

Report No.: ATE20161131

Page 1 of 55

APPLICATION CERTIFICATION FCC Part 15C On Behalf of XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD

Massage Chair Model No.: EC-617D, CZ-630

FCC ID: YMX-EC617D

Prepared for XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO.,

LTD

NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN, FUJIAN, Address

CHINA

Prepared by

ACCURATE TECHNOLOGY CO., LTD

Address F1, Bldg. A&D, Chan Yuan New Material Port, Keyuan Rd.

Science & Industry Park, Nan Shan, Shenzhen, Guangdong P.R.

China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20161131

Date of Test : June 27-July 13, 2016

Date of Report : August 3, 2016

TABLE OF CONTENTS

Description	Page

Test Report Certification

	CSt I	Acport Continention	
1.	G	SENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Carrier Frequency of Channels	6
	1.3.	Special Accessory and Auxiliary Equipment	
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	
2.	\mathbf{N}	IEASURING DEVICE AND TEST EQUIPMENT	8
3.		PERATION OF EUT DURING TESTING	
٥.	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	
4			
4.		EST PROCEDURES AND RESULTS	
5.	P	OWER LINE CONDUCTED MEASUREMENT	
	5.1.	Block Diagram of Test Setup	
	5.2.	Power Line Conducted Emission Measurement Limits	
	5.3.	Configuration of EUT on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Power Line Conducted Emission Measurement Results	12
6.	6]	DB BANDWIDTH MEASUREMENT	16
	6.1.	Block Diagram of Test Setup	16
	6.2.	The Requirement For Section 15.247(a)(2)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	16
	6.5.	Test Procedure	16
	6.6.	Test Result	17
7.	\mathbf{N}	MAXIMUM PEAK OUTPUT POWER	19
	7.1.	Block Diagram of Test Setup	19
	7.2.	The Requirement For Section 15.247(b)(3)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	19
	7.5.	Test Procedure	19
	7.6.	Test Result	20
8.	P	OWER SPECTRAL DENSITY MEASUREMENT	22
	8.1.	Block Diagram of Test Setup	22
	8.2.	The Requirement For Section 15.247(e)	22
	8.3.	EUT Configuration on Measurement	22
	8.4.	Operating Condition of EUT	22
	8.5.	Test Procedure	23
	8.6.	Test Result	24
9.	В	AND EDGE COMPLIANCE TEST	26
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(d)	26
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	26

	27
Test Result	27
DIATED SPURIOUS EMISSION TEST	34
Block Diagram of Test Setup	34
Configuration of EUT on Measurement	36
Operating Condition of EUT	37
The Field Strength of Radiation Emission Measurement Results	37
ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	50
Block Diagram of Test Setup	50
The Requirement For Section 15.247(d)	50
EUT Configuration on Measurement	50
Operating Condition of EUT	51
Test Procedure	51
TENNA REOUIREMENT	55
The Requirement	
	Test Procedure Test Result ADIATED SPURIOUS EMISSION TEST Block Diagram of Test Setup. The Limit For Section 15.247(d). Restricted bands of operation Configuration of EUT on Measurement Operating Condition of EUT Test Procedure The Field Strength of Radiation Emission Measurement Results ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST Block Diagram of Test Setup. The Requirement For Section 15.247(d) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Procedure Test Result

Report No.: ATE20161131 Page 4 of 55

Test Report Certification

Applicant: XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO.,

LTD

Manufacturer: XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO.,

LTD

EUT Description: Massage Chair

Model No. : EC-617D, CZ-630

Trade Mark : COZZIA

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2015 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 08, 2016 KDB558074 D01 DTS Meas Guidance v03r05 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	June 27-July 13, 2016
Date of Report:	August 3, 2016
Prepared by :	BobWarg
	(Bob Wang, Engineer)
Approved & Authorized Signer :_	4 emily
	(Sean Liu, Manager)

Report No.: ATE20161131

Page 5 of 55

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Massage Chair Model Number : EC-617D, CZ-630

(Note: We hereby state that these models are identical in interior

structure, electrical circuits and components, and just model names are different for the marketing requirement. So we

prepare the EC-617D for test.)

Trade Mark : COZZIA

Bluetooth version : Bluetooth V4.0 BLE Frequency Range : 2402MHz-2480MHz

Number of Channels : 40 Antenna Gain : 2.5dBi

Antenna type : PCB Antenna

Power Supply : AC 110-120V; 60Hz

Modulation mode : GFSK

Manufacturer

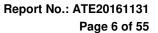
Applicant : XIAMEN COMFORT SCIENCE & TECHNOLOGY

GROUP CO., LTD

Address : NO.168, QIANPU ROAD, SIMING DISTRICT,

XIAMEN, FUJIAN, CHINA

XIAMEN COMFORT SCIENCE & TECHNOLOGY


GROUP CO., LTD

Address NO.168, QIANPU ROAD, SIMING DISTRICT,

XIAMEN, FUJIAN, CHINA

Date of sample received: June 20, 2016

Date of Test : June 27-July 13, 2016

1.2. Carrier Frequency of Channels

Channel	Frequeeny (MHz)	Channel	Frequeeny (MHz)	Channel	Frequeeny (MHz)	Channe 1	Frequeeny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.3. Special Accessory and Auxiliary Equipment N/A

Report No.: ATE20161131

Page 7 of 55

1.4.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

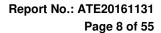
Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2


(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

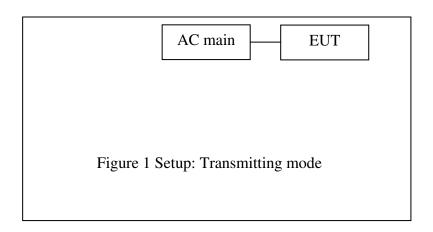
(Above 1GHz)

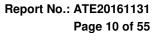
2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2016	1 Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2016	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2016	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2016	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 14, 2016	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 14, 2016	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 14, 2016	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 14, 2016	1 Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2016	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2016	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 9, 2016	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 9, 2016	1 Year

Page 9 of 55

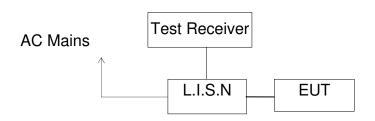

3. OPERATION OF EUT DURING TESTING


3.1. Operating Mode

The mode is used: BLE Transmitting mode

Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2.Configuration and peripherals


4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

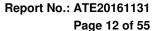
5.1.Block Diagram of Test Setup

(EUT: Massage Chair)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			

NOTE1: The lower limit shall apply at the transition frequencies.


NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.3. Configuration of EUT on Measurement

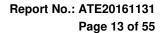
The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.1 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10 on Conducted Emission Measurement.


