

GS780MIZ Module OEM / Integrator Installation Manual Data Sheet

GainSpan® 802.15 Bluetooth® BLE Module

Table of Contents

Introduction	3
Features	4
References	4
Specifications	5
Pin Assignments	6
Device Pin-out	
Module Pin Descriptions	7
Port Functions	10
Electrical Characteristics	
Recommended Operating Conditions	11
Absolute Maximum Specifications [TBD]	11
Digital I/O Pin Specifications [TBD]	
RL78/G1D	
Packaging and Layout Guidelines	13
Recommended PCB Footprint and Dimensions	13
Surface Mount Assembly	
Moisture Conditions	

Introduction

The low-power GS780MIZ module adds low-power **Bluetooth**[®] low energy technology (BLE), version 4.2, connectivity to devices intended for portable applications.

The module offers extended communication range in single-mode BLE operation with reduced power consumption for extended battery life. You can operate the GS780MIZin either standalone mode with application software running on the module, or connected to a microcontroller running the application software and communicating through a UART or SPI interface. The module operates in the 2.4 to 2.485 GHz frequency range using spread-spectrum, frequency-hopping, full-duplex modes, and will meet FCC/IC (US/Canada), CE/ETSI(Europe), and TELEC(Japan) regulatory certification requirements.

The GS780MIZmodule reduces RF design and certification times to facilitate quick time-to-market. The small form factor and adaptable RF technology, trading off sensitivity, interference and power, permit you to build products customized to your application requirements. At the GS780MIZcore are,

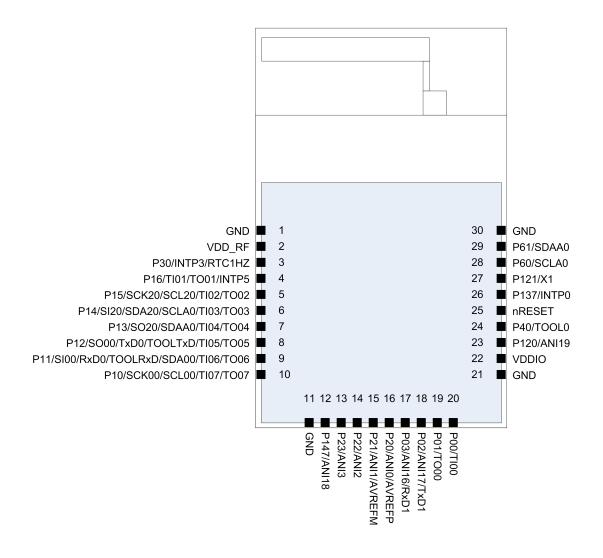
- Renesas RL78/G1D
- program and data flash and SRAM memory
- Bluetooth low energy technology v4.2 single-mode master/slave RF with on-chip oscillator
- flexible MCU/RF power management modes
- real-time clock, watchdog and interval timers
- A/D converter
- 3-wire serial I/O (CSI), UART, and I²C communication interfaces

NOTE: The module is Bluetooth low energy technology v4.2-qualified by Bluetooth SIG but does not support long data packets and the latest privacy encryption, which are optional features of the

Features

16-bit RL78 CPU Core	32 MHz CPU with 1MB address space.	A/D converter	8-channel, 8/10-bit resolution
On-Chip RF Transceiver	Bluetooth low energy technology v4.2 with 2.4 GHz ISM band, GFSK modulation, TDMA/TDD frequency hopping.	I/O Interfaces	 2x 7/8-bit CSI/SPI 2x 7/8/9-BIT UART 2x I2C master 1x I2C multi-master GPIO: 23 ports
Program Flash Memory	256KB ROM, approx. 110KB stack	Power functions	Power-on resetSelectable low voltage detector
Data Flash Memory	8KB	Package Type, Pin Count	30-pin
RAM	20KB, approx. 8KB stack	Certifications and Compliance	FCC, IC, TELEC, CE/ETSI (planned)
DMA Controller	4 programmable channels, 8/16-bit	Standby function	Reduced current: HALT, STOP, SNOOZE modes.
Real-time clock	99-year calendar, alarm and constant period interrupt.	Low Power Technology	Automatically optimizes power consumption based on range.
Extended-Function Timers	Eight 16-bit independent timers, with two high-accuracy timers. Eight 12-bit interval timers with interrupt.	Safety Functions	IEC60730- and IEC61508- compliant: • Flash memory CRC • RAM parity error • RAM guard
Watchdog timer	Detect infinite program loop.		SFR guardInvalid memory accessFrequency detectionA/D test

