RADIO TEST REPORT

Report No: 1707242W01

Issued for

ITALCOM GROUP

1728Coral Way, Coral Gables, Miami, Florida, United States 33145(Zip code: 518048)

Product Name:	4G LTE PHONE
Brand Name:	nyx mobile
Model Name:	HIT
Series Model:	N/A
FCC ID:	YPVITALCOMHIT
Test Standard:	FCC Part 22H and 24E

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from BZT, All Test Data Presented in this report is only applicable to presented Test sample.

TEST RESULT CERTIFICATION

Applicant's name:	ITALCOM GROUP
Address:	1728Coral Way, Coral Gables, Miami, Florida, United States 33145(Zip code : 518048)
Manufacture's Name:	Shenzhen qianhai aibo Science and Technology Ltd.
Address:	room 303, Ling Nan building, NO.3081, Qiaoxiang Road, Futian District, Shenzhen city, Guangdong Province, China
Product name:	4G LTE PHONE
Brand name:	nyx mobile
Model and/or type reference:	HIT
Standards:	FCC Part 22H and 24E
Test procedure	ANSI/TIA 603-D (2010)
under test (EUT) is in compliant sample identified in the report. This report shall not be reproduced.	as been tested by BZT and the test results show that the equipment ce with the FCC requirements. And it is applicable only to the tested uced except in full, without the written approval of BZT, this document T, personal only, and shall be noted in the revision of the document
Date of performance of tests	22 June. 2017~27 June. 2017
Date of Issue	28 June. 2017
Test Result	Pass
Testing Engi	(Sean she)
Technical Ma	anager:

Authorized Signatory:

(Hakim.hou)

(Vita Li)

TABLE OF CONTENTS P	age
1 INTRODUCTION	6
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 PRODUCT INFORMATION	7
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	9
4 MEASUREMENT INSTRUMENTS	10
5 TEST ITEMS	11
5.1 CONDUCTED OUTPUT POWER	11
5.2 PEAK TO AVERAGE RATIO	12
5.3 TRANSMITTER RADIATED POWER (EIRP/ERP)	13
5.4 OCCUPIED BANDWIDTH	14
5.5 FREQUENCY STABILITY	15
5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	16
5.7 BAND EDGE	17
5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	18
APPENDIX ATESTRESULT	20
A1CONDUCTED OUTPUT POWER	20
A2 PEAK-TO-AVERAGE RADIO	24
A3 TRANSMITTER RADIATED POWER (EIRP/ERP)	26
A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)	29
A5 FREQUENCY STABILITY	40
A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	45
A7 BAND EDGE	53
A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	61
APPENDIX BPHOTOS OF TEST SETUP	69

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	28 June. 2017	1707242W01	ALL	Initial Issue

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D: 2010,KDB 971168 D01 v02r02 and KDB 648474 D03 v01r04

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1049	Conducted OutputPower	Reporting Only	PASS	
2.0146 24.232	Peak-to-AverageRatio	< 13 dB	PASS	
2.1046	Effective Radiated Pow-	< 7 Watts max. ERP(Part 22)		
22.913	er/Equivalent Isotropic	< 2 Watts max. EIRP(Part 24)	PASS	
24.232	Radiated Power	(20)		
2.1049				
22.917	Occupied Bandwidth	Reporting Only	PASS	
24.238				
2.1055		< 2.5 ppm (Part 22)		
22.355	Frequency Stability	Emission must remain in band	PASS	
24.235		(Part 24)		
2.1051	Spurious Emission at			
22.917	Antenna Terminals	< 43+10log10(P[Watts])	PASS	
24.238	7 thomas Tommaio			
2.1053	Field Strength of Spurious			
22.917	Radiation	< 43+10log10(P[Watts])	PASS	
24.238	Nauialiui			
2.1051				
22.917	Band Edge	< 43+10log10(P[Watts])	PASS	
24.238				

1 INTRODUCTION

1.1 TEST FACTORY

BZT Testing Technology Co., Ltd.

Add.: Buliding 17, Xinghua Road Xingwei industrial Park Fuyong,

Baoan District, Shenzhen, Guangdong, China

FCC Registration No.: 701733

1.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance. \circ

No.	Item	Uncertainty
1	RF power,conducted	±0.71dB
2	Spurious emissions,conducted	±0.63dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±3.80dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±3.97dB
7	All emissions,radiated(>1G)	±3.03dB

2 PRODUCT INFORMATION

Product Designation:	4G LTE PHONE
Hardware version number:	NYX_HIT_001
Software version number:	HIT_AMXNYX_V001R
FCC ID:	YPVITALCOMHIT
	GSM/GPRS:
	850: 824.2 MHz ~ 848.8 MHz
Ty Fraguency	1900: 1850.2 MHz ~ 1909.8MHz
Tx Frequency:	WCDMA:
	Band V: 826.4 MHz ~ 846.6 MHz
	Band II: 1852.4 MHz ~ 1907.6 MHz
	GSM/GPRS:
	850: 869.2 MHz ~ 893.8 MHz
Dy Fraguenov	1900: 1930.2 MHz ~ 1989.8 MHz
Rx Frequency:	WCDMA:
	Band V: 871.4 MHz ~ 891.6 MHz
	Band II: 1932.4 MHz ~ 1987.6 MHz
Max RF Output Power:	GSM850:32.31dBm, PCS1900:29.03dBm GPRS850(1-Slot):32.29dBm, GPRS1900(1-Slot):29.01dBm GPRS850(2-Slot):31.89dBm, GPRS1900(2-Slot):28.55dBm GPRS850(3-Slot):30.48dBm, GPRS1900(3-Slot):27.08dBm GPRS850(4-Slot):30.03dBm, GPRS1900(4-Slot):26.64dBm EDGE 850(1-Slot):32.27dBm, EDGE 1900(1-Slot):28.98dBm EDGE 850(2-Slot):31.52dBm, EDGE 1900(2-Slot):28.30dBm EDGE 850(3-Slot):30.08dBm, EDGE 1900(3-Slot):26.86dBm EDGE 850(4-Slot):29.64dBm, EDGE 1900(4-Slot):26.36dBm WCDMABand V:22.64dBm, WCDMA Band II:22.84dBm
Type of Emission:	GSM(850): 324KGXW; GSM(1900): 317KGXW GPRS(850): 322KG7W; GPRS(1900): 321KG7W EDGE (850): 319KG7W; EDGE (1900): 317KG7W WCDMA850: 4M64F9W WCDMA1900: 4M64F9W
SIM Card:	SIM 1 and SIM 2 is a chipset unit and tested as single chipset,SIM 1 is used to tested
Antenna:	PIFA Antenna
Antonno goin:	GSM 850:0.53dBi ,PCS 1900:0.95dBi
Antenna gain:	WCDMA 850:0.52dBi, WCDMA1900:0.93dBi
Power Supply:	DC 3.7V by battery
Battery parameter:	Capacity: 2000mAh, Rated Voltage: 3.7V, Charge Limit: 4.2 V
Adapter:	Input: AC 100-240V, 50/60Hz, 0.15A
Λααρισι.	Output: DC 5V, 1A

GPRS/EDGE Class:	Multi-Class12
Extreme Vol. Limits:	DC3.5 V to 4.2V (Nominal DC3.7V)
Extreme Temp. Tolerance:	-30℃ to +50℃

^{**} Note: The High Voltage 4.2V and Low Voltage 3.5 V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage.

