

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 1 of 69 Printed: 11.02.08 15:15

CardMan 5x21-CL Reader Developer’s Guide

Document Version: 1.14

Abstract:

Disclaimer:

Guide for developers who want to integrate contactless storage or CPU
cards using OMNIKEY CardMan 5x21 smart card readers.

Last modified: 11.02.2008

Copyright © 2004-2008 by OMNIKEY GmbH

All Rights Reserved.
The information in this document may not be changed without the express
written permission from OMNIKEY GmbH.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 2 of 69 Printed: 11.02.08 15:15

Table Of Contents

1 Getting Started – Quick Guide to Access Contactless Cards 5
1.1 Driver Installation 5

1.1.1 Reader Name for Contact/Contactless Slot 7
1.2 Diagnostic Tool 7

1.2.1 Driver Version Detection 8
1.2.2 OMNIKEY Proprietary API Detection 8
1.2.3 Card and Reader Detection 8
1.2.4 Card Type Detection and RFID Settings 9
1.2.5 Air Interface Baud Rate Configuration 11

2 PC/SC 2.0 12
2.1 How to Access Contactless Cards via PC/SC 12
2.2 ATR Generation 15

2.2.1 CPU Cards 15
2.2.2 Storage Cards 15

3 Accessing Asynchronous Cards 16
3.1 DESFire Card 17

3.1.1 Example: Write Card Data via ISO 7816-4 Framed APDU 17
3.1.2 Example: Read Card Data via ISO 7816-4 Framed APDU 18

4 Accessing Synchronous Cards (Storage Cards) 19
4.1 Mifare Card 19

4.1.1 Mifare Increment (Card Command) 20
4.1.2 Mifare Decrement (Card Command) 21
4.1.3 Mifare Emulation Mode 22
4.1.4 Mifare Application Directory (MAD) 22

4.2 iCLASS Card 23
4.2.1 Card Access via SCardCLICCTransmit 23

4.3 ST LRI64 Support (PC/SC 2.0 add-on) 25
4.3.1 Update Binary 25
4.3.2 Read Binary 25

5 CardMan 5x21-CL Keys 27
5.1 Key Numbering Scheme 27
5.2 Key Container and Key Slots 29
5.3 Key Update Rules 30

6 Standard Communication with iCLASS Card 32
6.1 APDU Structure for Standard Communication 32
6.2 Commands Available in Standard Communication Mode 32

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 3 of 69 Printed: 11.02.08 15:15

6.2.1 Select Page (Card Command) 33
6.2.2 Load Key 35
6.2.3 GetKeySlotInfo (Reader Command) 37
6.2.4 Authenticate (Card Command) 38
6.2.5 Read (Card Command) 39
6.2.6 Update (Card Command) 40

6.3 Communication in Standard Mode 41
7 Secured Communication with the iCLASS Card 42

7.1 Multi-Step Approach to a Secure Card Reader System 42
7.1.1 Authenticity Between Host and Reader 42
7.1.2 Confidentiality of USB Data Exchange 42
7.1.3 Integrity of Transmitted Data 42
7.1.4 Authenticity Between Reader and Card 42
7.1.5 Integrity of the Radio Frequency (RF) Transmission 43
7.1.6 Confidentiality of the RF Transmission 43
7.1.7 Authentication of the Host for Read/Write Session 43
7.1.8 Protection Against Known Attacks 43

7.2 APDU Structure for Secured Communication 44
7.2.1 Data Header (DH) 45
7.2.2 Signature Generation 45
7.2.3 Session Key Generation 45
7.2.4 Example: Proprietary Datagram Exchange between Host and Reader 46

7.3 Instructions (INS) for Secured Communication 47
7.3.1 Manage Session (Reader Command) 48
7.3.2 Select Page (Card Command) 48
7.3.3 Load Key (Reader Command) 48
7.3.4 Authenticate (Card Command) 48
7.3.5 Read (Card Command) 49
7.3.6 Update (Card Command) 49
7.3.7 GetKeySlotInfo (Reader Command) 49
7.3.8 Update Card Key 49

7.4 Communication at Secured Mode 51
7.5 Example APDUs for a Session at Secured Mode 52

Appendix A Application Programming 55
A1 Sample Project 55

A1.1 Overview 55
A1.2 Reader Related Functions 56
A1.3 Mifare Card Related Functions Using Synchronous API 56
A1.4 PC/SC 2.01 56

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 4 of 69 Printed: 11.02.08 15:15

A1.5 ISO 7816 - APDU 56
A1.6 iCLASS Standard Mode 57

A2 Code Snippets 58
A2.1 Getting the Card UID (PC/SC 2.01) 58
A2.2 Loading a Mifare Key (PC/SC 2.01) 58
A2.3 Mifare 1K/4K Authenticate (PC/SC 2.01) 59
A2.4 Mifare 1K/4K Write (PC/SC 2.01) 59
A2.5 Mifare 1K/4K Read (PC/SC 2.01) 59
A2.6 Mifare 1K/4K Increment (OMNIKEY Proprietary API) 60
A2.7 Mifare 1K/4K Decrement (OMNIKEY Proprietary API) 60
A2.8 Mifare Emulation Mode (OMNIKEY Proprietary API) 61
A2.9 iCLASS Select Page (OMNIKEY Proprietary API) 62

Appendix B Accessing iCLASS Memory 63
B1.1 Memory Layout 63
B1.2 Assigning Space to iCLASS Application 2 64
B1.3 Read/Write Memory of iCLASS 2KS, 16KS or page 0 of iCLASS 8x2KS card 64
B1.4 Read/Write Memory of iCLASS 8x2KS Card on Pages 1 to 7 64

Appendix C 66
C1.1 Terms and Abbreviations 66

Appendix D Version History 67
D1.1 Document Changes 67
D1.2 Firmware History 68

Appendix E References 69

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 5 of 69 Printed: 11.02.08 15:15

1 Getting Started – Quick Guide to Access Contactless Cards

This document is intended as a guide for software developers who want to integrate contactless
memory or CPU cards using OMNIKEY CardMan 5x21 smart card readers.

This chapter describes how to install the drivers necessary to operate the CardMan 5x21 in a
Windows based environment. Please note that other operating systems such as Linux are also
supported by the CardMan 5x21.

1.1 Driver Installation

The OMNIKEY CardMan 5x21 driver is mandatory for all systems that require support for contactless
smart cards.

CardMan 5x21 is a CCID compliant device. This means that the contact interface can be operated
without an OMNIKEY proprietary driver installed. However, for contactless cards, the OMNIKEY
proprietary CardMan 5x21 driver is necessary.

The following steps describe how to install the CardMan 5x21 driver:

1. First, go to www.omnikey.com. Then, select the support/download section and download the latest
CardMan 5x21 driver installation package for Windows.

2. Run the installation package and follow the instructions on the screen. The installation package will
extract all the necessary driver files to your hard drive. Please note the location to which the files were
copied. Please note that at this time you have only extracted, not installed the driver files.

3. Connect the reader to a USB Port of your computer.

4. The “Found New Hardware Wizard” will appear. To continue driver installation, click “Next”.

Note: On Windows XP systems, the Microsoft Windows CCID Class driver may be activated without
showing the “Found New Hardware Wizard”. If this is the case, the Microsoft PC/SC driver` must be
replaced manually with the OMNIKEY proprietary PC/SC driver. This can be done using the Device
Manager.

5. In the next dialogue, choose “Search for a suitable driver for my device (recommended)” and
click “Next”.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 6 of 69 Printed: 11.02.08 15:15

6. Now, choose “Specify a Location” and click “Next”.

7. Press “Browse” and go to the location where you previously installed the driver package. To
continue press “OK”.

8. If the driver was found in this location press “Next” to continue.

9. If the driver is a test driver (a BETA driver that is not digitally signed), the following dialogue will
appear. It can be accepted by clicking “Yes”.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 7 of 69 Printed: 11.02.08 15:15

10. The following message should appear and the green LED on the CardMan 5x21 reader should
light up.

If the installation was successful, the green LED on the reader will light up and the reader will be listed
in the diagnostic tool as “CardMan 5x21”. Now your reader is ready for use and you can do a quick
smart card system check using the OMNIKEY Diagnostic Tool described in the chapter entitled
“Diagnostic Tool”.

1.1.1 Reader Name for Contact/Contactless Slot

OMNIKEY CardMan 5x21 is a “dual slot” reader. This means that from the application and smart card
resource manager point of view there are two readers available, each represented by its respective
reader name. “OMNIKEY CardMan 5x21 n” identifies the contact slot and “CardMan 5x21-CL n”
stands for the contactless slot. The “n” represents a slot number 0, 1…, etc. This allows card tracking
though contact and air interface, respectively.

1.2 Diagnostic Tool

The OMNIKEY Diagnostic tool is a great tool for a quick test of the smart card system. It lists all
available OMNIKEY readers, driver files with version information, firmware version information, and
also allows the configuration of the RFID/air interface.

‘Diagnostic Tool’ can be started from the Control Panel.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 8 of 69 Printed: 11.02.08 15:15

1.2.1 Driver Version Detection

The General Tab shows if the ‘Resource Manager’ is running. Select this tab to find out more about
version and manufacturer data of smart card system services, DLLs, and drivers.

Diagnostic Tool, General Tab

1.2.2 OMNIKEY Proprietary API Detection

The API tab shows the APIs that have been installed on your system, including the OMNIKEY
Synchronous API.

Diagnostic Tool, API Tab

1.2.3 Card and Reader Detection

The OMNIKEY Diagnostic tool creates a separate tab for each available OMNIKEY reader interface.
The tabs indicate their respective reader names - the same names you will be using within the PC/SC
framework.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 9 of 69 Printed: 11.02.08 15:15

For a quick connectivity test of your contactless card, select the “OMNIKEY CardMan 5x21-CL 0” tab
and place a contactless card on the reader. As soon as the card is detected, the Status field will
switch from “no smart card inserted” to “smart card inserted” and the ATR field will display the card’s
ATR. Please refer to the chapter about ATR for further information on how the Answer to Reset (ATR)
is generated for contactless smart cards.

The Diagnostic Tool has an internal flat database that allows a quick lookup of the ATR. If it is a
known card, a description will be displayed in the Smart Card Name field. For contactless cards the
card’s unique ID (UID) will be displayed in the Smart Card Name field and in the Protocol field T=CL
will be displayed.

Diagnostic Tool, Reader Tab

Diagnostic Tool, Reader Tab (card inserted)

1.2.4 Card Type Detection and RFID Settings

CardMan 5x21-CL supports multiple 13.56MHz contactless standards and protocols, including but not
limited to, ISO14443A, ISO14443B, ISO15694, iCLASS, I-CODE. As there is no physical card switch,
the only way to get information about a card in the field is by trial and error in a predefined search
order. The built-in anti-collision mechanisms ensure that, once a card is detected, it is the only card
the reader interface is connected with.

The OMNIKEY Diagnostic tool has an RFID Settings tab that allows configuration of the card types the
reader should look for and their respective search order. However, the RFID Settings tab must first be
enabled by right-clicking on the title bar of the Diagnostic Tool window and then choosing
 View->RFID settings from the drop-down menu.

Diagnostic Tool, activate RFID settings

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 10 of 69 Printed: 11.02.08 15:15

Diagnostic Tool, RFID settings Tab

The left window pane contains a list of all active card types. The right window pane contains a list of
all available card types that are supported by the reader but are not included in the card search. Card
types from the left window pane can be moved to the right window pane, and vice versa, using the
and buttons. With the and buttons the search order in the active list can be changed.

The setting has to be activated using the Apply button. The Reset button discards any unsaved
changes.

Note: The search order is forward-looking to improve system performance. This means that the last
successfully detected card type automatically moves to the top of the search order, regardless of its
position within the order set on the RFID settings tab.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 11 of 69 Printed: 11.02.08 15:15

1.2.5 Air Interface Baud Rate Configuration

For ISO 14443 type cards the air interface transmission speed can be 106 kbps, 212 kbps, 424 kbps,
or 848 kbps. By default, the contactless interface is set to 424 kbps. It can be changed to a different
value through the RFID settings tab of the Diagnostic Tool.

Diagnostic Tool, Baud Rate Change

To change the baud rate, select the card type (ISO14443A or ISO14443B) and change the ‘Maximum
Baud Rate’ field. Finalize your setting by pressing the ‘Apply’ button.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 12 of 69 Printed: 11.02.08 15:15

2 PC/SC 2.0

With the OMNIKEY CardMan 5x21 PC/SC driver, ISO14443A/B or ISO15693 compliant contactless
cards can be accessed through the same framework as ISO7816 compliant contact cards. This
makes card integration a snap for any developer who is already familiar with PC/SC. Even valuable
PC/SC resource manager functions, such as card tracking, are available for contactless card
integration.

The Microsoft Developer Network (MSDN) Library contains valuable information and a complete
documentation of the SCard API within the MSDN Platform SDK: “Security” section.

Contactless CPU cards can be accessed directly via PC/SC. For storage cards other than Mifare
cards, an additional library – the OMNIKEY synchronous API – is necessary. Whether using direct
PC/SC access or the OMNIKEY synchronous API, only a small set of functions is required to write
your first “hello card” program.

 Card can be integrated via

 PC/SC 2.0 compliant APDU’s OMNIKEY Synchronous API

Mifare YES YES

ICLASS NO YES

LRI64 YES NO

2.1 How to Access Contactless Cards via PC/SC

The following steps provide a guideline to create your first contactless smart card application using
industry standard, PC/SC compliant API function calls. The function definitions provided below are
taken verbatim from the MSDN Library [MSDNLIB]. For additional descriptions of these and other
PC/SC functions provided by the Microsoft Windows PC/SC smart card components, please refer
directly to the MSDNLIB. The following functions are defined in the Microsoft Platform SDK (Security
section).

1. Establish Context
This step will initialize the PC/SC API and allocate all resources necessary for a smart card
session. The SCardEstablishContext function establishes the resource manager context (the
scope) within which database operations are performed.

LONG SCardEstablishContext(IN DWORD dwScope,
 IN LPCVOID pvReserved1,
 IN LPCVOID pvReserved2,
 OUT LPSCARDCONTEXT phContext);

2. Get Status Change
Next, check the status of the reader for card insertion, removal, or availability of the reader.
SCardGetStatusChange. This function blocks execution until the current availability of the
cards in a specific set of readers changes. The caller supplies a list of readers to be monitored
and the maximum amount of time (in milliseconds) that it is willing to wait for an action to
occur on one of the listed readers.

LONG SCardGetStatusChange(IN SCARDCONTEXT hContext,
 IN DWORD dwTimeout,
 IN OUT LPSCARD_READERSTATE rgReaderStates,

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 13 of 69 Printed: 11.02.08 15:15

 IN DWORD cReaders);

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 14 of 69 Printed: 11.02.08 15:15

3. List Readers
Then, get a list of all PC/SC readers using the SCardListReaders function. Look for
“OMNIKEY CardMan 5x21-CL 0” in the returned list. If multiple CardMan 5x21 readers are
connected to your system, they will be enumerated. Examples: “OMNIKEY CardMan 5x21-CL
1”, “OMNIKEY CardMan 5x21-CL 2”.

Always make sure to analyze the complete string. CardMan 5x21 also has a contact interface.
Look for the “-CL” in the reader mane to make sure that you are really referring to the
contactless interface in the following calls.

LONG SCardListReaders(IN SCARDCONTEXT hContext,
 IN LPCTSTR mszGroups,
 OUT LPTSTR mszReaders,
 IN OUT LPDWORD pcchReaders);

4. Connect
Now, you can connect to the card. The SCardConnect function establishes a connection
(using a specific resource manager context) between the calling application and a smart card
contained by a specific reader. If no card exists in the specified reader, an error is returned.

LONG SCardConnect(IN SCARDCONTEXT hContext,
 IN LPCTSTR szReader,
 IN DWORD dwShareMode,
 IN DWORD dwPreferredProtocols,
 OUT LPSCARDHANDLE phCard,
 OUT LPDWORD pdwActiveProtocol);

Note: For iCLASS cards use T=0 protocol (mandatory).

5. Exchange Data and Commands with the Card
Next, exchange command and data via APDUs. The SCardTransmit function sends a service
request to the smart card, and expects to receive data back from the card.

LONG SCardTransmit(IN SCARDHANDLE hCard,
 IN LPCSCARD_I0_REQUEST pioSendPci,
 IN LPCBYTE pbSendBuffer,
 IN DWORD cbSendLength,
 IN OUT LPSCARD_IO_REQUEST pioRecvPci,
 OUT LPBYTE pbRecvBuffer,
 IN OUT LPDWORD pcbRecvLength);

Note: For storage cards that are not supported by PC/SC 2.0, you need to call an OMNIKEY
proprietary API function such as SCardCLICCTransmit instead. This function exposes
additional functionality of the CardMan 5x21-CL reader that is not yet defined in PC/SC
standards. Other than that, you are still using the standard PC/SC framework to track cards,
list readers, etc. Even the smart card handle is the same.

6. Disconnect
It is not absolutely necessary to disconnect the card after the completion of all transactions,
but it is recommended. The SCardDisconnect function terminates a connection previously
opened between the calling application and a smart card in the target reader.

LONG SCardDisconnect(IN SCARDHANDLE hCard,
 IN DWORD dwDisposition);

7. Release
This step ensures that all system resources are being released. The SCardReleaseContext
function closes an established resource manager context, freeing any resources allocated
under that context.

LONG SCardReleaseContext(IN SCARDCONTEXT hContext);

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 15 of 69 Printed: 11.02.08 15:15

2.2 ATR Generation

Unlike contact cards, contactless cards don’t generate an ATR. They generate an Answer to Select
(ATS) instead. To make contactless cards available within the PC/SC framework, CardMan 5x21
generates a PC/SC compliant ATR according to PC/SC v2.01 “Interoperability Specification for ICCs
and Personal Computer Systems” [PCSC 2.01].

The documents can be downloaded from the PC/SC Workgroup at the following web address:
http://www.pcscworkgroup.com/specifications/specdownload.php

2.2.1 CPU Cards

Contactless smart cards (cards with a CPU) expose their ATS or information bytes via ATR mapping
according to PCSC 2.01, Part 3: Requirements for PC-Connected Interface Devices, 3.1.3.2.3.1,
Table 3.5.

2.2.2 Storage Cards

The ATR of storage cards (i.e. cards without a CPU) is composed as described in PCSC 2.01, Part 3:
Requirements for PC-Connected Interface Devices, 3.1.3.2.3.1, Table 3.6. In order to allow the host
application to identify a storage and card type properly, its standard and card name is mapped
according to the Part 3 Supplemental Document of PCSC 2.01.

Note: The Registered Application Provider Identifier (RID) returned by the CardMan 5x21 for storage
cards (cards without a CPU) is A0 00 00 06 0A, indicating a PC/SC compliant ATR generation.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 16 of 69 Printed: 11.02.08 15:15

3 Accessing Asynchronous Cards

Asynchronous cards are cards with CPU or memory cards that are accessible via standard PC/SC
using Microsoft’s library “winscard.dll”. This type of cards supports at least one of the asynchronous
protocols T=0 or T=1. The Microsoft Platform SDK contains PC/SC sample code for Visual C/C++ and
Visual Basic.

No additional libraries or third-party software components are necessary to integrate contactless CPU
cards.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 17 of 69 Printed: 11.02.08 15:15

3.1 DESFire Card

According to [DESFIRE], DESFire cards can be accessed via ISO7816-4 compliant framed APDU
commands (ISO7816-4 framing).

New versions of DESFire cards support extended APDU commands. For this the driver must switch to
DESFire native mode. This native mode is not the default mode of the OMNIKEY 5x21. For proper
protocol settings should be use the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CardMan\RFID

DesfireNative=0x00000001

Notes:
- The OMNIKEY 5x21 driver needs to be (re)started after changing the registry key (disconnect and
reconnect the reader).

3.1.1 Example: Write Card Data via ISO 7816-4 Framed APDU

Command Syntax

CLA INS P1 P2 Lc File No. Offset Length Data Le

‘90’ ‘3D’ ‘00’ ‘00’ ‘xx’ ‘xx’ ‘xxxxxx’ ‘xxxxxx’ ‘xx’ … ‘xx’ ‘00’

Lc = 7+ DataLength; Le=0 (no other values accepted)

Response Syntax

Response Data SW1 SW2

empty ‘xx’ ‘xx’

Status Codes

SW1 SW2 Description

'90' '00' success

'91’ 'xx error (refer to DESFire data sheet)

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 18 of 69 Printed: 11.02.08 15:15

3.1.2 Example: Read Card Data via ISO 7816-4 Framed APDU

Command Syntax

CLA INS P1 P2 Lc File No. Offset Length Data Le

‘90’ ‘BD’ ‘00’ ‘00’ ‘07’ ‘xx’ ‘xxxxxx’ ‘LLLLLL’ empty ‘00’

Le=0 (no other values accepted)

Response Syntax

Response Data SW1 SW2

‘xx’ ... ‘xx’ (‘LLLLLL’ bytes) ‘xx’ ‘xx’

Status Codes

SW1 SW2 Description

'90' '00' success

'91’ 'xx error (refer to DESFire data sheet)

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 19 of 69 Printed: 11.02.08 15:15

4 Accessing Synchronous Cards (Storage Cards)

OMNIKEY provides two ways to integrate contactless storage cards. They can either be accessed
through OMNIKEY’s proprietary synchronous API library, or, for cards such as Mifare cards, directly
via PC/SC 2.0 compliant function calls. Storage cards that are not supported directly through PC/SC
2.0 compliant APDU exchanges, can only be accessed via OMNIKEY proprietary synchronous API.

The synchronous API for Windows systems resides in a DLL named “scardsyn.dll”. It can be
downloaded from OMNIKEY’s website. The download also contains sample code for Mifare and
iCLASS cards. For further information about this API, refer to the help file “cmsync.hlp” available in
the c:\omnikey\hlp folder after installation of the synchronous API with default settings.

The OMNIKEY Synchronous API is typically used whenever a card has not yet found its way into the
PC/SC 2.0 standard. Currently, only Mifare cards can be integrated via PC/SC 2.0 compliant APDU.

 Card can be integrated via

 PC/SC 2.0 compliant APDUs OMNIKEY Synchronous API

Mifare Yes Yes

iCLASS No Yes

No special drivers are required for a PC/SC 2.0 compliant card integration on Windows or Linux.
OMNIKEY’s latest drivers provide seamless cross-platform support allowing industry standard-
compliant contactless card integration.

4.1 Mifare Card

CardMan 5x21 supports Mifare 1K, Mifare 4K and Mifare Ultra Light cards.

The following functions are supported via PC/SC:

GetUID

LoadKey

Authenticate

Verify

Update Binary

Read Binary

Implemented according to [PCSC 2.01]

Increment OMNIKEY proprietary extension of PC/SC

Decrement OMNIKEY proprietary extension of PC/SC

Mifare Emulation Mode OMNIKEY proprietary extension of PC/SC
CM_IOCTL_SET_RFID_CONTROL_FLAGS

Please refer to the [PCSC 2.01] and [MIFARE] for documentation of PC/SC 2.0 compliant Mifare card
access. The following section only describes usage of functions that are not already documented in
[PCSC 2.01]. They are part of an OMNIKEY proprietary extension of PC/SC.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 20 of 69 Printed: 11.02.08 15:15

4.1.1 Mifare Increment (Card Command)

This command will increment the value of a block, if the card and block support this functionality:

Command Syntax

CLA ‘FF’

INS ‘D4’

P1 MSB of block address

P2 LSB of block address

LC 1

Data Field One byte value indicating block increment

Le empty

Response Syntax

Data Field Empty

SW1 SW2 status word as described below

‘90’ ‘00’ Success

'65' ‘81’ memory failure (unsuccessful increment)

‘69’ ‘81’ incompatible command

‘69’ ‘82’ security status not satisfied

‘69’ ‘86’ command not allowed

‘6A’ ‘81’ function not supported

‘6A’ ‘82’ invalid block address

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 21 of 69 Printed: 11.02.08 15:15

4.1.2 Mifare Decrement (Card Command)

This command will decrement the value of a block, if the card and block support this functionality:

Command Syntax

CLA ‘FF’

INS ‘D8’

P1 MSB of block address

P2 LSB of block address

LC 1

Data Field one byte value indicating block decrement

Le Empty

Response Syntax

Data Field Empty

SW1 SW2 status word as described below

‘90’ ‘00’ Success

'65' ‘81’ memory failure (unsuccessful decrement)

‘69’ ‘81’ incompatible command

‘69’ ‘82’ security status not satisfied

‘69’ ‘86’ command not allowed

‘6A’ ‘81’ function not supported

‘6A’ ‘82’ invalid block address

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 22 of 69 Printed: 11.02.08 15:15

4.1.3 Mifare Emulation Mode

By default, the CardMan 5x21 driver exposes standard Mifare storage cards through a PC/SC 2.01
compliant interface. This driver-level Mifare emulation mode makes standard Mifare cards available
via standard APDUs even though the card itself does not support any asynchronous protocols
supported directly by native PC/SC components.

For dual-interface cards things work a little different. Their CPU supports communication via
ISO14443A part 4 (T=CL) allowing on-card Mifare emulation rather than host-side Mifare emulation.
This means that CardMan 5x21’s default mode (i.e. host-side Mifare emulation) must be disabled to
support the on-card Mifare emulation of such dial-interface card.

There are two ways to switch between host-side and card-side Mifare emulation: via registry keys or
via IO controls using the PC/SC function ScardControl() as described in Appendix A2.8 Mifare
Emulation Mode (OMNIKEY Proprietary API).

The following registry keys let you switch between OMNIKEY Mifare emulation mode (default) and on-
card Mifare emulation.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CardMan\RFID

ControlFlags=0x00000004 OMNIKEY’s host-side Mifare emulation ON

 default

ControlFlags=0x00000000 OMNIKEY’s host-side Mifare emulation OFF

T=CL, for on-card Mifare emulation

Notes:
- The CardMan 5x21 driver needs to be (re)started after changing the registry keys (disconnect and
reconnect the reader).

4.1.4 Mifare Application Directory (MAD)

To access the Mifare Application Directory (MAD), two commands are necessary – Authenticate and
Read. The following steps describe how a MAD can be retrieved from a Mifare card:

1. Authenticate block 3 with the Public key ‘A0A1A2A3A4A5’ and authentication mode A.
2. Read Block 3.
3. Read Block 2.
4. Read Block 1.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 23 of 69 Printed: 11.02.08 15:15

4.2 iCLASS Card

HID iCLASS cards can only be accessed through OMNIKEY’s proprietary “scardsyn” API. This
synchronous API contains a function that is dedicated to accessing contactless cards using the
standard PC/SC card handle.

OMNIKEY CardMan 5x21-CL exposes all iClass functions necessary to access any of the application
areas on an iClass card. Two modes of communication between the card and the application are
supported:

• Standard mode communication

• Secured mode communication (OMNIKEY proprietary mode)

Note: OMNIKEY CardMan 5x21 does not allow WRITE access to the HID application (1st
application on page 0). For READ access to the HID application, secured communication (available
for firmware version 5.00 and greater) is mandatory.

4.2.1 Card Access via SCardCLICCTransmit

SCardCLICCTransmit is the OMNIKEY proprietary function to access HID iCLASS cards via the
OMNIKEY synchronous API. It supports both, standard and secure communication modes and is
defined as follows:

OKERR ENTRY SCardCLICCTransmit (

 IN SCARDHANDLE ulHandleCard,
 IN PUCHAR pucSendData,
 IN ULONG ulSendDataBufLen,
 IN OUT PUCHAR pucReceivedData,
 IN OUT PULONG pulReceivedDataBufLen);

Parameter Description

ulHandleCard handle to the card, provided from the PC/SC "smart card resource
manager" after connecting to the card with SCardConnect

pucSendData buffer for data sent to the reader/card, typically a command APDU

ulSendDataBufLen length of the data to be sent

pucReceivedData buffer for data received from reader/card, typically data and status

pulReceivedDataBufLen before the call: length (in bytes) of the receive buffer
after the call: number of bytes actually received

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 24 of 69 Printed: 11.02.08 15:15

Command Syntax

CLA INS P1 P2 Lc Input Data or Datagram*** Le

‘8x’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ... ‘xx’ (Lc bytes) ‘xx’

Response Syntax

Response Data or Datagram*** SW1 SW2

‘xx’ .. ‘xx’ (Le or max bytes) ‘xx’ ‘xx’

Status Codes

SW1 SW2 Description

'90' '00' success

'64' '00' card execution error

'67' '00' wrong length

'68' '00' invalid class (CLA) byte

'69' '82' security status not satisfied. This can include wrong data structure,
wrong keys, incorrect padding.

'6A' '81' invalid instruction (INS) byte

'6B' '00' wrong parameter P1 or P2

The error codes defined in the table above are valid for all the commands. Command specific error
codes are documented with their respective command documentation.

Note: Error code ‘6982’ “security status not satisfied”, received during any secured communication,
blocks any further commands and requires that the card be removed and re-inserted to reactivate
communication with the card.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 25 of 69 Printed: 11.02.08 15:15

4.3 ST LRI64 Support (PC/SC 2.0 add-on)

ST Microelectronics’ LRI64 is a memory tag IC with 64-bit Unique ID (UID) and WORM user area. The
following table lists PC/SC 2.01 compliant functions that are available for LRI64 based storage cards.

Get UID

Update Binary

Read Binary

implemented according to [PCSC 2.01]

This ISO15693 compliant IC is not accessible with standard standard driver settings. It requires the
following registry key setting:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CardMan\RFID]

"ControlFlags"=dword:00000010

Please refer to the [PCSC 2.01] and [LRI64] for documentation of PC/SC 2.0 compliant LRI64 card
access. The following section only describes usage of functions that are not already documented in
[PCSC 2.01].

4.3.1 Update Binary

UpdateBinary requires block numbers within the WORM memory area (Write-Once Read-Many).

Examples:

Write ‘121314’ to block ‘0D’ (decimal 12):
Command APDU: ‘FFD6000D03121314’
Response APDU : ‘9000’

Attempt to write ‘101112 to block ‘0A’ (10 decimal):
Command APDU: ‘FFD6000A03101112’
Response APDU : ‘6282’

For blocks 10 and 11 this works out fine, however, because we previously wrote to block 12, the card
responds with ‘6282’ “End of file reached before writing Lc bytes”. After the first write access to
block 12 only read operations are supported.

The following APDU attempts to write to block 7:
Command APDU: ‘FFD6000701FF’
Response APDU : ‘6581’

The card responds with ‘6581’ “Memory failure (unsuccessful writing)” because this is a UID byte
- write access to the UID area is always locked.

4.3.2 Read Binary

The ReadBinary command is available for all blocks of the LRI64 chip.

Examples:

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 26 of 69 Printed: 11.02.08 15:15

Reading all 15 blocks from 0 to 14
Command APDU: ‘FFB0000000’
Response APDE : ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx9000’

Attempt to read 16 blocks
Command APDU: ‘FFB0000010’
Response APDE : ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx6282’

The response is ‘6282’ or “End of file reached before reading expected number of bytes”. Even
though the warning ‘6282’ is returned, all bytes from block 0 up to block 14 are read
correctly.

Read blocks 10 and 11 (2 bytes)
Command APDU: ‘FFB0000A02’
Response APDE : ‘xxxx9000’

Attempt to read an invalid block number:
Command APDU: ‘FFB0000F01’
Response APDE : ‘6A82’

The response is the error code ‘6A82’ because block number 15 does not exists.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 27 of 69 Printed: 11.02.08 15:15

5 CardMan 5x21-CL Keys

OMNIKEY CardMan 5x21-CL has a set of built-in cryptographic keys, some of which are implemented
in volatile memory others in non-volatile memory.

5.1 Key Numbering Scheme

Cryptographic keys are referenced by a unique key number between 0x00 and 0xFE. Each key
number refers to a key of pre-defined length for a specific card type. For cards such as Mifare and
iCLASS, multiple key numbers are reserved.

The OMNIKEY key number is used to determine key usage, key length, and to map the reader key to
the third party card key.

Examples:

CardMan Key number ‘0A’ refers to the 6 byte Mifare key 10, KMIF10

CardMan Key number ‘24’ refers to the 8 byte iCLASS Default key for application 1 on page 1

Refer to [MIFARE] and [ICLASS] for detailed documentation of these third-party keys and contact your
card manufacturer in case you need information about any key values.

Keys Numbers and Key Names

Key
Number

Key Name Key Length Key Type Memory
Type

6-byte (Mifare) keys

‘00’ to ‘1F’ KMIF0 (Mifare Key 0) to KMIF31 (Mifare Key
31)

6 bytes Card Key Non-
volatile
memory

8-byte (iClass) keys

‘20’ KIAMC (Any Inside Application Master key) 8 bytes Card Key Non-
volatile
memory

‘21’ KMDC HID Master Key
(KMD0, Kd for application 1 of page 0 on
Book 0 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘22’ RFU
(previously used for HID Master Key
KMDO)

8 bytes Card Key Non-
volatile
memory

‘23’ KMC0 (Default Master Key for application 2
of page 0 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘24’ KMD1 (Default Master Key for application 1
of page 1 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘25’ KMC1 (Default Master Key for application 2
of page 1 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 28 of 69 Printed: 11.02.08 15:15

‘26’ KMD2 (Default Master Key for application 1
of page 2 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘27’ KMC2 (Default Master Key for application 2
of page 2 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘28’ KMD3 (Default Master Key for application 1
of page 3 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘29’ KMC3 (Default Master Key for application 2
of page 3 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2A’ KMD4 (Default Master Key for application 1
of page 4 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2B’ KMC4 (Default Master Key for application
2) of page 4 of iCLASS card

8 bytes Card Key Non-
volatile
memory

‘2C’ KMD5 (Default Master Key for application 1
of page 5 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2D’ KMC5 (Default Master Key for application 2
of page 5 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2E’ KMD6 (Default Master Key for application 1
of page 6 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘2F’ KMC6 (Default Master Key for application 2
of page 6 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘30’ KMD7 (Default Master Key for application 1
of page 7 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘31’ KMC7 (Default Master Key for application 2
of page 7 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘32’ KMTD (Master Transport Key for
application 1 of iCLASS card, key stored
at chip production)

8 bytes Card Key Non
volatile
memory

‘33’ KMTC (Master Transport Key for
application 1 of iCLASS card, key stored
at chip production))

8 bytes Card Key Non-
volatile
memory

‘34’ KMD0B1 (Default Master Key for application
1 of page 0 on Book 1 of iCLASS card)

8 bytes Card Key Non-
volatile
memory

‘35’..’7f’ RFU

16-byte keys

‘80’ KCUR (Custom read key) 16 bytes Reader
Key

Non-
volatile
memory

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 29 of 69 Printed: 11.02.08 15:15

‘81’ KCUW (Custom write Key) 16 bytes Reader
Key

Non-
volatile
memory

‘82’ KENC (Card data encryption key) 16 bytes Card Key Non-
volatile
memory

24- byte keys

‘B0’..’CF’ RFU

32-byte keys

‘D0’..’DF’ RFU

0xF0 to 0xFF are volatile keys

0xF0 KVAK (volatile application key) 8 bytes Card Key Volatile
memory

‘F1’...‘FF’ RFU

Note: CardMan 5x21 firmware version 5.00 is the first to support all keys listed above. Readers with
firmware version 1.03 and 1.04 only support key numbers 0x20 and 0xF0.

Key number 0x21 to Key number 0x31 (except 0x22) are the default keys for iCLASS cards. Key
number 0x32 and 0x33 are the default transport keys for Inside cards.
Keys 0x21 and 0x22 are stored in the reader. The remaining non-volatile keys 0x23 to 0x33 are stored
in the registry.

Key 0x21 can’t be updated. Updates of key 0x22 are RFU and currently not supported.

5.2 Key Container and Key Slots

The CardMan 5x21-CL key container is organized in fixed-length key slots. These key slots allow easy
usage of cryptographic keys. It is thus not necessary that the host application knows anything about
the physical storage location. Keys can be loaded into a key container just by referring to a key slot
and a key number. Key access and usage are managed by the reader firmware. For security
purposes, keys can only be used and updated, but they can never be read. As an additional security
measure, keys are diversified with two 16-byte secret keys before being committed to a key container.

Key slot properties are available for advanced users. This feature is designed to ensure proper use of
a single key in case there are more keys than key slots.

Key Container of CardMan 5x21-CL Reader

Key Slot
(KS)

Number

KS
Length

Default Stored
Key Name

Default Stored
Key Number

Remarks

‘00’ 12 KMIF0 ’00’

…. 12 ------- ----

‘1F’ 12 KMIF31 ’1F’

No key slot information is
available for these key slots.
Retrieving information will return
SW1SW2 “6300”.

‘20’ 16 KCUR ’80’

’21’ 16 KCUW ’81’

Key slot information is available.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 30 of 69 Printed: 11.02.08 15:15

’22’ 16 KENC ’82’

’23’ 08 KIAMC ’20’

'24’ 08 KMDO ’22’

’25’ 08 KMDC ’21’

’26’ 08 KVAK ’F0’ No key slot information is
available for these key slots.
Retrieving information will return
SW1SW2 “6300”.

’27’ 08 KMC0 ’23’

’28’ 08 KMD1 ’24’

’29’ 08 KMC1 ’25’

’2A’ 08 KMD2 ’26’

’2B’ 08 KMC2 ’27’

’2C’ 08 KMD3 ’28’

’2D’ 08 KMC3 ’29’

’2E’ 08 KMD4 ’2A’

’2F’ 08 KMC4 ’2B’

’30’ 08 KMD5 ’2C’

’31’ 08 KMC5 ’2D’

’32’ 08 KMD6 ’2E’

’33’ 08 KMC6 ’2F’

’34’ 08 KMD7 ’30’

’35’ 08 KMC7 ’31’

’36’ 08 KMTD ’32

’37’ 08 KMTC ’33’

’38’ 08 KMD0B1 ’34’

Key slot information is available.

5.3 Key Update Rules

The following table lists update rules for keys being used by the reader system. Key updates relate to
keys residing in the OMNIKEY reader. Those keys are used for authentication of the reader to the
card or to encrypt data written to the card.

Key
Name

Key
Number

Key
Update Rule

Description

KMIF0

to

KMIF31

’00’ to ‘1F’ Always 6-byte Mifare keys can be loaded/updated by using the
SCardCLWriteMifareKeyToReader function of
synchronous API. A key sent to reader may be plain or 3-
DES encrypted with the KCUR or KCUW

KIAMC ‘20’ Standard Mode:
- Always

8-byte iCLASS key to authenticate any iCLASS
application. The default value for this key is the Inside

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 31 of 69 Printed: 11.02.08 15:15

Secured Mode:
- Read session
- Write session

contactless card transport key Kd0 (authenticates to
application 1 on page 0).

KMDC ’21’ Never Authenticates the reader to the HID application of an
iCLASS card for read access. This authentication
requires secure mode operation. Write access to the HID
application is not allowed.

KMDO ’22’ Never RFU

KCUR ’80’ Secured mode:
- read session
- write session

Authenticates the reader to establish a secured session.
Grants the application read access. This key can also be
used to encrypt the Mifare key in
SCardCLWriteMifareKeyToReader function.

KCUW ’81’ Secured mode:
- read session

Authenticates the reader to establish a secured session.
Grants the application read-only access. This key can
also be used to encrypt the Mifare key in
SCardCLWriteMifareKeyToReader function.

KENC ’82’ Secured mode:
- read session
- write session

Encrypts data written to the card or decrypts data read
from the card. Requires read/update INS bits to be set
accordingly. If INS bits are set for DES, the first 8 bytes of
KENC are used. For 3-DES operations, all 16 bytes are
used.

KVAK ’F0’ Standard Mode:
- Always

Secured Mode:
- Read session
- Write session

Authenticates any application on the iCLASS card. The
sequence is as follows:

Load KVAK with the 8-byte value, Authenticate with
KVAK
………………………………………………………………
Load KVAK with new 8-byte value, Authenticate with
KVAK.

KMC0

to

KMC7

KMD1

to

KMD7,

and
KMD0B1

’23‘ to ’31’
and ‘34’

Never iCLASS default keys for free memory zones. May be
used to authenticate to any non-HID application on an
iCLASS card. This allows quick evaluation of iCLASS
cards without knowledge of the default keys.

KMTD -
KMTC,

’32’

’33’

Never iCLASS transport keys set by the card manufacturer.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 32 of 69 Printed: 11.02.08 15:15

6 Standard Communication with iCLASS Card

Standard communication means that there is no authentication of the host application (i.e. Windows
program) to the CardMan 5x21-CL. Unless the card itself has a built-in mechanisms for confidential
communication, the channel between host and reader is unprotected, exposing the connecting USB
cable to eavesdropping.

6.1 APDU Structure for Standard Communication

iCLASS cards are supported via ISO7816 compliant APDU exchange. Command and response
APDUs are exchanged through the OMNIKEY proprietary API function SCardCLICCTransmit residing
in the OMNIKEY synchronous API.

Command APDU (via pucSendData)

CLA INS P1 P2 Lc Data in Le

‘80’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ … ‘xx’ ‘xx’

Response APDU (via pucReceivedData)

Data out SW2 SW1

‘xx’ … ‘xx’ ‘xx’ ‘xx’

6.2 Commands Available in Standard Communication Mode

Card commands are referred to by their respective instruction (INS) byte as part of a command APDU
sent by SCardCLICCTransmit. The following table lists all INS values supported by the OMNIKEY
CardMan 5x21-CL reader in standard communication mode.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 33 of 69 Printed: 11.02.08 15:15

List of Supported INS bytes (APDU Commend Set)

Instruction (INS) Description Command Type

‘82’ Load Key reader command

‘C4’ GetKeySlotInfo reader command

‘A6’ Select Page card command

‘88’ Authenticate card command

‘B0’ Read card command

‘D6’ Update card command

6.2.1 Select Page (Card Command)

iCLASS comes with various card configurations. Every iCLASS card has at least one page (page 0).
Cards such as the iCLASS 2x8KS, provide additional pages 1 to 7. In addition to pages, iCLASS
cards also have books. To select a certain memory block on an iCLASS card, you need to know its
book number, page number, and block number.

It is necessary to select the appropriate page and book before any authentication to an iCLASS card
application for read/write access can be performed. In the context of iCLASS cards, an application
area and memory area are synonymous.

Currently, only cards with more than 16 kbit of total memory capacity have an additional book. The
following section describes parameters of the Select Page command.

Command Syntax

CLA ‘80’

INS ‘A6’

P1 ‘00’: Select the only page of iCLASS 2KS or single page of 16KS
’01’: Select page of multi-page iCLASS 16KS (8x2KS) or 32KS

P2 Specifies whether data is requested from the card
’00’: no data requested
’04’: request for 8-byte card serial number
’08’: request for 8-byte configuration block data
’0C’: request for 8-byte application issuer data

LC for P1=’00’: standard mode: empty; secured mode: ‘00’
for P1=’01’: ‘01’

Data Field for P1=’00’: empty
for P1=’01’: book number and page number according to format below

Le for P2=’00’: empty
for P2>’00’: ’00’ or ‘08’

Data Field Format for Page Number & Book Selection

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 Book number
0: for 1st book
1: for 2nd book on iCLASS 32KS

0 Page number 0-7

 Examples for Page Selection:

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 34 of 69 Printed: 11.02.08 15:15

Data Field Description

‘03’ select page 3 of an iCLASS 8x2KS card

‘03’ select page 3 of book 0 of an iCLASS 32KS (book 0: 8x2KS) card

‘13’ select page 3 of book 1 of an iCLASS 32KS (book 1: 8x2KS) card

‘10’ select book 1 (16KS) of an iCLASS 32KS

‘00’ select book 0 (16KS) of an iCLASS 32KS

Response Syntax

Data Field empty or
8 byte card response, in case of a previous request for such data

SW1 SW2 status word as described below

‘90’ ‘00’ Success

‘62’ ‘83’ requested page number does not exist

‘6C’ ‘xx’ wrong length Le. xx returns the number of data available

Please refer to 4.2.1-Card Access via SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Note: If the application resides on page 0 of an 8x2KS iCLASS card or on the single page of an
iCLASS 16KS or iCLASS 2KS card, the Select Page command is not necessary. It can still be helpful
to call Select Page anyway, in case you need to retrieve the card serial number, configuration block,
or application issuer data.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 35 of 69 Printed: 11.02.08 15:15

6.2.2 Load Key

Load Key command loads an iCLASS card key and stores it in reader memory, thus preparing the
reader for subsequent card authentication commands. CardMan 5x21 can only store one such key at
a time.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘82’

P1 ‘xx’ specifies key location according to byte format below

P2 ‘xx’ key number (see Key Numbering Scheme)

LC ‘08’

Data Field 8 byte key

Le Empty

P1 - Format for Key Location

b7 b6 b5 b4 b3 b2 b1 b0 Description

x 0: card key
1: reader key

 x 0: plain transmission
1: secured transmission (not available)

 x 0: key loaded in volatile memory
1: key loaded in non-volatile memory.

 x 0: RFU (non-zero value returns error)

 0 0 0 0 b0..b3 must be set to 0

Note: A key in volatile memory only needs to be loaded once during any given card session. Unless
you need to authenticate to any additional application with a different key, you can use the stored key
throughout the session for more than just one authentication.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 36 of 69 Printed: 11.02.08 15:15

Response Syntax

Data Field empty

SW1 SW2 status word as described below

‘90’ ‘00’ success

‘63’ ‘00’ no further information given (warning)

‘63’ ‘81’ loading/updating is not allowed

‘63’ ‘82’ card key not supported

‘63’ ‘83’ reader key not supported

‘63’ ‘84’ plaintext transmission not supported

‘63’ ‘85’ secured transmission not supported

‘63’ ‘86’ volatile memory is not available

‘63’ ‘87’ non-volatile memory is not available

‘63’ ‘88’ key number not valid

‘63’ ‘89’ key length is not correct

Please refer to 4.2.1-Card Access via SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 37 of 69 Printed: 11.02.08 15:15

6.2.3 GetKeySlotInfo (Reader Command)

The GetKeySlotInfo reader command provides access to key slot status information.

OMNIKEY CardMan 5x21-CL provides a set of predefined key slots in the key container. Key slots
can easily be loaded with keys by referring to the key number (i.e. key reference) rather than loading
the actual 8 byte key by value. The slot for key storage is automatically determined by the reader
system.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘C4’

P1 ‘00’

P2 ‘xx’ key slot number (see chapter 5.2 Key Container and Key Slots)

LC standard mode: empty; secured mode: ‘00’

Data Field 8 byte key

Le ‘00’ or ‘02’

Response Syntax

Data Field 2 byte key information
see “Key Information” and “Key Access Option” below

SW1 SW2 status word as described below

‘90’ ‘00’ success

‘63’ ‘00’ no further information given (warning)

‘63’ ‘01’ key slot does not contain valid key or empty key slot

‘62’ ‘83’ requested key slot does not exist

‘6C’ ‘xx’ more data available than requested; xx returns available data size

Please refer to 4.2.1-Card Access via SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Key Information (contained in Data Field)
b15 b14 B13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

RFU Key
Access
Option

key number according to
5.1-Key Numbering Scheme
’FF’ means “empty key slot”

Key Access Option (contained in b9,b8 of Data Field)

b9 B8 Key Access Option

0 0 key can be loaded for any plaintext and secured transmission.

0 1 key can only be loaded in OMNIKEY proprietary secured mode

1 0 key can never be loaded

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 38 of 69 Printed: 11.02.08 15:15

1 1 RFU

6.2.4 Authenticate (Card Command)

The Authenticate command authenticates the reader system to the card application of the selected
page. For iCLASS authentication, this command requires previous page selection.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘88’

P1 ‘xx’ key type:
’00’: Inside Contactless or iCLASS debit key Kd (i.e. application 1)
’01’: Inside Contactless or iCLASS credit key Kc (i.e. application 2)
’60’: Mifare Key A
’61’: Mifare Key B
’FF’: key type unknown or not necessary
all other values: RFU

P2 ‘xx’ key number (see chapter 5.1-Key Numbering Scheme)

LC length of address
iCLASS: standard mode: empty; secured mode: ‘00’
other cards: ‘01’ or ‘02’ (max 2 address bytes supported)

Data Field iCLASS: empty
other cards: one or two byte address

Le empty

Response Syntax

Data Field empty

SW1 SW2 status word as described below

‘90’ ‘00’ success

‘63’ ‘00’ no further information given (warning)

‘69’ ‘83’ authentication cannot be done

‘69’ ‘84’ reference key not useable

‘69’ ‘88’ key number not valid

Please refer to 4.2.1-Card Access via SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 39 of 69 Printed: 11.02.08 15:15

6.2.5 Read (Card Command)

The Read command reads a data block from the given block address. For the iCLASS card, only eight
bytes can be read at a time. For further information about available blocks refer to [HID_ICLASS]. This
command requires previous page selection and, depending on the iCLASS card configuration,
authentication to the iCLASS application.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘B0’

P1 MSB of block number

P2 LSB of block number

LC standard mode: empty; secured mode: ‘00’

Data Field empty

Le ‘00’ or ‘08’
’20’: if supported by card, up to 32 bytes can be returned

Response Syntax

Data Field 8 byte block returned from the card (iCLASS)
32 bytes returned if card supports it

SW1 SW2 status word as described below

‘90’ ‘00’ success

‘62’ ‘81’ part of returned data may be corrupted

‘62’ ‘82’ end of file reached before reading all requested bytes

‘69’ ‘81’ command incompatible

‘69’ ‘86’ command not allowed

‘6A’ ‘81’ function not supported

‘6A’ ‘82’ file not found or addressed block or byte does not exist

‘6C’ ‘xx’ more data available than requested; xx returns available data size,
typically ‘08’

Please refer to 4.2.1-Card Access via SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Note: Reading blocks without valid authentication or trying to read data without read permission, will
set all returned data to ‘FF’.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 40 of 69 Printed: 11.02.08 15:15

6.2.6 Update (Card Command)

The Update command writes a data block to a given block address. For the iCLASS card, only eight
bytes can be written at a time. For further information about available blocks refer to [HID_ICLASS].
This command requires previous page selection and, depending on the iCLASS card configuration,
authentication to the iCLASS application.

Command Syntax

CLA ‘80’: standard mode operation
’84’: secured mode operation

INS ‘D6’

P1 MSB of block number

P2 LSB of block number

LC ‘08’ (iCLASS only allows 8 bytes per call)

Data Field 8 bytes to be written to card

Le empty

Response Syntax

Data Field empty

SW1 SW2 status word as described below

‘90’ ‘00’ success

‘62’ ‘82’ end of file reached before writing all Lc bytes

‘65’ ‘81’ memory failure (unsuccessful writing).

‘69’ ‘81’ command incompatible

‘69’ ‘86’ command not allowed

‘6A’ ‘81’ function not supported

‘6A’ ‘82’ file not found or addressed block or byte does not exist

Please refer to 4.2.1-Card Access via SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Note: Trying to update without authenticating to the corresponding application will return ‘6400‘ “Card
Execution Error”.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 41 of 69 Printed: 11.02.08 15:15

6.3 Communication in Standard Mode

Establish Context

Connect Card

Select Page

Load Key

Authenticate Application

Yes

Read/Update

Further
Read/Update

No

Disconnect Card

Same
Application

Yes

Same Page

No

Yes

No

1

2

3

4

5

6

7

8

Release Context 9

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 42 of 69 Printed: 11.02.08 15:15

7 Secured Communication with the iCLASS Card

For a desktop smart card reader, such as the OMNIKEY CardMan 5x21-CL, security mainly evolves
from the following scenarios:

• Authenticity between the host application and the reader

• Confidentiality of data transmitted via USB cable

• Integrity of transmitted data

• Authenticity between the reader and the card

• Confidentiality and integrity of the RF transmission

• Confidentiality of data stored in cards

OMNIKEY CardMan 5x21-CL reader provides an end-to-end security scheme to fulfill the security
requirements listed above.

Note: Secured mode communication requires reader firmware version 5.00 or greater.

7.1 Multi-Step Approach to a Secure Card Reader System

7.1.1 Authenticity Between Host and Reader

Authenticity between host and reader is enforced with a mutual authentication scheme that requires a
16-byte transport key (Kcur or Kcuw) and a proprietary algorithm. Sessions can only be initiated upon
successful completion of this one-step mutual authentication process.

Note: This feature prevents unauthorized reader usage. Additional information about this process is
available to under an NDA.

7.1.2 Confidentiality of USB Data Exchange

CardMan 5x21-CL has a built-in mechanism that protects against eavesdropping and replay attacks
on USB traffic. The data transmitted through a USB cable is triple DES encrypted with the Session
Key (Ks). This key is generated during the mutual authentication process. It is unique for every
session. Therefore, traffic recorded in one session cannot be replayed in another session.

7.1.3 Integrity of Transmitted Data

Data transmitted between host and reader is digitally signed with an eight-byte Message
Authentication Code (MAC) which is appended to the data. This is done to detect any inconsistencies
that may occur due to erroneous or modified data.

7.1.4 Authenticity Between Reader and Card

iCLASS cards allow authentication of the reader system to the card. This is done by proving
knowledge of a shared secret, the iCLASS card application key KIAMC or KMDC . Applications that are

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 43 of 69 Printed: 11.02.08 15:15

protected with such a key require successful reader authentication before read/write access to card
data can be granted.

7.1.5 Integrity of the Radio Frequency (RF) Transmission

Data integrity of an RF transmission with an iCLASS card is enforced with a two-byte checksum
(based on CRC algorithm).

7.1.6 Confidentiality of the RF Transmission

The CardMan 5x21-CL supports an important feature to guarantee confidentiality: it encrypts data
before writing data to the card and decrypts data read from the card. Confidentiality in this context
means that data can be securely transmitted between the card and the reader without an
eavesdropper being able to read the data in plaintext.

7.1.7 Authentication of the Host for Read/Write Session

CardMan 5x21-CL contains two keys KCUR and KCUW that are used to control access to read and write
functions respectively. Initiating a reader session with KCUR makes it a read-only session thus blocking
functions that write to the card. Starting a session with KCUW enables the reader for both read and
write access.

Note: This is part of a host-to-reader authentication mechanism, not to be confused with reader-to-
card authentication enforced by the card itself.

7.1.8 Protection Against Known Attacks

Replay Attacks:

The data header contains a datagram that is different with every APDU exchange. The reader
ensures that no frame is repeated.

Plain Text Attack:

For some critical commands, there is a built-in delay to prevent a plain text attack. If there is any
error in the data header or signature, the session is immediately terminated. One can commence
communication only again after starting a new session.

OMNIKEY welcomes comments and suggestions regarding any additional features that might be
implemented to prevent specific attacks to the card system.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 44 of 69 Printed: 11.02.08 15:15

7.2 APDU Structure for Secured Communication

CardMan 5x21-CL provides a unique mechanism to secure the communication channel using
OMNIKEY’s proprietary cryptographic envelope which protects the transmitted data from
eavesdroppers.

Secured communication requires additional steps to prepare data before sending it to the reader
system and after receiving data from the reader. The underlying triple DES algorithm requires a block
size that is a multiple of 8. Therefore, the datagram has a built-in padding scheme. Authenticity of the
plaintext is enforced with an 8 byte signature.

Command Syntax

CLA INS P1 P2 Lc Input Datagram (sent to the reader) Le

‘84’ ‘xx’ ‘xx’ ‘xx’ ‘xx’ ‘xx ... xx” ‘xx’

Input Datagram (sent to the reader)
Data Header (DH) Size of INS

related data
LcINS

INS related
data (INSData)

Padding
Bytes (PB)

Signature

‘xxxxxxxx’ ‘xx’ ‘xx ... xx’ ’80 ... 00’ ‘xx ... xx’

4 bytes 1 byte LcINS bytes P bytes 8 bytes

P = number of padding bytes to satisfy (4+1+ LcINS+P) is multiple of 8.

Response Syntax

Output Datagram (received from the reader) SW2 SW1

‘xx ... xx’ ‘xx’ ‘xx’

Output Datagram (received from the reader)

P = number of padding bytes to satisfy (4+1+ LcINS+P) is multiple of 8.

Note: If no valid session key Ks is available due to a previous error during the ‘Start Session’
command, all datagram bytes are set to ‘00’. Therefore the host would receive ’00 ... 00’ || SW1 || SW2
as response from the reader.

Data Header (DH) Size of Card
Response

LcR

Card
Response

Padding
Bytes

(PB)

Signature

‘xxxxxxxx’ ‘xx’ ‘xx ... xx’ ’80 ... 00’ ‘xx ... xx’

4 bytes 1 byte n bytes P bytes 8 bytes

 3-DES{KS, ()}

 3-DES{KS, ()}

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 45 of 69 Printed: 11.02.08 15:15

7.2.1 Data Header (DH)

Data Header

Byte 0 Byte 1 Byte 2 Byte 3

Host data header (HDH) Reader data header (RDH)

When the host system sends a Host Data Header (HDH) to the reader, the reader must acknowledge
the HDH in its response by returning the 1’s complement of the original HDH. This allows the host to
check whether it receives data originating from the correct data header.

When the reader sends a Reader Data Header (RDH) to the host, the host must acknowledge the
RDH in its next request by sending the 1’s complement of the preceding RDH. This allows the reader
to check whether the data sent by the host follows a previous reader response.

7.2.2 Signature Generation

The CardMan 5x21-CL signature generation is based on an 8-byte Message Authentication Code
(MAC). The MAC value is calculated by taking the last 8 bytes of a DES CBC encypted data block
consisting of DH, LcINSData, INSData, and padding bytes. Kcur or Kcuw are used as signing keys.

The following steps describe how padding is applied to create a data block that can be signed using a
DES CBC operation:

• Append '80' to the right of the data block.

• If the resulting data block length is a multiple of eight, no further padding is required.

• Do zero (‘00’) padding until the data block size reaches a multiple of eight.

7.2.3 Session Key Generation

The session key Ks is derived from an 8-byte random number and the MAC transmitted to the reader
during Start Session. For the Start Session command, LcINSData equals 8 (length of the random
number) and INSData contains the 8-byte random number.

All secured communication calls following a successful session key negotiation are 3DES encrypted
with Ks.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 46 of 69 Printed: 11.02.08 15:15

7.2.4 Example: Proprietary Datagram Exchange between Host and Reader

Host Reader

Note: This is a read-only session because KCUR was used in the start session command. If KCUW were
used to start the session, both read and write operations would be allowed. The HID application is
always read-only.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 47 of 69 Printed: 11.02.08 15:15

7.3 Instructions (INS) for Secured Communication

Card commands are referred to by their respective instruction (INS) byte as part of a command APDU
sent by SCardCLICCTransmit. CardMan 5x21-CL with firmware version 5.00 or greater supports the
following secured mode instructions:

List of INS bytes for Secured Communication

Instruction (INS) Description Command Type

‘C4’ GetKeySlotInfo reader command

‘72’ Manage Session reader command

‘82’ Load Key reader command

‘A6’ Select Page card command

‘88’ Authenticate card command

‘B0’ Read card command

‘D6’ Update card command

‘24’ Update Card Key card command

In the following sections the command structure is described. LcINS and INSData are part of the
OMNIKEY proprietary structure.

Notes
1- Secured mode’ and ‘Standard Mode’ use different formatting of P1, bit 7 and bit 6 of the
Read/Update commands (INS 0xB0 and 0xD6 respectively). The two LSBits of P1 are used to control
the encryption of data read or updated.
2- Lc must always be transmitted in secured mode.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 48 of 69 Printed: 11.02.08 15:15

7.3.1 Manage Session (Reader Command)

The Manage Session command is used to either start a session or end a session.

Command Syntax

CLA ‘84’

INS ‘72’

P1 ‘00’: start session
’01’: end session
other values: RFU

P1 = ‘00’ (start session) P1 = ’01’ (end session) P2

‘00’: start read only session
’01’: start read/write session

‘00’

Lc ‘08’: challenge size ‘00’

Data Field 8-byte random number (challenge) empty

Le empty

Response Syntax

Data Field empty

SW1 SW2 status word as described below

‘90’ ‘00’ success

Please refer to 4.2.1-Card Access via SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

Note: A session will be automatically ended if the card is removed.

7.3.2 Select Page (Card Command)

Except for the CLA byte ‘84’, the syntax for Select Page in secured mode is identical to the command
described in 6.2.1-Select Page (Card Command).

7.3.3 Load Key (Reader Command)

Except for the CLA byte ‘84’, the syntax for Load Key in secured mode is identical to the Load
Command described in 6.2.2-Load Key.

7.3.4 Authenticate (Card Command)

Except for the CLA byte ‘84’, the syntax for Authenticate in secured mode is identical to the command
described in 6.2.4-Authenticate (Card Command).

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 49 of 69 Printed: 11.02.08 15:15

7.3.5 Read (Card Command)

Except for the CLA byte ‘84’, and the additional formatting rules for P1 described below, the syntax for
the Read command in secured mode is identical to the command described in 6.2.5-Read (Card
Command).

P1 Formatting for Secured Mode

b7 b6 b5 – b0 Description

0 0 Plain

0 1 DES Encryption

1 0 Triple DES Encryption

1 1

Block Nr. MSB

RFU

Data needs to be decrypted with the KENC to get the plaintext data.

7.3.6 Update (Card Command)

Except for the CLA byte ‘84’, and additional formatting of P1 described below, the syntax for the
Update command in secured mode is identical with the command described in 6.2.6-Update (Card
Command).

P1 Formatting for Secured Mode

b7 b6 b5 – b0 Description

0 0 Plain

0 1 DES Encryption

1 0 Triple DES Encryption

1 1

Block Nr. MSB

RFU

Data is encrypted with KENC before storing it on the card.

7.3.7 GetKeySlotInfo (Reader Command)

Except for the CLA byte ‘84’, the syntax for 7.3.7 GetKeySlotInfo in secured mode is identical to the
command described in 6.2.3-GetKeySlotInfo (Reader Command).

7.3.8 Update Card Key

The Update Card Key command is used to change KC or KD.

Command Syntax

CLA ‘84’

INS ‘24’

P1 ‘00’: New key for KD (application 1)
’01’: New key for KC (application 2)
other values: RFU

P2 Key number where new key is stored.

Lc ‘00’: empty

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 50 of 69 Printed: 11.02.08 15:15

Data Field empty

Le empty

Response Syntax

Data Field empty

SW1 SW2 status word as described below

‘90’ ‘00’ Success

'65' '81' Memory failure (unsuccessful writing)

'69' '81'
‘86’

Command incompatible
Command not allowed

'6A' '81' Function not supported

Please refer to 4.2.1-Card Access via SCardCLICCTransmit for additional status words common to all
iCLASS access functions.

The sequences for using UpdateCardKey command are as follows:

1. If the desired change of the key is not in page 0, the page has to be selected by a
‘Select Page’ command

2. Load transport/old key by ‘Load Key’ command

3. Authenticate the card with the old key (key number as used for ‘Load Key’in step 2)

4. Load new key by ‘Load Key’ command

5. Now send Update CardKey command with specific P2 (New Key number as loaded in
step 4)

Note: You can only update KD (application 1) after authentication with KD, and you can only update
KC (application 2) after authentication with KC.

Note: Do not write directly to address 3,4 where KC and KD are stored, this will destroy the
keys.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 51 of 69 Printed: 11.02.08 15:15

7.4 Communication at Secured Mode

Establish Context

Connect Card

Select Page

Authenticate Application

Yes

Read/Update

Further
Read/Update

No

Disconnect Card

Same
Application

Yes

Same Page

No

No

1

2

3

5

6

8

9

4 Start Session

End Session

10

Release Context

Load Key Yes

11

7

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 52 of 69 Printed: 11.02.08 15:15

7.5 Example APDUs for a Session at Secured Mode

KCUR = ‘A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’, Read-only session

Host Reader
1. Start Session

CLA INS P1 P2 Lc OMNIKEY Proprietary Input Datagram (sent to reader) CLEAR

‘84’ ‘72’ ‘00’ ‘00’ ‘18’ ‘1422’ ‘9D2B’ ‘08’ ‘4A895F20C2D30B5E’ ‘800000’ ‘9E5052819C5A8D3C’

 HDH
(Rnd)

RDH
(Rnd)

LcINS Rnd8 (INSData) Padding Signature

 DH MAC

 ‘FD274CE840FA9AD139E4FC2923653A88743CB5986DB4F7A0’

 OMNIKEY Proprietary Input datagram (sent to reader) ENCIPHERED

Signature = DESEn {(A0A1A2A3A4A5A6A7),(14229D2B084A895F20C2D30B5E800000)}

 = 8A8D430D608714FE9E5052819C5A8D3C

 9E5052819C5A8D3C (last eight bytes of DES encryption)

Enciphered datagram = 3-DESEn{
(A0A1A2A3A4A5A6A7A8A9AAABACADAEAF),
(14229D2B084A895F20C2D30B5E8000009E5052819C5A8D3C) }

= FD274CE840FA9AD139E4FC2923653A88743CB5986DB4F7A0 (24 byte input datagram)

SessionKey (KS) = Rnd8 + MAC = 4A895F20C2D30B5E9E5052819C5A8D3C

OMNIKEY Proprietary Output Datagram (received from reader) SW1SW2

A04B84A4DE515FD8A9D40DFFE703FBF1 9000

‘EBDD’ E00C 00 800000 E367401E2DA8FACB

~HDH RDH(Rnd) LcR Padding Signature

DH MAC

 3-DESDec{(4A895F20C2D30B5E9E5052819C5A8D3C),(A04B84A4DE515FD8A9D40DFFE703FBF1) }

 = EBDDE00C00800000E367401E2DA8FACB

 Signature = DESEn{(4A895F20C2D30B5E),(EBDDE00C00800000) }

 = E367401E2DA8FACB

Note: An open source library to accomplish all security protocols introduced in the secured
communication mode is available from OMNIKEY upon request.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 53 of 69 Printed: 11.02.08 15:15

2. Authenticate HID Application

CLA INS P1 P2 Lc OMNIKEY Proprietary Send Datagram

84 88 00 21 10 B3F1 1FF3 00 800000 B50318C9E871191A

 HDH
(Rnd) ~RDH

LcINS Padding Signature

 DH MAC

 B5FD83E756CA03DE54FBEA5546E8867D

 Proprietary Data

Signature = DESEn{(4A895F20C2D30B5E),(B3F11FF300800000)}

 = B50318C9E871191A

Proprietary Data = 3-DESEn{(4A895F20C2D30B5E9E5052819C5A8D3C),(B3F11FF300800000B50318C9E871191A) }

 = B5FD83E756CA03DE54FBEA5546E8867D

OMNIKEY Proprietary Response Datagram SW1SW2

78A10C4FCC7EBC2C516354A56C4C7818 9000

4C0E 7D55 00 800000 D2D0B0B4E34EBDBE

~HDH RDH(Rnd) LcR Padding Signature

DH MAC

 3-DESDec{(4A895F20C2D30B5E9E5052819C5A8D3C), (78A10C4FCC7EBC2C516354A56C4C7818) }

 = 4C0E7D5500800000D2D0B0B4E34EBDBE

 Signature = DESEn{(4A895F20C2D30B5E),(4C0E7D5500800000) }

 = D2D0B0B4E34EBDBE

Note: An open source library to accomplish all security protocols introduced in the secured
communication mode is available from OMNIKEY upon request.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 54 of 69 Printed: 11.02.08 15:15

3. Read Block 6

CLA INS P1 P2 Lc OMNIKEY Proprietary Send Datagram Le

84 B0 00 06 10 6762 82AA 00 800000 F63AB82BED09B039 08

 HDH
(Rnd) ~RDH

LcINS Padding Signature

 DH MAC

 2FABB8F0533E742383F4FE9045142859

 Proprietary Data

Signature = DESEn{(4A895F20C2D30B5E),(676282AA00800000)}

 = F63AB82BED09B039

Proprietary Data = 3-DESEn{(4A895F20C2D30B5E9E5052819C5A8D3C),(676282AA00800000F63AB82BED09B039) }

 = 2FABB8F0533E742383F4FE9045142859

OMNIKEY Proprietary Response Datagram SW1S
W2

AA401E3D849B881044FF4D847977D9070C589338C097F163 9000

989D 2A94 08 000000000000E414 800000 3101DDB971C922FF

~HDH RDH(Rnd) LcR Response Data Padding Signature

DH MAC

 3-DESDec {(4A895F20C2D30B5E9E5052819C5A8D3C),
(AA401E3D849B881044FF4D847977D9070C589338C097F163)}

 = 989D2A9408000000000000E4148000003101DDB971C922FF

 Signature = DESEn{(4A895F20C2D30B5E),(989D2A9408000000000000E414800000) }

 = 1CDF21DCA31BABDB3101DDB971C922FF

 = 3101DDB971C922FF (last 8-byte block)

Note: An open source library to accomplish all security protocols introduced in the secured
communication mode is available from OMNIKEY upon request.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 55 of 69 Printed: 11.02.08 15:15

Appendix A Application Programming

A1 Sample Project

The following C++ sample project is part of the synchronous API which can be downloaded from our
website at www.omnikey.com

If you choose the default installation settings, sample code can be found in:
c:\omnikey\samples\contactlessdemovc.

Sample code for Visual Basic is also available and can be found in
c:\omnikey\samples\contactlessdemovb.

The sample uses the OMNIKEY synchronous API and demonstrates how to select a reader, connect
to a card, and access either a Mifare or an iCLASS card.

Note: Mifare cards can also be integrated via non-proprietary, PC/SC 2.0 compliant function calls.

A1.1 Overview

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 56 of 69 Printed: 11.02.08 15:15

Figure 1: Screenshot of Sample Program

In the list box in the top-left corner of the window you can select the reader from a drop down list that
contains all readers available to the smart card resource manager. When a card is inserted, the ATR,
UID and Card Name is displayed. The functions in the Reader Related functions group box can be
used with or without a card in the RF field.

Functions available in the Mifare Functions using Sync API group can only be used when a Mifare
card is in the field. The ISO 7816/iCLASS/PCSC 2.01 group allows APDU exchange with a CPU card
(asynchronous card) in the field.

Each processed command produces output in the output log on the bottom of the window. This log
can be cleared with the Refresh Output Screen button. The return status of the last function
executed is shown in the group box Last Operation Status.

The Exit button closes the application.

A1.2 Reader Related Functions

Reader related functions don’t require a card in the field.

To store a MIFare key, do the following:

• Define a key number to determine the location where the key will be stored.

• Select either plain or secured as the mode of transmission of the key. For secured
transmissions, use transmission key number 0x80 or 0x81.

• Enter the key in hex string format to the text field Mifare Key. For plain transmissions enter a
6 byte, 12 hex digit value (no spaces). For secured transmission enter an 8 byte value.

• Click on the Write Mifare Key to Reader button to load the key to reader memory.

A1.3 Mifare Card Related Functions Using Synchronous API

Before using any of the Mifare Card Related functions authentication to the card is required. (Mifare
UltraLight does not need authentication).

To authenticate to a block of the card do the following:

• In the field Block Nr, enter the block number of the block you want to authenticate to.

• In the Access Option box choose whether a key number or a plain key will be supplied.

• In the Authentication Mode box choose Mode A or Mode B.

• Press the Authenticate button.

Upon successful authentication, you can read and write data blocks and use the increment and
decrement functions.

A1.4 PC/SC 2.01

Enter an APDU according to PC/SC 2.01 to access storage cards such as Mifare cards directly
without using the OMNIKEY proprietary synchronous API.

A1.5 ISO 7816 - APDU

Enter an APDU for your CPU (asynchronous) card and send the APDU the same way you would an
ISO7816 contact card.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 57 of 69 Printed: 11.02.08 15:15

A1.6 iCLASS Standard Mode

Present an iCLASS card to the reader RF field, and send APDUs directly to the card according to the
chapter 6-Standard Communication with iCLASS Card. This will give you an easy-to-use way of
experimenting with the available functions.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 58 of 69 Printed: 11.02.08 15:15

A2 Code Snippets

This section lists some coding samples for a PC/SC 2.01 compliant implementation.

A2.1 Getting the Card UID (PC/SC 2.01)

The following function retrieves the Unique card ID (UID) of the card currently connected via air
interface. You can use the UID as the card serial number. It is available for every ISO 14443 A/B or
ISO 15693 compliant card and does not matter whether it is a CPU or storage card. This makes
GetUID the ideal candidate for Hello Card type applications. If you don’t have access to application
keys, the UID may serve as a valuable identifier that allows card lookup on a backend database.

BOOLEAN GetUID(UCHAR *UID, int &sizeofUID)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xCA;//INS
 ucByteSend[2] = 0x00;//P1
 ucByteSend[3] = 0x00;//P2
 ucByteSend[4] = 0x00;//Le
 ulnByteSend = 5;
 printf("\nRetrieving the UID..........");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 sizeofUID = dwRecvLength-2;
 memcpy(UID,ucByteReceive,sizeofUID);
 return TRUE;
}

A2.2 Loading a Mifare Key (PC/SC 2.01)

The following code-snippet loads a Mifare key to the reader. The key is stored in non-volatile memory.
Once loaded, it remains available throughout the reader session.

BOOLEAN LoadKey(UCHAR ucKeyNr, UCHAR *ucKey, UCHAR ucKeyLength)
{
 ucByteSend[0] = 0xFF; //CLA
 ucByteSend[1] = 0x82; //INS
 ucByteSend[2] = 0x20; //P1 card key, plain transmission, non-volatile memory
 ucByteSend[3] = ucKeyNr; //P2 key number for mifare could be 0x00 to 0x31)
 ucByteSend[4] = ucKeyLength;//Lc
 memcpy(ucByteSend+5,ucKey, ucKeyLength);
 ulnByteSend = 5+ucKeyLength;
 printf("\nLoading Key to the reader..........");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength -2],ucByteReceive[dwRecvLength-1]);

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 59 of 69 Printed: 11.02.08 15:15

 return FALSE;
 }
 return TRUE;
}

A2.3 Mifare 1K/4K Authenticate (PC/SC 2.01)

The following code snippet demonstrates how to authenticate to a Mifare card:

BOOLEAN Authenticate(UCHAR BlockNr, UCHAR ucKeyNr, UCHAR ucKeyType)
{
 ucByteSend[0] = 0xFF; // CLA
 ucByteSend[1] = 0x88; // INS
 ucByteSend[2] = 0x00; // P1, Mifare Block Number MSB, for mifare it is always 0x00
 ucByteSend[3] = BlockNr; // Mifare Block Number LSB
 ucByteSend[4] = ucKeyType; // P3
 ucByteSend[5] = ucKeyNr;
 ulnByteSend = 6;
 printf("\nAuthenticating");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

A2.4 Mifare 1K/4K Write (PC/SC 2.01)

BOOLEAN UpdateBinary(UCHAR BlockNr, UCHAR *ucDataToWrite, UCHAR ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD6;//INS
 ucByteSend[2] = 0x00;//P1, Mifare Block Number MSB, for mifare it is always 0x00
 ucByteSend[3] = BlockNr;//Mifare Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataToWrite, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf("\nUpdating Block");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

A2.5 Mifare 1K/4K Read (PC/SC 2.01)

BOOLEAN ReadBinary(UCHAR BlockNr, UCHAR *ucDataRead, UCHAR &ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xB0;//INS
 ucByteSend[2] = 0x00;//P1, Mifare Block Number MSB, for mifare it is always 0x00
 ucByteSend[3] = BlockNr;//Mifare Block Number LSB
 ucByteSend[4] = 0x10;//Le

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 60 of 69 Printed: 11.02.08 15:15

 ulnByteSend = 5;
 dwRecvLength = 255;
 printf("\nReading Block");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 ucDataLenght = (unsigned char)dwRecvLength -2;
 memcpy(ucDataRead,ucByteReceive,ucDataLenght);
 return TRUE;
}

A2.6 Mifare 1K/4K Increment (OMNIKEY Proprietary API)

BOOLEAN Increment(UCHAR BlockNr, UCHAR *ucDataTobeIncremented, UCHAR ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD4;//INS
 ucByteSend[2] = 0x00;//P1, Mifare Block Number MSB, for mifare it is always 0x00
 ucByteSend[3] = BlockNr;//Mifare Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataTobeIncremented, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf("\nIncrementing Block");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength-2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
 }
 return TRUE;
}

A2.7 Mifare 1K/4K Decrement (OMNIKEY Proprietary API)

BOOLEAN Decrement(UCHAR BlockNr, UCHAR *ucDataTobeDecremented, UCHAR ucDataLenght)
{
 ucByteSend[0] = 0xFF;//CLA
 ucByteSend[1] = 0xD8;//INS
 ucByteSend[2] = 0x00;//P1, Mifare Block Number MSB, for mifare it is always 0x00
 ucByteSend[3] = BlockNr;//Mifare Block Number LSB
 ucByteSend[4] = ucDataLenght;
 memcpy(ucByteSend+5,ucDataTobeDecremented, ucDataLenght);
 ulnByteSend = 5+ucDataLenght;
 printf("\nDecrementing Block");
 SCard_Status = SCardTransmit(hCard,SCARD_PCI_T1,ucByteSend,ulnByteSend,NULL,
 ucByteReceive, &dwRecvLength);
 if (SCard_Status != SCARD_S_SUCCESS)
 {
 printf("\nProblem in SCardTransmit, Erro rcode = 0x%04X",SCard_Status);
 return FALSE;
 }
 if(ucByteReceive[dwRecvLength-2] != 0x90 || ucByteReceive[dwRecvLength-1] != 0x00)
 {
 printf("\nWrong return code: %02X%02X",
 ucByteReceive[dwRecvLength- 2],ucByteReceive[dwRecvLength-1]);
 return FALSE;
}
 return TRUE;
}

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 61 of 69 Printed: 11.02.08 15:15

A2.8 Mifare Emulation Mode (OMNIKEY Proprietary API)

With the following code-snippet the Mifare Emulation Mode can switched on and off.

DWORD dwActiveProtocol;
DWORD dwControlFlag;

BYTE InBuffer[16];
BYTE OutBuffer[16];
DWORD dwInBufferSize ;
DWORD dwOutBufferSize;
DWORD dwBytesReturned;
DWORD *Mask = (DWORD *)InBuffer;
DWORD *Value = (DWORD *)InBuffer+1;
DWORD dwControlCode = CM_IOCTL_SET_RFID_CONTROL_FLAGS;

memset(InBuffer, 0x00, sizeof(InBuffer));
memset(OutBuffer, 0x00, sizeof(OutBuffer));

*Mask = 0x00000004;
*Value = dwControlFlag & *Mask;
dwInBufferSize = 8;
dwOutBufferSize = 0;
dwBytesReturned = 0;

SCard_Status = SCardControl(hCard,
 dwControlCode,
 (LPCVOID)InBuffer,
 dwInBufferSize,
 (LPVOID)OutBuffer,
 dwOutBufferSize,
 &dwBytesReturned);

if (SCard_Status == SCARD_S_SUCCESS)
{
 if(dwControlFlag)
 sprintf(szText,"Mifare\t");

else
 sprintf(szText,"T=CL\t");

}
else
{
 sprintf(szText,"IO Cntrol error\r");
}

// The card is disconnected after changing the Mifare emulation mode
do
{
 sReaderState.szReader = szReaderName;
 sReaderState.dwCurrentState = SCARD_STATE_EMPTY;
 sReaderState.dwEventState = SCARD_STATE_EMPTY;
 SCardGetStatusChange(hContext,50,&sReaderState,1);
}
while((sReaderState.dwEventState & SCARD_STATE_PRESENT) == 0);

Title: CardMan 5x21-CL Reader Developer’s Guide Version: 1.14
Created/Modified: 11.02.08 15:14 Page: 62 of 69 Printed: 11.02.08 15:15

A2.9 iCLASS Select Page (OMNIKEY Proprietary API)

The following code-snippet selects page 0x01 of a 8x2KS iCLASS card and returns the card serial
number:

//Select page 0x02 of a 8x2KS iCLASS card
UCHAR ucDataSend[7] = {0};
ULONG ulNoOfDataSend = 7;
UCHAR ucReceivedData[64] = {0};
ULONG ulNoOfDataReceived = 64;

ucDataSend [0] = 0x80 //CLA, standard mode
ucDataSend [1] = 0xA6 //INS
ucDataSend [2] = 0x01 //P1
ucDataSend [3] = 0x04 //P2, return card serial number
ucDataSend [4] = 0x01 //Lc
ucDataSend [5] = 0x01 //Page number
ucDataSend [6] = 0x08 //Le

SCard_Status = SCardCLICCTransmit(hCard,ucDataSend,ulNoOfDataSend,
 ucReceivedData,&ulNoOfDataReceived);
if(SCard_Status!= SCARD_S_SUCCESS)
{
 printf("Error in SCardCLICCTransmit, with error code %8X", SCard_Status);
 exit(-1);
}

Title: CardMan 5x21-CL Reader Developer’s Guide Version: ‘00’
Created/Modified: 11.02.08 15:14 Page: 63 of 69 Printed: 11.02.08 15:15

Appendix B Accessing iCLASS Memory

In the following diagrams the free zones of two typical iCLASS memory layouts is shown:

B1.1 Memory Layout

a) Memory layout of an iCLASS 2KS, iCLASS 16KS or page 0 of an iCLASS 8x2KS card:

b) Memory layout of an iCLASS 8x2KS on pages 1 to 7:

Block Number Block Description (block size eight bytes)

‘00’ card serial number

‘01’ configuration block

’02’ e-Purse

‘03’ Kd (so-called debit key, key for application 1)

’04’ Kc (so-called credit key, key for Application 2)

’05’ application issuer area

‘06’

….

’12’

HID application

’13’

….

‘1F’(2KS)

‘FF’(16KS)

Free zones in iCLASS 2KS, iCLASS 16KS or page 0 of iCLASS 8x2KS

Block Size: 8 bytes

’00’ card serial number

’01’ configuration block

’02’ e-Purse

’03’ Kd (so-called debit key, key for application 1)

’04’ Kc (so-called credit key, key for Application 2)

’05’ application issuer area

’06’

….

‘xx’

application 1 (free zones in iCLASS 8x2KS other than page 0)

‘xx’+1

….

‘1F’

application 2 (free zones in iCLASS 8x2KS other than page 0)

Title: CardMan 5x21-CL Reader Developer’s Guide Version: ’00’
Created/Modified: 11.02.08 15:14 Page: 64 of 69 Printed: 11.02.08 15:15

B1.2 Assigning Space to iCLASS Application 2

By default, iCLASS cards have the application limit set to the last byte of its respective memory area.
This means that the complete memory area is reserved for application 1 and the size of application 2
is set to zero. The application limit can be set to a different block number to support an additional
application. To do this, the page’s configuration block must be overwritten as follows:

1. Select the page you want to configure.

2. Authenticate with Kd of the selected page.

3. Read 8 bytes from block 0x01 – the configuration block.

4. Replace the first byte with the block number ‘xx’ of the new application limit.

5. Leave the remaining bytes of the configuration block unchanged and write all 8 bytes back to
the configuration block 0x01.

6. Remove the card.

B1.3 Read/Write Memory of iCLASS 2KS, 16KS or page 0 of iCLASS 8x2KS
card

1. Insert card.

2. Connect to card.

3. For secured mode: Start Session.

4. Authenticate with KMC0 , (P1 = 0x01, P2 = 0x23).
If the key is not an iCLASS default key, the new key has to be loaded as KIAMC or KVAK , and in
the authenticate command the key number of KIAMC or KVAK must be used.

5. Read/write any block (block number 0x13 to 0x1F for 2KS and 0xFF for 16KS).

6. For secured mode: End Session.

7. Disconnect from card.

8. Remove card.

B1.4 Read/Write Memory of iCLASS 8x2KS Card on Pages 1 to 7

1. Insert card.

2. Connect to card.

3. For secured mode: Start Session.

4. Select page N (N = 1 to 7).

5. Authenticate with KMDN / KMCN (P1 = 0x00 for KMDN ,or 0x01 for KMCN , P2 = KMDN ,/ KMCN (refer
to chapter 5.1Key Numbering Scheme).

6. If the key is other than iCLASS default key, the new key has to be loaded as KIAMC or KVAK ,
and in the authenticate command the key number of KIAMC or KVAK must be used.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: ’00’
Created/Modified: 11.02.08 15:14 Page: 65 of 69 Printed: 11.02.08 15:15

7. Read/write any block (block number 0x13 to 0x1F for 2KS and 0xFF for 16KS).

8. For secured mode: End Session.

9. Disconnect card.

10. Remove card.

Title: CardMan 5x21-CL Reader Developer’s Guide Version: ’00’
Created/Modified: 11.02.08 15:14 Page: 66 of 69 Printed: 11.02.08 15:15

Appendix C

C1.1 Terms and Abbreviations

The following table lists abbreviations used throughout this document.

CSNR Card Serial Number

HDH Host Data Header

INSData Instruction Specific Data

KCUR Customer Read Key

KCUW Customer Write Key

KDOKM Omnikey Diversified Master Key

KENC Card Data Encryption Key

KIAMC Any Application Master Key

KMCN Page N Application 2’s Master Key of iCLASS card

KMDC HID Master Key Current

KMDN Page N Application 1’s Master Key of iCLASS card

KMDNB1 Page N Application 1’s on Book 1 Master Key of iCLASS card

KMDO HID Master Key Old

KMTD ICLASS Master Transport key for application 1

KMTC ICLASS Master Transport key for application 2

KOKM OMNIKEY Master Key

KS Session Key

KVAK Any Volatile Application Master Key

LcINS Instruction specific data (INSData) length.

LcR Card Response data length

RDH Reader Data Header

RSNR Reader Serial Number

Title: CardMan 5x21-CL Reader Developer’s Guide Version: ’00’
Created/Modified: 11.02.08 15:14 Page: 67 of 69 Printed: 11.02.08 15:15

Appendix D Version History

D1.1 Document Changes

Version Author(s) Date Description

1.00 Abu Ismail Feb 08, 2005 Initial Version

1.01 Abu Ismail June 30, 2006 Reorganization, adding PC/SC 2.01 support

1.10 Marc Jacquinot Aug 18, 2006 FW 5.00, secured communication, finalized document
for release

1.11 Marc Jacquinot Nov 22, 2006 Added notes: mandatory Lc in secured mode

1.12 Werner Waitz Aug 20, 2007 Add KMD0B1 (Default Master Key for application 1 of
page 0 on Book 1), Mifare Emulation Mode and
PC/SC 2.01 support for LRI64

1.13 Marc Jacquinot Aug 28, 2007 Minor edits, Reviewed recent changes.

1.14 Werner Waitz Feb 11, 2008 Extended DESFire APDU commands

Title: CardMan 5x21-CL Reader Developer’s Guide Version: ’00’
Created/Modified: 11.02.08 15:14 Page: 68 of 69 Printed: 11.02.08 15:15

D1.2 Firmware History

FW Version Special Feature(s) Remarks

1.00 MIF Mifare support

1.01, 1.02 MIF, MKS

1.03, 1.04 MIF, MKS, IST iCLASS memory access

5.00 MIF, MKS, IST, ISE iClass secured mode, HID application read

5.10 MIF, MKS, IST, ISE iClass secured mode, HID application read

Special Feature of Synchronous Cards:

MIF = MIFARE Functionalities

MKS = MIFARE Key Storage

MSK = MIFARE Secured Key Loading

IST = iCLASS Standard Mode Communication

ISE = iCLASS Secured Mode Communication

Title: CardMan 5x21-CL Reader Developer’s Guide Version: ’00’
Created/Modified: 11.02.08 15:14 Page: 69 of 69 Printed: 11.02.08 15:15

Appendix E References

[MIFARE] MIFARE Data Sheets

www.nxp.com/products/identification/mifare/classic/

[MSDNLIB] Microsoft Developer Network Library; http://msdn.microsoft.com/library/

[DESFIRE] DESFire Data Sheets

www.nxp.com/products/identification/mifare/desfire/

[PCSC_2.01] PC/SC Workgroup Specifications 2.01

http://www.pcscworkgroup.com/

[PICO16KS] PICOTAG and PICOCRYPT secured 16KS data sheet from the Inside Contactless

[PICO2KS] PICOTAG and PICOCRYPT secured 2KS data sheet from the Inside Contactless

[ICLASSD] iCLASS card specifications from HID.

[ISO7816-4] Information Technology Identification Cards Integrated Circuit(s) Cards with Contacts,
Part 4: Inter-industry Commands for Interchange

[LRI64] ST Microelectronics datasheet for “LRI64”