The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode : BT communicating(AC 120V/60Hz)									
EUT mode : EC		: "COFR	62005_	fin"					
7/13/2016 6:39 Frequency MHz		Transd dB	Limit dBµV		Detector	Line	PE		
0.180000 3.440000 13.270000	41.50	10.5 11.1 11.3	56	9.7 14.5 19.2	QP	N N N	GND GND GND		
MEASUREMENT	RESULT	: "COFR	62005_	fin2"					
7/13/2016 6:33 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE		
0.155000 3.400000 12.490000	42.10 37.00 32.60	10.5 11.1 11.3	46	13.6 9.0 17.4	AV	N N N	GND GND GND		
MEASUREMENT	RESULT	: "COFR	62006_	fin"					
7/13/2016 6:43 Frequency		Trange	T.imi+	Margin	Detector	Line	PE		
MHz	dBµV	dB	dΒμV	dB	Detector	птие	FE		
0.260000 3.540000 12.955000	41.60 42.70 40.10	10.6 11.1 11.3	56	19.8 13.3 19.9	QΡ	L1 L1 L1	GND		
MEASUREMENT RESULT: "COFR62006_fin2"									
7/13/2016 6:43 Frequency	Level				Detector	Line	PE		
MHz	dΒμV	dB	dΒμV	dB					
3.460000	-3.80	10.5 11.1 11.3	46	47.5 49.8 52.1	AV	L1 L1 L1	GND GND GND		

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Massage Chair M/N:EC-617D

Manufacturer: COMFORT

Operating Condition: BT communicating Test Site: 1#Shielding Room

Operator: DING

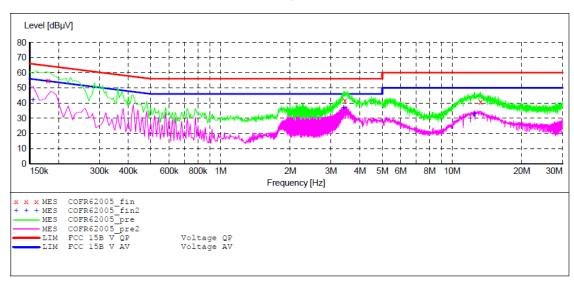
Test Specification: N 120V/60Hz

Report NO:ATE20161131 Comment: 7/13/2016 / 6:35:57PM Start of Test:

SCAN TABLE: "V 9K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. ΙF Transducer

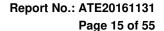

Bandw. Time

Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average



MEASUREMENT RESULT: "COFR62005 fin"

7/	13/2016 6:3	88PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
	0.180000	54.80	10.5	65	9.7	QP	N	GND
	3.440000	41.50	11.1	56	14.5	QP	N	GND
	13.270000	40.80	11.3	60	19.2	OP	N	GND

MEASUREMENT RESULT: "COFR62005 fin2"

7/13/2016	6:38PM						
Frequen	cy Level	Transd	Limit	Margin	Detector	Line	PE
M	Hz dBµV	dB	dΒμV	dB			
0.1550	00 42.10	10.5	56	13.6	AV	N	GND
3.4000	00 37.00	11.1	46	9.0	AV	N	GND
12.4900	00 32.60	11.3	50	17.4	AV	N	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Massage Chair M/N:EC-617D

Manufacturer: COMFORT

Operating Condition: BT communicating Test Site: 1#Shielding Room

DING Operator:

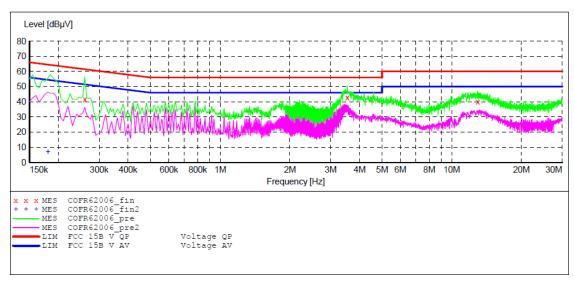
Test Specification: L 120V/60Hz

Comment: Report NO:ATE20161131 7/13/2016 / 6:39:22PM Start of Test:

SCAN TABLE: "V 9K-30MHz fin" Short Description: _SU

_SUB_STD_VTERM2 1.70

Stop Start Step Detector Meas. IF Transducer


Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz Time Bandw.

200 Hz NSLK8126 2008 QuasiPeak 1.0 s

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

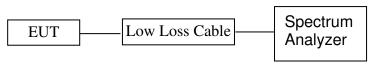
Average

MEASUREMENT RESULT: "COFR62006 fin"

7	/13/2016 6:	43PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dBuV		dBuV	dB			
	11112	ασμν	uБ	ασμν	uБ			
	0.260000	41.60	10.6	61	19.8	OP	L1	GND
	3.540000	42.70	11 1	56	13.3	OP.	L1	GND
	3.340000	42.70	T T • T	30	10.0	×τ	шт	OIND
	12.955000	40.10	11.3	60	19.9	QP	L1	GND
						~		

MEASUREMENT RESULT: "COFR62006 fin2"

7/13/2016 6:4	3PM						
Frequency MHz	Level dBµV			Margin dB	Detector	Line	PE
0.180000	7.00	10.5	55	47.5	AV	L1	GND
3.460000	-3.80	11.1	46	49.8	AV	L1	GND
13.225000	-2.10	11.3	50	52.1	AV	T ₁ 1	GND



Report No.: ATE20161131

Page 16 of 55

6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

(EUT: Massage Chair)

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

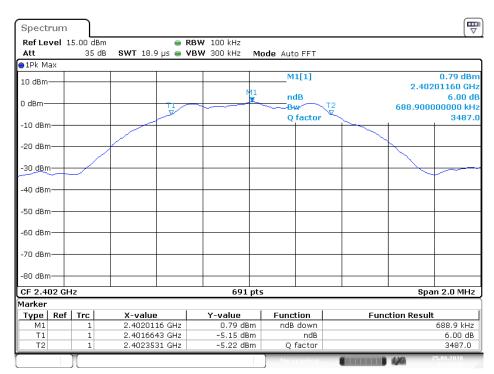
The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

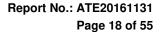
- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 6.5.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

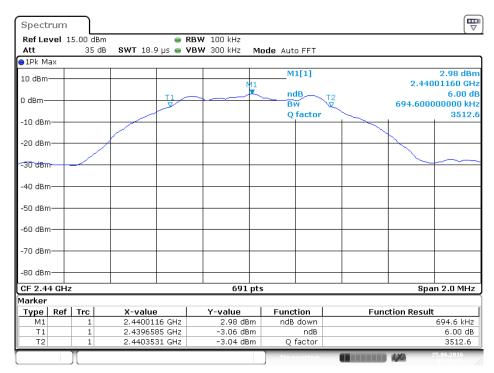


6.6.Test Result

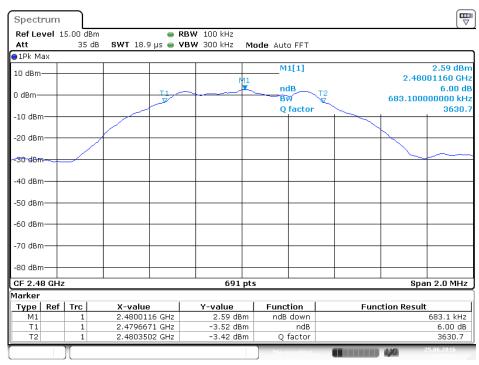

Channel	Frequency (MHz)	6 dB Bandwith (MHz)	Minimum Limit(MHz)	PASS/FAIL
0	2402	0.689	0.5	PASS
19	2440	0.695	0.5	PASS
39	2480	0.683	0.5	PASS

The spectrum analyzer plots are attached as below.