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

- 1. 30 MHz to 10th harmonic for GSM850 and WCDMA Band V.
- 2. 30 MHz to 10th harmonic for GSM1900 and WCDMA Band II.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

	TEST MODES		
BAND	RADIATED TCS	CONDUCTED TCS	
GSM 850	GSM LINK GPRS/ EDGE CLASS 12 LINK	GSM LINK GPRS/ EDGE CLASS 12 LINK	
GSM 1900	GSM LINK GPRS/ EDGE CLASS 12 LINK	GSM LINK GPRS/ EDGE CLASS 12 LINK	
WCDMA BAND V	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK	
WCDMA BAND II	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK	

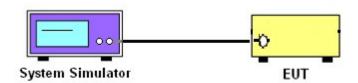
4 MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibra- tion	Calibrated Until
EMI Test Receiver	R&S	ESW	101535	2017.06.01	2018.05.31
Signal Analyzer	Agilent	N9020A	MY49100060	2017.03.11	2018.03.10
Test Receiver	R&S	ESCI	101427	2016.10.23	2017.10.22
Universal Radio Communication Tester	R&S	CMW500	117239	2016.10.23	2017.10.22
Bilog Antenna	TESEQ	CBL6111D	34678	2017.03.24	2018.03.23
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2017.03.06	2018.03.05
SHF-EHF Horn Antenna (15G-40GHz)	BBHA 9170	SCHWARZBECK	BBHA9170367	2017.05.02	2018.05.01
Low frequency cable	EM	R01	N/A	2017.03.12	2018.03.11
Low frequency cable	EM	R06	N/A	2017.03.12	2018.03.11
High frequency cable	SCHWARZBECK	R04	N/A	2017.03.12	2018.03.11
High frequency cable	SCHWARZBECK	R02	N/A	2017.03.12	2018.03.11
Vector signal generator	Agilent	E8257D-521	MY45141029	2016.10.23	2017.10.22
Pre-mplifier (0.1M-3GHz)	EM	EM330	60538	2017.03.12	2018.03.11
PreAmplifier (1G-26.5GHz)	Agilent	8449B	60538	2016.10.23	2017.10.22
Pre-mplifier (18G-40G)	MINI-CIRCUITS	AP-040G	1382501	2017.05.15	2018.05.14
Band Reject fil- ter(1920-1980MHz)	COM-MW	ZBSF-1920-1980	0092	2016.10.23	2017.10.22
Band Reject fil- ter(880-915MHz)	COM-MW	ZBSF-C897.5-35	707	2016.10.23	2017.10.22
Band Reject fil- ter(1710-1785MHz)	COM-MW	ZBSF-C1747.5-75	708	2016.10.23	2017.10.22
Band Reject fil- ter(1850-1910MHz)	COM-MW	ZBSF-C1880-60	709	2016.10.23	2017.10.22
Band Reject fil- ter(2500-2570MHz)	COM-MW	ZBSF-C2535-70	710	2016.10.23	2017.10.22
Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	2016.10.23	2017.10.22
trun table	EM	SC100_1	60531	N/A	N/A
Antnna mast	EM	SC100	N/A	N/A	N/A

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

5 TEST ITEMS

5.1 CONDUCTED OUTPUT POWER


Test overview

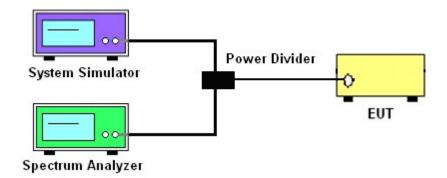
A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

Test procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set eut at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

Test setup

5.2 PEAK TO AVERAGE RATIO


TEST OVERVIEW

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db.

TEST PROCEDURES

- 1. The testing follows fcckdb 971168 v02r02 section
- 2. The eut was connected to the and peak and av system simulator& spectrum analysis reads
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure average power of the spectrum analysis

TEST SETUP

5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

TEST PROCEDURE

- 1. The testing follows FCC KDB 971168 D01 Section 5.2.1. (for CDMA/WCDMA), Section 5.2.2 (for GSM/GPRS) and ANSI / TIA-603-D-2010 Section 2.2.17.
- 2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
- 3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.
- 6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor, ERP/EIRP = P.SG + GT LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm);

PMeas(PK) = measured transmitter output power or PSD, in dBm or dBW;

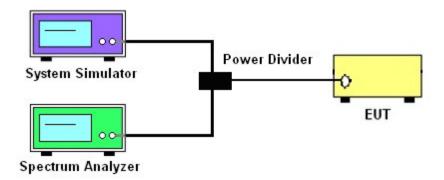
GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

5.4 OCCUPIED BANDWIDTH

TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.


The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

All modes of operation were investigated and the worst case configuration results are reported in this section.

TEST PROCEDURE

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
- 1 5% of the 99% occupied bandwidth observed in Step 7

TEST SETUP

5.5 FREQUENCY STABILITY

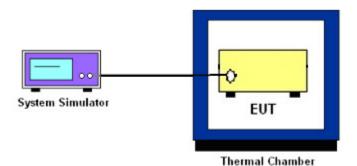
Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure


Temperature Variation

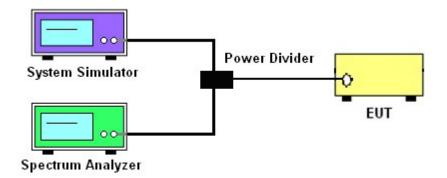
- 1. The testing follows fcckdb 971168 D01 section 9.0
- 2. The EUT was set up in the thermal chamber and connected with the system simulator.
- 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Voltage Variation

- 1. The testing follows FCC KDB 971168 D01 Section 9.0.
- 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.
- 3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 4. The variation in frequency was measured for the worst case.

TEST SETUP

5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS Test Overview


The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

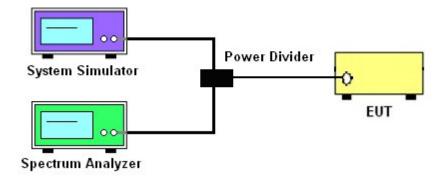
Test procedure

- 1. The testing FCC KDB 971168 D01 v02r02 Section 6.0. and ANSI/TIA-603-D-2010-Section 2.2.13.2(d)
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. The middle channel for the highest RF power within the transmitting frequency was measured.
- 5. The conducted spurious emission for the whole frequency range was taken.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)
- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm.

Test Setup

5.7 BAND EDGE

OVERVIEW


All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

TEST PROCEDURE

- 1.The testing FCC KDB 971168 D01 v02r02 Section 6.0. and ANSI/TIA-603-D-2010-Section 2.2.13.2(d)
- 2. Start and stop frequency were set such that the band edge would be placed in the center of the Plot.
- 3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 5. The band edges of low and high channels for the highest RF powers were measured.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)
- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm.

TEST SETUP

5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT Test overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized horn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

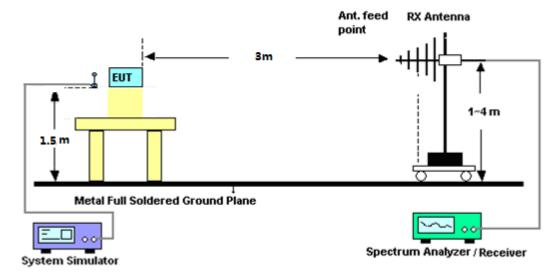
It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

Test procedure

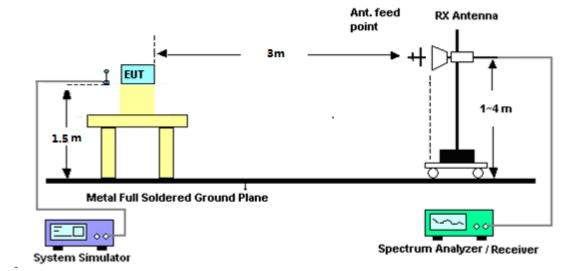
- 1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI/TIA-603-D-2010-Section 2.2.12.2(b)
- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize
- 9. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor,

ERP/EIRP = P.SG + GT - LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, t ypically dBW or dBm);


P.SG = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);


LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

TEST SETUP

For radiated test from 30MHz to 1GHz

For radiated test from above 1GHz

APPENDIX ATESTRESULT A1CONDUCTED OUTPUT POWER GSM 850:

Mode	Frequency (MHz)	AVG Power(dBm)
	824.2	32.01
GSM	836.6	31.97
	848.8	32.31
	824.2	31.98
GPRS(GMSK,1-Slot)	836.6	31.95
	848.8	32.29
	824.2	31.51
GPRS(GMSK,2-Slot)	836.6	31.49
	848.8	31.89
	824.2	30.10
GPRS(GMSK,3-Slot)	836.6	30.08
	848.8	30.48
	824.2	29.63
GPRS(GMSK,4-Slot)	836.6	29.62
	848.8	30.03
	824.2	31.96
EGPRS(GMSK,1-Slot)	836.6	31.93
	848.8	32.27
	824.2	31.25
EGPRS(GMSK,2-Slot)	836.6	31.16
	848.8	31.52
	824.2	29.88
EGPRS(GMSK,3-Slot)	836.6	29.75
	848.8	30.08
	824.2	29.33
EGPRS(GMSK,4-Slot)	836.6	29.23
	848.8	29.64

PCS 1900:

Mode	Frequency (MHz)	AVG Power(dBm)
	1850.2	29.03
GSM	1880.0	28.93
	1909.8	28.87
	1850.2	29.01
GPRS(GMSK,1-Slot)	1880.0	28.91
	1909.8	28.85
	1850.2	28.55
GPRS(GMSK,2-Slot)	1880.0	28.44
	1909.8	28.36
	1850.2	27.08
GPRS(GMSK,3-Slot)	1880.0	27.00
	1909.8	26.94
	1850.2	26.64
GPRS(GMSK,4-Slot)	1880.0	26.51
	1909.8	26.46
	1850.2	28.98
EGPRS(GMSK,1-Slot)	1880.0	28.89
	1909.8	28.83
	1850.2	28.30
EGPRS(GMSK,2-Slot)	1880.0	28.06
	1909.8	28.00
	1850.2	26.86
EGPRS(GMSK,3-Slot)	1880.0	26.65
	1909.8	26.63
	1850.2	26.36
EGPRS(GMSK,4-Slot)	1880.0	26.14
	1909.8	26.12

UMTS BAND V

Mode	Frequency(MHz)	AVG Power
WODAA 050	826.4	22.64
WCDMA 850 RMC	836.6	22.49
KIVIC	846.6	22.55
HODDA	826.4	22.62
HSDPA Subtest 1	836.6	22.47
Sublest 1	846.6	22.52
HODDA	826.4	22.19
HSDPA Subtest 2	836.6	22.04
Sublest 2	846.6	22.12
HODDA	826.4	21.76
HSDPA Subtest 3	836.6	21.60
Sublest 5	846.6	21.70
HODDA	826.4	21.34
HSDPA Subtest 4	836.6	21.26
Sublest 4	846.6	21.29
	826.4	22.54
HSUPA Subtest 1	836.6	22.42
Sublest	846.6	22.10
	826.4	21.65
HSUPA Subtest 2	836.6	21.45
Sublest 2	846.6	21.11
	826.4	21.55
HSUPA	836.6	21.02
Subtest 3	846.6	20.69
1101:2:	826.4	21.14
HSUPA	836.6	20.55
Subtest 4	846.6	20.29
	826.4	19.74
HSUPA	836.6	19.12
Subtest 5	846.6	18.84

UMTS BAND II

Mode	Frequency(MHz)	AVG Power
WODAA 4000	1852.4	22.61
WCDMA 1900 RMC	1880	22.79
KIVIC	1907.6	22.84
	1852.4	22.58
HSDPA Subtest 1	1880	22.76
Sublest 1	1907.6	22.81
	1852.4	22.08
HSDPA Subtest 2	1880	22.31
Sublest 2	1907.6	22.36
	1852.4	21.74
HSDPA Subtest 3	1880	21.89
Sublest 5	1907.6	21.89
	1852.4	21.28
HSDPA Subtest 4	1880	21.45
Sublest 4	1907.6	21.44
	1852.4	22.48
HSUPA Subtest 1	1880	22.67
Sublest 1	1907.6	22.31
	1852.4	21.59
HSUPA	1880	21.68
Subtest 2	1907.6	21.37
	1852.4	21.46
HSUPA	1880	21.25
Subtest 3	1907.6	20.93
	1852.4	21.04
HSUPA	1880	20.86
Subtest 4	1907.6	20.48
	1852.4	19.55
HSUPA	1880	19.41
Subtest 5	1907.6	19.01

A2 PEAK-TO-AVERAGE RADIO

Mada	Frequency	PEAK Power	AVG Power	PAR
Mode	(MHz)	(dBm)	(dBm)	(dB)
	824.2	32.13	32.01	0.12
GSM850	836.6	32.09	31.97	0.12
	848.8	32.42	32.31	0.11
	824.2	32.10	31.98	0.12
GPRS850	836.6	32.06	31.95	0.11
	848.8	32.41	32.29	0.12
	824.2	32.07	31.96	0.11
EDGE850	836.6	32.04	31.93	0.11
	848.8	32.38	32.27	0.11
	1850.2	29.13	29.03	0.10
PCS1900	1880	29.05	28.93	0.12
	1909.8	28.98	28.87	0.11
	1850.2	29.12	29.01	0.11
GPRS1900	1880	29.02	28.91	0.11
	1909.8	28.97	28.85	0.12
	1850.2	29.10	28.98	0.12
EDGE1900	1880	29.00	28.89	0.11
	1909.8	28.94	28.83	0.11

24 of 69

Mode	Frequency	PEAK Power	AVG Power	PAR
iviode	(MHz)	(dBm)	(dBm)	(dB)
	826.4	25.19	22.64	2.55
WCDMA 850 RMC	836.6	25.15	22.49	2.66
	846.6	25.42	22.55	2.87
	826.4	25.55	22.62	2.93
HSDPA 850	836.6	25.25	22.47	2.78
	846.6	25.46	22.52	2.94
	826.4	25.17	22.54	2.63
HSUPA 850	836.6	25.06	22.42	2.64
	846.6	24.62	22.10	2.52
	1852.4	25.26	22.61	2.65
WCDMA 1900 RMC	1880	25.44	22.79	2.65
	1907.6	25.68	22.84	2.84
	1852.4	25.49	22.58	2.91
HSDPA 1900	1880	25.58	22.76	2.82
	1907.6	25.69	22.81	2.88
	1852.4	25.26	22.48	2.78
HSUPA 1900	1880	25.55	22.67	2.88
	1907.6	25.28	22.31	2.97

A3 TRANSMITTER RADIATED POWER (EIRP/ERP)

Radiated Power (ERP) for GSM 850 MHZ									
	Result								
Mode	Frequency	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion		
		(dBm)	loss	(dBi)	E.R.P(dBm)	Of Max. ERP			
	824.2	23.64	0.44	6.5	29.70	Horizontal	Pass		
	824.2	25.43	0.44	6.5	31.49	Vertical	Pass		
GSM850	836.6	23.48	0.45	6.5	29.53	Horizontal	Pass		
GSIVIOSU	836.6	25.42	0.45	6.5	31.47	Vertical	Pass		
	848.8	24.01	0.46	6.5	30.05	Horizontal	Pass		
	848.8	25.74	0.46	6.5	31.78	Vertical	Pass		
	824.2	23.60	0.44	6.5	29.66	Horizontal	Pass		
	824.2	25.19	0.44	6.5	31.25	Vertical	Pass		
GPRS850	836.6	23.44	0.45	6.5	29.49	Horizontal	Pass		
GPR3630	836.6	25.41	0.45	6.5	31.46	Vertical	Pass		
	848.8	23.85	0.46	6.5	29.89	Horizontal	Pass		
	848.8	25.44	0.46	6.5	31.48	Vertical	Pass		
	824.2	23.67	0.44	6.5	29.73	Horizontal	Pass		
	824.2	25.22	0.44	6.5	31.28	Vertical	Pass		
EDOE 050	836.6	23.68	0.45	6.5	29.73	Horizontal	Pass		
EDGE850	836.6	25.41	0.45	6.5	31.46	Vertical	Pass		
	848.8	23.99	0.46	6.5	30.03	Horizontal	Pass		
	848.8	25.62	0.46	6.5	31.66	Vertical	Pass		

Radiated Power (EIRP) for PCS 1900 MHZ							
Mode	Frequency	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion
		(dBm)	loss	(dBi)	E.I.R.P.(dBm)	Of Max.EIRP.	
	1850.2	18.84	2.41	10.35	26.78	Horizontal	Pass
	1850.2	20.57	2.41	10.35	28.51	Vertical	Pass
PCS1900	1880	18.6	2.42	10.35	26.53	Horizontal	Pass
PC31900	1880	20.48	2.42	10.35	28.41	Vertical	Pass
	1909.8	18.51	2.43	10.35	26.43	Horizontal	Pass
	1909.8	20.43	2.43	10.35	28.35	Vertical	Pass
	1850.2	18.6	2.41	10.35	26.54	Horizontal	Pass
	1850.2	20.44	2.41	10.35	28.38	Vertical	Pass
GPRS1900	1880	18.76	2.42	10.35	26.69	Horizontal	Pass
GFK31900	1880	20.4	2.42	10.35	28.33	Vertical	Pass
	1909.8	18.71	2.43	10.35	26.63	Horizontal	Pass
	1909.8	20.21	2.43	10.35	28.13	Vertical	Pass
	1850.2	18.67	2.41	10.35	26.61	Horizontal	Pass
	1850.2	20.55	2.41	10.35	28.49	Vertical	Pass
EDGE1900	1880	18.68	2.42	10.35	26.61	Horizontal	Pass
LDGE 1900	1880	20.42	2.42	10.35	28.35	Vertical	Pass
	1909.8	18.71	2.43	10.35	26.63	Horizontal	Pass
	1909.8	20.18	2.43	10.35	28.10	Vertical	Pass

Radiated Power (ERP) for WCDMA Band V								
Mode	Frequency	S G.Level	Cable	Gain	PMeas E.R.P	Polarization	Conclusion	
		(dBm)	loss	(dBi)	(dBm)	Of Max.ERP		
	826.4	14.20	0.44	6.5	20.26	Horizontal	Pass	
	826.4	16.07	0.44	6.5	22.13	Vertical	Pass	
Band V	836.6	13.93	0.45	6.5	19.98	Horizontal	Pass	
Бапи у	836.6	15.93	0.45	6.5	21.98	Vertical	Pass	
	846.4	14.08	0.46	6.5	20.12	Horizontal	Pass	
	846.4	15.99	0.46	6.5	22.03	Vertical	Pass	

Radiated Power (EIRP) for WCDMA Band II								
Mode	Frequency	S G.Level	Cable	Gain	PMeas	Polarization	Conclusion	
		(dBm)	loss	(dBi)	E.I.R.P.(dBm)	Of Max.EIRP		
	1852.4	12.27	2.41	10.35	20.21	Horizontal	Pass	
	1852.4	14.14	2.41	10.35	22.08	Vertical	Pass	
Band II	1880	12.48	2.42	10.35	20.41	Horizontal	Pass	
Danu II	1880	14.35	2.42	10.35	22.28	Vertical	Pass	
	1907.4	12.7	2.43	10.35	20.62	Horizontal	Pass	
	1907.4	14.4	2.43	10.35	22.32	Vertical	Pass	

A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)

Occupied Bandwidth for GSM 850 band								
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth					
Mode	Frequency(MHZ)	(99%)(kHz)	(-26dBc)(kHz)					
Low Channel	824.2	244.24	320.1					
Middle Channel	836.6	247.96	317.2					
High Channel	848.8	248.50	323.6					
	Occupied Bandwidth for GPRS 850 band							
Mode	Frequency(MHz)	Occupied Bandwidth	Emission Bandwidth					
Mode		(99%)(kHz)	(-26dBc)(kHz)					
Low Channel	824.2	242.59	315.3					
Middle Channel	836.6	243.73	315.1					
High Channel	nel 848.8 243.60		322.0					
	Occupied Band	width for EDGE 850 band						
Mode	Fraguanay(MHz)	Occupied Bandwidth	Emission Bandwidth					
Mode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz)					
Low Channel	824.2	245.00	317.5					
Middle Channel	836.6	245.81	310.3					
High Channel	hannel 848.8 245.36		319.1					

	Occupied Band	lwidth for GSM1900 band				
Mode	Fraguanay/MHz)	Occupied Bandwidth	Emission Bandwidth			
Mode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz)			
Low Channel	1850.2	250.42	316.9			
Middle Channel	1880.0	247.71	316.5			
High Channel	1909.8	218.07	316.2			
	Occupied Bandy	width for GPRS 1900 band				
Mada		Occupied Bandwidth	Emission Bandwidth			
Mode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz)			
Low Channel	1850.2	244.49	312.2			
Middle Channel	1880.0	245.17	315.3			
High Channel	1909.8	244.77	318.5			
	Occupied Bandy	width for EDGE 1900 band				
Mada	Fragues ou (MIII-)	Occupied Bandwidth	Emission Bandwidth			
Mode	Frequency(MHz)	(99%)(kHz)	(-26dBc)(kHz)			
Low Channel	1850.2	242.29	317.3			
Middle Channel	1880.0	245.56	315.8			
High Channel	1909.8	243.98	312.1			

GSM 850 CH 128

GSM 850 CH 190

GSM 850 CH 251

GPRS 850 CH 128

GPRS 850 CH 190

GPRS 850 CH 251

EDGE 850 CH 128

EDGE 850 CH 190

EDGE 850 CH 251

PCS 1900 CH 512


PCS 1900 CH 661

PCS 1900 CH 810

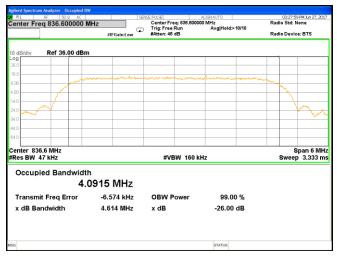
GPRS 1900 CH 512

GPRS 1900 CH 661

GPRS 1900 CH 810

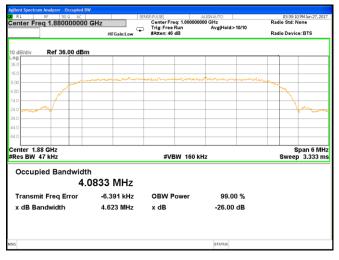
EDGE 1900 CH 512

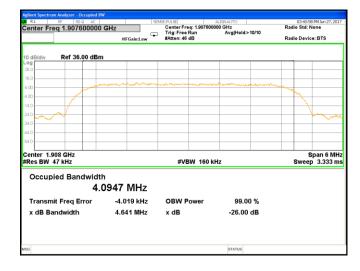

EDGE 1900 CH 661


EDGE 1900 CH 810

UMTS BAND V CH 4132

UMTS BAND V CH 4183


UMTS BAND V CH 4233


UMTS BAND II CH 9262

UMTS BAND II CH 9400

UMTS BAND II CH 9538

A5 FREQUENCY STABILITY Normal Voltage = 3.7V.; Battery End Point (BEP) = 3.5 V.; Maximum Voltage = 4.2 V

	GSM 850 Middle Channel/836.6MHz									
Temperature (°C)	Voltage (Volt)									
50		25.61	0.031							
40		32.07	0.038							
30		21.25	0.025		PASS					
20		27.15	0.032							
10	Normal Voltage	12.26	0.015							
0		12.28	0.015	2.5ppm						
-10		18.24	0.022							
-20		35.86	0.043							
-30		17.67	0.021							
25	Maximum Voltage	22.28	0.027							
25	BEP	24.34	0.029							

GPRS 850 Middle Channel/836.6MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result				
50		21.06	0.025						
40		33.49	0.040						
30		28.64	0.034						
20		30.22	0.036						
10	Normal Voltage	12.84	0.015						
0		23.07	0.028	2.5ppm	PASS				
-10		26.32	0.031						
-20		33.20	0.040						
-30		36.02	0.043						
25	Maximum Voltage	19.09	0.023						
25	BEP	16.95	0.020						

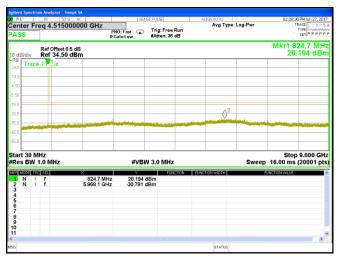
EDGE 850 Middle Channel/836.6MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result				
50		33.47	0.040						
40		15.22	0.018		PASS				
30		23.21	0.028						
20		25.47	0.030	Within Au-					
10	Normal Voltage	20.01	0.024						
0		35.07	0.042	thorized					
-10		21.22	0.025	Band					
-20		27.70	0.033						
-30		11.61	0.014						
25	Maximum Voltage	16.29	0.019]					
25	BEP	36.33	0.043	7					

