

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Report Template Version: V03

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com Report Template Revision Date: Mar.1st, 2017

Test Report

Report No.: CQASZ20190901005E-01

Applicant: XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD

Address of Applicant: (5/F) NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN, China

Manufacturer: XIAMEN HEALTHCARE ELECTRONIC CO.,LTD.

Address of Manufacturer: 65-66#, 62-63# BUILDING, SIMING ZONE, TONGAN INDUSTRIAL

DISTRICT, XIAMEN

Equipment Under Test (EUT):

Product: Massage Chair

All Model No.: EC-7506B, Osaki Pro Admiral, EC-7506E

Test Model No.: EC-7506B

Brand Name: N/A

FCC ID: YMX-EC7506B

Standards: 47 CFR Part 15, Subpart C

Date of Test: 2019-03-22 to 2019-05-21 and 2019-10-29 to 2019-10-30

Date of Issue: 2019-10-30

Test Result : PASS*

Tested By:

(Daisy Qin)

(Aaron Ma)

Approved By:

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

TESTING TECHNOLOGY

TESTING TECHNOLOGY

APPROVED TO A

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: CQASZ20190901005E-01

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190300181E-01	Rev.01	Initial report	2019-05-21
CQASZ20190901005E-01	Rev.02	Add model EC-7506E	2019-10-30

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

3 Contents

		Page
1	VERSION	2
2	TEST SUMMARY	3
3	CONTENTS	
4	GENERAL INFORMATION	
4.1		
4.2		5
4.3		
4.4		
4.5	5 DESCRIPTION OF SUPPORT UNITS	8
4.6		
4.7		
4.8		
4.9		
4.1		
4.1		
5	TEST RESULTS AND MEASUREMENT DATA	12
5.1	1 Antenna Requirement	12
5.2	2 CONDUCTED EMISSIONS	13
5.1	Telephited by endoes Emission & Restricted British	
	5.11.1 Radiated Emission below 1GHz	22
6 F	PHOTOGRAPHS - EUT TEST SETUP	26
6.1	RADIATED EMISSION	26
6.2	CONDUCTED EMISSION	29
7 F	PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	30

Report No.: CQASZ20190901005E-01

4 General Information

4.1 Client Information

Applicant:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD
Address of Applicant:	(5/F) NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN, China
Manufacturer:	XIAMEN HEALTHCARE ELECTRONIC CO.,LTD.
Address of Manufacturer:	65-66#, 62-63# BUILDING, SIMING ZONE, TONGAN INDUSTRIAL DISTRICT, XIAMEN

4.2 General Description of EUT

B 1 (N)	
Product Name:	Massage Chair
All Model No.:	EC-7506B, Osaki Pro Admiral, EC-7506E
Test Model No.:	EC-7506B
Trade Mark:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V2.1
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Transfer Rate:	1Mbps/2Mbps/3Mbps
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Test Software of EUT:	RDA Toolkit 8.03.02 (manufacturer declare)
Antenna Type:	PCB antenna
Antenna Gain:	4.0dBi
Power Supply:	AC120V

Note:

All model: EC-7506B, Osaki Pro Admiral, EC-7506E

Only the model EC-7506B was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being of appearance and model name. Specific differences see product photos.

Report No.: CQASZ20190901005E-01

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Additional Instructions

EUT Test Software S	ettings:			
Mode:	Special software is used. □Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*			
EUT Power level:	Class2 (Power level is built-in set pa selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)		
Use test software to set the ransmitting of the EUT.	lowest frequency, the middle frequency a	and the highest frequency keep		
Mode	Channel	Frequency(MHz)		
	CH0	2402		
DH1/DH3/DH5	CH39	2441		
	CH78	2480		
	CH0	2402		
2DH1/2DH3/2DH5	CH39	2441		
	CH78	2480		
	CH0	2402		
3DH1/3DH3/3DH5	CH39	2441		
	CH78	2480		

Run Software:

Report No.: CQASZ20190901005E-01

4.4 Test Environment

Operating Environment:	Operating Environment:		
Radiated Emission:			
Temperature:	25.0 °C		
Humidity:	53 % RH		
Atmospheric Pressure:	995mbar		
Conducted Emissions:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	995mbar		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
PC	Lenovo	ThinkPad E450c	Provide by lab	ID

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8℃	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CQASZ20190901005E-01

4.7 Test Location

Shenzhen Huaxia Testing Technology Co., Ltd,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

				0 111 11	0 111 11
Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/26	2019/9/25
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
Preamplifier	MITEQ	AFS4-00010300-18-10P-	CQA-035	2018/9/26	2019/9/25
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2018/11/2	2019/11/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2018/10/28	2020/10/27
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2018/9/26	2020/9/25
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25
Antenna Connector	CQA	RFC-01	CQA-080	2018/9/26	2019/9/25
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2018/9/26	2019/9/25
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2018/9/26	2019/9/25
EMI Test Receiver	R&S	ESPI3	CQA-013	2018/9/26	2019/9/25
LISN	R&S	ENV216	CQA-003	2018/11/5	2019/11/4
Coaxial cable	CQA	N/A	CQA-C009	2018/9/26	2019/9/25

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

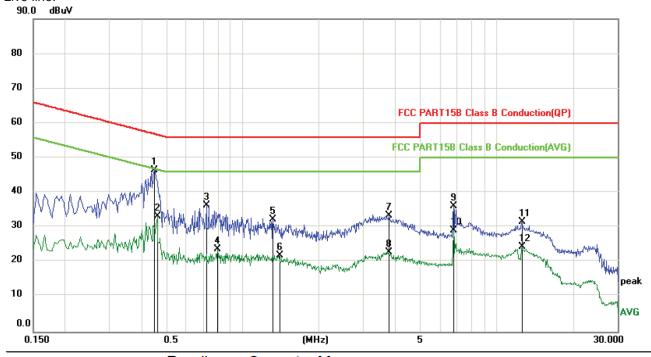
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna. The best case gain of the antenna is 4.0dBi.

5.2 Conducted Emissions

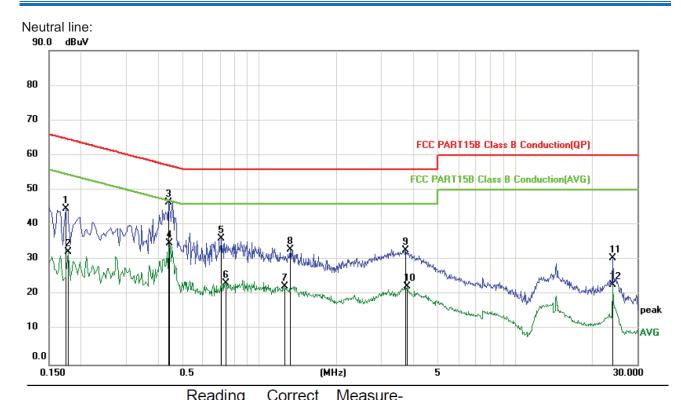
	Sions								
Test Requirement:	47 CFR Part 15C Section 15.207								
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	e: 150kHz to 30MHz								
Limit:	Fraguerou rongo (MIII-)	Limit (c	lBuV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithm	n of the frequency.		•					
Test Procedure:	 The mains terminal disturbation. The EUT was connected to Impedance Stabilization Not impedance. The power call connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An exercise of the EUT shall be 0.4 mm ounted on top of the ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated ed. In order to find the maximum equipment and all of the imaximum equipment equipment explained expl	o AC power source throetwork) which provides oles of all other units of SN 2, which was bonde are way as the LISN 1 for et outlet strip was used ISN provided the rating of the upon a non-metallished for floor-standing are cound reference plane, the a vertical ground reference plane was bonded to the 1 was placed 0.8 m from the vertical ground reference plane. The total ground reference plane is of the LISN 1 and the quipment was at least 0 the units on, the relative terface cables must be	bugh a LISN 1 (Line is a 50Ω/50μH + 5Ω line if the EUT were do to the ground or the unit being do to connect multiple gof the LISN was not do table 0.8m above the trangement, the EUT derence plane. The end reference plane. The end the boundary of the plane for LISNs was not do the boundary of the plane for LISNs was a EUT. All other units of the positions of	near ne was ar ne he					
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 AC Ma	Test Receiver						



Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the 3DH5 of data type and 8DPSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

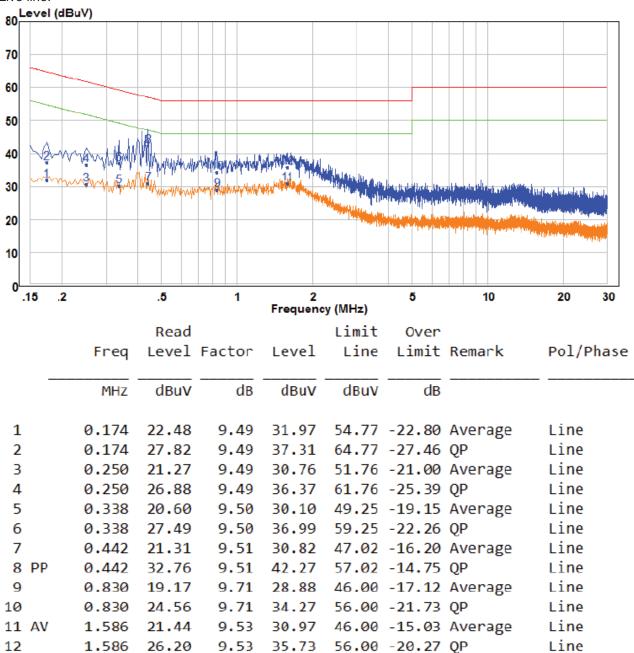
Measurement Data

EC-7506B:



No. M	/lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.4500	36.79	9.74	46.53	56.88	-10.35	peak	
2	0.4620	23.46	9.74	33.20	46.66	-13.46	AVG	
3	0.7220	26.62	9.74	36.36	56.00	-19.64	peak	
4	0.7980	13.92	9.74	23.66	46.00	-22.34	AVG	
5	1.3180	22.52	9.75	32.27	56.00	-23.73	peak	
6	1.3980	12.22	9.75	21.97	46.00	-24.03	AVG	
7	3.7700	23.55	9.78	33.33	56.00	-22.67	peak	
8	3.7700	13.12	9.78	22.90	46.00	-23.10	AVG	
9	6.7819	26.26	9.80	36.06	60.00	-23.94	peak	
10	6.7819	19.40	9.80	29.20	50.00	-20.80	AVG	
11	12.5939	21.69	9.82	31.51	60.00	-28.49	peak	
12	12.5939	14.54	9.82	24.36	50.00	-25.64	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

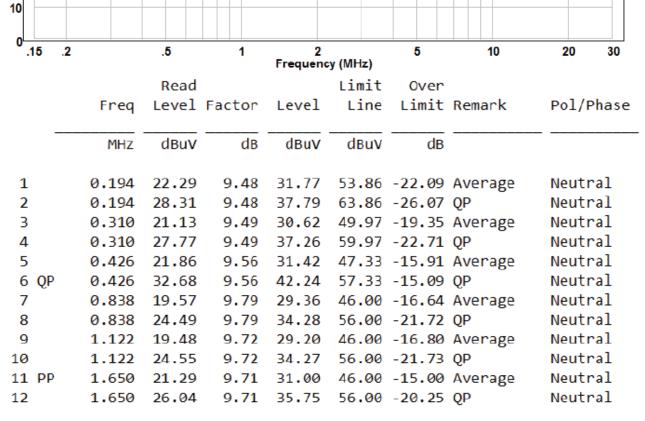

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1740	34.80	9.79	44.59	64.77	-20.18	peak	
2		0.1780	22.52	9.80	32.32	54.58	-22.26	AVG	
3	*	0.4420	36.69	9.80	46.49	57.02	-10.53	peak	
4		0.4460	24.99	9.80	34.79	46.95	-12.16	AVG	
5		0.7100	26.28	9.80	36.08	56.00	-19.92	peak	
6		0.7380	13.50	9.80	23.30	46.00	-22.70	AVG	
7		1.2620	12.65	9.83	22.48	46.00	-23.52	AVG	
8		1.3220	23.09	9.83	32.92	56.00	-23.08	peak	
9		3.7340	22.91	9.82	32.73	56.00	-23.27	peak	
10		3.7740	12.53	9.82	22.35	46.00	-23.65	AVG	
11		24.1060	20.59	9.96	30.55	60.00	-29.45	peak	
12		24.1060	12.91	9.96	22.87	50.00	-27.13	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

EC-7506E:

Live line:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

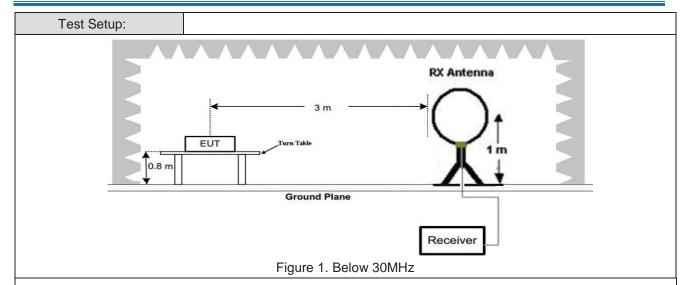

40

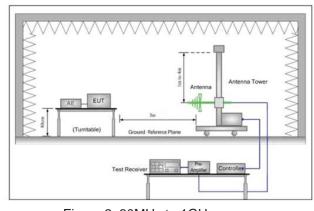
30

20

Report No.: CQASZ20190901005E-01

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.


Report No.: CQASZ20190901005E-01


5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency Detector RBW VBW Remark								
	0.009MHz-0.090MH	Peak	10kHz	z 30kHz	Peak				
	0.009MHz-0.090MH	Z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	Z	Peak	10kHz	z 30kHz	Peak	7		
	0.110MHz-0.490MH	Z	Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz		Peak	100 kF	Iz 300kHz	Peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak			
	Above 1GHz		Peak	1MHz	10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n	11		
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	ak 3			
	216MHz-960MHz		200	46.0	46.0 Quasi-peak				
	960MHz-1GHz 500		54.0	Quasi-peak	3				
	Above 1GHz 500 54.0 Average								
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

Report No.: CQASZ20190901005E-01

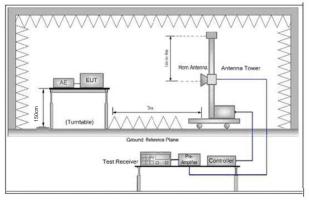


Figure 2. 30MHz to 1GHz

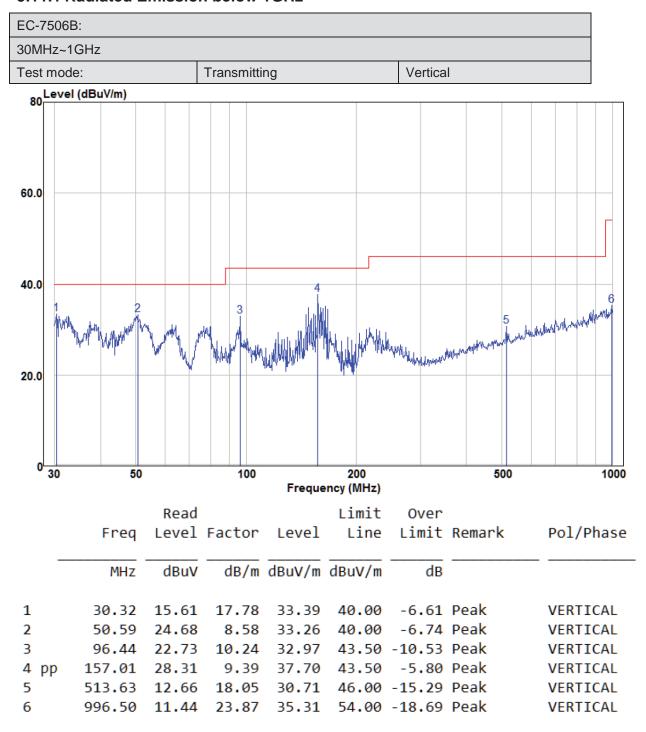
Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.


- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 3DH5 of data type and 8DPSK modulation is the worst case. Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case For below 1GHz part, through pre-scan, the worst case is the highest channel. Only the worst case is recorded in the report.
Test Results:	Pass

5.11.1 Radiated Emission below 1GHz

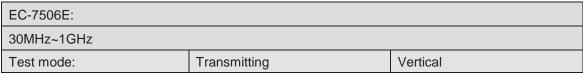


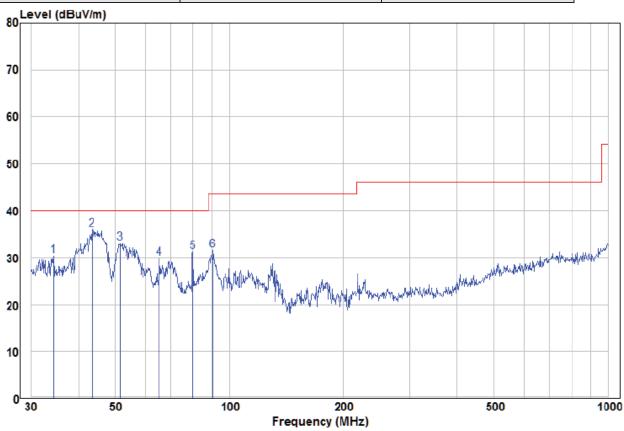
Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

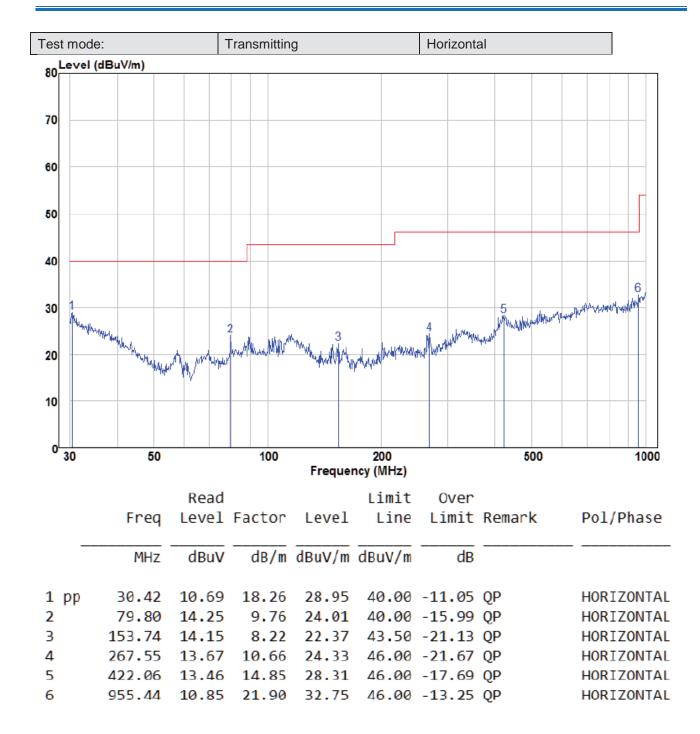



Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,


	Read			Limit	Over		
Freq	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
34.28	13.53	16.87	30.40	40.00	-9.60	QP	VERTICAL
43.35	23.11	12.89	36.00	40.00	-4.00	QP	VERTICAL
51.48	24.55	8.48	33.03	40.00	-6.97	QP	VERTICAL
65.34	23.11	6.70	29.81	40.00	-10.19	QP	VERTICAL
80.08	21.46	9.79	31.25	40.00	-8.75	QP	VERTICAL
90.54	21.43	10.05	31.48	43.50	-12.02	QP	VERTICAL
	MHz 34.28 43.35 51.48 65.34 80.08	MHz dBuV 34.28 13.53 43.35 23.11 51.48 24.55 65.34 23.11 80.08 21.46	Hreq Level Factor MHz dBuV dB/m 34.28 13.53 16.87 43.35 23.11 12.89 51.48 24.55 8.48 65.34 23.11 6.70 80.08 21.46 9.79	Treq Level Factor Level MHz dBuV dB/m dBuV/m 34.28 13.53 16.87 30.40 43.35 23.11 12.89 36.00 51.48 24.55 8.48 33.03 65.34 23.11 6.70 29.81 80.08 21.46 9.79 31.25	Freq Level Factor Level Line MHz dBuV dB/m dBuV/m dBuV/m 34.28 13.53 16.87 30.40 40.00 43.35 23.11 12.89 36.00 40.00 51.48 24.55 8.48 33.03 40.00 65.34 23.11 6.70 29.81 40.00 80.08 21.46 9.79 31.25 40.00	Freq Level Factor Level Line Limit MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB 34.28 13.53 16.87 30.40 40.00 -9.60 43.35 23.11 12.89 36.00 40.00 -4.00 51.48 24.55 8.48 33.03 40.00 -6.97 65.34 23.11 6.70 29.81 40.00 -10.19 80.08 21.46 9.79 31.25 40.00 -8.75	Freq Level Factor Level Line Limit Remark MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB 34.28 13.53 16.87 30.40 40.00 -9.60 QP 43.35 23.11 12.89 36.00 40.00 -4.00 QP 51.48 24.55 8.48 33.03 40.00 -6.97 QP 65.34 23.11 6.70 29.81 40.00 -10.19 QP

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

6 Photographs - EUT Test Setup

6.1 Radiated Emission

EC-7506B:

9KHz~30MHz:

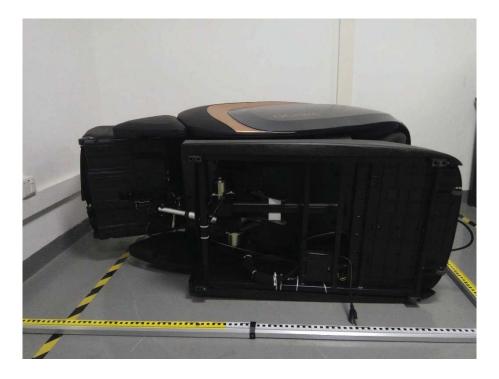
30MHz~1GHz:

Above 1GHz:

6.2 Conducted Emission

EC-7506B:

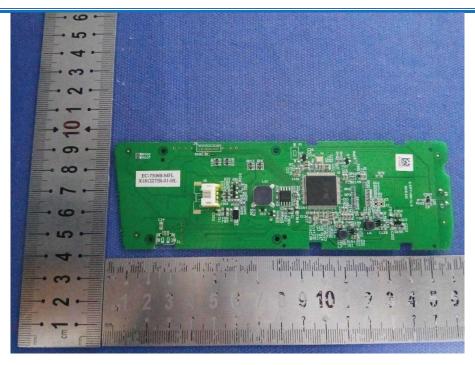
EC-7506E:

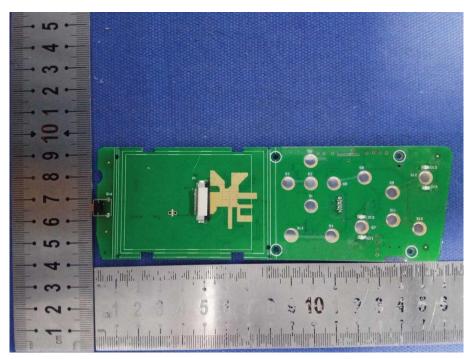


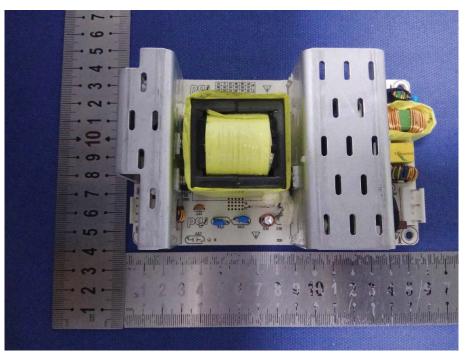
7 Photographs - EUT Constructional Details

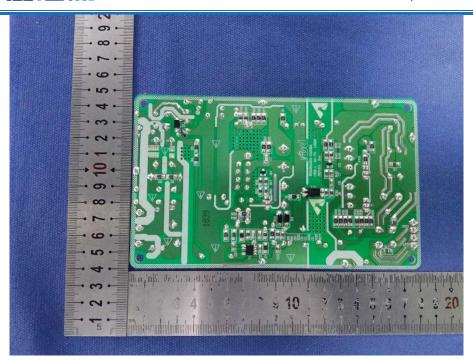

Test Model No.: EC-7506B

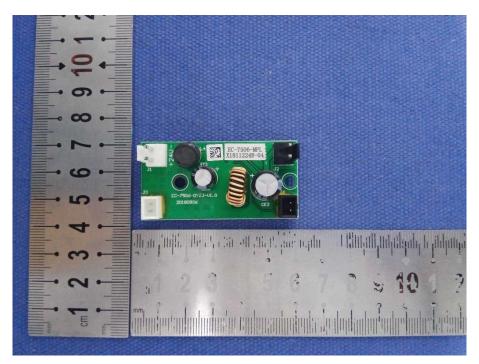


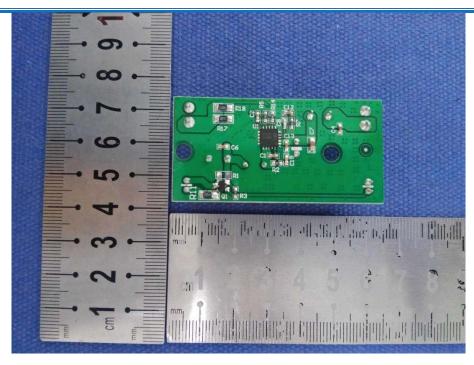


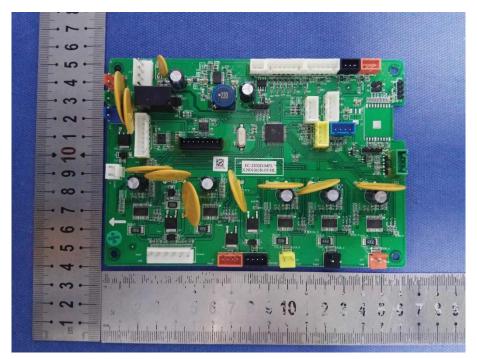


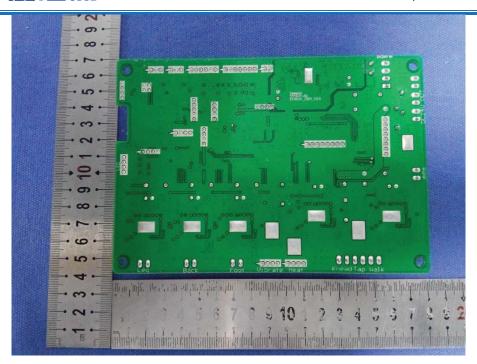


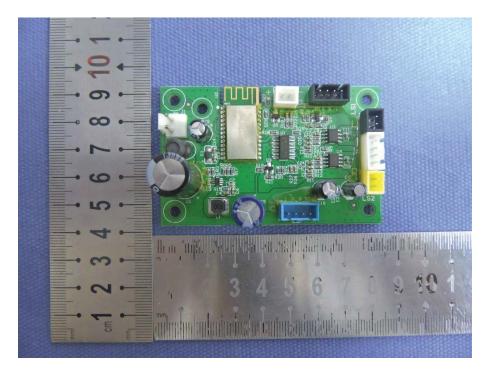


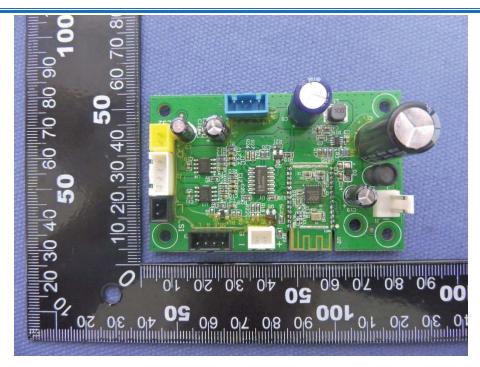


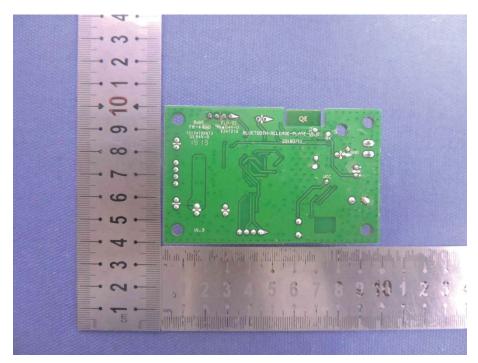




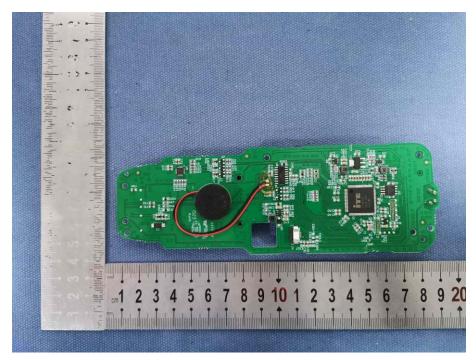








Model No.: EC-7506E



The End