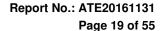
channel 0



Date: 25.JUN.2016 17:53:58

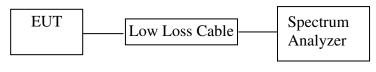


channel 19



Date: 25.JUN.2016 17:56:35

channel 39


Date: 25.JUN.2016 17:58:01

7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

(EUT: Massage Chair)

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

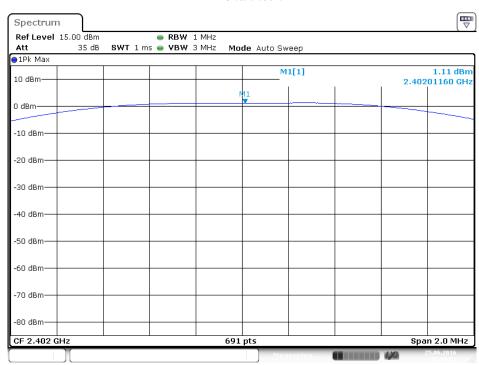
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

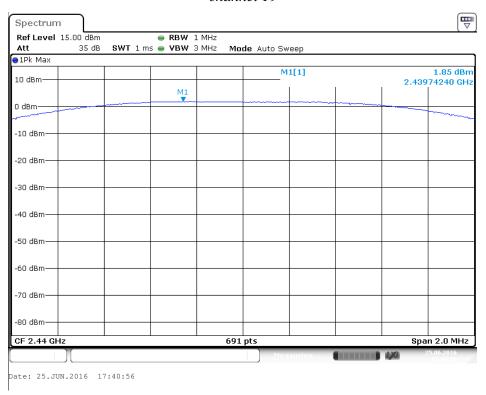
- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 1 MHz and VBW to 3 MHz.
- 7.5.3.Measurement the maximum peak output power.

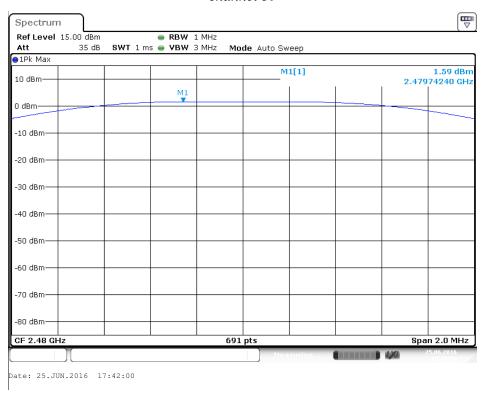


7.6.Test Result

Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
0	2402	1.11	30	PASS
19	2440	1.85	30	PASS
39	2480	1.59	30	PASS

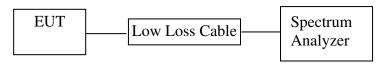
The spectrum analyzer plots are attached as below.


channel 0


Date: 25.JUN.2016 17:39:01

channel 19

channel 39



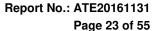
Report No.: ATE20161131 Page 22 of 55

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

(EUT: Massage Chair)

8.2. The Requirement For Section 15.247(e)


Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

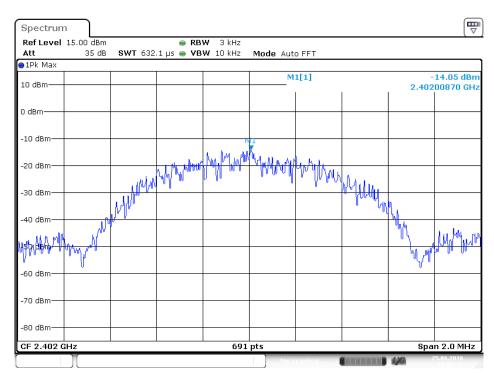
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

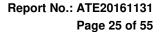
- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Measurement Procedure PKPSD:
- 8.5.3. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 8.5.4.Measurement the maximum power spectral density.

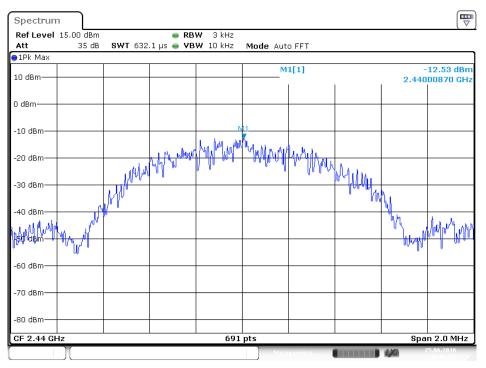


8.6.Test Result

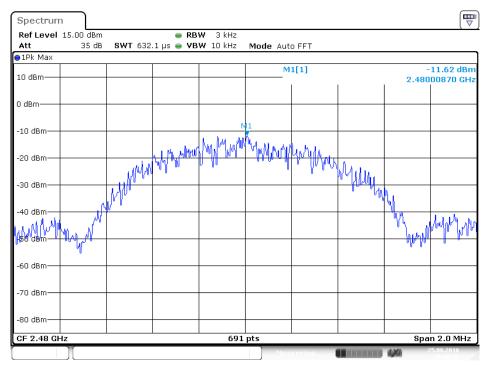

CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3KHz)	LIMIT (dBm/3KHz)	PASS/FAIL
0	2402	-14.05	8	PASS
19	2440	-12.53	8	PASS
39	2480	-11.62	8	PASS

The spectrum analyzer plots are attached as below.

channel 0



Date: 25.JUN.2016 18:02:37

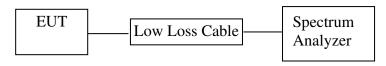


channel 19



Date: 25.JUN.2016 18:01:48

channel 39


Date: 25.JUN.2016 18:00:18

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

(EUT: Massage Chair)

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

Report No.: ATE20161131

Page 27 of 55

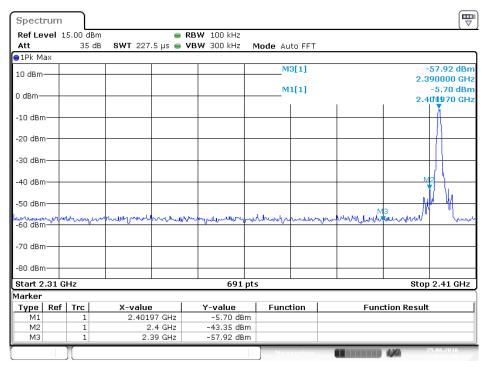
9.5.Test Procedure

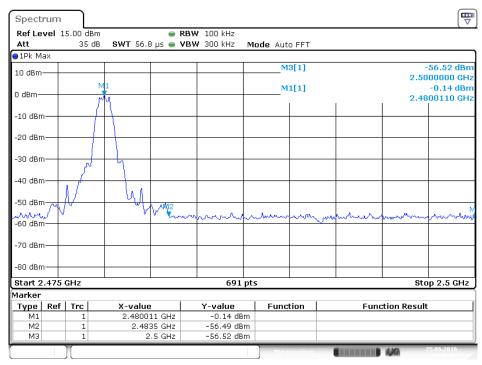
Conducted Band Edge:

- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 9.5.3. Radiate Band Edge:
- 9.5.4. The EUT is placed on a turntable, which is 0.1m above the ground plane and worked at highest radiated power.
- 9.5.5. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.6.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.7.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 9.5.8.RBW=1MHz, VBW=1MHz
- 9.5.9. The band edges was measured and recorded.

9.6.Test Result

Pass


Channel	Frequency	Delta peak to band emission	Limit(dBc)
0	2.4GHz	37.65	20
39	2.4835GHz	56.35	20


Page 28 of 55

channel 0

Date: 25.JUN.2016 17:51:20

channel 39

Date: 25.JUN.2016 17:47:07

Report No.: ATE20161131 Page 29 of 55

Radiated Band Edge Result

Date of Test:June 27, 2016Temperature:25°CEUT:Massage ChairHumidity:50%Model No.:EC-617DPower Supply:AC 120V/60HzTest Mode:TX (2402MHz) GFSKTest Engineer:Ding

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBμV/m)	Limit(d)	BμV/m)	Margi	in(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2390.000	36.22	45.86	-7.53	28.69	38.33	54.00	74.00	-25.31	-35.67	Vertical
2400.000	56.79	67.51	-7.46	49.33	60.05	54.00	74.00	-4.67	-13.95	Vertical
2390.000	36.97	46.68	-7.53	29.44	39.15	54.00	74.00	-24.56	-34.85	Horizontal
2400.000	53.16	62.85	-7.46	45.70	55.39	54.00	74.00	-8.30	-18.61	Horizontal

Date of Test:June 27, 2016Temperature:25°CEUT:Massage ChairHumidity:50%Model No.:EC-617DPower Supply:AC 120V/60HzTest Mode:TX (2480MHz) GFSKTest Engineer:Ding

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBμV/m)	Limit(d)	BμV/m)	Margi	n(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	49.67	59.76	-7.37	42.30	52.39	54.00	74.00	-11.70	-21.61	Vertical
2500.000	36.33	46.51	-7.40	28.93	39.11	54.00	74.00	-25.07	-34.89	Vertical
2483.500	50.67	60.78	-7.37	43.30	53.41	54.00	74.00	-10.70	-20.59	Horizontal
2500,000	36.98	47.31	-7.40	29.58	39.91	54.00	74.00	-24.42	-34.09	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

 Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

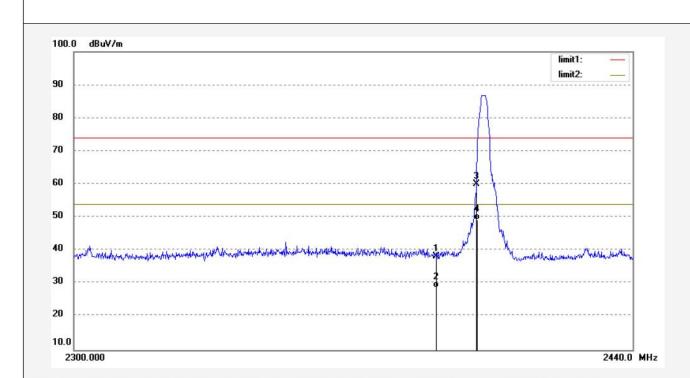
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161131

Page 30 of 55

Job No.: star2015 #437 Polarization: Vertical


Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 16/06/27/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 18/10/02
EUT: Massage Chair Engineer Signature:

Mode: TX 2402MHz Distance: 3m Model: EC-617D

Note: Report NO.:ATE20161131

Manufacturer: COMFORT

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	45.86	-7.53	38.33	74.00	-35.67	peak			
2	2390.000	36.22	-7.53	28.69	54.00	-25.31	AVG			
3	2400.000	67.51	-7.46	60.05	74.00	-13.95	peak			
4	2400.000	56.79	-7.46	49.33	54.00	-4.67	AVG			

Job No.: star2015 #438

Test item: Radiation Test

Standard: FCC PK

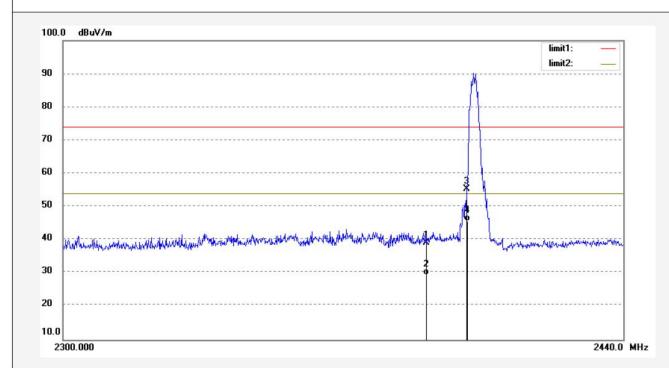
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161131

Page 31 of 55

Polarization: Horizontal


Power Source: AC 120V/60Hz

Date: 16/06/27/
Time: 18/12/10
Engineer Signature:
Distance: 3m

Temp.(C)/Hum.(%) 23 C / 48 %
EUT: Massage Chair
Mode: TX 2402MHz
Model: EC-617D

Manufacturer: COMFORT

Note: Report NO.:ATE20161131

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	46.68	-7.53	39.15	74.00	-34.85	peak			
2	2390.000	36.97	-7.53	29.44	54.00	-24.56	AVG			
3	2400.000	62.85	-7.46	55.39	74.00	-18.61	peak			
4	2400.000	53.16	-7.46	45.70	54.00	-8.30	AVG			

Note:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Date: 16/06/27/

Time: 18/14/18

Distance: 3m

Engineer Signature:

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161131

Page 32 of 55

Job No.: star2015 #439 Polarization: Horizontal Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test

Report NO.:ATE20161131

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Mode: TX 2480MHz Model: EC-617D Manufacturer: COMFORT

Massage Chair

100.0 dBuV/m limit1: limit2: 90 80 70 60 50 40 30 20 10.0 2440.000 2600.0 MHz

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	60.78	-7.37	53.41	74.00	-20.59	peak			
2	2483.500	50.67	-7.37	43.30	54.00	-10.70	AVG			
3	2500.000	47.31	-7.40	39.91	74.00	-34.09	peak			
4	2500.000	36.98	-7.40	29.58	54.00	-24.42	AVG		:	

ACCURATE TECHNOLOGY CO., LTD.

Site: 2# Chamber

Port Keyuan Rd,
Penzhen P R China

Fax:+86-0755-26503396

Report No.: ATE20161131

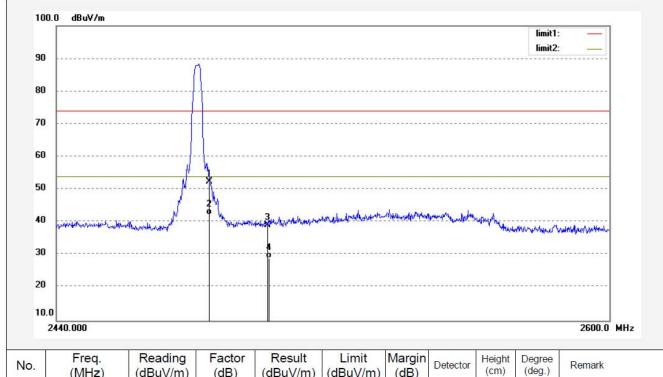
Page 33 of 55

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/06/27/ Time: 18/15/42 Engineer Signature:

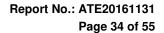

Distance: 3m

Job No.: star2015 #440 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Massage Chair Mode: TX 2480MHz Model: EC-617D Manufacturer: COMFORT

Note: Report NO.:ATE20161131

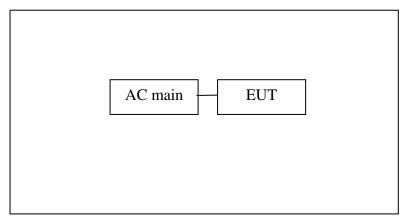

	No.	Freq. (MHz)	(dBuV/m)	Factor (dB)	(dBuV/m)	(dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	1	2483.500	59.76	-7.37	52.39	74.00	-21.61	peak			
	2	2483.500	49.67	-7.37	42.30	54.00	-11.70	AVG			
0	3	2500.000	46.51	-7.40	39.11	74.00	-34.89	peak			
0	4	2500.000	36.33	-7.40	28.93	54.00	-25.07	AVG			

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

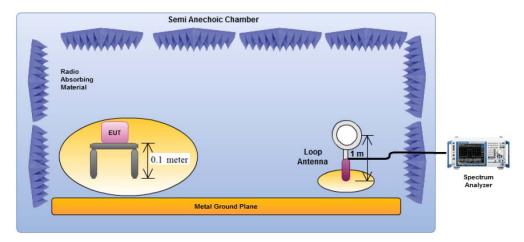
3. Display the measurement of peak values.



10. RADIATED SPURIOUS EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals

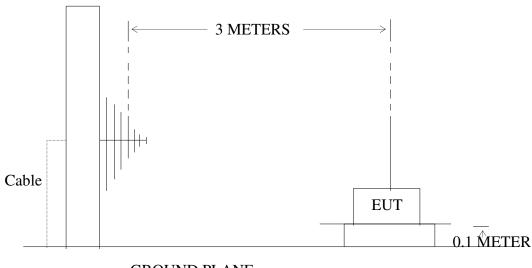


Setup: Transmitting mode

(EUT: Massage Chair)

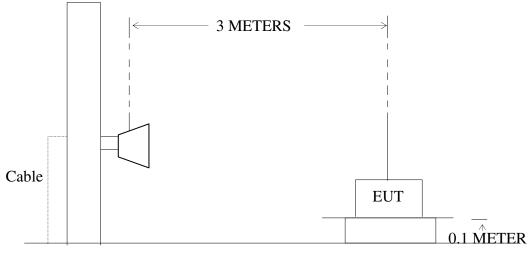
10.1.2.Semi-Anechoic Chamber Test Setup Diagram

Below 30MHz



Page 35 of 55

30MHz-1GHz


ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the

Report No.: ATE20161131 Page 36 of 55

transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

·	inted in any of the freque	· · · · · · · · · · · · · · · · · · ·	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission

²Above 38.6

characteristics in normal application.

Report No.: ATE20161131 Page 37 of 55

10.5. Operating Condition of EUT

- 10.5.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.5.2. Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

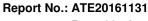
The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:


Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

10.7. The Field Strength of Radiation Emission Measurement Results PASS.

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.

Page 38 of 55

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DING #2068

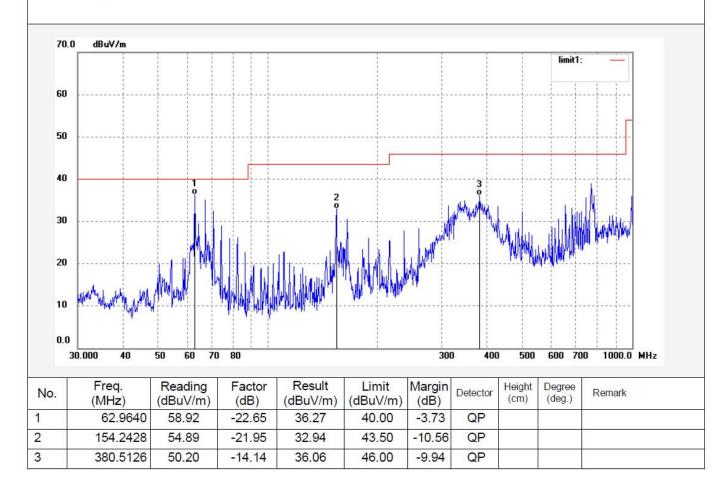
Standard: FCC Class B 3M Radiated

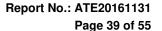
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2402MHz Model: EC-617D

Manufacturer: COMFORT


Note: Report NO.:ATE20161131


Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/06/27/ Time: 12/29/08

Engineer Signature: DING

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DING #2069

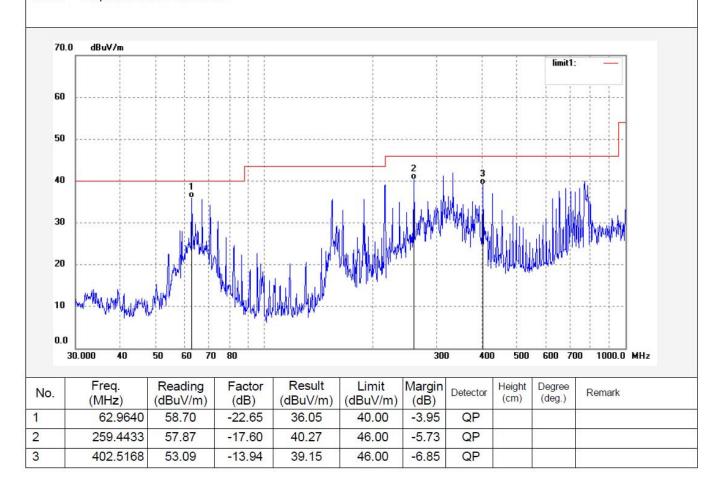
Standard: FCC Class B 3M Radiated

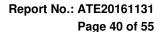
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair
Mode: TX 2402MHz
Model: EC-617D