GSM 1900 Middle Channel/1880MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result				
50		18.46	0.010						
40		16.50	0.009						
30		26.62	0.014						
20		34.76	0.018						
10	Normal Voltage	24.55	0.013	Within					
0		16.64	0.009	Authorized	PASS				
-10		34.31	0.018	Band					
-20		25.47	0.014						
-30		27.22	0.014						
25	Maximum Voltage	29.59	0.016						
25	BEP	22.52	0.012						

	GPRS 1900 Middle Channel/1880MHz										
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result						
50		34.05	0.018								
40		20.76	0.011								
30		13.18	0.007								
20		29.66	0.016								
10	Normal Voltage	27.56	0.015	Within							
0		30.80	0.016	Authorized	PASS						
-10		34.95	0.019	Band							
-20		16.56	0.009								
-30		33.49	0.018								
25	Maximum Voltage	13.95	0.007								
25	BEP	18.05	0.010								

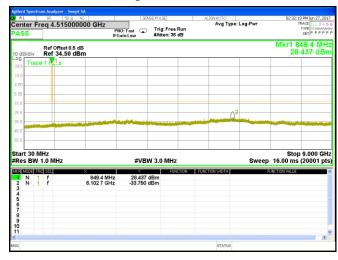
EDGE 1900 Middle Channel/1880MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result				
50		14.03	0.007						
40		34.63	0.018		PASS				
30		13.48	0.007						
20		36.22	0.019	Within Au-					
10	Normal Voltage	19.26	0.010						
0		31.04	0.017	thorized					
-10		18.99	0.010	Band					
-20]	26.61	0.014						
-30]	33.69	0.018]					
25	Maximum Voltage	12.04	0.006						
25	BEP	13.83	0.007]					

WCDMA V Middle Channel/836.6MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result				
50		29.95	0.036						
40		13.81	0.017						
30		12.57	0.015	-	PASS				
20		14.19	0.017						
10	Normal Voltage	21.18	0.025						
0		18.93	0.023	2.5ppm					
-10		26.92	0.032						
-20		20.39	0.024						
-30		27.89	0.033						
25	Maximum Voltage	25.13	0.030						
25	BEP	15.58	0.019						

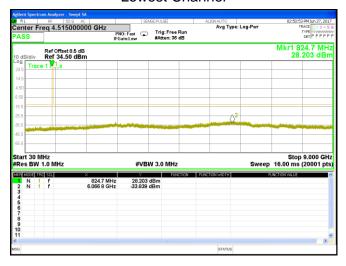

1. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

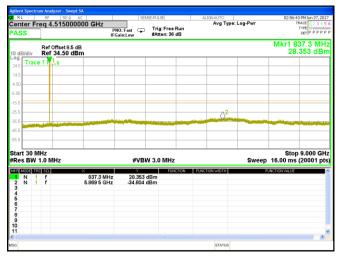

	WCDMA II Middle Channel/1880MHz									
Temperature (°C)	Voltage (Volt)	Freq. Dev. (Hz)	Freq. Dev. (ppm)	Limit	Result					
50		23.20	0.012							
40		19.65	0.010							
30		24.37	0.013							
20		16.05	0.009							
10	Normal Voltage	16.89	0.009	Within Au-						
0		34.21	0.018	thorized	PASS					
-10		32.21	0.017	Band						
-20		26.72	0.014							
-30		13.14	0.007							
25	Maximum Voltage	26.82	0.014							
25	BEP	36.04	0.019							

^{1.} The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.


A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS GSM 850 BAND

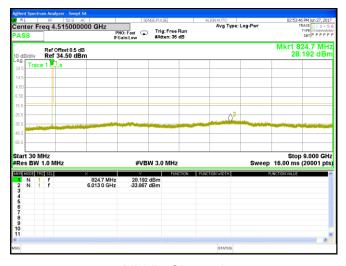
Lowest Channel




Highest Channel

GPRS 850 BAND

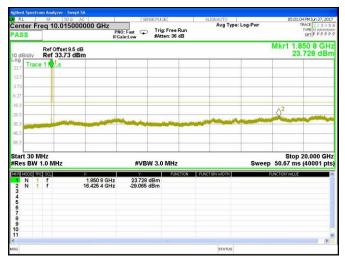
Lowest Channel

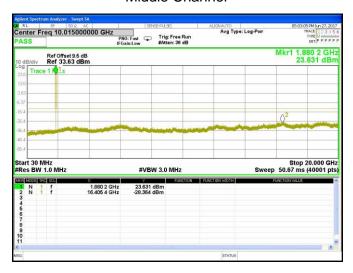


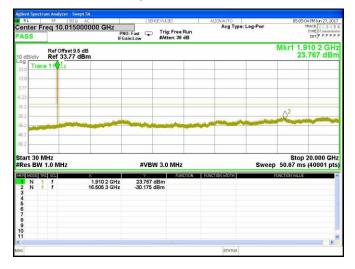
Highest Channel

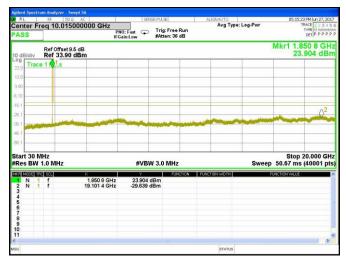
EDGE 850 BAND

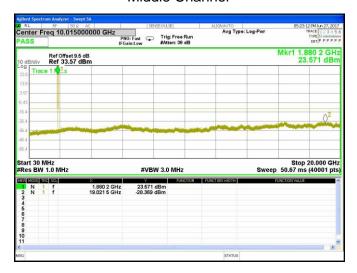
Lowest Channel

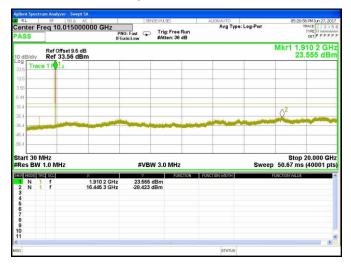


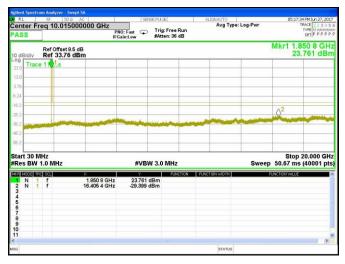

Highest Channel

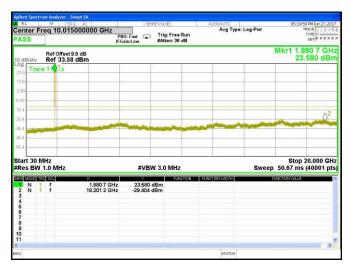

GSM1900 BAND(30M-20G)

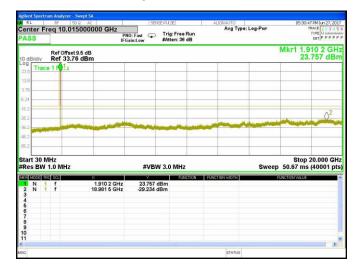

Middle Channel


Highest Channel

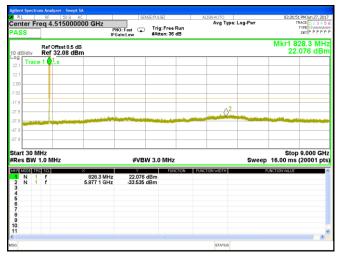

GPRS1900 BAND(30M-20G)


Middle Channel


Highest Channel


EDGE 1900 BAND(30M-20G)