References


- Renesas RL78/G1D microcontroller documentation
- Bluetooth SIG

Specifications

Pin Cou	ınt	30 pins		
Packag	e	solder down module; edge pins		
RF Out	out Power (typical)	GS780MIZ: 0 dBm		
Rx Sens	sitivity	GS780MIZ: -91 dBm		
	Operating Frequency	2.4 GHz		
RF	Protocol	IEEE 802.15.1, Bluetooth low energy technology v4.2		
	Antenna	Ceramic		
Operation	ng Temperature	-40° to +85°C		
Encrypt	ion	AES128		
Certifica	ations and Compliance	planned: FCC, IC, TELEC, CE/ETSI		
Safety f	unctions	WDT, TRAP instruction, Flash memory CRC, RAM parity error detection, Invalid memory access detection, Frequency detection, RAM and SFR guard, A/DC test		
MCU C	ore	Renesas RL78, 16-bit		
Frequer	псу	32 MHz		
Memory	Internal Flash	256KB program flash (approximately 110KB used for stack) 8KB data flash		
	RAM	20KB (8KB approximately used for stack)		
Externa	l interrupt	3 channels		
DMA		4 channels		
I/O Inter	rfaces	SPI, UART, simple I ² C, multi-master I ² C, GPIO, PWM, 10-bit A/D		
Host Co	onnections	SPI, UART		
Timers		8 16-bit channels 4 channel PWM output, 7 channel multi PWM output		
Real-time clock		1 channel		
Outline	Dimensions	GS780MIZ: 12.5mm x 17mm x 2.2mm		
Operating Voltage		1.8-3.6V		

Pin Assignments

Device Pin-out

Module Pin Descriptions

Pin no.	Pin name	Port	On Reset	Description
1	GND	_	_	Ground
2	VDD RF	_	_	Supply for RF
	P30			I/O
3	INTP3	3	Input port	External Interupt Input 3
	RTC1HZ			Real-time clock: correction clock (1 Hz) output
	P16	1	Input port	I/O
4	TI01			External count clock/capture 01
4	TO01			Timer Output 01
	INTP5			External Interrupt Input 5
	P15			I/O
	SCK20			Clock I/O of SPI CSI20
5	SCL20			Clock Output SPI CSI20
	TI02			External count clock/capture 02
	TO02			Timer Output 02
	P14			I/O
	SI20			Data Input SPI CSI20
6	SDA20			Data I/O I2C20
0	SCLA0			Data Output I2CA0
	TI03			External count clock/capture 03
	TO03			Timer Output 03
	P13			I/O
	SO20			Data Output SPI CSI20
7	DSAA0			Data I/O I2CA0
	TI04			External count clock/capture 04
	TO04			Timer Output 04
	P12			I/O
	SO00			Data Output SPI CSI00
8	TxD0			Data Output UART0
	TOOLTxD			Output UART Flash Memory Programming
	TI05			External count clock/capture 05
	TO05			Timer Output 05

Pin no.	Pin name	Port	On Reset	Description
	P11			I/O
	SI00			Data Input SPI CSI00
	RxD0			Data Input UART0
9	TOOLRxD			Input UART Flash Memory Programming
	SDA00			Data I/O IIC00
	TI06			External count clock/capture 06
	TO06			Timer Output 06
	P10			I/O
	SCK00			Clock I/O of SPI CSI00
10	SCL00			Clock Output SPI CSI00
	TI07			External count clock/capture 07
	TO07			Timer Output 07
11	GND	_	_	Ground
12	P147	14	Analog	I/O
12	ANI18	14	input port	A/D converter analog input
13	P23			I/O
13	ANI3			A/D converter analog input
14	P22			I/O
14	ANI2			A/D converter analog input
	P21	2	Analog	I/O
15	ANI1		4	A/D converter analog input
	AVREFM			Analog Reference Minus
	P20			I/O
16	ANI0			A/D converter analog input
	AVREFP			Analog Reference Plus
	P03			I/O
17	ANI16			A/D converter analog input
	RxD1		Analog	Data Input UART1
	P02		input port	I/O
18	ANI17	0		A/D converter analog input
	TxD1	U		Data Output UART1
19	P01			I/O
19	TO00		Input nort	Timer Output 00
20	P00		Input port	I/O
20	TI00			External count clock/capture 00
21	GND	_	_	Ground

Pin no.	Pin name	Port	On Reset	Description
22	VDDIO	_	_	Supply for Digital IO
23	P120	12	42 Analog	I/O
23	ANI19	12	input port	A/D converter analog input
24	P40	4	Input port	I/O
24	TOOL0	4	4 Input port	Programming Pin
25	nRESET	_	_	Active-low system reset input
26	P137	12	13 Input port	Input
20	INTP0	13		External Interrupt Input 0
27	P121	12	12 Input port	I/O
21	X1	12	Input port	General Purpose Input
28	P60			I/O
20	SCLA0	6	Innut part	Data Output I2CA0
29	P61	0	6 Input port	I/O
29	SDAA0			Data Input I2CA0
30	GND	_	_	Ground

Port Functions

Port	Function
0	4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. Input of P01 and P03 can be set to TTL input buffer. Output of P00, P02, and P03 can be set to N-ch opendrain output (VDD tolerance). P02 and P03 can be set to analog input.
1	7-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. Input of P10, P11, and P13 to P16 can be set to TTL input buffer. Output of P10 to P15 can be set to N-ch open drain output (VDD tolerance).
2	4-bit I/O port. Input/output can be specified in 1-bit units. Can be set to analog input.
3	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
4	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
6	2-bit I/O port. Input/output can be specified in 1-bit units. N-ch open-drain output (6V tolerance).
12	For only P120, input/output can be specified. For only P120, use of an on-chip pull-up resistor can be specified by a software setting at input port. P120 can be set to analog input. P121 is input-only.
13	P137 1-bit input-only port.
14	2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. P147 can be set to analog input.

Electrical Characteristics

Recommended Operating Conditions

Characteristic	Value
Supply voltage	
Maximum voltage rating	
Power consumption	
Maximum 3.3V output current draw	

Absolute Maximum Specifications [TBD]

Characteristic	Value

Digital I/O Pin Specifications [TBD]

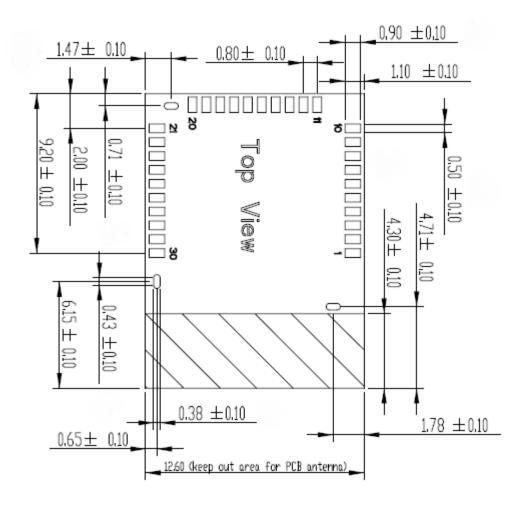
Characteristic	Value

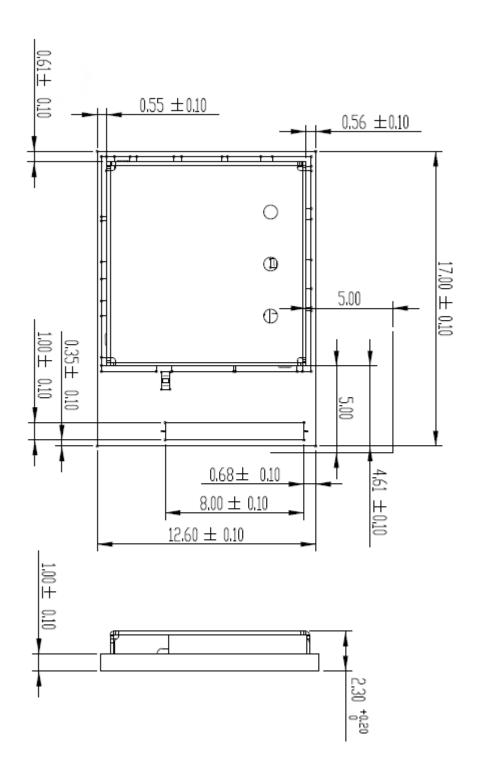
[TBD: POWER CONSUMPTION SPEC, RADIO CHARACTERISTICS SPEC]

RL78/G1D

Refer to Renesas RL78/G1D Datasheet for details about the electrical characteristics listed in the following table.

Section	Characteristic/Title	Renesas Datasheet Page Number
2.1	Absolute Maximum Ratings	11
2.2	Operating Voltage	13
2.3	Oscillator Characteristics	14
2.4	DC Characteristics	15
2.5	Current Consumption	19
2.6	AC Characteristics	25
2.7	Peripheral Functions Characteristics	29
2.7.1	Serial array unit	29
2.7.2	Serial interface IICA	54
2.8	Analog Characteristics	58
2.9	RF Transceiver Characteristics	65
2.10	RAM Data Retention Characteristics	72
2.11	Flash Memory Programming Characteristics	72
2.12	Special Flash Memory Programming Communication (UART)	72
2.13	Timing of Entry to Flash Memory Programming Modes	73

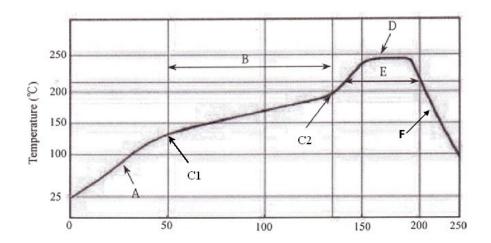



NOTE: Document section, title, and page number refer to Renesas document R01DS0258EJ0110 Rev.1.10, dated Sep 25, 2015.

Packaging and Layout Guidelines

Recommended PCB Footprint and Dimensions

The following figures show the module dimensions and recommended footprint. The first figure shows the recommended PCB antenna keep-out area. The second figure shows the GS780MIZ package dimensions. (Refer to the <u>notes</u> following the figures for additional mechanical recommendations.)



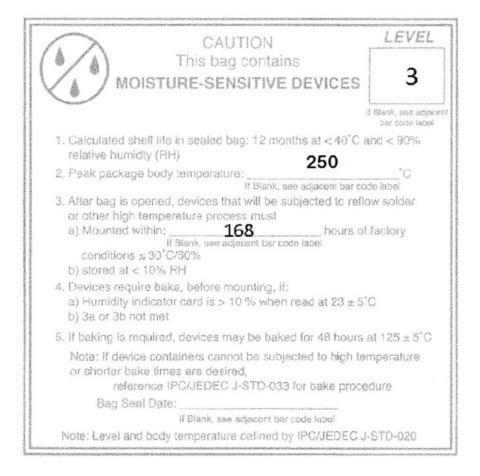
NOTES:

- 1. All Dimensions are in millimeters (mm).
- 2. For Boards using Ceramic Antenna, we recommend:
 - Have Only Air on BOTH sides of antenna.
 - Hang Antenna over edge of base board (best);
 - Or, cut notch in base board under antenna area:
 - 5mm beyond module edge on each side is good.
 - full module width is minimum.
 - No metal or FR4 encircling antenna area.
 - Antenna at edge of base board, not interior of base board.
 - Nothing conductive near antenna (e.g. battery, display, wire).
- Module solder pads on footprint should be the same size as the pads on the module. The three RF shield mounting holes have exposed metal. These areas must not have metal on the customer board.
- 4. For best RF performance, we recommend:
 - Using power (PWR) or GND planes from module back to power supply.
 - Isolating PWR/GND from high frequency or high current components. For example, a notch in GND plane to isolate from host uC.
 - Using at least three vias when either power or GND changes layers. This applies particularly at the module GND pins and at the VDD_RF pin.
 - Providing a 10 uF capacitor at the VDD_RF pin and using three vias both sides of the capacitor.
 - Keep high speed signals away from RF areas of module.
- 5. For area under module, other than the antenna area, we recommend two options:
 - No metal of any kind under module "not on any layer."
 - Having full GND plane under module (layer 1 or layer 2) with no "HOT" vias under module (over 100KHz), and may route signals below GND plane. Also, no metal traces are to be present in the circle, around shield and alignment holes. This option is best for 2-layer boards. If GND is on layer 1, use thermal relief pads for the GND pins of the module footprint.
- 6. If any metal is present on layer 1, extra thick solder mask under the module is required.
- 7. In performing SMT or manual soldering of the module to the base board, first align the row of pins from #11 through #20 onto the base board, then match the other two rows.
 - In addition to the guidelines, note the following suggestions:
- 1. External bypass capacitors for all module supplies should be as close as possible to the module pins.
- 2. Never place the antenna very close to metallic objects.
- 3. External monopole antennas need a reasonable ground plane area for antenna efficiency.
- 4. Do not use a metallic or metalized plastic for the end product enclosure when using onboard antenna.
- 5. If the module is enclosed in a plastic case, have reasonable clearance from plastic case to onboard antenna.

Surface Mount Assembly

The figure shows the reflow profile, and the recommended reflow parameters are summarized in the following table.

Preheat				
Temperature Ramp up rate for (A)2	1.5~3.5 oC/s			
Pre-heat time (B)3	80 to 130 seconds			
Pre-heat starting temperature (C1)	125 to 135 oC			
Pre-heat ending temperature (C2)	180 to 200 oC			
Heating				
Peak Temperature range (D)	240 to 250 oC			
Melting time4 that is the time over 220 oC (E)	50 to 75 seconds			
Cool Down Ramp (F)	>2 oC/s			


NOTES:

1. Perform adequate test in advance as the reflow temperature profile varies according to the conditions of the parts and boards, and the specifications of the reflow furnace.

- 2. Max number of reflow supported is two.
- 3. Temperature uniformity inside the IR reflow oven must be tightly controlled and multiple thermocouples should be used. The locations should also include multiple points INSIDE the module RF shield. The temperature profile of all thermocouples must meet the requirements of the above table.
- 4. Pay close attention to "Melting Time over 220oC". Sufficient time is needed to completely melt all solder.
- 5. Be careful about rapid temperature rise in preheat zone because it can cause excessive slumping of the solder paste.
- 6. If the preheat is insufficient, large solder balls tend to be generated. Conversely, if performed excessively, fine balls and large balls will generate in clusters at a time.
- 7. If the temperature is too low, non-melting tends to be caused in the area with large heat capacity after reflow.
- 8. Be careful about sudden rise in temperature because it may increase the slump of solder paste.
- 9. Be careful about slow cooling because it can cause the positional shift of parts and a decline in joining at times.
- 10. A no clean flux should be used during the SMT process.

Moisture Conditions

The modules are shipped in sealed trays with the following conditions indicated on the label:

FCC Statement:

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

IMPORTANT NOTE:

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

The module is limited to OEM installation only.

OEM Integrators shall be responsible for ensuring that the end-user has no manual / instructions to remove or install the module.

IMPORTANT NOTE:

This module is intended for OEM integrator. The OEM integrator is responsible for the compliance to all the rules that apply to the product into which this certified RF module is integrated.

Additional testing and certification may be necessary when multiple modules are used.

USERS MANUAL OF THE END PRODUCT:

In the users manual of the end product, the end user has to be informed to keep at least 20cm separation with the antenna while this end product is installed and operated. The end user has to be informed that the FCC radio-frequency exposure guidelines for an uncontrolled environment can be satisfied.

The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment.

If the labelling area is small than the palm of the hand, then additional FCC part 15.19 statement is required to be available in the users manual: This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

LABEL OF THE END PRODUCT:

The final end product must be labeled in a visible area with the following " Contains TX FCC ID: YOPGS780MIZ ".

If the labelling area is larger than the palm of the hand, then the following FCC part 15.19 statement has to also be available on the label: This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

The installation is limited to mobile installation only.

A separate approval is required for all other operating modes not covered in this filing.

IC Statement:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

IMPORTANT NOTE:

IC Radiation Exposure Statement:

This equipment complies with IC RSS-102 radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

IMPORTANT NOTE:

This module is intended for OEM integrator. The OEM integrator is responsible for the compliance to all the rules that apply to the product into which this certified RF module is integrated.

Additional testing and certification may be necessary when multiple modules are used.

Any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment.

USERS MANUAL OF THE END PRODUCT:

In the users manual of the end product, the end user has to be informed to keep at least 20cm separation with the antenna while this end product is installed and operated. The end user has to be informed that the IC radio-frequency exposure guidelines for an uncontrolled environment can be satisfied.

The end user has to also be informed that any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

LABEL OF THE END PRODUCT:

The final end product must be labeled in a visible area with the following " Contains IC: 9154A-GS780MIZ ".

The Host Model Number (HMN) must be indicated at any location on the exterior of the end product or product packaging or product literature which shall be available with the end product or online.