Manufacturer: COMFORT


Note: Report NO.:ATE20161131


Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 16/06/27/ Time: 12/30/37

Engineer Signature: DING

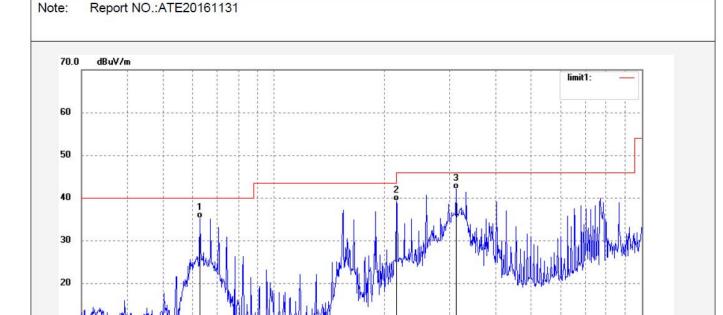
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DING #2070

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %


EUT: Massage Chair Mode: TX 2440MHz Model: EC-617D Manufacturer: COMFORT Polarization: Horizontal

Power Source: AC 120V/60Hz

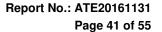
Date: 16/06/27/ Time: 12/31/34

Engineer Signature: DING

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	62.9640	57.89	-22.65	35.24	40.00	-4.76	QP			
2	215.3616	57.69	-18.43	39.26	43.50	-4.24	QP			
3	312.5482	58.15	-15.99	42.16	46.00	-3.84	QP			

10


30.000

60

70 80

1000.0 MHz

600 700

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/06/27/ Time: 12/32/44

Engineer Signature: DING

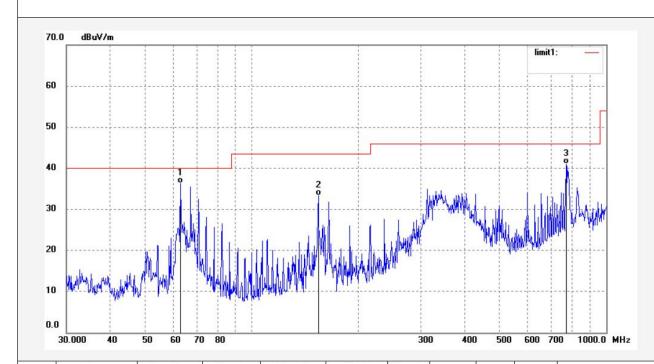
Distance: 3m

Job No.: DING #2071

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %


EUT: Massage Chair

Mode: TX 2440MHz

Model: EC-617D

Manufacturer: COMFORT

Note: Report NO.:ATE20161131

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	62.9640	58.91	-22.65	36.26	40.00	-3.74	QP			
2	154.2428	55.29	-21.95	33.34	43.50	-10.16	QP			
3	771.0475	47.36	-6.39	40.97	46.00	-5.03	QP			

Page 42 of 55
Site: 1# Chamber

Report No.: ATE20161131

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DING #2072

Standard: FCC Class B 3M Radiated

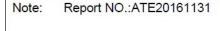
Test item: Radiation Test

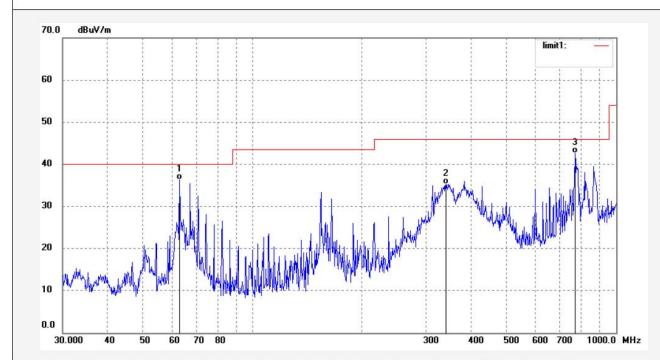
Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair

Mode: TX 2480MHz

Model: EC-617D


Manufacturer: COMFORT


Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 16/06/27/ Time: 12/33/45

Engineer Signature: DING

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	62.9640	58.91	-22.65	36.26	40.00	-3.74	QP			
2	340.0473	50.35	-15.02	35.33	46.00	-10.67	QP			
3	771.0475	48.95	-6.39	42.56	46.00	-3.44	QP			

ATO®

ACCURATE TECHNOLOGY CO., LTD.

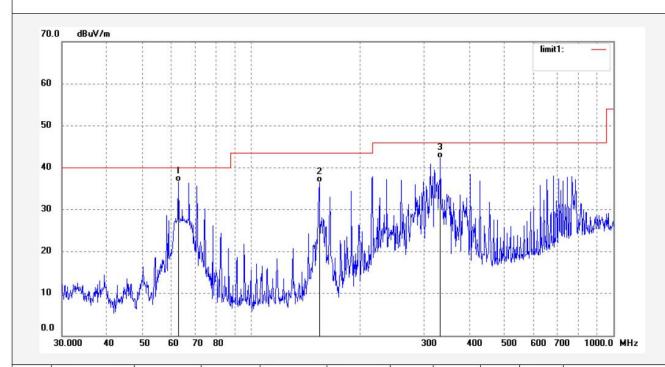
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161131

Page 43 of 55

Job No.: DING #2073 Polarization: Horizontal

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 16/06/27/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 12/34/26

EUT: Massage Chair Engineer Signature: DING Mode: TX 2480MHz Distance: 3m

Model: EC-617D

Manufacturer: COMFORT

Note: Report NO.:ATE20161131

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	62.9640	59.32	-22.65	36.67	40.00	-3.33	QP			
2	154.2428	58.43	-21.95	36.48	43.50	-7.02	QP			
3	332.9536	57.56	-15.22	42.34	46.00	-3.66	QP			

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161131

Page 44 of 55

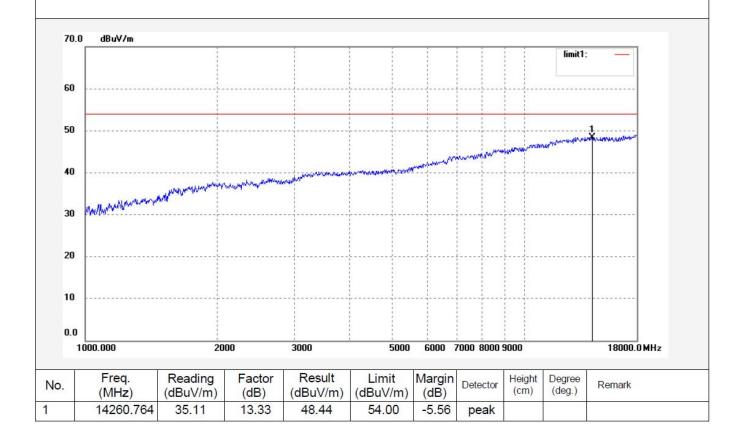
Job No.: DING #2074 Polarization: Horizontal

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz

 Test item:
 Radiation Test
 Date: 16/06/27/

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 12/43/59

EUT: Massage Chair Engineer Signature: DING


Mode: TX 2402MHz Distance: 3m

Mode: TX 2402MHz

Model: EC-617D

Manufacturer: COMFORT

Note: Report NO.:ATE20161131

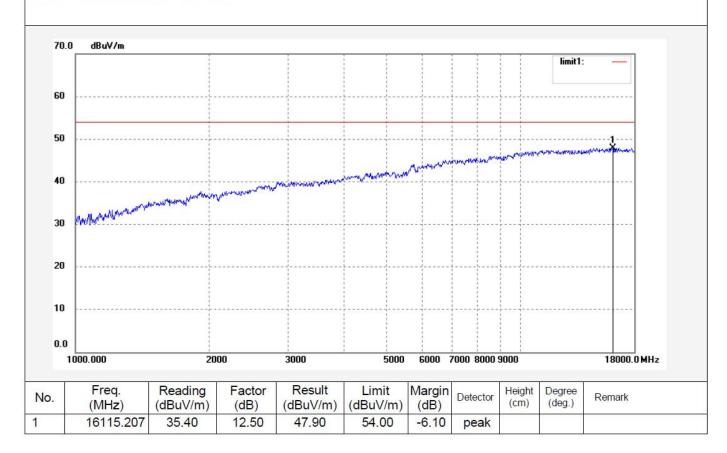
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161131

Page 45 of 55

Job No.: DING #2075 Polarization: Vertical

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 16/06/27/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 12/45/29

EUT: Massage Chair Engineer Signature: DING Mode: TX 2402MHz Distance: 3m

Mode: TX 2402MHz
Model: EC-617D

Note: Report NO.:ATE20161131

Manufacturer: COMFORT

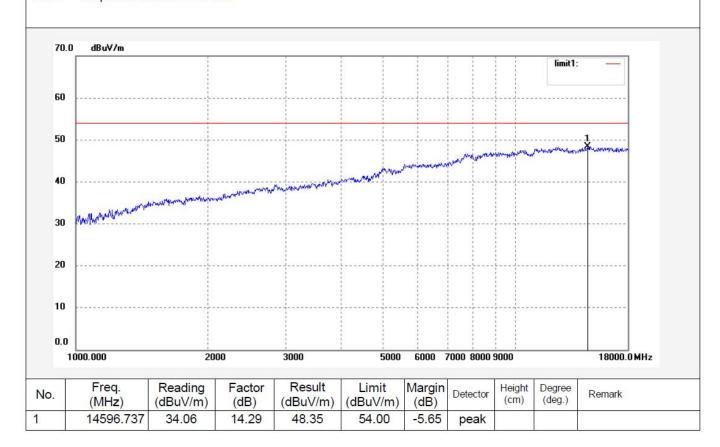
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161131

Page 46 of 55

Job No.: DING #2076 Polarization: Vertical

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 16/06/27/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 12/47/17

EUT: Massage Chair Engineer Signature: DING
Mode: TX 2440MHz Distance: 3m

Model: EC-617D

Note: Report NO.:ATE20161131

Manufacturer: COMFORT

Report No.: ATE20161131 Page 47 of 55

ACCURATE TECHNOLOGY CO., LTD.

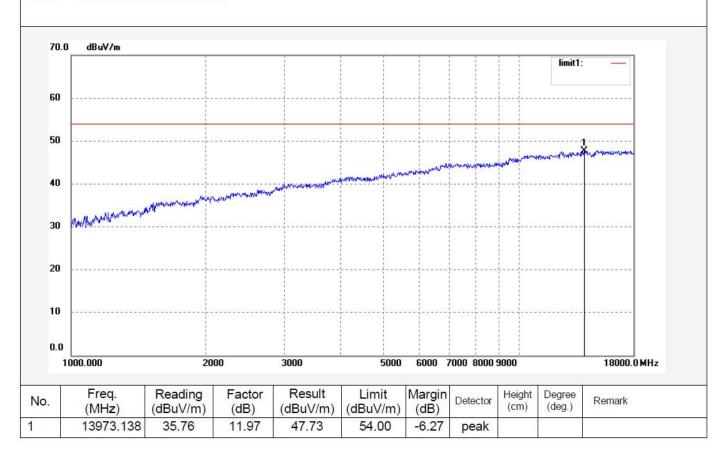
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

DING

Job No.: DING #2077 Polarization: Horizontal

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 16/06/27/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 12/48/56


EUT: Massage Chair Engineer Signature:

Mode: TX 2440MHz Distance: 3m

Model: EC-617D

Note: Report NO.:ATE20161131

Manufacturer: COMFORT

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

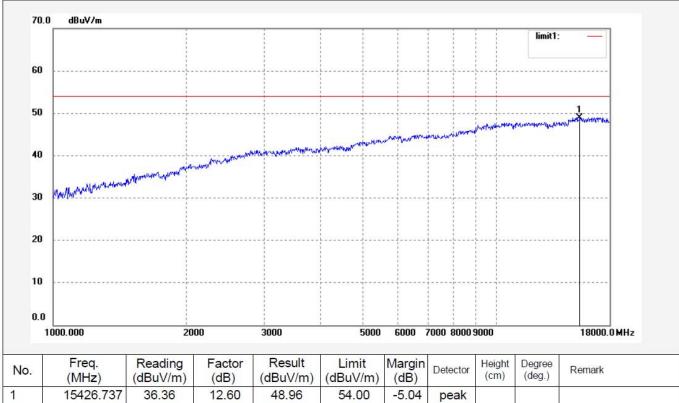
Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20161131

Page 48 of 55

Job No.: DING #2078 Polarization: Horizontal

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 16/06/27/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 12/50/02

EUT: Massage Chair Engineer Signature: DING

Mode: TX 2480MHz Distance: 3m Model: EC-617D

Manufacturer: COMFORT

Report NO.:ATE20161131 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	15426.737	36.36	12.60	48.96	54.00	-5.04	peak			

Report No.: ATE20161131 Page 49 of 55

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: DING #2079

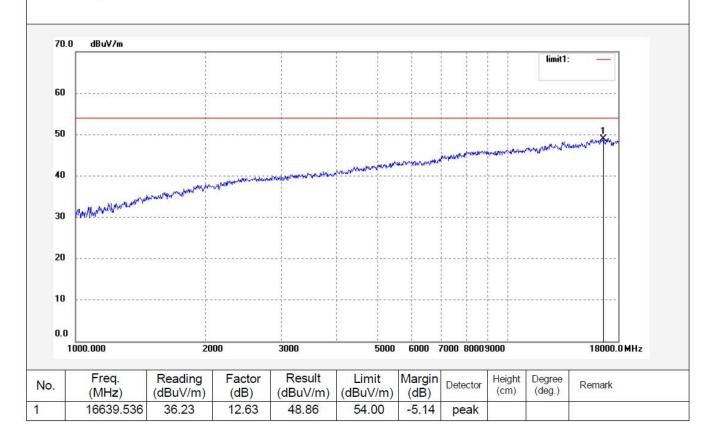
Standard: FCC Class B 3M Radiated

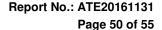
Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2480MHz

