

APPLICATION CERTIFICATION FCC Part 15C On Behalf of XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD.

Massage Chair

Model No.: EC-628E, CZ-710/Qi SE

FCC ID: YMX-EC628E

Prepared for	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD.
Address	:	(5/F) NO.168, QIANPU ROAD SIMING DISTRICT, XIAMEN, CHINA.
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.
		Tel: (0755) 26503290

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No.	:	ATE20171583
Date of Test	:	Aug. 01, 2017-Sep. 17, 2017
Date of Report	:	Sep. 18, 2017

TABLE OF CONTENTS

Description

Page

Test Re	port Certification	
1. GE	NERAL INFORMATION	5
1.1.	Description of Device (EUT)	5
1.2.	Carrier Frequency of Channels	
1.3.	Special Accessory and Auxiliary Equipment	
1.4.	Description of Test Facility	
1.5.	Measurement Uncertainty	
2. ME	ASURING DEVICE AND TEST EQUIPMENT	8
3. OP	ERATION OF EUT DURING TESTING	9
3.1.	Operating Mode	
3.2.	Configuration and peripherals	9
4. TES	ST PROCEDURES AND RESULTS	.10
5. PO	WER LINE CONDUCTED MEASUREMENT	.11
5.1.	Block Diagram of Test Setup	
5.2.	Power Line Conducted Emission Measurement Limits	
5.3.	Configuration of EUT on Measurement	.11
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	DATA SAMPLE	
5.7.	Power Line Conducted Emission Measurement Results	
6. 6DI	3 BANDWIDTH MEASUREMENT	. 16
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(2)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5. 6.6.	Test Procedure Test Result	
	XIMUM PEAK OUTPUT POWER	
7.1.	Block Diagram of Test Setup	.19
7.2. 7.3.	The Requirement For Section 15.247(b)(3) EUT Configuration on Measurement	
7.3.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Test Result	
	WER SPECTRAL DENSITY MEASUREMENT	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(e)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	.24
9. BA	ND EDGE COMPLIANCE TEST	.26
9.1.	Block Diagram of Test Setup	
9.2.	The Requirement For Section 15.247(d)	
9.3.	EUT Configuration on Measurement	.26

Report No.: ATE20171583 Page 3 of 49

9.4. 9.5. 9.6. Test Result27 10.1. 10.2. 10.3. 10.4. 10.5. 10.6. 10.7.

11.1.	The Requirement	49
11.2.	Antenna Construction	49

Test Report Certification

Applicant	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD.
Address	:	(5/F) NO.168, QIANPU ROAD SIMING DISTRICT,
		XIAMEN, CHINA
Manufacturer	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD.
Address	:	(5/F) NO.168, QIANPU ROAD SIMING DISTRICT,
		XIAMEN, CHINA
Product	:	Massage Chair
Model No.	:	EC-628E, CZ-710/Qi SE
Trade name	:	n.a

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2016 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 05, 2017 KDB558074 D01 DTS Meas Guidance v04 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	Aug. 01, 2017-Sep. 17, 2017
Date of Report:	Sep. 18, 2017
Prepared by :	(Tin Straing, End)
Approved & Authorized Signer :	(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT	:	Massage Chair
Model Number	:	EC-628E, CZ-710/Qi SE
Bluetooth version	:	BT V4.0 LE
Frequency Range	:	2402MHz-2480MHz
Number of Channels	:	40
Antenna Gain	:	2dBi
Antenna type	:	PCB Antenna
Power Supply	:	AC 120V/60Hz
Modulation mode	:	GFSK
Applicant	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY
Address	:	GROUP CO.,LTD. (5/F) NO.168, QIANPU ROAD SIMING DISTRICT, XIAMEN, CHINA
Manufacturer	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY
Address	:	GROUP CO.,LTD. (5/F) NO.168, QIANPU ROAD SIMING DISTRICT, XIAMEN, CHINA
Date of sample received	•	Aug. 01, 2017
	•	

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channe 1	Frequceny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.Carrier Frequency of Channels

1.3. Special Accessory and Auxiliary Equipment

PC

Manufacturer: LENOVO M/N: 4290-RT8 S/N: R9-FW93G 11/08

1.4.Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
		Listed by Innovation, Science and Economic Development Canada (ISEDC) The Registration Number is 5077A-2
		Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193
		Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01
Name of Firm Site Location	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

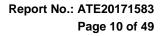
1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 07, 2017	Jan. 06, 2018
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 07, 2017	Jan. 06, 2018
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 07, 2017	Jan. 06, 2018
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 07, 2017	Jan. 06, 2018
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 07, 2017	Jan. 06, 2018
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 13, 2017	Jan. 12, 2018
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 13, 2017	Jan. 12, 2018
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 13, 2017	Jan. 12, 2018
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 13, 2017	Jan. 12, 2018
Open Switch and Control Unit	Rohde&Schwarz	OSP120 + OSP-B157	101244 + 100866	Jan. 07, 2017	Jan. 06, 2018
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 07, 2017	Jan. 06, 2018
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 07, 2017	Jan. 06, 2018
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 07, 2017	Jan. 06, 2018
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 07, 2017	Jan. 06, 2018

Table 1: List of Test and Measurement Equipment

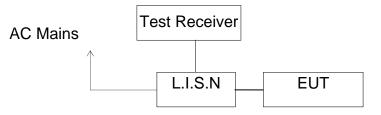

3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **BLE Transmitting mode** Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals

EUT	
Figure 1 Setup: Transmitting mode	


4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: Massage Chair)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(µV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *			
0.50 - 5.00	56.0 46.0				
5.00 - 30.00	60.0	50.0			
	all apply at the transition fre es linearly with the logarithm 0 0.50MHz.				

5.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6.DATA SAMPLE

Frequ	Quasi	Avera	Trans	QuasiP	Avera	Quasi	Avera	QuasiP	Averag	Remark
ency	Peak	ge	ducer	eak	ge	Peak	ge	eak	е	(Pass/Fail)
(MHz)	Level	Level	value	Result	Result	Limit	Limit	Margin	Margin	
	(dBµv)	(dBµv)	(dB)	(dBµv)	(dBµv)	(dBµv)	(dBµv)	(dB)	(dB)	
X.XX	29.4	18.3	11.1	40.5	29.4	56.0	56.0	15.5	16.6	Pass

Transducer value = Insertion loss of LISN + Cable Loss Result = Quasi-peak Level/Average Level + Transducer value Limit = Limit stated in standard

Calculation Formula:

Margin = Limit – Reading level value – Transducer value

5.7. Power Line Conducted Emission Measurement Results

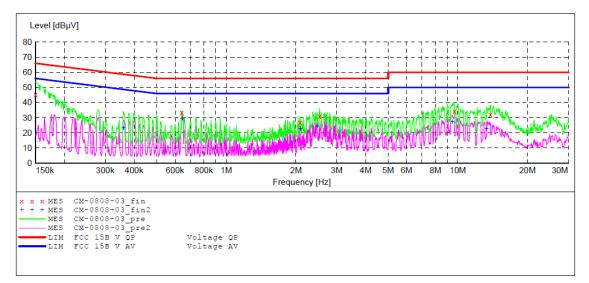
PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode : BT Operation(worse case) Test Voltage: 120V/60Hz												
MEASUREMENT			808-03	3_fin"								
8/8/2017 10:5 Frequency MHz			Limit dBµV		Detector	Line	PE					
0.150000 0.641450 2.082610 2.522471 9.646144 13.816176	33.50 27.00 31.10	10.8 11.0 11.0	56 56 56	22.5 29.0 24.9	QP QP QP QP	N N N N N	GND GND GND GND GND GND					
MEASUREMENT	MEASUREMENT RESULT: "CM-0808-03_fin2"											
8/8/2017 10:5 Frequency MHz			Limit dBµV		Detector	Line	PE					
0.359562 0.646592 2.082610 2.462770 9.455514 13.328598	23.30 29.40 22.90 24.50 27.20 22.70	10.6 10.8 11.0 11.0 11.3 11.3	46 46 46 50	16.6 23.1 21.5 22.8	AV AV AV AV	N N N N N	GND GND GND GND GND GND					
MEASUREMENT	RESULT	: "СМ-0	808-04	_fin"								
8/8/2017 11:0 Frequency MHz		Transd dB	Limit dBµV		Detector	Line	PE					
0.150000 0.644016 2.116132 2.522471 9.531310 12.858226	33.20 27.00 31.70 32.70	10.8 11.0 11.0 11.3	66 56 56 60 60	22.8 29.0 24.3 27.3	QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND					
MEASUREMENT	RESULT	: "СМ-0	808-04	_fin2"								
8/8/2017 11:0 Frequency MHz	0AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE					
0.318980 0.644016 2.099304 2.338222 9.121825 12.858226	23.80 32.70 23.30 27.50 24.60 23.50	10.6 10.8 11.0 11.0 11.3 11.3	50 46 46 50 50	25.9 13.3 22.7 18.5 25.4 26.5	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND					

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Massage Chair M/N:EC-628E Manufacturer: XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO.,LTD Operating Condition: BT OPERATION Test Site: 1#Shielding Room Operator: DING Test Specification: N 120V/60Hz Comment: Report NO.:ATE20171583 Start of Test: 8/8/2017 / 10:54:24AM

SCAN TABLE: "V 9K-30MHz fin"

~	Short Desci	ription:		SUB STD VTE	RM2 1.70		
	Start	-	Step	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
				Average			
	150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
				Average			

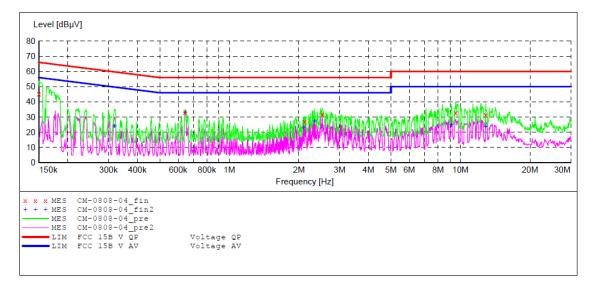
MEASUREMENT RESULT: "CM-0808-03 fin"

8/8/2017 10:57AM

/0/201/ 10.0	/ 1 11 1						
Frequency				2	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.150000	45.40	10.5	66	20.6	QP	Ν	GND
0.641450	33.50	10.8	56	22.5	QP	N	GND
2.082610	27.00	11.0	56	29.0	QP	Ν	GND
2.522471	31.10	11.0	56	24.9	QP	Ν	GND
9.646144	34.50	11.3	60	25.5	QP	Ν	GND
13.816176	31.90	11.4	60	28.1	QP	Ν	GND

MEASUREMENT RESULT: "CM-0808-03 fin2"

8/8/2017	10:57AM						
Freque	ncy Level	. Transd	Limit	Margin	Detector	Line	PE
1	MHz dBµ∖	dB dB	dBµV	dB			
0.3595	562 23.30) 10.6	49	25.4	AV	Ν	GND
0.646	592 29.40	10.8	46	16.6	AV	Ν	GND
2.0820	510 22.90) 11.0	46	23.1	AV	Ν	GND
2.462	770 24.50) 11.0	46	21.5	AV	Ν	GND
9.455	514 27.20) 11.3	50	22.8	AV	Ν	GND
13.328	598 22.70	11.3	50	27.3	AV	Ν	GND


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Massage Chair M/N:EC-628E
Manufacturer:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD
Operating Condition:	BT OPERATION
Test Site:	1#Shielding Room
Operator:	DING
Test Specification:	L 120V/60Hz
Comment:	Report NO.:ATE20171583
Start of Test:	8/8/2017 / 10:58:33AM

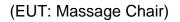
SCAN TABLE: "V 9K-30MHz fin"

Short Desc	Short Description: SUB STD VTERM2 1.70						
Start	Stop	Step	Detector	Meas.	IF	Transducer	
Frequency	Frequency	Width		Time	Bandw.		
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008	
			Average				
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008	
			Average				

MEASUREMENT RESULT: "CM-0808-04 fin"

8/8/2017 11:00AM Frequency Level Transd Limit Margin Detector Line PE dBµV dB MHz dBµV dB 0.150000 45.40 10.5 66 20.6 QP L1GND 0.644016 10.8 22.8 QP 33.20 56 T.1 GND 27.00 29.0 QP 2.116132 11.0 56 L1GND 2.522471 31.70 11.0 56 24.3 QP GND L127.3 QP 32.70 L19.531310 11.3 60 GND 12.858226 31.30 11.3 60 28.7 QP L1GND


MEASUREMENT RESULT: "CM-0808-04 fin2"


8/8/2017 11:0	MA0(
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.318980	23.80	10.6	50	25.9	AV	L1	GND
0.644016	32.70	10.8	46	13.3	AV	L1	GND
2.099304	23.30	11.0	46	22.7	AV	L1	GND
2.338222	27.50	11.0	46	18.5	AV	L1	GND
9.121825	24.60	11.3	50	25.4	AV	L1	GND
12.858226	23.50	11.3	50	26.5	AV	L1	GND

6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

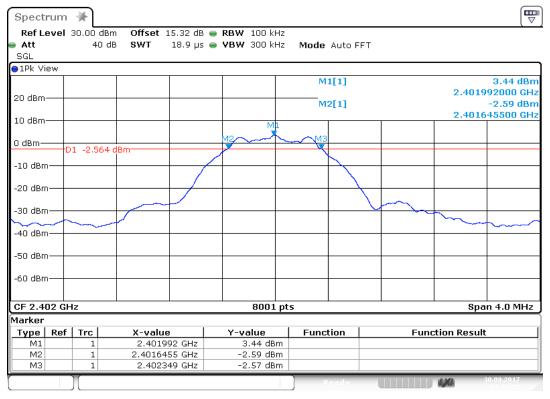
The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1.Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

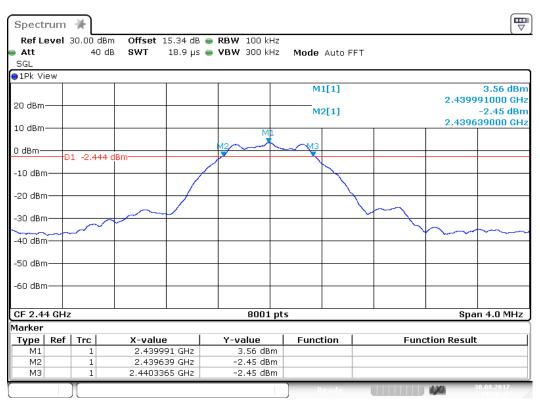
- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 6.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.