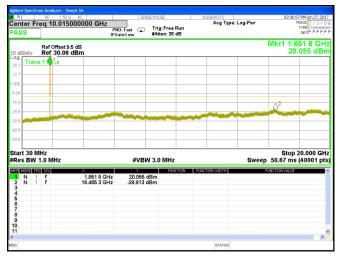
Middle Channel

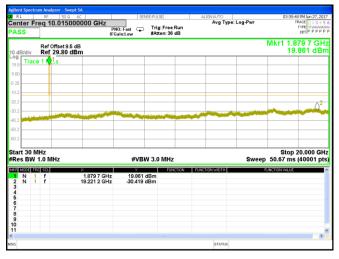


Highest Channel

WCDMA Band V (RMC 12.2Kbps)

Lowest Channel




Highest Channel

WCDMA Band II (RMC 12.2Kbps)(30M-20G)

Middle Channel

Highest Channel

A7 BAND EDGE

GSM 850

Lowest Band Edge

GPRS 850

Lowest Band Edge



EDGE 850

Lowest Band Edge

Lowest Band Edge

GPRS 1900

Lowest Band Edge

EDGE 1900

Lowest Band Edge

WCDMA Band VRMC 12.2Kbps

Lowest Band Edge

WCDMA Band IIRMC 12.2Kbps

Lowest Band Edge

A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT GSM 850: (30-9000)MHz

IVI 650. (50-9000)IVII		GSM	850: (30-9	000)MHz			
	The W	orst Test R	esults Ch	annel 128/	824.2 MHz		
F	S G.Lev	۸ ۱/ -ID:\	1	PMea	Limit	Margin	Dalasitas
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity
1648.50	-41.44	9.40	4.75	-36.79	-13.00	-23.79	Н
2472.23	-40.01	10.60	8.39	-37.80	-13.00	-24.80	Н
3296.67	-31.36	12.00	11.79	-31.15	-13.00	-18.15	Н
1648.03	-44.57	9.40	4.75	-39.92	-13.00	-26.92	V
2472.55	-44.11	10.60	8.39	-41.90	-13.00	-28.90	V
3296.68	-43.08	12.00	11.79	-42.87	-13.00	-29.87	V
	The W	orst Test R	esults Ch	annel 190/	836.6 MHz		
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polority
Frequency(MHZ)	(dBm)	Anii(ubi)	L055	(dBm)	(dBm)	(dB)	Polarity
1672.80	-40.79	9.50	4.76	-36.05	-13.00	-23.05	Н
2509.91	-40.56	10.70	8.40	-38.26	-13.00	-25.26	Н
3346.32	-31.92	12.20	11.80	-31.52	-13.00	-18.52	Н
1673.04	-44.11	9.40	4.75	-39.46	-13.00	-26.46	V
2509.65	-44.35	10.60	8.39	-42.14	-13.00	-29.14	V
3346.30	-43.36	12.20	11.82	-42.98	-13.00	-29.98	V
	The W	orst Test R	esults Ch	annel 251/	848.8 MHz		
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
r requericy(ivii iz)	(dBm)	Ant(ubi)	L055	(dBm)	(dBm)	(dB)	Folality
1697.22	-40.65	9.60	4.77	-35.82	-13.00	-22.82	Н
2546.13	-39.39	10.80	8.50	-37.09	-13.00	-24.09	Н
3394.95	-31.53	12.50	11.90	-30.93	-13.00	-17.93	Н
1697.22	-44.52	9.60	4.77	-39.69	-13.00	-26.69	V
2546.49	-45.44	10.80	8.50	-43.14	-13.00	-30.14	V
3394.99	-43.23	12.50	11.90	-42.63	-13.00	-29.63	V

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

GPRS 850: (30-9000)MHz

13 030. (30-9000)N	/II I <u>L</u>						
GPRS 850: (30-9000)MHz							
	The W	orst Test R	esults Ch	annel 128/	824.2 MHz		
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
Frequency(MH2)	(dBm)	Anti(ubi)	L088	(dBm)	(dBm)	(dB)	Polarity
1648.21	-40.29	9.40	4.75	-35.64	-13.00	-22.64	Н
2472.61	-40.22	10.60	8.39	-38.01	-13.00	-25.01	Н
3296.52	-31.23	12.00	11.79	-31.02	-13.00	-18.02	Н
1648.13	-44.57	9.40	4.75	-39.92	-13.00	-26.92	V
2472.40	-45.10	10.60	8.39	-42.89	-13.00	-29.89	V
3296.91	-43.94	12.00	11.79	-43.73	-13.00	-30.73	V
	The W	orst Test R	esults Ch	annel 190/	836.6 MHz		
F(\(\lambda \)	S G.Lev	A 4(-ID:)	1	PMea	Limit	Margin	Dalavitu
Frequency(MHz)	(dBm)	Ant(dBi) L	Loss	(dBm)	(dBm)	(dB)	Polarity
1673.21	-40.46	9.50	4.76	-35.72	-13.00	-22.72	Н
2509.54	-40.52	10.70	8.40	-38.22	-13.00	-25.22	Н
3346.03	-31.27	12.20	11.80	-30.87	-13.00	-17.87	Н
1673.19	-44.36	9.40	4.75	-39.71	-13.00	-26.71	V
2509.73	-44.50	10.60	8.39	-42.29	-13.00	-29.29	V
3346.41	-43.15	12.20	11.82	-42.77	-13.00	-29.77	V
	The W	orst Test R	esults Ch	annel 251/	848.8 MHz		
Fraguanov(MHz)	S G.Lev	۸ nt/dDi\	Loss	PMea	Limit	Margin	Polarity
Frequency(MHz)	(dBm)	Ant(dBi)	LUSS	(dBm)	(dBm)	(dB)	Polarity
1697.42	-41.32	9.60	4.77	-36.49	-13.00	-23.49	Н
2546.38	-39.91	10.80	8.50	-37.61	-13.00	-24.61	Н
3394.88	-32.24	12.50	11.90	-31.64	-13.00	-18.64	Н
1697.20	-43.28	9.60	4.77	-38.45	-13.00	-25.45	V
2546.52	-45.18	10.80	8.50	-42.88	-13.00	-29.88	V
3395.10	-43.50	12.50	11.90	-42.90	-13.00	-29.90	V

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

EDGE 850: (30-9000)MHz

3E 850: (30-9000)N		EGPRS	S 850: (30-	9000)MHz				
	The Worst Test Results Channel 128/824.2 MHz							
F	S G.Lev	A(/ ID')	1 -	PMea	Limit	Margin	D-Is it	
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity	
1648.28	-41.52	9.40	4.75	-36.87	-13.00	-23.87	Н	
2472.56	-39.32	10.60	8.39	-37.11	-13.00	-24.11	Н	
3296.76	-31.66	12.00	11.79	-31.45	-13.00	-18.45	Н	
1648.05	-43.46	9.40	4.75	-38.81	-13.00	-25.81	V	
2472.35	-44.09	10.60	8.39	-41.88	-13.00	-28.88	V	
3296.92	-42.85	12.00	11.79	-42.64	-13.00	-29.64	V	
	The W	orst Test R	esults Ch	annel 190/	836.6 MHz			
Fraguanay/MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polority	
Frequency(MHz)	(dBm)	, ,	L088	(dBm)	(dBm)	(dB)	Polarity	
1672.88	-41.15	9.50	4.76	-36.41	-13.00	-23.41	Н	
2509.58	-40.33	10.70	8.40	-38.03	-13.00	-25.03	Н	
3346.40	-31.08	12.20	11.80	-30.68	-13.00	-17.68	Н	
1672.96	-43.22	9.40	4.75	-38.57	-13.00	-25.57	V	
2509.55	-44.15	10.60	8.39	-41.94	-13.00	-28.94	V	
3346.15	-43.18	12.20	11.82	-42.80	-13.00	-29.80	V	
	The W	orst Test R	esults Ch	annel 251/	848.8 MHz			
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity	
r requericy(ivii iz)	(dBm)	Ant(ubi)	L055	(dBm)	(dBm)	(dB)	Folarity	
1697.25	-40.99	9.60	4.77	-36.16	-13.00	-23.16	Н	
2546.25	-40.51	10.80	8.50	-38.21	-13.00	-25.21	Н	
3395.06	-32.06	12.50	11.90	-31.46	-13.00	-18.46	Н	
1697.38	-43.62	9.60	4.77	-38.79	-13.00	-25.79	V	
2546.36	-44.97	10.80	8.50	-42.67	-13.00	-29.67	V	
3395.04	-42.96	12.50	11.90	-42.36	-13.00	-29.36	V	

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

PCS 1900: (30-20000)MHz

,	VITZ	DCS 1	900: (30-2	0000)MHz				
The Worst Test Results for Channel 512/1850.2MHz								
	S G.Lev	Λ :=4(=ID:)	Lana	PMea	Limit	Margin	Dalaritu	
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity	
3700.01	-33.80	12.60	12.93	-34.13	-13.00	-21.13	Н	
5550.59	-35.03	13.10	17.11	-39.04	-13.00	-26.04	Н	
7400.93	-33.27	11.50	22.20	-43.97	-13.00	-30.97	Н	
3700.51	-35.24	12.60	12.93	-35.57	-13.00	-22.57	V	
5550.27	-34.54	13.10	17.11	-38.55	-13.00	-25.55	V	
7400.57	-32.99	11.50	22.20	-43.69	-13.00	-30.69	V	
	The Wor	st Test Res	sults for C	hannel 661	/1880.0MH	Z		
Fraguerov/MII-	S G.Lev	Ant/dD:\	Loop	PMea	Limit	Margin	Dolority	
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity	
3759.79	-34.21	12.60	12.93	-34.54	-13.00	-21.54	Н	
5640.08	-34.71	13.10	17.11	-38.72	-13.00	-25.72	Н	
7520.18	-32.88	11.50	22.20	-43.58	-13.00	-30.58	Н	
3759.97	-34.84	12.60	12.93	-35.17	-13.00	-22.17	V	
5640.12	-35.12	13.10	17.11	-39.13	-13.00	-26.13	V	
7520.05	-32.15	11.50	22.20	-42.85	-13.00	-29.85	V	
	The Wor	st Test Res	sults for C	hannel 810)/1909.8MH	Z		
Fraguerov/MII-	S G.Lev	Ant/dD:\	Loop	PMea	Limit	Margin	Dolority	
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity	
3819.51	-33.48	12.60	12.93	-33.81	-13.00	-20.81	Н	
5729.03	-34.00	13.10	17.11	-38.01	-13.00	-25.01	Н	
7639.08	-33.49	11.50	22.20	-44.19	-13.00	-31.19	Н	
3819.59	-35.41	12.60	12.93	-35.74	-13.00	-22.74	V	
5729.39	-34.65	13.10	17.11	-38.66	-13.00	-25.66	V	
7639.20	-31.98	11.50	22.20	-42.68	-13.00	-29.68	V	

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

GPRS 1900: (30-20000)MHz

RS 1900: (30-2000)	.,2	GPRS1	900: (30-2	0000)MHz					
The Worst Test Results for Channel 512/1850.2MHz									
Frequency(MHz)	S G.Lev	Λ := 4 (=ID :)	Loss	PMea	Limit	Margin	Polarity		
	(dBm)	Ant(dBi)		(dBm)	(dBm)	(dB)			
3700.24	-34.78	12.60	12.93	-35.11	-13.00	-22.11	Н		
5550.35	-34.26	13.10	17.11	-38.27	-13.00	-25.27	Н		
7400.85	-32.57	11.50	22.20	-43.27	-13.00	-30.27	Н		
3700.51	-35.86	12.60	12.93	-36.19	-13.00	-23.19	V		
5550.61	-34.51	13.10	17.11	-38.52	-13.00	-25.52	V		
7400.89	-32.85	11.50	22.20	-43.55	-13.00	-30.55	V		
The Worst Test Results for Channel 661/1880.0MHz									
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
	(dBm)			(dBm)	(dBm)	(dB)			
3759.98	-33.53	12.60	12.93	-33.86	-13.00	-20.86	Н		
5640.19	-34.18	13.10	17.11	-38.19	-13.00	-25.19	Н		
7519.95	-32.81	11.50	22.20	-43.51	-13.00	-30.51	Н		
3760.34	-34.81	12.60	12.93	-35.14	-13.00	-22.14	V		
5640.33	-34.06	13.10	17.11	-38.07	-13.00	-25.07	V		
7520.21	-32.79	11.50	22.20	-43.49	-13.00	-30.49	V		
	The Wor	st Test Res	sults for C	hannel 810	D/1909.8MH	z			
Fraguenov(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
Frequency(MHz)	(dBm)	Ant(ubi)	L055	(dBm)	(dBm)	(dB)	Folanty		
3819.58	-34.06	12.60	12.93	-34.39	-13.00	-21.39	Н		
5729.36	-35.14	13.10	17.11	-39.15	-13.00	-26.15	Н		
7638.93	-33.41	11.50	22.20	-44.11	-13.00	-31.11	Н		
3819.36	-34.79	12.60	12.93	-35.12	-13.00	-22.12	V		
5729.21	-34.43	13.10	17.11	-38.44	-13.00	-25.44	V		
7639.15	-33.09	11.50	22.20	-43.79	-13.00	-30.79	V		

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

EDGE 1900: (30-20000)MHz

JE 1900. (30-2000)	,	EGPRS	1900: (30-	20000)MH	Z					
The Worst Test Results for Channel 512/1850.2MHz										
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity			
	(dBm)			(dBm)	(dBm)	(dB)				
3700.41	-33.81	12.60	12.93	-34.14	-13.00	-21.14	Н			
5550.57	-34.39	13.10	17.11	-38.40	-13.00	-25.40	Н			
7400.74	-32.92	11.50	22.20	-43.62	-13.00	-30.62	Н			
3700.51	-35.27	12.60	12.93	-35.60	-13.00	-22.60	V			
5550.29	-34.18	13.10	17.11	-38.19	-13.00	-25.19	V			
7400.81	-32.13	11.50	22.20	-42.83	-13.00	-29.83	V			
The Worst Test Results for Channel 661/1880.0MHz										
- (AUL)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity			
Frequency(MHz)	(dBm)			(dBm)	(dBm)	(dB)				
3760.03	-33.88	12.60	12.93	-34.21	-13.00	-21.21	Н			
5639.91	-34.13	13.10	17.11	-38.14	-13.00	-25.14	Н			
7520.03	-33.35	11.50	22.20	-44.05	-13.00	-31.05	Н			
3759.98	-35.26	12.60	12.93	-35.59	-13.00	-22.59	V			
5640.09	-34.75	13.10	17.11	-38.76	-13.00	-25.76	V			
7519.95	-32.78	11.50	22.20	-43.48	-13.00	-30.48	V			
	The Wor	st Test Res	sults for C	hannel 810	D/1909.8MH	z				
Eroguopov(MHz)	S G.Lev	Ant/dBi\	Loca	PMea	Limit	Margin	Polarity			
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dB)	Polarity			
3819.55	-34.66	12.60	12.93	-34.99	-13.00	-21.99	Н			
5729.39	-34.77	13.10	17.11	-38.78	-13.00	-25.78	Н			
7638.99	-32.39	11.50	22.20	-43.09	-13.00	-30.09	Н			
3819.61	-34.99	12.60	12.93	-35.32	-13.00	-22.32	V			
5729.51	-34.03	13.10	17.11	-38.04	-13.00	-25.04	V			
7639.08	-32.95	11.50	22.20	-43.65	-13.00	-30.65	V			

Note: (1) Below 30MHz no Spurious found is the worst condition.

⁽²⁾Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

UMTS band V(30-9000)MHz

		WCDMA	Band V: (3	80-9000)MF	łz				
The wost testresults channel 4132/826.4MHz									
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
	(dBm)			(dBm)	(dBm)	(dB)			
1652.20	-41.32	9.40	4.75	-36.67	-13.00	-23.67	Н		
2479.32	-39.44	10.60	8.39	-37.23	-13.00	-24.23	Н		
3305.75	-31.15	12.00	11.79	-30.94	-13.00	-17.94	Н		
1652.24	-44.61	9.40	4.75	-39.96	-13.00	-26.96	V		
2479.66	-44.35	10.60	8.39	-42.14	-13.00	-29.14	V		
3305.61	-43.86	12.00	11.79	-43.65	-13.00	-30.65	V		
The Worst Test Results Channel 4183/836.6MHz									
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity		
	(dBm)			(dBm)	(dBm)	(dB)			
1673.19	-41.61	9.50	4.76	-36.87	-13.00	-23.87	Н		
2509.84	-39.38	10.70	8.40	-37.08	-13.00	-24.08	Н		
3346.18	-31.03	12.20	11.80	-30.63	-13.00	-17.63	Н		
1673.02	-43.67	9.40	4.75	-39.02	-13.00	-26.02	V		
2509.86	-45.18	10.60	8.39	-42.97	-13.00	-29.97	V		
3346.09	-42.54	12.20	11.82	-42.16	-13.00	-29.16	V		
	The Wo	orst Test R	esults Cha	annel 4233	/846.6MHz				
Fragues ov (MHz)	S G.Lev	Ant(dBi)	Loop	PMea	Limit	Margin	Polarity		
Frequency(MHz)	(dBm)	Anti(ubi)	Loss	(dBm)	(dBm)	(dB)	Polarity		
1693.20	-40.79	9.60	4.77	-35.96	-13.00	-22.96	Н		
2539.13	-40.13	10.80	8.50	-37.83	-13.00	-24.83	Н		
3386.04	-31.81	12.50	11.90	-31.21	-13.00	-18.21	Н		
1693.52	-44.56	9.60	4.77	-39.73	-13.00	-26.73	V		
2539.29	-44.10	10.80	8.50	-41.80	-13.00	-28.80	V		
			11.90	-43.29	-13.00	-30.29	V		

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

UMTS band II(30-20000)MHz

WCDMA Band II: (30-20000)MHz									
The Worst Test Results for Channel 9262/1852.4MHz									
S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity			
(dBm)			(dBm)	(dBm)	(dB)				
-34.34	12.60	12.93	-34.67	-13.00	-21.67	Н			
-35.49	13.10	17.11	-39.50	-13.00	-26.50	Н			
-33.27	11.50	22.20	-43.97	-13.00	-30.97	Н			
-35.57	12.60	12.93	-35.90	-13.00	-22.90	V			
-34.43	13.10	17.11	-38.44	-13.00	-25.44	V			
-32.64	11.50	22.20	-43.34	-13.00	-30.34	V			
The Worst Test Results for Channel 9400/1880MHz									
S G.Lev	Ant(dDi)	Loss	PMea	Limit	Margin	Polarity			
(dBm)	Ant(ubi)		(dBm)	(dBm)	(dB)				
-34.30	12.60	12.93	-34.63	-13.00	-21.63	Н			
-35.30	13.10	17.11	-39.31	-13.00	-26.31	Н			
-32.98	11.50	22.20	-43.68	-13.00	-30.68	Н			
-34.98	12.60	12.93	-35.31	-13.00	-22.31	V			
-33.77	13.10	17.11	-37.78	-13.00	-24.78	V			
-32.67	11.50	22.20	-43.37	-13.00	-30.37	V			
The Wors	st Test Res	ults for Ch	nannel 953	8/1907.6MF	lz				
S G.Lev	Ant(dRi)	Loop	PMea	Limit	Margin	Polarity			
(dBm)	Anti(ubi)	L055	(dBm)	(dBm)	(dB)	Folarity			
-33.60	12.60	12.93	-33.93	-13.00	-20.93	Н			
-34.40	13.10	17.11	-38.41	-13.00	-25.41	Н			
-33.62	11.50	22.20	-44.32	-13.00	-31.32	Н			
-34.81	12.60	12.93	-35.14	-13.00	-22.14	V			
-34.67	13.10	17.11	-38.68	-13.00	-25.68	V			
-31.96	11.50	22.20	-42.66	-13.00	-29.66	V			
	S G.Lev (dBm) -34.34 -35.49 -33.27 -35.57 -34.43 -32.64 The Wor S G.Lev (dBm) -34.30 -35.30 -32.98 -34.98 -33.77 -32.67 The Wors S G.Lev (dBm) -33.60 -34.40 -33.62 -34.81 -34.67	The Worst Test Res S G.Lev (dBm) Ant(dBi) -34.34 12.60 -35.49 13.10 -35.57 12.60 -34.43 13.10 -32.64 11.50 The Worst Test Res S G.Lev (dBm) Ant(dBi) -34.30 12.60 -35.30 13.10 -32.98 11.50 -34.98 12.60 -33.77 13.10 -32.67 11.50 The Worst Test Res S G.Lev (dBm) Ant(dBi) -33.60 12.60 -34.40 13.10 -33.62 11.50 -34.81 12.60 -34.67 13.10	The Worst Test Results for Cress G.Lev (dBm) Ant(dBi) Loss -34.34 12.60 12.93 -35.49 13.10 17.11 -33.27 11.50 22.20 -35.57 12.60 12.93 -34.43 13.10 17.11 -32.64 11.50 22.20 The Worst Test Results for Cress S G.Lev (dBm) Ant(dBi) Loss -34.30 12.60 12.93 -35.30 13.10 17.11 -32.98 11.50 22.20 -34.98 12.60 12.93 -33.77 13.10 17.11 -32.67 11.50 22.20 The Worst Test Results for Cress S G.Lev (dBm) Ant(dBi) Loss -33.60 12.60 12.93 -34.40 13.10 17.11 -33.62 11.50 22.20 -34.81 12.60 12.93 -34.67 13.10 17.11	The Worst Test Results for Channel 926 S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) -34.34 12.60 12.93 -34.67 -35.49 13.10 17.11 -39.50 -33.27 11.50 22.20 -43.97 -35.57 12.60 12.93 -35.90 -34.43 13.10 17.11 -38.44 -32.64 11.50 22.20 -43.34 The Worst Test Results for Channel 940 S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) -34.30 12.60 12.93 -34.63 -35.30 13.10 17.11 -39.31 -32.98 11.50 22.20 -43.68 -34.98 12.60 12.93 -35.31 -33.77 13.10 17.11 -37.78 -32.67 11.50 22.20 -43.37 The Worst Test Results for Channel 953 S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) -33.60 12.	The Worst Test Results for Channel 9262/1852.4MH S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) Limit (dBm) -34.34 12.60 12.93 -34.67 -13.00 -35.49 13.10 17.11 -39.50 -13.00 -33.27 11.50 22.20 -43.97 -13.00 -35.57 12.60 12.93 -35.90 -13.00 -34.43 13.10 17.11 -38.44 -13.00 -32.64 11.50 22.20 -43.34 -13.00 The Worst Test Results for Channel 9400/1880MH; S G.Lev (dBm) Ant(dBi) Loss PMea Limit (dBm) (dBm) (dBm) (dBm) (dBm) -34.30 12.60 12.93 -34.63 -13.00 -35.30 13.10 17.11 -39.31 -13.00 -34.98 12.60 12.93 -35.31 -13.00 -33.77 13.10 17.11 -37.78 -13.00 -36 11.50 22.20	The Worst Test Results for Channel 9262/1852.4MHz S G.Lev (dBm) Ant(dBi) Loss PMea (dBm) Limit (dBm) Margin (dBm) -34.34 12.60 12.93 -34.67 -13.00 -21.67 -35.49 13.10 17.11 -39.50 -13.00 -26.50 -33.27 11.50 22.20 -43.97 -13.00 -22.90 -34.43 13.10 17.11 -38.44 -13.00 -25.44 -32.64 11.50 22.20 -43.34 -13.00 -25.44 -32.64 11.50 22.20 -43.34 -13.00 -25.44 -32.64 11.50 22.20 -43.34 -13.00 -25.44 -32.64 11.50 22.20 -43.34 -13.00 -30.34 The Worst Test Results for Channel 9400/1880Mtz S G.Lev (dBm) Ant(dBi) (dBm) (dBm) (dBm) (dB) -34.30 12.60 12.93 -34.63 -13.00 -26.31 -32.98 11.			

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 6GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

APPENDIX BPHOTOS OF TEST SETUP

RADIATED SPURIOUS EMISSION

*****END OF THE REPORT***