Model: EC-617D Manufacturer: COMFORT

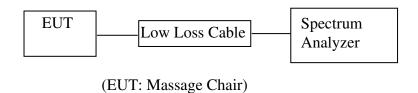

Note: Report NO.:ATE20161131


Polarization: Vertical

Power Source: AC 120V/60Hz

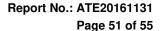
Date: 16/06/27/ Time: 12/52/17

Engineer Signature: DING



11. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

11.1.Block Diagram of Test Setup



11.2.The Requirement For Section 15.247(d)

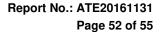
Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

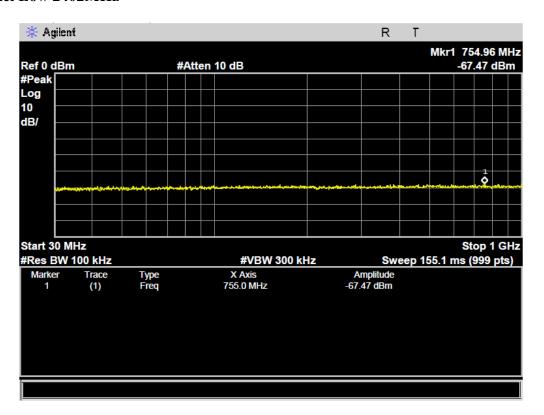
11.4. Operating Condition of EUT

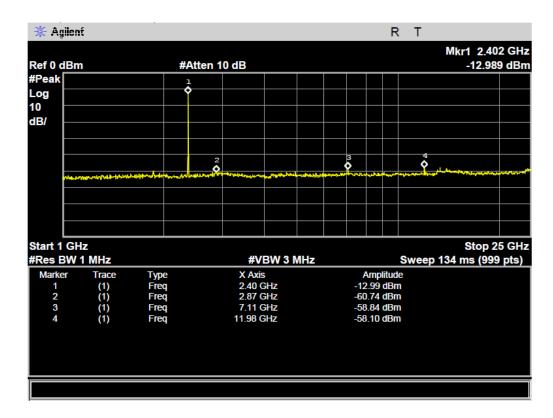
- 11.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

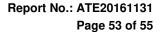

11.5.Test Procedure

- 11.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 11.5.3. The Conducted Spurious Emission was measured and recorded.

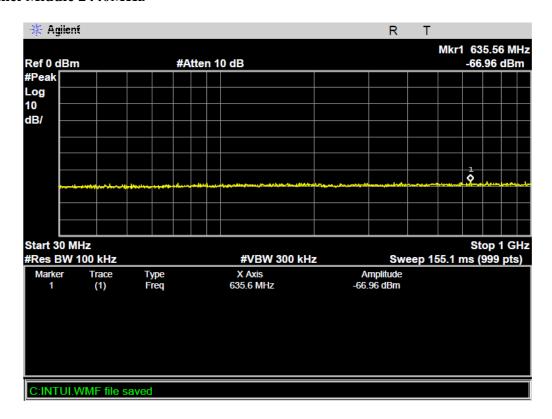
11.6.Test Result

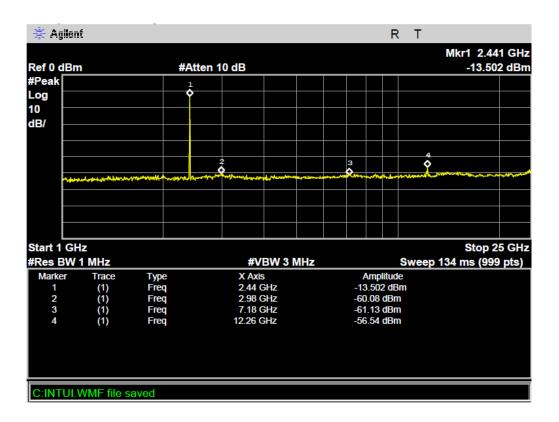

Pass.

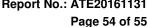

The spectrum analyzer plots are attached as below.



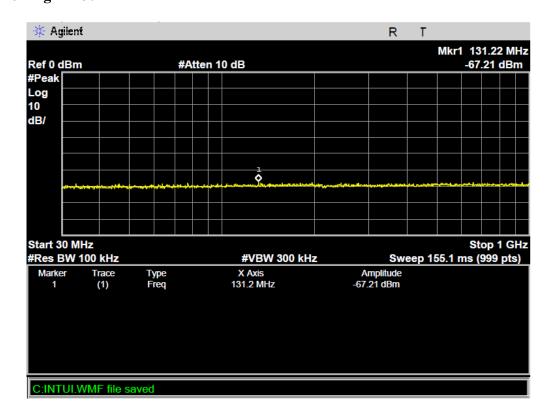
BLE Channel Low 2402MHz

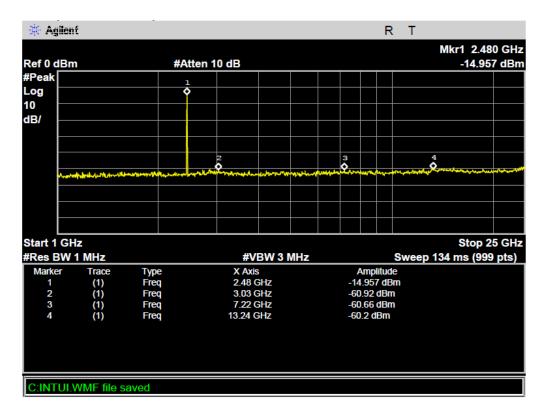


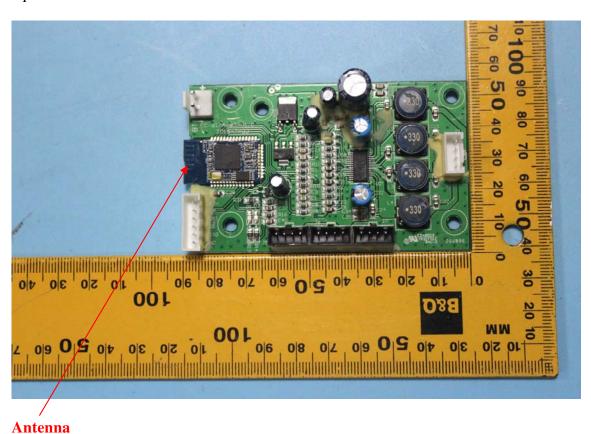




BLE Channel Middle 2440MHz






12.ANTENNA REQUIREMENT

12.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2.Antenna Construction

Device is equipped with external Antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 2.5dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