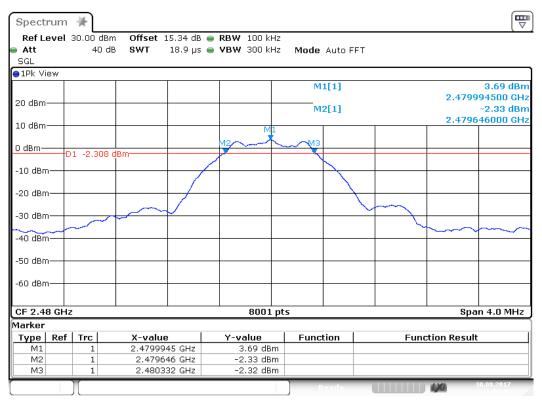
6.6.Test Result

Channel	Frequency (MHz)	6 dB Bandwith (MHz)	Minimum Limit(MHz)	PASS/FAIL
0	2402	0.704	0.5	PASS
19	2440	0.697	0.5	PASS
39	2480	0.686	0.5	PASS

The spectrum analyzer plots are attached as below.


channel 0

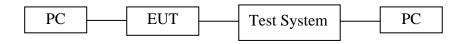
Date: 30.AUG.2017 13:57:21



channel 19

Date: 30.AUG.2017 13:58:17

channel 39



Date: 30.AUG.2017 13:59:03

7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

(EUT: Massage Chair)

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

7.4.1.Setup the EUT and simulator as shown as Section 7.1.

- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

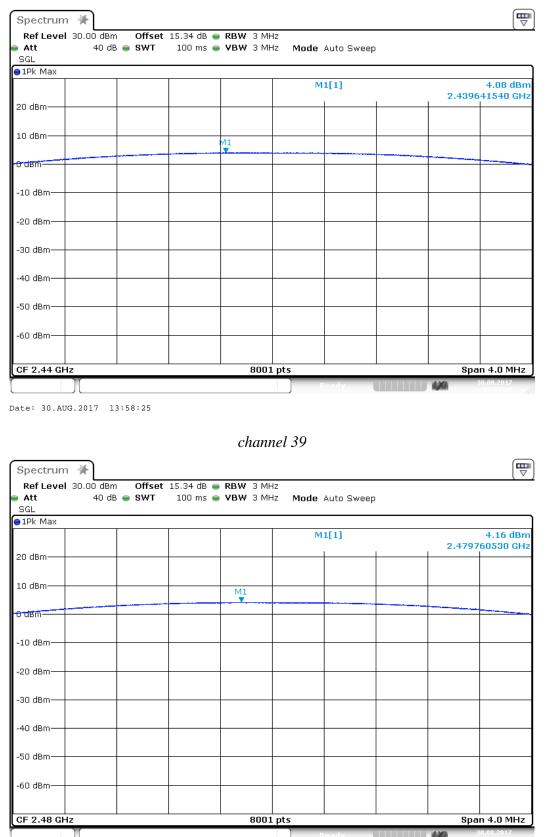
7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 3 MHz and VBW to 3MHz.
- 7.5.3.Measurement the maximum peak output power.

7.6.Test Result

Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
0	2402	3.97	30	PASS
19	2440	4.08	30	PASS
39	2480	4.16	30	PASS

The spectrum analyzer plots are attached as below.


Spectrum 🔆			E T
Ref Level 30.00 dBm Att 40 dB SGL	Offset 15.32 dB ● RBW 3 M SWT 100 ms ● VBW 3 M		
1Pk Max			
		M1[1]	3.97 dBi 2.402275470 GF
20 dBm			
10 dBm		M1	
8 dBm			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.402 GHz	800	1 pts	Span 4.0 MHz
		•	30.08.2017

channel 0

Date: 30.AUG.2017 13:57:29

channel 19

Date: 30.AUG.2017 13:59:11

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

(EUT: Massage Chair)

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

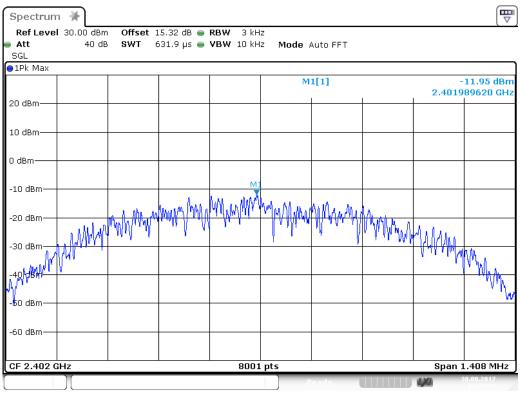
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

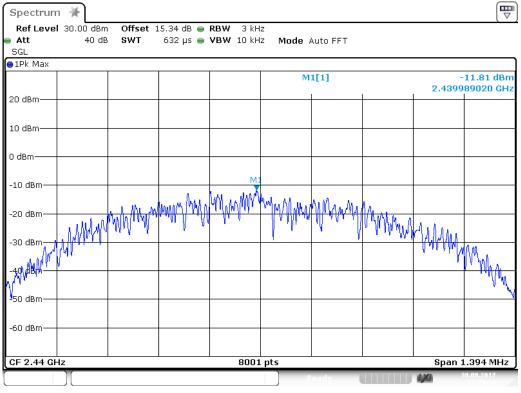
- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Measurement Procedure PKPSD:
- 8.5.3. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3kHz) and repeat.
- 8.5.4. Measurement the maximum power spectral density.



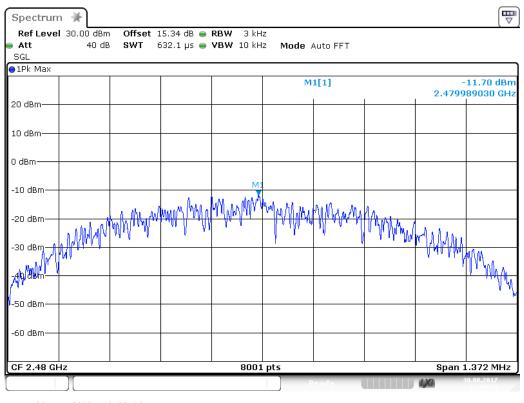
8.6.Test Result

CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3KHz)	LIMIT (dBm/3KHz)	PASS/FAIL
0	2402	-11.95	8	PASS
19	2440	-11.81	8	PASS
39	2480	-11.70	8	PASS

The spectrum analyzer plots are attached as below.


channel 0

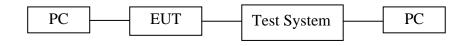
Date: 30.AUG.2017 13:57:37



channel 19

Date: 30.AUG.2017 13:58:33

channel 39



Date: 30.AUG.2017 13:59:18

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

(EUT: Massage Chair)

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

9.5.Test Procedure

Conducted Band Edge:

- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 9.5.3. Radiate Band Edge:
- 9.5.4. The EUT is placed on a turntable, which is 0.1m above the ground plane and worked at highest radiated power.
- 9.5.5.The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.6.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.7.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

9.5.8.RBW=1MHz, VBW=1MHz

9.5.9. The band edges was measured and recorded.

9.6.Test Result

Pass

Channel	Frequency	Delta peak to band emission	Limit(dBc)
0	2.4GHz	40.62	20
39	2.4835GHz	42.33	20

channel 0

Spectrum	₩									
Ref Level				● RBW 100 kH						
Att	4	D dB SWT	132.6 µs	● VBW 300 kH	z Mode	Auto F	FT			
SGL										
●1Pk Max			_							
					M	1[1]				3.44 dBm
20 dBm —										99480 GHz
					M	2[1]				-37.18 dBm)00000 GHz
10 dBm			+		M1	I	1		2.400	100000 GH2
0 40					7					
0 dBm					7					
-10 dBm					4					
		FCO dD-								
-20 dBm)I -16.	560 dBm								
					1					
-30 d <mark>Bm</mark>				Ma	<u>, </u>					
Ara un haven in	mr. hr.	All and the solution of the	M3	My Martha and Martin and		a shall be b	ممامد	al, international Research	investigation within	and set the way was
40 asm	and the second			a transformer and		a first a second		The Designed	and the second second	I - I - I - I
-50 dBm										
-30 0011										
-60 dBm										
CF 2.4 GHz				8001	pts				l Span	60.0 MHz
/larker										
Type Ref	Trc	X-valu	e	Y-value	Func	tion	1	Fund	ction Result	t
M1	1		- 948 GHz	3.44 dBr						
M2	1		2.4 GHz	-37.18 dBr	n					
M3	1		.39 GHz	-38.78 dBr						
M4	1	2.37354	475 GHz	-35.13 dBr	n					
					R	eady	-		1.20	30.08.2017

