TE critical for of ID # Cal Date	ts and the uncertainties with confidence pro certificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled	obability are ature(22+3)*C d Calibration
units of measurements(SI given on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Prower Meter NRVD	I). The measurement es and are part of the sound outled in the cl and (M&TE critical for cl ID # Cal Date 102083	ts and the uncertainties with confidence pro certificate. losed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduler 11-Seo-14 (TMC, No.JZ14-443)	sbability are ature(22+3)*C d Calibration Sep-15
Inits of measurements(SI given on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-25	I). The measurement es and are part of the sound outled in the cl and (M&TE critical for cl ID # Cal Date 102083 100595	ts and the uncertainties with confidence pro certificate. losed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduler 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443)	sbability are ature(22+3)*C d Calibration Sep-15 Sep -15
units of measurements(SI given on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3DV	I). The measuremen es and are part of the n conducted in the cl ad (M&TE critical for c ID # Cal Date 102083 100595 3 SN 3149	ts and the uncertainties with confidence pro certificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAC, No.JE3-3149_Sep14)	sbability are dure(22+3)*C d Calibration Sep-15 Sep-15 Sep-15
units of measurements(SI given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power Sensor NRV-25 Reference Probe ES3DV DAE4	I). The measuremen es and are part of the n conducted in the cl ad (M&TE critical for c ID # Cal Date 102083 100595 3 SN 3149 SN 777	ts and the uncertainties with confidence pro certificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.E63-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14)	sbability are dure(22+3)*C d Calibration Sep-15 Sep-15 Sep-15 Feb-15
units of measurements(Si given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe E63DV DAE4 Signal Generator E4438	I). The measuremen es and are part of the s conducted in the cl in d(M&TE critical for c ID # Cal Date 102083 100595 3 SN 3149 SN 777 8C MY49070393	ts and the uncertainties with confidence pro certificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.E63-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394)	d Calibration Sep-15 Sep-15 Sep-15 Feb-15 Nov-15
units of measurements(SI given on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4430 Network Analyzer E8362	I). The measuremen es and are part of the s conducted in the cl ad (M&TE critical for c ID # Cal Date 102083 100595 V3 SN 3149 SN 3149 SN 3149 SN 3149 SN 3177 BC MY49070393 B MY43021135	ts and the uncertainties with confidence pro- certificate. losed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.E63-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278)	d Calibration Sep-15 Sep-15 Feb-15 Nov-15 Oct-15
units of measurements(Si given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4430 Network Analyzer E83620	I). The measuremen es and are part of the a conducted in the cl ad (M&TE critical for c ID # Cal Date 102083 100595 3 SN 3149 SN 777 8C MY49070393 B MY43021135 Name	ts and the uncertainties with confidence pro certificate. alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S	d Calibration Sep-15 Sep-15 Sep-15 Feb-15 Nov-15 Oct-15
units of measurements(SI given on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primery Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4430 Network Analyzer E83620 Calibrated by:	I). The measuremen es and are part of the a conducted in the cl ad (M&TE critical for c ID # Cal Date 102083 100595 /3 SN 3149 SN 777 8C MY49070393 8 MY49070393 8 MY43021135 Name Zhao Jing	ts and the uncertainties with confidence pro- certificate. losed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.LS3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S SAR Test Engineer	d Calibration Sep-15 Sep-15 Sep-15 Feb-15 Nov-15 Oct-15
units of measurements(SI given on the following page All calibrations have been and humidity<70%. Calibration Equipment use Primery Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4431 Network Analyzer E83621 Calibrated by: Reviewed by:	I). The measuremen es and are part of the a conducted in the cl ad (M&TE critical for c ID # Cal Date 102083 100595 3 SN 3149 SN 777 8C MY49070393 8 MY43021135 Name Zhao Jing Qi Dianyuan	ts and the uncertainties with confidence pro- certificate. losed laboratory facility: environment tempera alibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.SE3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S SAR Test Engineer 2 SAR Project Leader	stability are sture(22+3)*C d Calibration Sep-15 Sep-15 Sep-15 Sep-15 Sep-15 Nov-15 Oct-15 Oct-15

Page 1 of 8

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J14-2-3052

Page 2 of 8

Tel: +86-10-62304633-2079 F E-mail: Info@emcite.com	ax: +86-10-6 ttp://www.en	52304633-2504			
contromant Conditions		ncite com			
		indite datifi			
DASY system configuration, as far as	not given or	n page 1.			
DASY Version		DASY52		5	2.8.7.1137
Extrapolation	Advand	ed Extrapolation			
Phantom	т	win Phantom			
Distance Dipole Center - TSL		10 mm		with	n Spacer
Zoom Scan Resolution	dx,	dy, dz = 5 mm		-	
Frequency	190	0 MHz ± 1 MHz			
ad TSL parameters The following parameters and calculat	ions were a	pplied.			
		Temperature	Permitti	vity	Conductivity
Nominal Head TSL parameters		22.0 °C	40.0	2	1.40 mho/m
Measured Head TSL parameters		(22.0 ± 0.2) °C	38.9 ±	6 %	1.42 mho/m ± 6
Head TSL temperature change during test		<0.5 *C			
neau ion temperature change du					
R result with Head TSL			ion		
R result with Head TSL SAR averaged over 1 cm ³ (1 g) of	Head TSL	Condi	1011	9.71 mW/g	
R result with Head TSL SAR averaged over 1 cm ³ (1g) of SAR measured	Head TSL	Condi 250 mW in	put power		9.71 mW/g
R result with Head TSL SAR averaged over 1 cm ³ (1 g) of SAR measured SAR for nominal Head TSL paramet	Head TSL	Condi 250 mW in normalize	put power d to 1W	38.3	9.71 mW / g mW /g ± 20.8 % (k=
R result with Head TSL SAR averaged over 1 cm ³ (1 g) of SAR measured SAR for nominal Head TSL paramet SAR averaged over 10 cm ³ (10 g)	Head TSL ers of Head TS	Condi 250 mW in normalize L Condi	put power d to 1W ion	38.3	9.71 mW / g mW /g ± 20.8 % (k=
R result with Head TSL SAR averaged over 1 cm ³ (1 g) of SAR measured SAR for nominal Head TSL paramet SAR averaged over 10 cm ³ (10 g) SAR measured	Head TSL ers of Head TS	Condi 250 mW in normalize L Condi 250 mW in	put power d to 1W ion put power	38.3	9.71 mW / g mW /g ± 20.8 % (k= 5.08 mW / g

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) *C	53.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.98 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.26 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)

Certificate No: J14-2-3052

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω+ 3.17jΩ	
Return Loss	- 30.0dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8Ω+ 3.92jΩ	
Return Loss	- 27.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.048 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: J14-2-3052

Page 4 of 8

0 dB = 11.8 W/kg = 10.72 dBW/kg

Page 5 of 8

Page 6 of 8

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J14-2-3052

Page 8 of 8

1.4. D2450V2 Dipole Calibration Ceriticate

Tel: +86-10-62304633		The second	
E-mail: Info@emcite.o	om <u>Http://www.ec</u> Auden)	Certificate No: -114-2-3053	NAS LO4
CALIBRATION	ERTIFICATE	the state of the second	Star L
Object	D2450V2	- SN: 884	
Calibration Procedure(s)	740.00	E 00 104	
	Calibration	E-02-194 a procedure for dinale validation kits	
	Califordado	Procedure for cipole validation kits	
Calibration date:	December	11. 2014	
inits of measurements(S siven on the following pag	e documents the trac i). The measurement es and are part of the	seability to national standards, which realize its and the uncertainties with confidence pro e certificate.	the physical bability are
nits of measurements(S given on the following pag all calibrations have been and humidity<70%. Calibration Equipment use Primary Standards	e documents the trac I). The measurement es and are part of the in conducted in the c ind (M&TE critical for o ID # Cal Date	ceability to national standards, which realize into and the uncertainties with confidence pro- electrificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled	the physical obability are alure(22±3)°C I Calibration
nits of measurements(\$ iven on the following pag all calibrations have been nd humidity<70%. Calibration Equipment use rimary Standards	e documents the trac I). The measurement es and are part of the in conducted in the c ind (M&TE critical for of ID # Cal Date	eability to national standards, which realize its and the uncertainties with confidence pro- scertificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled	the physical obability are ature(22±3)°C
nits of measurements(\$ iven on the following pag Il calibrations have been nd humidity<70%. alibration Equipment use nimary Standards Power Meter NRVD Power sensor NEV-25	e documents the trac I). The measurement es and are part of the in conducted in the c ind (M&TE critical for of ID # Cal Date 102093 100595	eability to national standards, which realize its and the uncertainties with confidence pro- scertificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443)	the physical obability are ature(22±3)*C d Calibration Sep-15 Sep-15
nits of measurements(S iven on the following pag Il calibrations have been nd humidity<70%. alibration Equipment use rimary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3DV	e documents the trac I). The measurement es and are part of the in conducted in the c id (M&TE critical for of ID # Cal Date 102093 100595 3 SN 3149	eability to national standards, which realize its and the uncertainties with confidence pro- scertificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149, Sep14)	the physical obability are ature(22±3)*C 1 Calibration Sep-15 Sep-15 Sep-15
nits of measurements(S iven on the following pag all calibrations have been nd humidity<70%. alibration Equipment use rimary Standards Power Meter NRVD Power Sensor NRV-25 Reference Probe ES3DV DAE4	e documents the trac I). The measurement es and are part of the in conducted in the c id (M&TE critical for of ID # Cal Date 102093 100595 3 SN 3149 SN 777	eability to national standards, which realize its and the uncertainties with confidence pro- e certificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sop14) 22-Feb-14 (SPEAG, DAE4-777_Feb14)	the physical obability are sture(22±3)*C 5 Calibration Sep-15 Sep-15 Sep-15 Feb-15
Il calibrations have been nd humidity<70%. Calibration Equipment use Inmary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4430	e documents the trac I). The measurement es and are part of the in conducted in the c ind (M&TE critical for of ID # Cal Date 102093 100595 3 SN 3149 SN 777 3C MY49070393	eability to national standards, which realize its and the uncertainties with confidence pro- e certificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sop14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394)	the physical obability are sture(22±3)*C 1 Calibration Sep-15 Sep-15 Sep-15 Feb-15 Nov-15
nits of measurements(\$ iven on the following pag all calibrations have been nd humidity<70%. Calibration Equipment use rimary Standards Power Meter NRVD Power Meter NRVD Power sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4430 Network Analyzer E8382	e documents the trac I). The measurement es and are part of the conducted in the c d (M&TE critical for of ID # Cal Date 102083 100595 3 SN 3149 SN 777 3C MY49070393 B MY43021135	seability to national standards, which realize its and the uncertainties with confidence pro- socrificate. losed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sop14) 22-Feb-14 (SPEAG, No.ES3-3149_Sop14) 22-Feb-14 (SPEAG, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278)	the physical obability are ature(22±3)*C 1 Calibration Sep-15 Sep-15 Sep-15 Feb-15 Nov-15 Oct-15
nits of measurements(S iven on the following pag all calibrations have been nd humidity<70%. Calibration Equipment use trimary Standards Power Meter NRVD Power Sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4434 Network Analyzer E8362	e documents the trac I). The measurement es and are part of the in conducted in the c ind (M&TE critical for of ID # Cal Date 102093 100505 3 SN 3149 SN 777 3C MY49070393 B MY43021135	seability to national standards, which realize its and the uncertainties with confidence pro- electrificate. Iosed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sep14) 22-Feb-14 (SPEAG, DAE4-777_Feb14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S	the physical obability are ature(22±3)*C 1 Calibration Sep-15 Sep-15 Sep-15 Feb-15 Nov-15 Oct-15 Nov-15 Oct-15
nits of measurements(S iven on the following pag all calibrations have been nd humidity<70%. Calibration Equipment use trimary Standards Power Meter NRVD Power Sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4430 Network Analyzer E83620 Calibrated by:	e documents the trac I). The measurement es and are part of the in conducted in the c ind (M&TE critical for of ID # Cal Date 102093 100595 3 SN 3149 SN 777 3C MY49070393 B MY43021135 Name Zheo Jing	seability to national standards, which realize its and the uncertainties with confidence pro- scertificate. Iosed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (TMC, No.JZ14-443) 5- Sep-14 (SPEAG, No.ES3-3149_Sop14) 22-Feb-14 (SPEAG, No.ES3-3149_Sop14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S SAR Test Engineer	the physical obability are ature(22±3)*C 1 Calibration Sep-15 Sep-15 Sep-15 Sep-15 Nov-15 Oct-15 Nov-15 Oct-15
Inits of measurements(S given on the following pag All calibrations have been and humidity<70%. Calibration Equipment use Primary Standards Power Meter NRVD Power Sensor NRV-25 Reference Probe ES3DV DAE4 Signal Generator E4430 Network Analyzer E83620 Calibrated by: Deviewed by:	e documents the trac I). The measurement es and are part of the a conducted in the c d (M&TE critical for of ID # Cal Date 102093 100595 3 SN 3149 SN 777 3C MY49070393 B MY43021135 Name Zhao Jing Qi Dianyuan	seability to national standards, which realize its and the uncertainties with confidence pro- scertificate. Iosed laboratory facility: environment tempera calibration) (Calibrated by, Certificate No.) Scheduled 11-Sep-14 (TMC, No.JZ14-443) 5-Sep-14 (TMC, No.JZ14-443) 5-Sep-14 (SPEAG, No.ES3-3149_Sop14) 22-Feb-14 (SPEAG, No.ES3-3149_Sop14) 13-Nov-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-394) 19-Oct-14 (TMC, No.JZ14-278) Function S SAR Test Engineer SAR Project Leader	the physical obability are ature(22±3)*C 4 Calibration 5 Sep-15 5

Certificate No: J14-2-3053

Page 1 of 8

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J14-2-3053

Page 2 of 8

	P	e a g	_		
Add: No.52 Huayuanbei Road, Haidian I Tel: +85-10-62304533-2079 Fax: +1 E-mail: Info@emcite.com Http://	District, 86-10-6 WW.800	N LABORATORY Beijing, 100191, CP 2304633-2564 cite.com	ina		
Measurement Conditions	iven on	page 1.			
DASY Version		DASY52		5	2.8.7.1137
Extrapolation	Advanced Extrapolation				
Phantom	T	win Phantom			
Distance Dipole Center - TSL		10 mm	_	with	h Spacer
Zoom Scan Resolution	dr. r	dv. dz = 5 mm			
Engineeru	245	0 MHz + 1 MHz			
Head TSI parameters	240	O MATE 2 I MATE			
The following parameters and calculations	were as	oplied.			
		Temperature	Permitti	vity	Conductivity
Nominal Head TSL parameters		22.0 °C	39.2		1.80 mho/m
Measured Read TSL parameters		(22.0 ± 0.2) °C	39.0 ±	5 %	1.82 mholm ± 6 %
Head TSL temperature change during	test	<0.5 °C			. Card
SAR result with Head TSL					
SAR averaged over 1 cm ² (1 g) of Hear	d TSL	Condi	tion	1	
SAR measured		250 mW in	put power		13.0 mW/g
SAR for nominal Head TSL parameters		normalize	d to 1W	61.7	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm3 (10 g) of H	ead TSI	L Condi	tion		
SAR measured		250 mW in	put power		6.05 mW/g
SAR for nominal Head TSL parameters		normalize	d to 1W	24.1	mW /g ± 20.4 % (k=2
Body TSL parameters					
The following parameters and calculations	were ap	pplied.	-		
	-	Temperature	Permitti	wity	Conductivity
Nominal Body TSL parameters	_	22.0 °C	52.7		1.95 mho/m
Measured Body TSL parameters		(22.0 ± 0.2) °C	52.8 ±	8 %	1.94 mho/m ± 6 9
Body TSL temperature change during	test	<0.5 °C			
SAR result with Body TSL				<u> </u>	
SAR averaged over 1 cm ³ (1 g) of Bod	Y TSL	Condi	tion		
SAR measured		250 mW in	put power		12.9 mW/g
SAR for nominal Body TSL parameters		normalize	d to 1W	61.8	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm ³ (10 g) of B	ody TS	L Condi	5on		
SAR measured		250 mW in	put power		5.98 mW/g
SAR for nominal Body TSL parameters		normalize	d to 1W	24.0	m/W /g ± 20.4 % (k=2

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.80+3.76jD		
Return Loss	+ 25.9dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	55.2Ω+ 2.38jΩ	
Return Loss	- 25.4dB	

General Antenna Parameters and Design

F	
Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	Manufactured by	SPEAG
-----------------------	-----------------	-------

Certificate No: J14-2-3053

Page 4 of 8

0 dB = 16.2 W/kg = 12.10 dBW/kg

Certificate No: J14-2-3053

Page 5 of 8

MULTINESSES

Page 6 of 8

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J14-2-3053

Page a of a

1.5. DAE Calibration Ceriticate

	SZ (Auden)	- 	Certificate No	: J14-2-3048	15.410
CALIBRATION	CERTIFICA	1E de la constance de la const	物的资源		
Object	DAE4	I - SN: 1315			
Calibration Procedure(s)	ration Procedure(s) TMC-OS-E-01-198 Calibration Procedure for the Data Acquisition Electronics (DAEx)				
Calibration date:	Nover	mber 25, 2014			
This calibration Certifica measurements(SI). The r pages and are part of the All calibrations have bo humidity<70%.	te documents the measurements an ecrificate.	traceability to national sta d the uncertainties with con the closed laboratory fa	andards, which fidence probabil cility: environmo	realize the physics ity are given on the ont temperature(22	al units of a following ±3)°C and
Calibration Equipment us	ed (M&TE critical	for calibration)			
Primary Standards	ID# C	al Date(Calibrated by, Certi	ficate No.)	Scheduled Calibra	tion
Documenting Process Calibrator 753	1971018	01-July-14 (TMC, No:JW	14-049)	July-15	5.5
	Name	Function		Signature	
Calibrated by:	Yu zongying	SAR Test Engineer	1.5	AAB	
Reviewed by:	Qi Dianyuan	SAR Project Leader	194 -	Nor/	
Annemad her	Lu Bingsong	Deputy Director of t	he labóndory	fainer of	,
Approved by.				and the second se	

Glossary:

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: J14-2-3048

Page 2 of 3

DC Voltage Measurement

A/D - Converter Res	olution nomi	nal		
High Range:	1LSB =	6.1µV.	full range =	-100+300 mV
Low Range:	1LSB =	61nV.	full range =	-1+3mV
DASY measurement	parameters	Auto Zero	Time: 3 sec; Meas	uring time: 3 sec

Calibration Factors	x	Y	z
High Range	403.915 ± 0.15% (k=2)	405.171±0.15% (k=2)	404.667 ± 0.15% (k=2)
Low Range	3.98903 ± 0.7% (k=2)	3.94180 ± 0.7% (k=2)	3.93862 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	162.5*±1*

Certificate No: J14-2-3048

Page 3 of 3