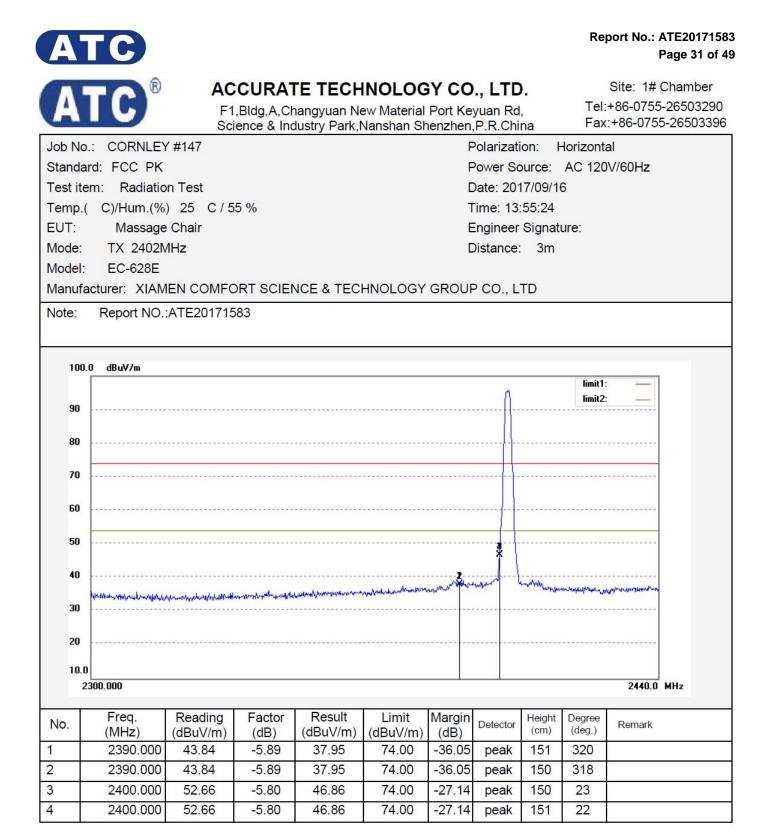
Date: 30.AUG.2017 13:57:45

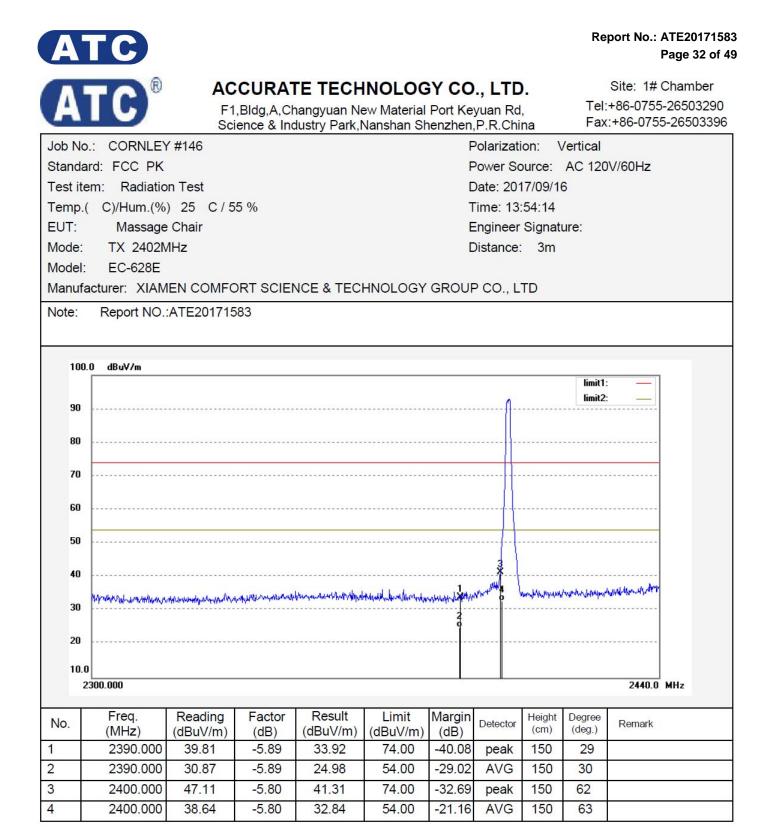
channel 39

Spect	rum	*										
Ref L	evel	30.00 di	3m Offset	15.34 dB	🔵 RBW 100 k	Hz						
👄 Att		40	dB SWT	132.6 µs	👄 VBW 300 k	Hz	Mode	Auto F	FT			
SGL												
😑 1Pk M	ax											
							M	1[1]				3.46 dBm
20 dBm											2.4	7999790 GHz
20 0011							M:	2[1]				-38.87 dBm
10 dBm											2.4	8350000 GHz
					M1							
0 dBm-					<u>A</u>							
					- I I I							
-10 dBn	n			+								
	— D	1 -16.54	40 dBm									
-20 dBn												
-30 dBn						12		M4		МЗ		
Manufre	and Mr	AVm Juris	month white	North Wards	maplester march	ally show	ويعاونه والمبري	while	-Vine-L	N. Alexandra	menterma 14	Manan Maral Canal
-40-061				T								
-50 dBn	n											
00 401	.											
-60 dBn	n											
CF 2.4											O	
	033 G				8001	i pis					sp	an 60.0 MHz
Marker	-							-				
Туре	Ref		X-valu		Y-value		Funct	tion		Fur	nction Res	ult
M1		1	2.47999		3.46 dE							
M2		1		335 GHz	-38.87 dE							
M3		1		2.5 GHz	-38.69 dB							
M4		1	2,490)76 GHz	-35.32 dE	siu						
		Π					R	e a d y	- (1,7(1	30.08.2017

Date: 30.AUG.2017 13:59:26

ATC®


Radiated Band Edge Result


ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

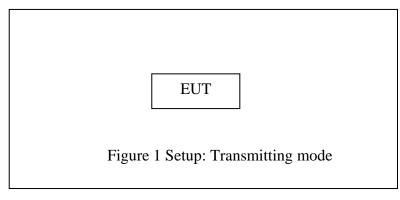
	001	chee & me	usuy raik,i	varisitari or	CHZIICH,	,1 .1	iid	8. 5783	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -			
Job No.: CORNLE	Y #155				F	Polarizati	on: H	-lorizont	al			
Standard: FCC PK	dard: FCC PK Pc							Power Source: AC 120V/60Hz				
Test item: Radiation	on Test				0	Date: 201	7/09/1	6				
Temp.(C)/Hum.(%	b) 25 C/5	5 %			Т	Time: 14:	11:11					
EUT: Massage	e Chair				E	Engineer	Signat	ure:				
Mode: TX 2480	MHz				0	Distance:	3m					
Model: EC-628E												
Manufacturer: XIAN	MEN COMFC	ORT SCIEN	NCE & TEC	HNOLOGY	GROUP	[•] CO., L	TD					
Note: Report NO	:ATE201715	83										
100.0 dBuV/m								limit1;				
	1	1						limit2:				
90												
80												
70		-										
60												
50		1										
50												
40		Kunner	3		La deally and	Nutley Web-10	monterel	muturkagement	and the second			
muladizzatick malinet	MANA AND AND AND AND AND AND AND AND AND	2		an e Mar Indone Arthree de	and a constant	an deal						
			•									
20												
10.0												
2440.000									2600.0	MHz		
	I –					r						
No. Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark			
1 2483.500		-5.51	39.10	74.00	-34.90	peak	151	237				
2 2483.500		-5.51	30.23	54.00	-23.77	AVG	151	238				
3 2500.000		-5.50	36.38	74.00	-37.62	peak	152	32				
4 2500.000	1.02.041.000-005	-5.50	27.43	54.00	-26.57	A SECONDERVISED	152	31				

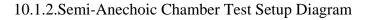
A	TC								Re	port No.: ATE2 Page	2017158 9 30 of 4
	TC®			TE TECH					Tel·	Site: 1# Char +86-0755-265	
A				hangyuan Ne dustry Park,I						:+86-0755-26	
Job N	O.: CORNLEY	/ #154				F	Polarizati	on: \	/ertical		
Stand	ard: FCC PK					F	Power Sc	ource:	AC 120	V/60Hz	
Test it	tem: Radiatio	on Test				[Date: 201	7/09/10	6		
Temp	.(C)/Hum.(%) 25 C/5	5 %			٦	Time: 14:	09:44			
EUT:	Massage	Chair				E	Engineer	Signat	ure:		
Mode	: TX 2480N	/Hz				C	Distance:	3m			
Model	EC-628E										
Manut	facturer: XIAN	IEN COMFO	ORT SCIE	NCE & TEC	HNOLOGY	GROU	CO., L	TD			
Note:	Report NO.	:ATE201715	583								
	8										
10	0.0 dBuV/m										
									limit1: limit2:		
90			}								
80											
00											
70											
60			-								
50											
50											
40											
	Mar Hand Hand Hanner	policompletion	Kunhuman	white many many	multimetermetert	Analidation	and my different	nhhhhh	undersyndrement	snowingendeligh	
30				4							
20				Î							
20											
10											
	2440.000									2600.0 MHz	
N	Freq.	Reading	Factor	Result	Limit	Margin		Height	Degree	20 Q	
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark	
1	2483.500	42.11	-5.51	36.60	74.00	-37.40	peak	151	38		
2	2483.500	33.57	-5.51	28.06	54.00	-25.94	AVG	151	39		
3	2500.000	39.12	-5.50	33.62	74.00	-40.38	peak	152	36		_
4	2500.000	30.69	-5.50	25.19	54.00	-28.81	AVG	152	37		

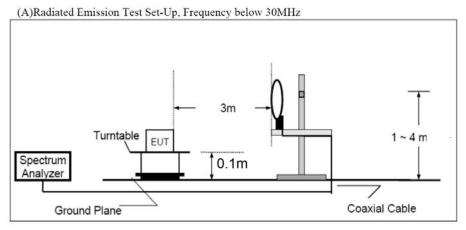
Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

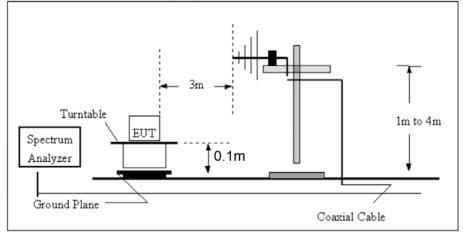
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:


Result = Reading + Corrected Factor

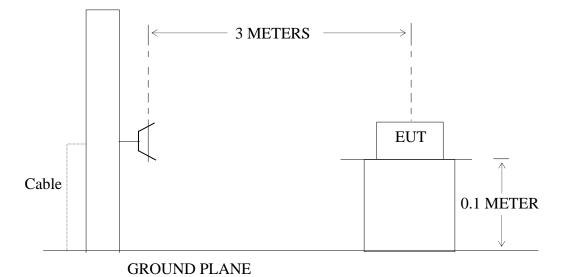

10. RADIATED SPURIOUS EMISSION TEST


10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals



(EUT: Massage Chair)



(B)Radiated Emission Test Set-Up, Frequency 30-1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

perm	ney bands listed below.		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 ²Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4.Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.5. Operating Condition of EUT

10.5.1.Setup the EUT and simulator as shown as Section 10.1.

- 10.5.2.Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

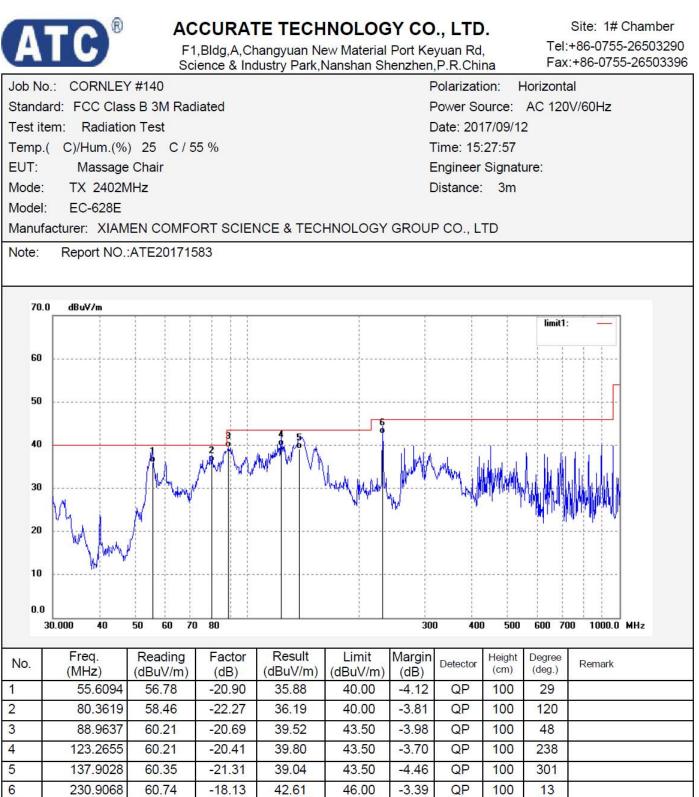
The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

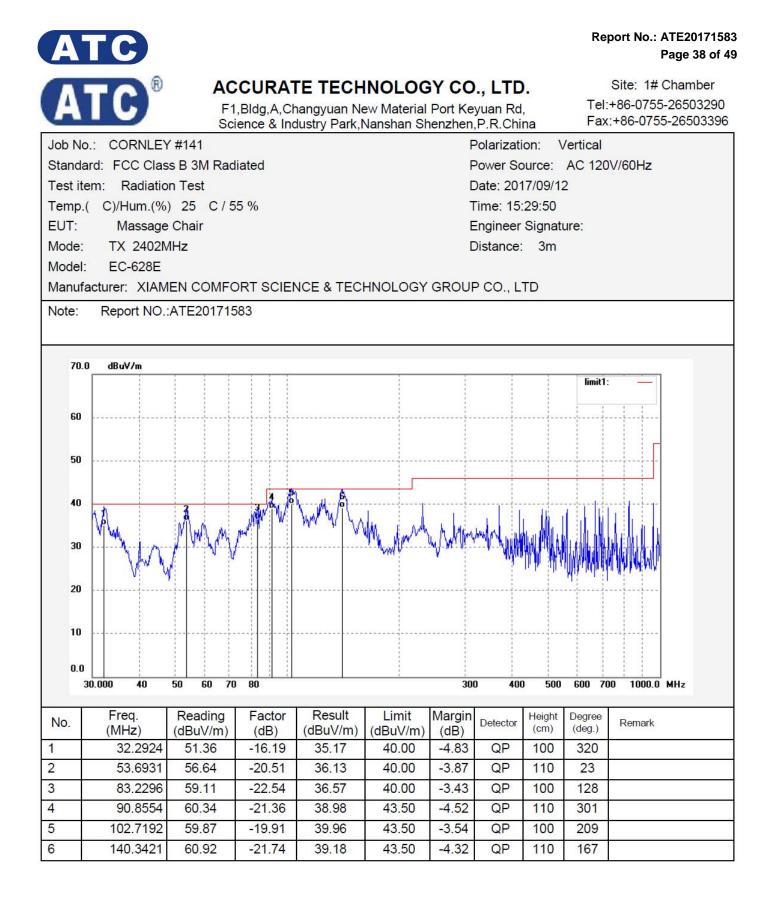
The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

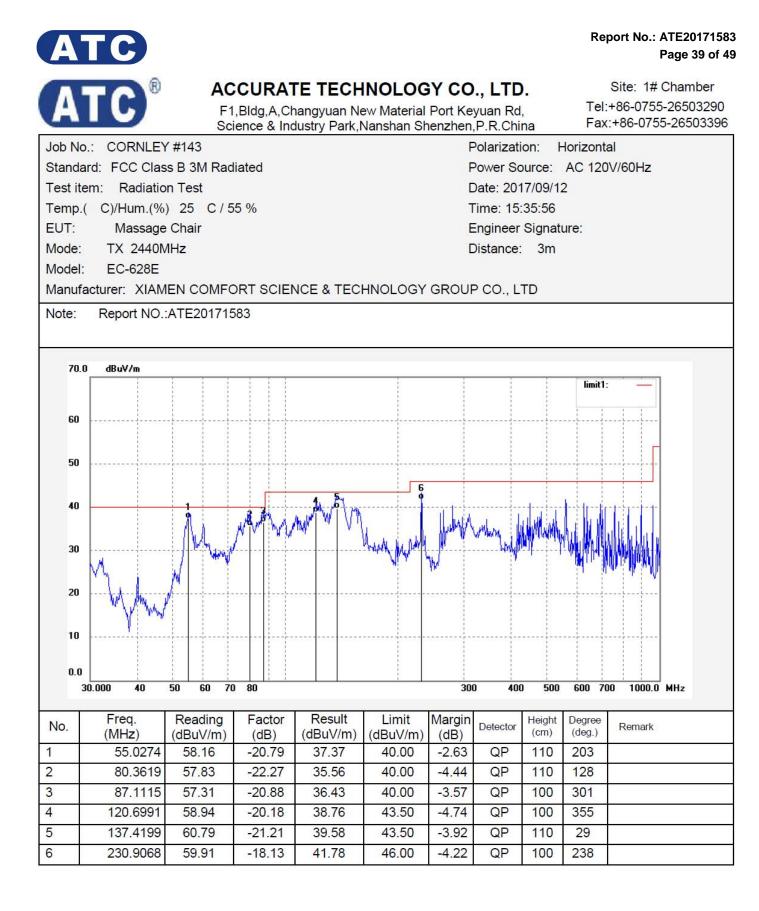
Result = Reading + Corrected Factor Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

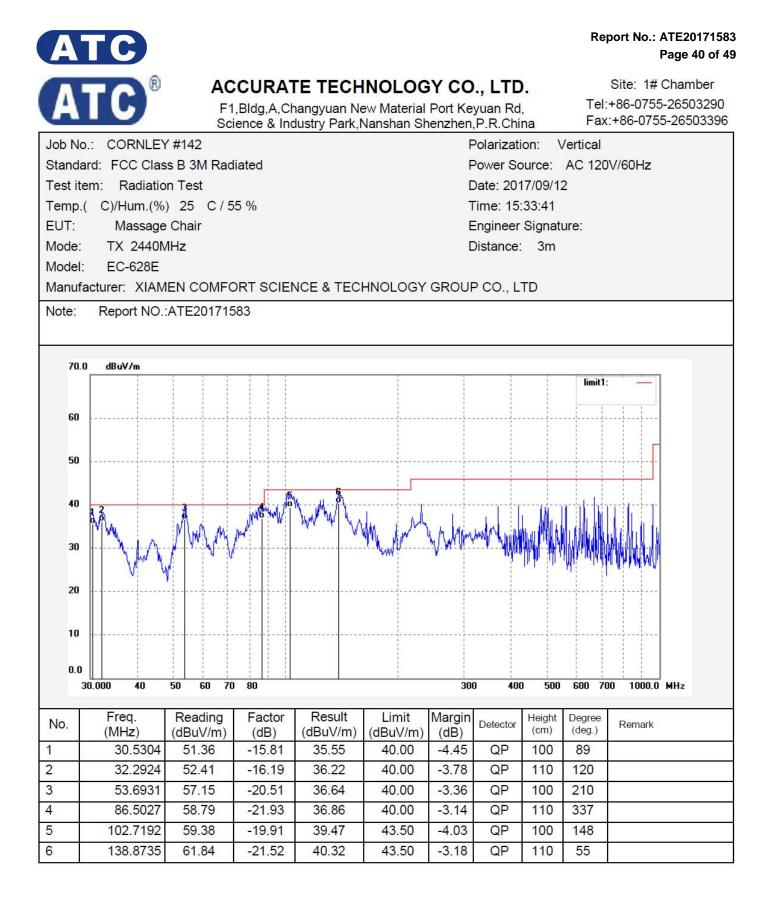
10.7. The Field Strength of Radiation Emission Measurement Results

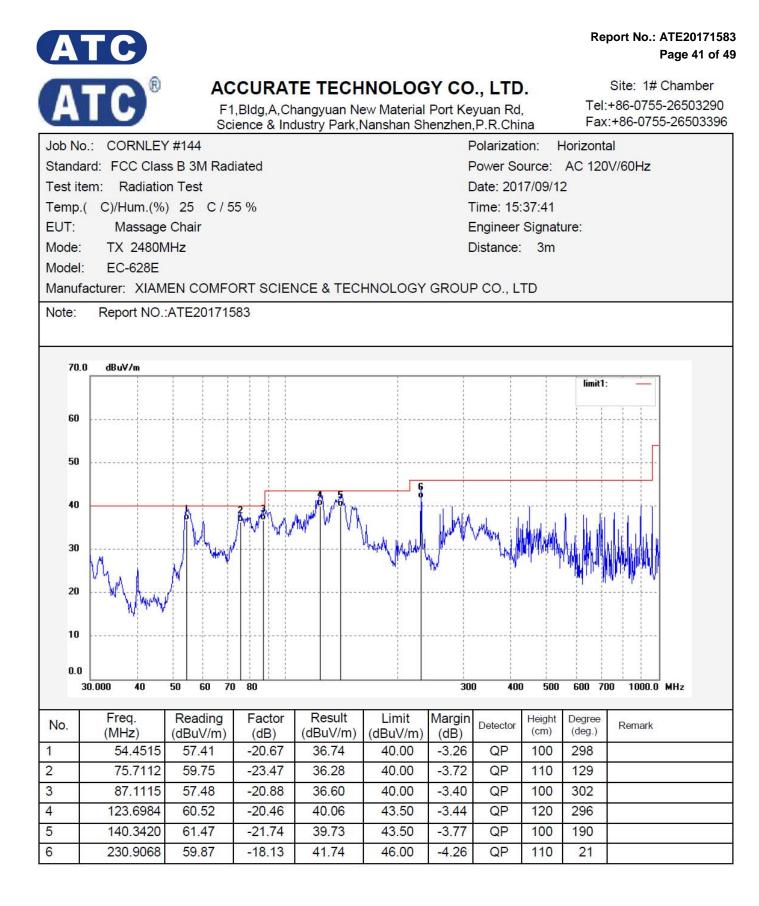
PASS.

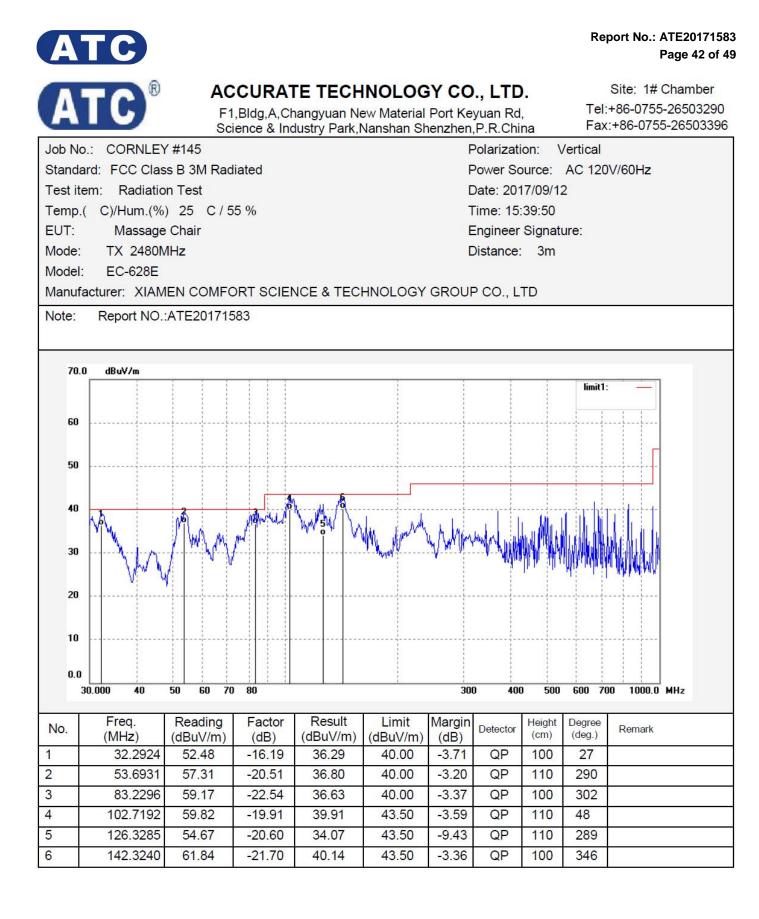

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

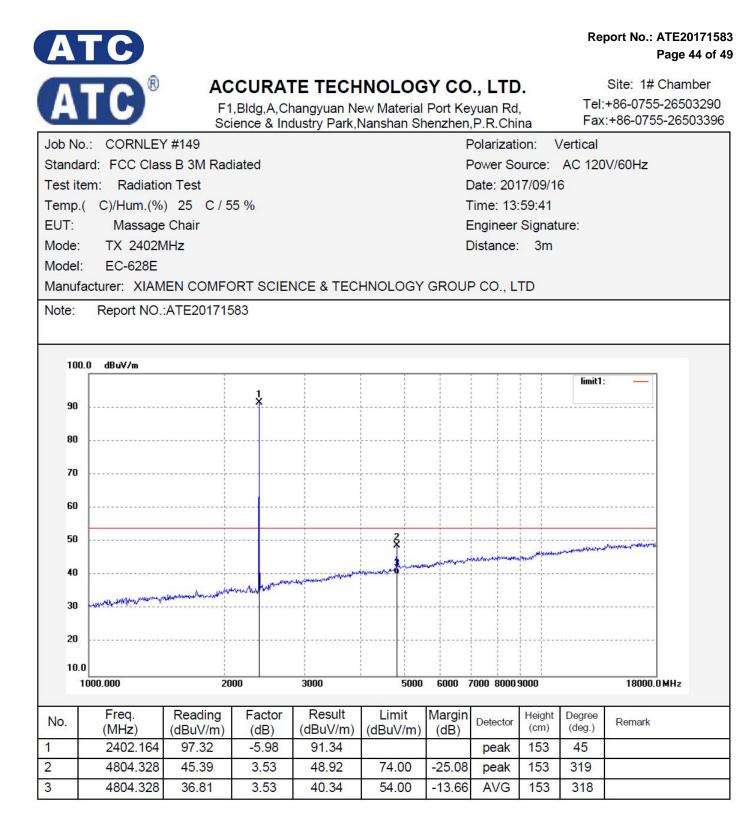

2. *: Denotes restricted band of operation.

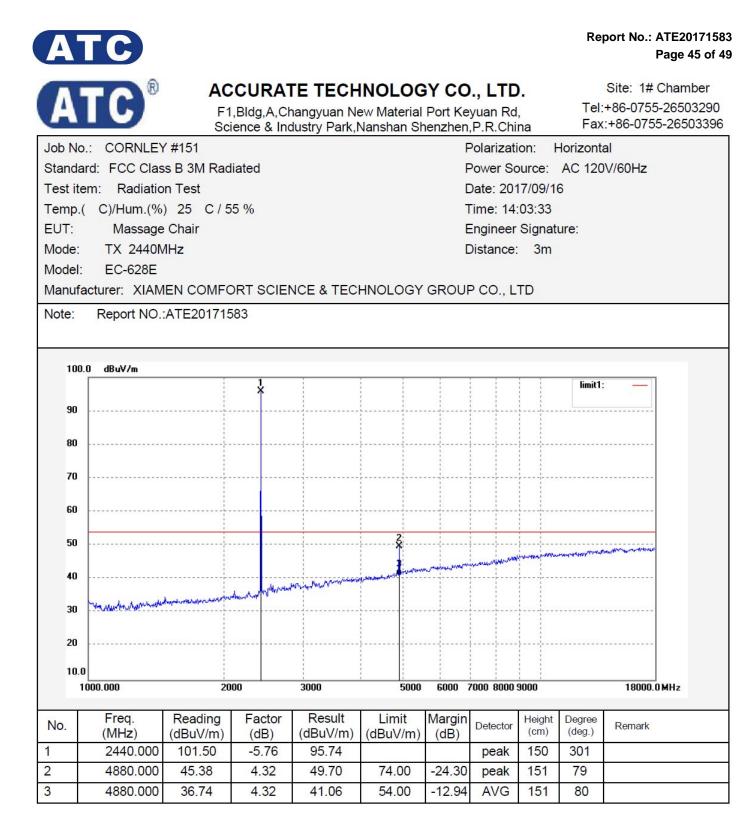

3. The radiation emissions from 9kHz-30MHz and 18-25GHz are not reported, because the test values lower than the limits of 20dB.

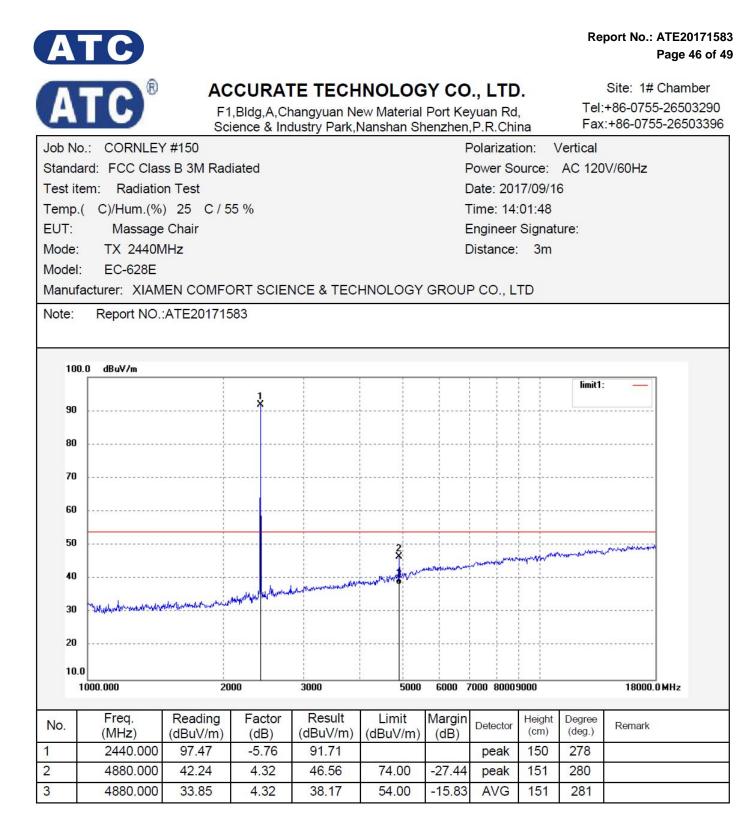



Below 1GHz

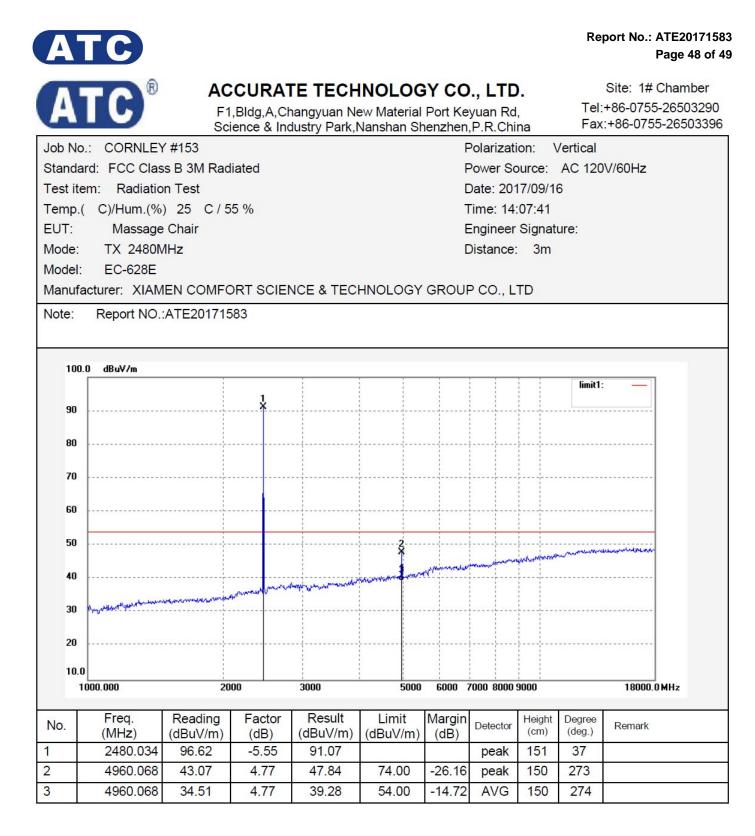



Above 1GHz



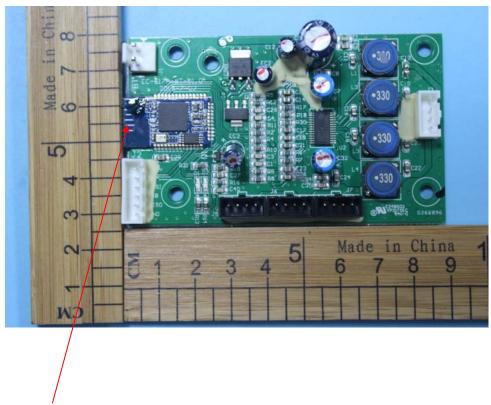

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396


	Carry Constraints	SCI	ence & inc	dustry Park,	vanshan Sh	nenznen	P.R.Chi	na	r ax	.+00-0/00-20000
ob No	D.: CORNLEY	′ #148				F	Polarizati	on: H	orizont	al
anda	ard: FCC Clas	s B 3M Rad	iated			F	Power Sc	ource:	AC 120	V/60Hz
est ite	em: Radiatio	n Test			Date: 2017/09/16					
emp.	(C)/Hum.(%)	25 C/5	5 %			Г	Time: 13:	57:50		
UT:	Massage	Chair				E	Engineer	Signat	ure:	
/lode:	TX 2402M	1Hz				0	Distance:	3m		
/lodel:	EC-628E									
/lanufa	acturer: XIAM	EN COMFC	RT SCIE	VCE & TEC	HNOLOGY	GROU	CO., L	TD		
lote:	Report NO.:	ATE201715	83							
100	0.0 dBuV/m		1 X						limit1:	
90										
80										
70										
60										
50					×.				a Reparent and	
40				mannameter	and and the second second	Newyman	Marman	mpuspara		
30	and the manufacture of the second	wind a stranger and the stranger of	mut in and the come							
20										
10.0	o									
	1000.000	20	00	3000	5000	6000 7	7000 8000 9	9000		18000.0 MHz
	Freq.	Reading	Factor	Result	Limit	Margin		Height	Degree	
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark
	2402.164	100.32	-5.98	94.34			peak	151	29	
	4804.328	47.00	3.53	50.53	74.00	-23.47	peak	150	301	
	4804.328	38.96	3.53	42.49	54.00	-11.51	AVG	150	300	

	TC TC®			ГЕ ТЕСН						port No.: ATE20171 Page 47 o Site: 1# Chamber
				hangyuan Ne dustry Park,I						:+86-0755-2650329 ::+86-0755-265033
Job N	IO .: CORNLEY			addiry i ant,i	Null Sharr Of		Polarizati		lorizonta	al
	ard: FCC Clas		liated				Power So			
	tem: Radiatio						Date: 201			
	o.(C)/Hum.(%		5 %				Time: 14			
EUT:	- 1						Ingineer		ure:	
Mode							Distance:	0.000		
Mode	EC-628E									
	facturer: XIAM	IEN COMFO		NCE & TEC	HNOLOGY	GROU	CO., L	TD		
Note:							, .			
Note.	Report NO.:	AIE20171	000							
10)0.0 dBuV/m									
			1 ¥						limit1:	
	i					;				
90								+		
9(
90 80										
80										
80	ı 									
80 70	ı 									
80 70) 									
80 70 60 50)) 				2					
80 70 60) 		Jymenthyd							
80 70 60 50) 	www.www.www.www.	aurrenne Jegenenskud		2					
80 70 60 50 40 30)) 	www.eu.u.u.u.u.u.u.u.u.u.u.u.u.u.u.u.u.u	surgered growthed		2					
80 70 60 50 40)) 	www.epulation	and a second secon		2					
80 70 60 50 40 30)) 		surryung by grandhyd		2					
80 70 60 50 40 30)			3000	2	6000	7000 8000	9000		18000.0 MHz
80 70 60 50 40 30)) , , , , , , , , , , , , ,	20	000	3000		24048 et 4246 21	7000 8000	o davido na		18000.0 MHz
80 70 60 50 40 30))))))))))))))	Reading	000 Factor	3000 Result	Limit	Margin	7000 8000	9000 Height (cm)	Degree (deg.)	18000.0 MHz Remark
80 70 60 40 30 20 10)) , , , , , , , , , , , , ,	20	000	3000		24048 et 4246 21		Height		
80 70 50 40 30 10 NO.	Image: state of the state	20 Reading (dBuV/m)	Factor (dB)	3000 Result (dBuV/m)	Limit	Margin	Detector	Height (cm)	(deg.)	

11.ANTENNA REQUIREMENT


11.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

.

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 2dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna