

APPLICATION CERTIFICATION FCC Part 15C On Behalf of XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD

Massage Chair Model No.: EC-260D, Galaxy-Crown

FCC ID: YMX-EC260D

Prepared for Address	 XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN, FUJIAN, CHINA
Prepared by	 Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry
Address	Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: (0755) 26503290

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No.	:	ATE20171241
Date of Test	:	June 28-July 10, 2017
Date of Report	:	July 11, 2017

TABLE OF CONTENTS

Description

Page

Т	est Re	port Certification	
1.	GE	NERAL INFORMATION	5
	1.1.	Description of Device (EUT)	
	1.2.	Carrier Frequency of Channels	
	1.3.	Special Accessory and Auxiliary Equipment	
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	
2.	ME	ASURING DEVICE AND TEST EQUIPMENT	
3.	OPI	ERATION OF EUT DURING TESTING	9
	3.1.	Operating Mode	9
	3.2.	Configuration and peripherals	
4.	TES	ST PROCEDURES AND RESULTS	
5.		WER LINE CONDUCTED MEASUREMENT	
	5.1.	Block Diagram of Test Setup	11
	5.2.	Power Line Conducted Emission Measurement Limits	
	5.3.	Configuration of EUT on Measurement	11
	5.4.	Operating Condition of EUT	11
	5.5.	Test Procedure	12
	5.6.	Power Line Conducted Emission Measurement Results	12
6.	6DE	BANDWIDTH MEASUREMENT	16
	6.1.	Block Diagram of Test Setup	16
	6.2.	The Requirement For Section 15.247(a)(2)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	16
	6.6.	Test Result	17
7.	MA	XIMUM PEAK OUTPUT POWER	19
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(b)(3)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	20
8.	PO	WER SPECTRAL DENSITY MEASUREMENT	22
	8.1.	Block Diagram of Test Setup	22
	8.2.	The Requirement For Section 15.247(e)	
	8.3.	EUT Configuration on Measurement	22
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	23
	8.6.	Test Result	24
9.	BAI	ND EDGE COMPLIANCE TEST	26
	9.1.	Block Diagram of Test Setup	26
	9.2.	The Requirement For Section 15.247(d)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	

Report No.: ATE20171241 Page 3 of 50

	-	

		-
9.5.	Test Procedure	
9.6.	Test Result	27
10. RA	DIATED SPURIOUS EMISSION TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	
10.5.	Operating Condition of EUT	
10.6.	Test Procedure	
10.7.	The Field Strength of Radiation Emission Measurement Results	
11. AN	TENNA REQUIREMENT	
11.1.	The Requirement	50
	Antenna Construction	

Test Report Certification

Applicant	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD
Manufacturer	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD
EUT Description	:	Massage Chair
Model No.	:	EC-260D, Galaxy-Crown
Trade Mark	:	n.a.

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2016 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 05, 2017 KDB558074 D01 DTS Meas Guidance v04 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	June 28-July 10, 2017
Date of Report:	July 11, 2017
	BobWarg
Prepared by :	(Bo Warm, Estimeer)
	ATC ATC APPROVED APPROVED
Approved & Authorized Signer :_	Jem V
	(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT Model Number	:	Massage Chair EC-260D, Galaxy-Crown (Note: We hereby state that these models are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement. So we prepare the EC-260D for test.)
Trade Mark	:	n.a.
Bluetooth version	:	BT V4.0 LE
Frequency Range	:	2402MHz-2480MHz
Number of Channels	:	40
Antenna Gain	:	2dBi
Antenna type	:	PCB Antenna
Power Supply	:	AC 110-120V; 60Hz
Modulation mode	:	GFSK
Applicant	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY
		GROUP CO., LTD
Address	:	NO.168, QIANPU ROAD, SIMING DISTRICT,
		XIAMEN, FUJIAN, CHINA
Manufacturer		XIAMEN COMFORT SCIENCE & TECHNOLOGY
Manufacturer	•	GROUP CO., LTD
Address		NO.168, QIANPU ROAD, SIMING DISTRICT,
Address	•	XIAMEN, FUJIAN, CHINA
Date of sample received	:	June 26, 2017
Date of Test	:	June 28-July 10, 2017

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channe 1	Frequceny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.Carrier Frequency of Channels

1.3. Special Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
	Listed by Innovation, Science and Economic Development Canada (ISEDC)
	The Registration Number is 5077A-2
	Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193
	Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01 Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
	:

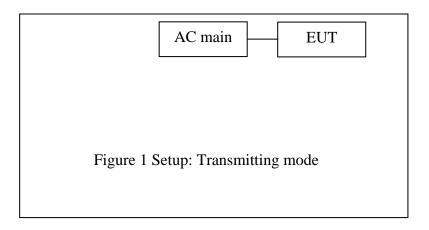
1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

		т	C /NT		0 111 / 1 /1
Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 7, 2017	1 Year
				,	
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 7, 2017	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 7, 2017	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354	3791	Jan. 7, 2017	1 Year
		0-01			
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 13, 2017	1 Year
				,	
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 13, 2017	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 13, 2017	1 Year
	Sentralecter	2011/1202	<i>J</i> 1202 000	oun: 10, 2017	1 1001
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 13, 2017	1 Year
LICN	Dahda & Cabuyana	ECU2 75	100205	Ion 7 2017	1 Voor
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 7, 2017	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 7, 2017	1 Year
				,	
Highpass Filter	Wainwright	WHKX3.6/18	N/A	Jan. 7, 2017	1 Year
	Instruments	G-10SS			
Band Reject Filter	Wainwright	WRCG2400/2	N/A	Jan. 7, 2017	1 Year
5	Instruments	485-2375/2510			
		-60/11SS			
L		00/1100		1	

Table 1: List of Test and Measurement Equipment

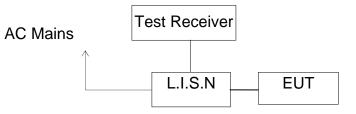


3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **BLE Transmitting mode** Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals


4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

(EUT: Massage Chair)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit dB(μV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				
	all apply at the transition fre es linearly with the logarithm 0 0.50MHz.					

5.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.1 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

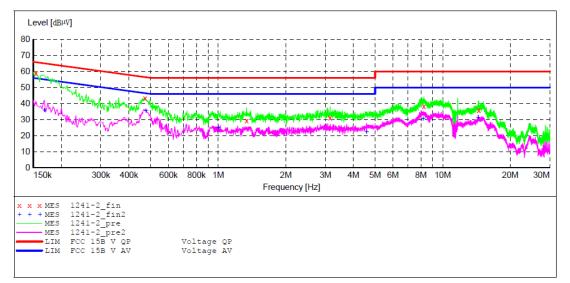
PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode : BT communicating(AC 120V/60Hz) EUT mode : EC-260D										
EUI MODE : E MEASUREMENT			-2_fin	."						
2017-6-28 16:3			_							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.154000 0.472000 1.338000 3.150000 8.245000 14.465000	38.40	11.0 11.2 11.3 11.5	57 56 56 60	26.5 24.9	QP QP QP QP		GND GND GND GND GND GND			
MEASUREMENT	RESULT	"1241	-2_fin	2"						
2017-6-28 16: Frequency MHz			Limit dBµV	2	Detector	Line	PE			
0.168000 0.476000 1.002000 4.575000 8.180000 14.395000	35.50 24.70 22.40	11 4	46 46 46	19.3 10.9 21.3 23.6 19.4 18.7	AV AV AV AV	N N N N N	GND GND GND GND GND GND			
MEASUREMENT	RESULT	: "1241	-1_fir	2 ″						
2017-6-28 16: Frequency MHz			Limit dBµV	-	Detector	Line	PE			
0.152000 0.460000 1.464000 4.945000 9.290000 14.455000	40.50 28.80 32.10 35.90	10.8 11.0 11.2 11.4 11.6 11.6	57 56 56	16.2 27.2	QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND			
MEASUREMENT		: "1241	-1_fir	n2"						
2017-6-28 16: Frequency MHz	12 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.164000 0.482000 1.300000 4.945000 9.290000 14.705000	39.60 33.60 20.20 24.80 28.00 27.70	10.8 11.0 11.2 11.4 11.6 11.6	55 46 46 50 50	15.7 12.7 25.8 21.2 22.0 22.3	AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND			

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:Massage Chair M/N:EC-260DManufacturer:XIAMEN COMFORT SCIENCE&TECHNOLOGY GROUP CO .,LTDOperating Condition:HIGHTest Site:1#Shielding RoomOperator:FrankTest Specification:N 120V/60HzComment:Report NO.:ATE20171241Start of Test:2017-6-28 / 16:13:25

SCAN TABLE: "V 150K-30MHz fin"

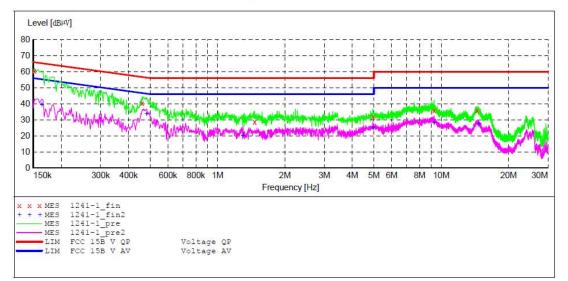
Short Desci			_SUB_STD_VTERM2 1.70						
	-	-	Detector		IF	Transducer			
	Frequency			Time	Bandw.				
150.0 kHz	30.0 MHz	4.5 kHz	~	1.0 s	9 kHz	NSLK8126 2008			
			Average						

MEASUREMENT RESULT: "1241-2 fin"

				_				
2	017-6-28 16:	14						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
	0.154000	59.10	10.8	66	6.7	QP	Ν	GND
	0.472000	43.30	11.0	57	13.2	QP	Ν	GND
	1.338000	29.50	11.2	56	26.5	QP	Ν	GND
	3.150000	31.10	11.3	56	24.9	QP	Ν	GND
	8.245000	38.40	11.5	60	21.6	QP	Ν	GND
	14.465000	36.00	11.6	60	24.0	QP	Ν	GND

MEASUREMENT RESULT: "1241-2 fin2"

2017-6-28 16:	14						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	ΡE
0.168000	35.80	10.8	55	19.3	AV	Ν	GND
0.476000	35.50	11.0	46	10.9	AV	Ν	GND
1.002000	24.70	11.1	46	21.3	AV	Ν	GND
4.575000	22.40	11.4	46	23.6	AV	N	GND
8.180000	30.60	11.5	50	19.4	AV	Ν	GND
14.395000	31.30	11.6	50	18.7	AV	Ν	GND


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15C

EUT:	Massage Chair M/N:EC-260D
Manufacturer:	XIAMEN COMFORT SCIENCE&TECHNOLOGY GROUP CO ., LTD
Operating Condition:	HIGH
Test Site:	1#Shielding Room
Operator:	Frank
Test Specification:	L 120V/60Hz
Comment:	Report NO.:ATE20171241
Start of Test:	2017-6-28 / 16:10:57

SCAN TABLE: "V 150K-30MHz fin"

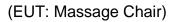
Short Desc		n oonna	SUB STD VTE	RM2 1.70		
Start Frequency		Step Width	Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHz	-		QuasiPeak Average			NSLK8126 2008

MEASUREMENT RESULT: "1241-1_fin"

2017-6-28 16:12

Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
60.60	10.8	66	5.3	QP	L1	GND
40.50	11.0	57	16.2	QP	L1	GND
28.80	11.2	56	27.2	QP	L1	GND
32.10	11.4	56	23.9	QP	L1	GND
35.90	11.6	60	24.1	QP	L1	GND
35.80	11.6	60	24.2	QP	L1	GND
	dBµV 60.60 40.50 28.80 32.10 35.90	dBμV dB 60.60 10.8 40.50 11.0 28.80 11.2 32.10 11.4 35.90 11.6	dBµV dB dBµV 60.60 10.8 66 40.50 11.0 57 28.80 11.2 56 32.10 11.4 56 35.90 11.6 60	dBµV dB dBµV dB 60.60 10.8 66 5.3 40.50 11.0 57 16.2 28.80 11.2 56 27.2 32.10 11.4 56 23.9 35.90 11.6 60 24.1	dBμV dB dBμV dB 60.60 10.8 66 5.3 QP 40.50 11.0 57 16.2 QP 28.80 11.2 56 27.2 QP 32.10 11.4 56 23.9 QP 35.90 11.6 60 24.1 QP	dBμV dB dBμV dB 60.60 10.8 66 5.3 QP L1 40.50 11.0 57 16.2 QP L1 28.80 11.2 56 27.2 QP L1 32.10 11.4 56 23.9 QP L1 35.90 11.6 60 24.1 QP L1

MEASUREMENT RESULT: "1241-1_fin2"


			10 mm					
2017-6-28 16:	12							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.164000	39.60	10.8	55	15.7	AV	L1	GND	
0.482000	33.60	11.0	46	12.7	AV	L1	GND	
1.300000	20.20	11.2	46	25.8	AV	L1	GND	
4.945000	24.80	11.4	46	21.2	AV	L1	GND	
9.290000	28.00	11.6	50	22.0	AV	L1	GND	
14.705000	27.70	11.6	50	22.3	AV	L1	GND	

6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

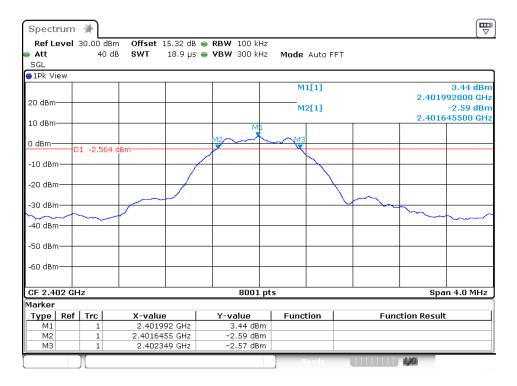
6.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

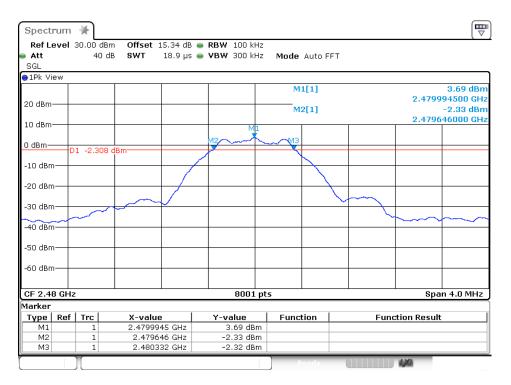
6.4. Operating Condition of EUT

- 6.4.1.Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

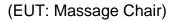

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to300 kHz.
- 6.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

6.6.Test Result


Channel	Frequency (MHz)			PASS/FAIL
0	2402	0.704	0.5	PASS
19	2440	0.697	0.5	PASS
39	2480	0.686	0.5	PASS

The spectrum analyzer plots are attached as below.

Specti	rum	*									
Ref Le Att SGL	evel	30.00 (40	dBm Offset) dB SWT	15.34 dB 👄 18.9 μs 👄			Mode	Auto FFT			
😑 1Pk Vi	ew										
20 dBm-							M	1[1]		2.4399	3.56 dBm 91000 GHz
10 dBm							M	2[1]		2.4396	-2.45 dBm 39000 GHz
0 dBm—					M2~~~		-~~M3				
-10 dBm		01 -2.44	44 dBm					<u> </u>			
-20 dBm	\										
-30 dBm	-		\sim	\downarrow		-			\sim		
-40 dBm	;	~~	-			-				\sim	~~~~
-50 dBm	-					-					
-60 dBm	-					-					
CF 2.44	4 GH:	z			800)1 pt :	5			Spa	n 4.0 MHz
Marker											
Туре	Ref		X-valu		Y-value		Funct	tion	Func	tion Result	
M1		1		991 GHz	3.56 0						
M2 M3		1		639 GHz 365 GHz	-2.45 c						
][) R	leady		4,70	



7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

7.4.1.Setup the EUT and simulator as shown as Section 7.1.

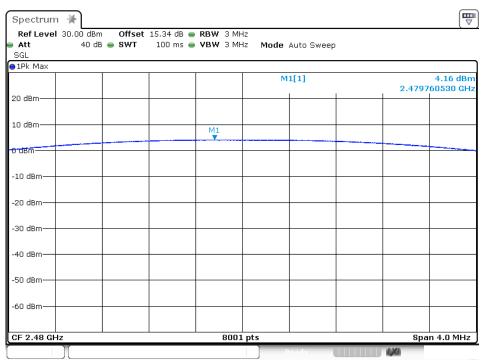
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 3 MHz and VBW to 3 MHz.
- 7.5.3.Measurement the maximum peak output power.

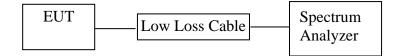
7.6.Test Result

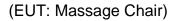
Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
0	2402	3.97	30	PASS
19	19 2440		30	PASS
39	2480	4.16	30	PASS


The spectrum analyzer plots are attached as below.

Spectrum 🔆	dem Offcat 15	i.32 dB 👄 RBW 3 MI	17		
		100 ms 👄 VBW 3 Mi		Sweep	
●1Pk Max		-	1		
			M1[1]		3.97 dBm 2.402275470 GHz
20 dBm					
10 dBm			M1		
8-d8m					
-10 dBm					
-20 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
CF 2.402 GHz		800:	l pts	1	Span 4.0 MHz
			Ready		4,74

channel 19


Spectrum 🔆							
Ref Level 30.00		15.34 dB 😑					
Att 4 SGL	0 dB 👄 SWT	100 ms 👄	VBW 3 MHz	Mode A	uto Sweep		
●1Pk Max							
				M1	[1]		4.08 dBm 1540 GHz
20 dBm							
10 dBm			11				
o dam						 	
-10 dBm							
-20 dBm						 	
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
CF 2.44 GHz			8001 p	its		Span	4.0 MHz
				Re	ady		



8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

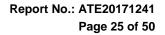
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

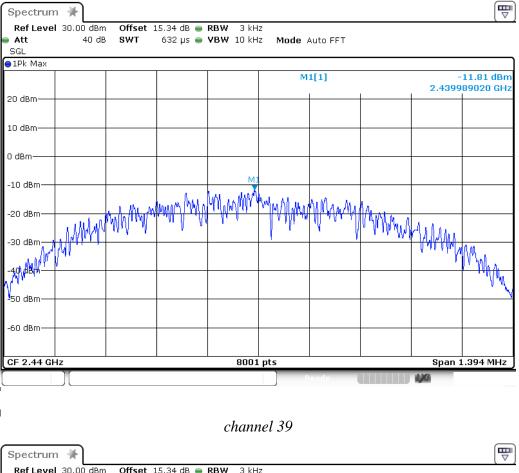
- 8.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

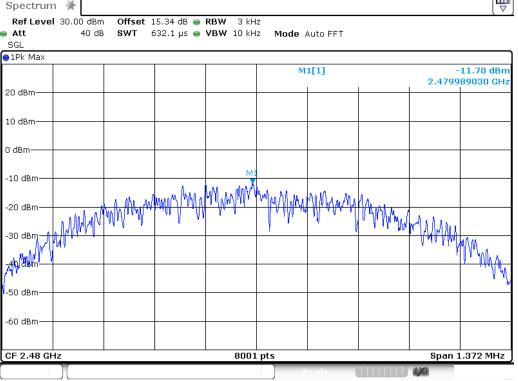
8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2. Measurement Procedure PKPSD:
- 8.5.3. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 8.5.4.Measurement the maximum power spectral density.

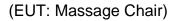


8.6.Test Result


CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3KHz)	LIMIT (dBm/3KHz)	PASS/FAIL
0	2402	-11.95	8	PASS
19	2440	-11.81	8	PASS
39	2480	-11.70	8	PASS


The spectrum analyzer plots are attached as below.

P Spectrum ₩ Ref Level 30.00 dBm Offset 15.32 dB 👄 RBW 3 kHz Att 40 dB SWT 631.9 µs 👄 **VBW** 10 kHz Mode Auto FFT SGL ⊖1Pk Max M1[1] -11.95 dBm 2.401989620 GHz 20 dBm-10 dBm 0 dBm -10 dBm MMM ANNA MANA WIMM on Ana MANA YM WAA MA MMMM -20 dBm -30 dBm 40<mark>08</mark> -**5**0 dBm -60 dBm· CF 2.402 GHz 8001 pts Span 1.408 MHz



9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

9.5.Test Procedure

Conducted Band Edge:

- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 9.5.3. Radiate Band Edge:
- 9.5.4. The EUT is placed on a turntable, which is 0.1m above the ground plane and worked at highest radiated power.
- 9.5.5.The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.6.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.7.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

9.5.8.RBW=1MHz, VBW=1MHz

9.5.9. The band edges was measured and recorded.

9.6.Test Result

Pass

Channel	Frequency	Delta peak to band emission	Limit(dBc)
0	2.4GHz	33.74	20
39	2.4835GHz	35.41	20

Spectrum	*									
Ref Level				• RBW 100 kHz						
Att	40 (dB SWT 1	l32.6 µs 🧉	• VBW 300 kHz	: Mode	Auto F	FT			
SGL										
●1Pk Max										
					M	1[1]				3.44 dBm
20 dBm				2.40199480 G						
				M2[1] -37.18 dB						
10 dBm					M1				2.40	000000 GHz
					X					
0 dBm					1					
-10 dBm					11					
-20 dBm	01 -16.56	60 dBm								
20 0011					11.					
-30 d					<u> </u>					
L. T.			MЗ	M2	A.			and the second second	her ma	week the warment
V40 aBm	manine from the states	and the second	AND A REAL PROPERTY AND	washe warned	n y my	n the second second	-	- HAVANA (KHAVA	INNA INTEN	A REAL PROPERTY OF A REAL PROPER
-50 dBm										
co do-										
-60 dBm										
CF 2.4 GHz				8001 p	ts				Spa	n 60.0 MHz
Marker										
Type Ref	Trc	X-value		Y-value	Func	tion		Fun	ction Resu	t _
M1	1	2.40199	48 GHz	3.44 dBm						
M2	1		.4 GHz	-37.18 dBm						
M3	1		39 GHz	-38.78 dBm						
M4	1	2.37354	75 GHz	-35.13 dBm						
					R	eadv			1.00	

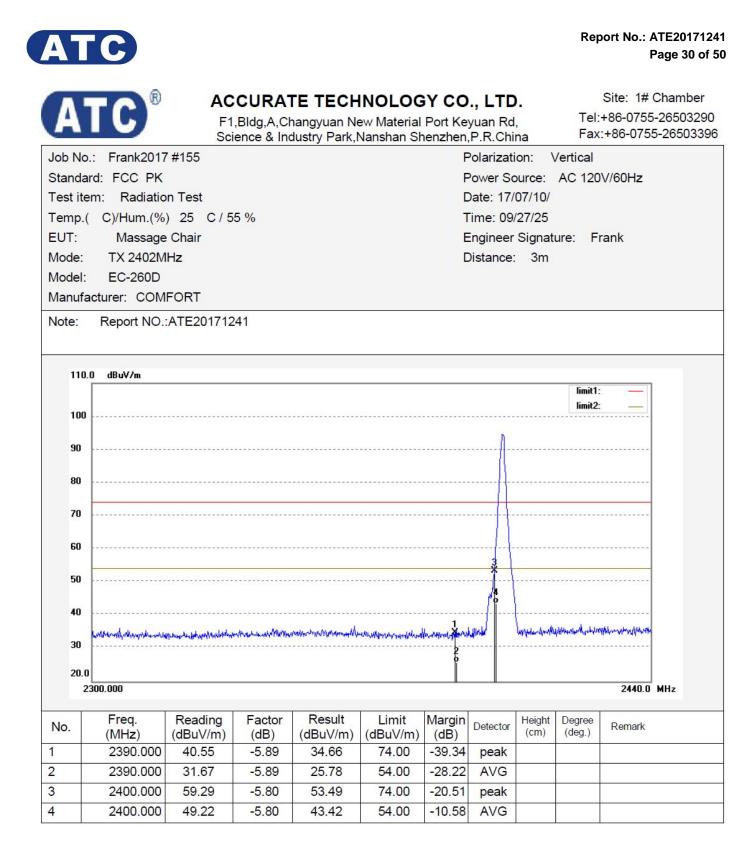
channel 39

Spectrum	*					
Ref Level Att			6 e RBW 100 kHz 5 e VBW 300 kHz	Mada Autor		
SGL	4	Jub awi 132.0 ps	5 🖶 ¥ D ¥¥ 300 KH2	MOUE AULO P		
1Pk Max						
-				M1[1]		3.46 dBn
20 dBm						2.47999790 GH
20 aBm				M2[1]		-38.87 dBn
10 dBm						2.48350000 GH
10 dbiii			M1			
0 dBm			A			
-10 dBm —						
	D1 -16.	540 dBm				
-20 dBm						
-30 dBm			. N			
			/ M2	M4	M3	
4 WBTO-M	1. May les	when monthly a provident and a second	propheric Manufacture	hundre was white	where the start was the	animana mananan takan ta
-50 dBm —						
-60 dBm						
CF 2.4835	GHz		8001 pt	s		Span 60.0 MHz
/larker			· · · · ·			
Type Ref	Trc	X-value	Y-value	Function	Euni	ction Result
M1	1	2.4799979 GHz	3.46 dBm			
		2.4835 GHz	-38.87 dBm			
M2	1	211000 0112				
	1	2.5 GHz	-38.69 dBm			
M2	-		-38.69 dBm -35.32 dBm			

Radiated Band Edge Result

Date of Test:	June 27, 2016	Temperature:	25°C
EUT:	Massage Chair	Humidity:	50%
Model No.:	EC-260D	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2402MHz) GFSK	Test Engineer:	Ding

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2390.000	31.67	40.55	-5.89	25.78	34.66	54.00	74.00	-28.22	-39.34	Vertical
2400.000	49.22	59.29	-5.80	43.42	53.49	54.00	74.00	-10.58	-20.51	Vertical
2390.000	32.48	41.22	-5.89	26.59	35.33	54.00	74.00	-27.41	-38.67	Horizontal
2400.000	49.63	58.79	-5.80	43.83	52.99	54.00	74.00	-10.17	-21.01	Horizontal


Date of Test:	June 27, 2016	Temperature:	25°C
EUT:	Massage Chair	Humidity:	50%
Model No.:	EC-260D	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2480MHz) GFSK	Test Engineer:	Ding

Frequency	Reading(dBµV/m)		Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	34.69	43.78	-5.51	29.18	38.27	54.00	74.00	-24.82	-35.73	Vertical
2500.000	31.42	40.88	-5.50	25.92	35.38	54.00	74.00	-28.08	-38.62	Vertical
2483.500	32.46	41.72	-5.51	26.95	36.21	54.00	74.00	-27.05	-37.79	Horizontal
2500.000	29.82	38.94	-5.50	24.32	33.44	54.00	74.00	-29.68	-40.56	Horizontal

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

Report No.: ATE20171241 Page 31 of 50

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

				and a grant						0 1000000000000000000000000000000000000	selle super-segmentations
Job N	o.: Frank2017	#156				F	Polarizati	ion: H	orizonta	al	
Stand	ard: FCC PK					F	Power So	ource:	AC 120	V/60Hz	
Test if	tem: Radiatio	n Test				0	Date: 17/	07/10/			
Temp	.(C)/Hum.(%) 25 C/5	5 %			Т	Time: 09	/36/21			
EUT:	Massage	Chair				E	Engineer	Signati	ure: Fr	rank	
Mode	TX 2402M	Hz				0	Distance	3m			
Model	: EC-260D										
Manut	facturer: COM	FORT									
Note:	Report NO.	ATE201712	241								
	,										
11	0.0 dBu∀/m										
									limit1:	-	
10	0								limit2:		
							A				
90											
80											
70											
60							{}-				
50											
50							4				
40											
	Montestantestation	halen Anne bour of the	N. m. K. water water and	adaman and	with mount der miss	how white he	mont	Lutin any wat	mundanta	www.wayerstellum	
30						2					
20	.0					0					
	2300.000									2440.0	MHz
No.	Freq.	Reading	Factor	Result		Margin	Detector	Height	Degree	Remark	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	50 100 D0 80 Yest	(cm)	(deg.)		
1	2390.000	41.22	-5.89	35.33	74.00	-38.67					
2	2390.000	32.48	-5.89	26.59	54.00	-27.41	AVG				
3	2400.000	58.79	-5.80	52.99	74.00	-21.01	peak				
4	2400.000	49.63	-5.80	43.83	54.00	-10.17	AVG				

Report No.: ATE20171241 Page 32 of 50

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job N	p.: Frank2017 #157					F	Polarization: Horizontal				
Stand	ndard: FCC PK					F	Power Source: AC 120V/60Hz				
Test it	est item: Radiation Test Date: 17/07/10/						/				
Temp	emp.(C)/Hum.(%) 25 C / 55 % Time: 09/45/36										
EUT:	UT: Massage Chair Engineer Signatu						ature: Fi	rank			
Mode:											
Model: EC-260D											
Manufacturer: COMFORT											
Note: Report NO.:ATE20171241											
11	0.0 dBu∀/m										
								limit1:			
10	D							limit2:			
		1									
90											
80											
00											
70											
60			-								
50											
40											
40	12 NO.		X			a da a		northehead	. With water to		
30	liver descent and a standard the standard the	water ward the second as	-S	n and an intervention of the second	antes references	Participant and	ence the product of t	1.96 (Arrel - 1.1.)	and the second se		
20			a	4							
20	2440.000								2600.0 MHz		
	E	D II	F .	Dearth	1						
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Heigh (cm)	t Degree (deg.)	Remark		
1	2483.500	41.72	- <mark>5.5</mark> 1	36.21	74.00	-37.79	peak				
2	2483.500	32.46	- <mark>5.5</mark> 1	26.95	54.00	-27.05	AVG				
3	2500.000	38.94	-5.50	33.44	74.00	-40.56	peak				
4	2500.000	29.82	-5.50	24.32	54.00	-29.68	AVG				

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

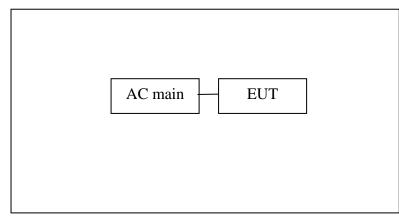
Job No.: Frank2017 #158 Polarization: Vertical											
Standard: FCC PK Power Source: AC 120V/60Hz											
Test item: Radiation Test Date: 17/07/10/											
Temp.(C)/Hum.(%) 25 C / 55 % Time: 09/54/43											
EUT: Massage Chair Engineer Signature: Frank							rank				
Mode: TX 2480MHz Distance: 3m											
Model: EC-260D											
Manufacturer: COMFORT											
Note: Report NO.:ATE20171241											
110.0 dBuV/m											
									limit1:		
10	0								limit2:		
			N								
90											
80											
00											
70											
		(
60											
50											
50											
40											
	mounderstand	Mishinghoungal	Howard Hillow	the generative and the states	hundreymonicality	unadout	have been a start	the stand present	in an Alexandre	menthespitesturiest	
30	30										
20	20.0										
	2440.000									2600.0	MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2483.500	43.78	-5.51	38.27	74.00	-35.73	peak				
2	2483.500	34.69	-5.51	29.18	54.00	-24.82	AVG				
3	2500.000	40.88	-5.50	35.38	74.00	-38.62	peak				
4	2500.000	31.42	-5.50	25.92	54.00	-28.08	AVG				
	ı I				1						

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

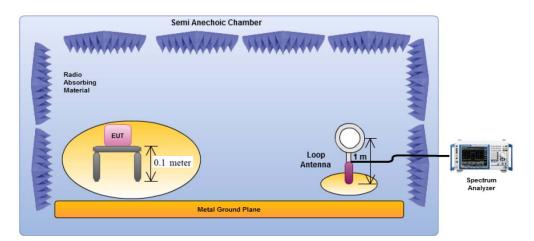
Result = Reading + Corrected Factor


3. Display the measurement of peak values.

10.RADIATED SPURIOUS EMISSION TEST

10.1.Block Diagram of Test Setup

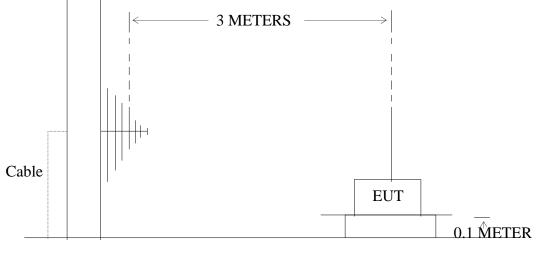
10.1.1.Block diagram of connection between the EUT and peripherals



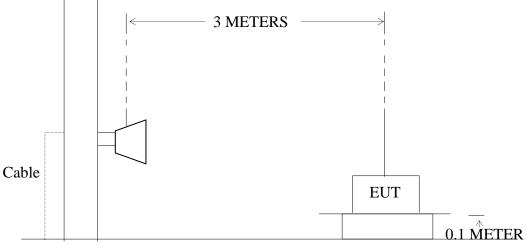
Setup: Transmitting mode

(EUT: Massage Chair)

10.1.2.Semi-Anechoic Chamber Test Setup Diagram


Below 30MHz

30MHz-1GHz


ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the

transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

permitted in any of the frequency bands listed below.									
MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
$^{1}0.495-0.505$	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
6.31175-6.31225	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
12.57675-12.57725	322-335.4	3600-4400	(²)						
13.36-13.41									

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

²Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4.Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission

characteristics in normal application.

10.5.Operating Condition of EUT

10.5.1.Setup the EUT and simulator as shown as Section 10.1.

- 10.5.2.Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

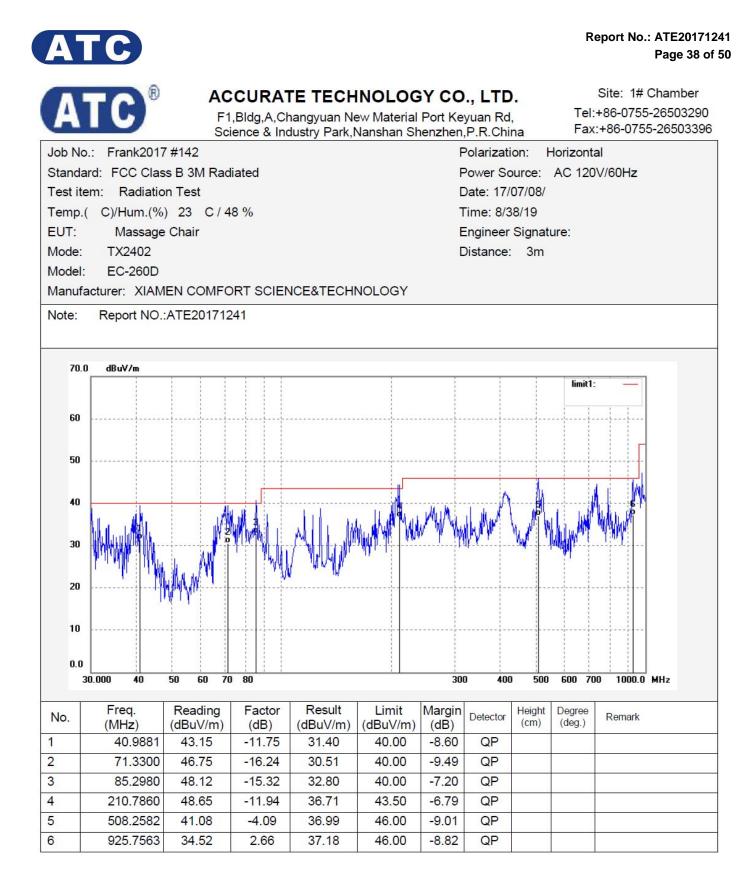
The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

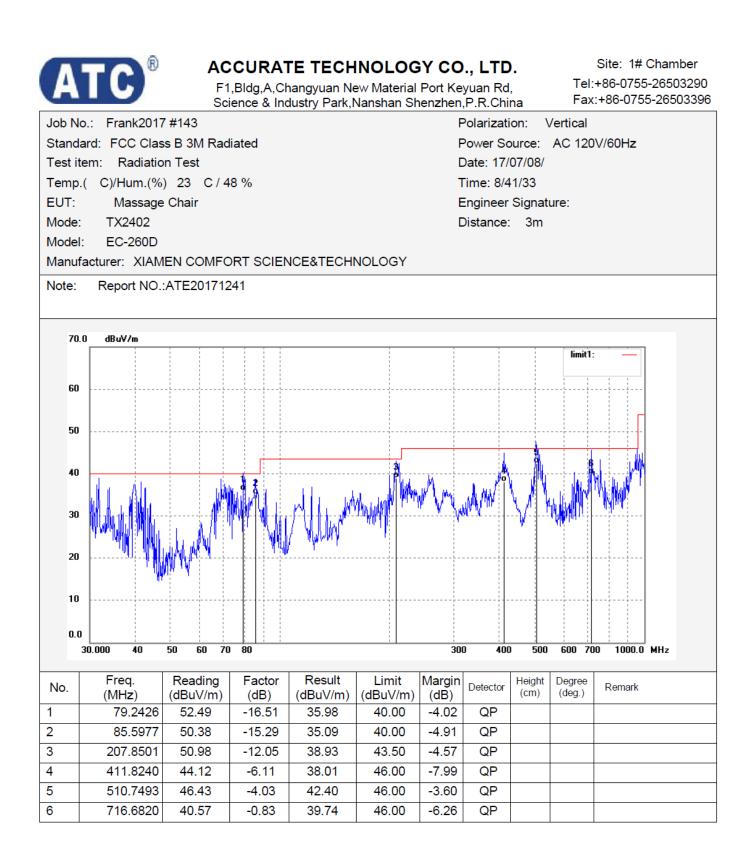
The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

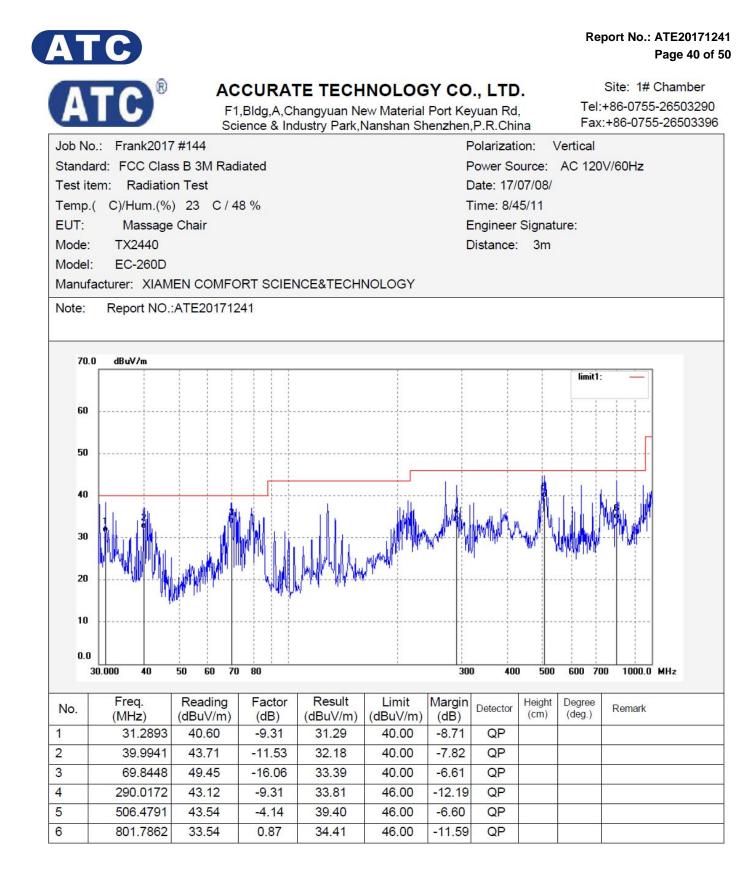
The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

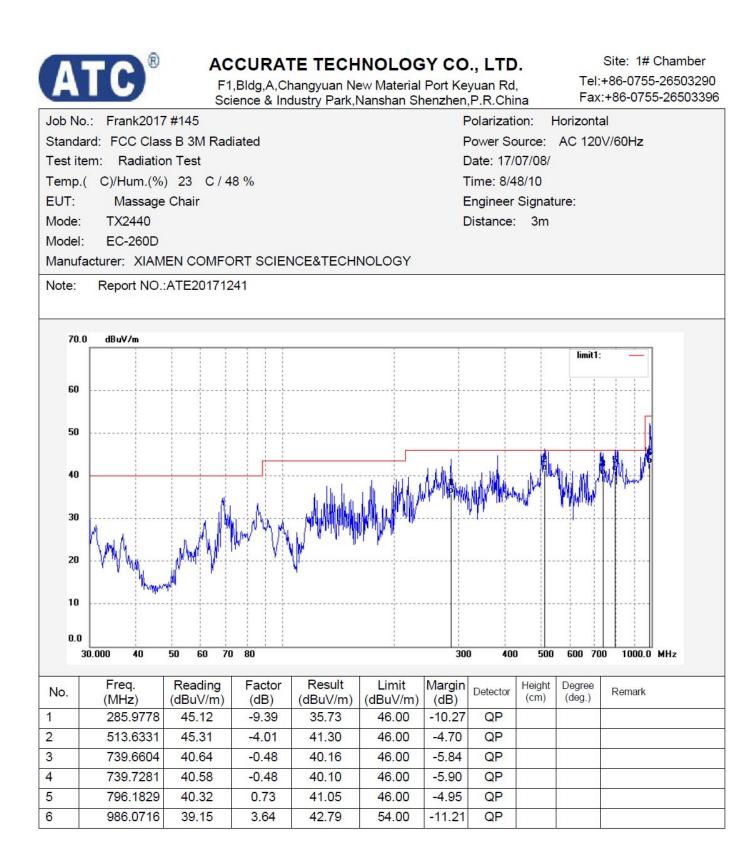

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

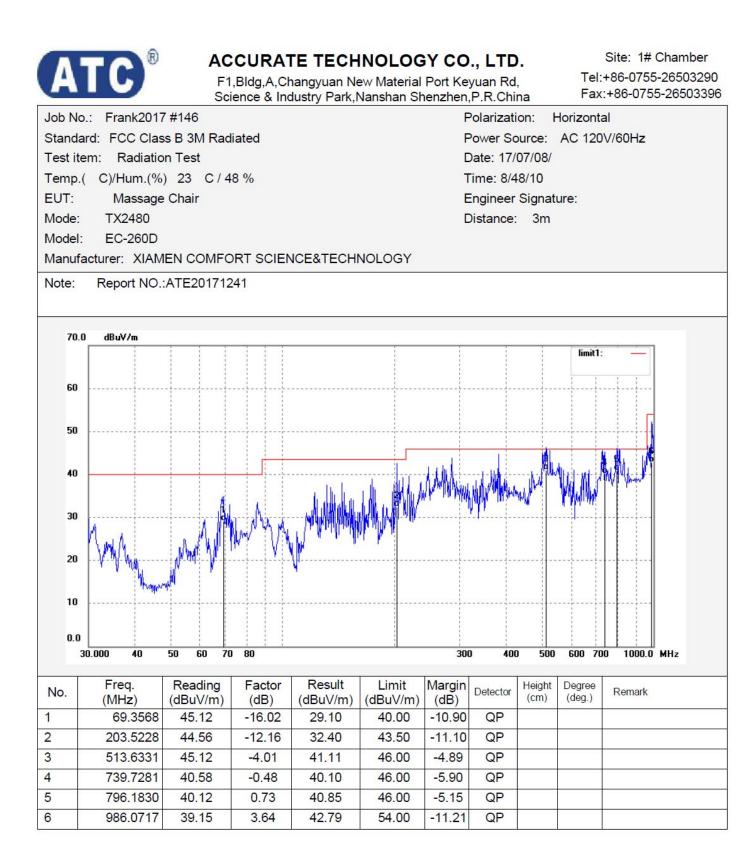
10.7.The Field Strength of Radiation Emission Measurement Results PASS.

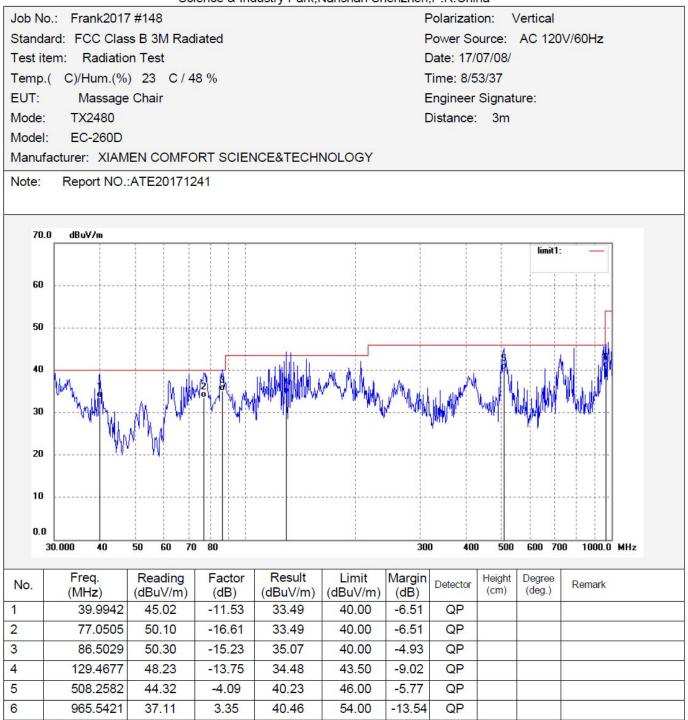

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

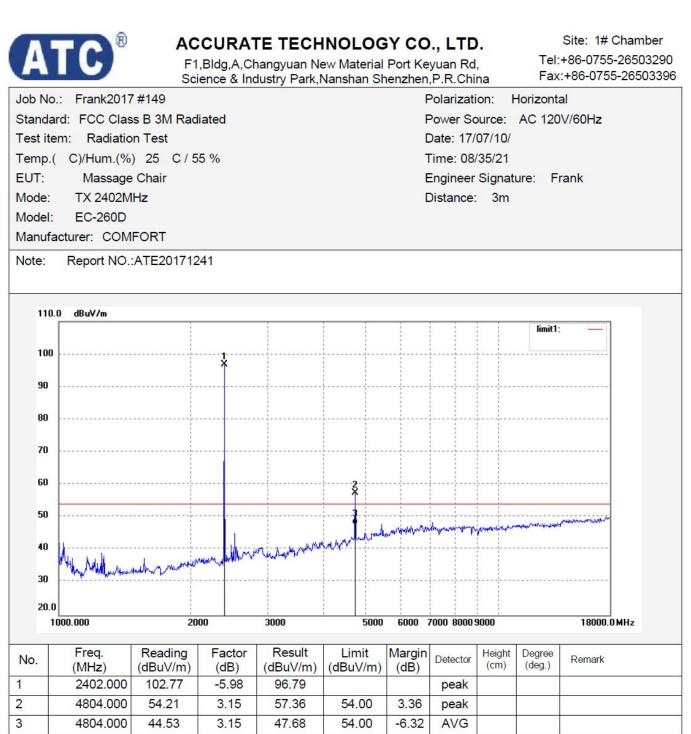

2. *: Denotes restricted band of operation.

3. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.

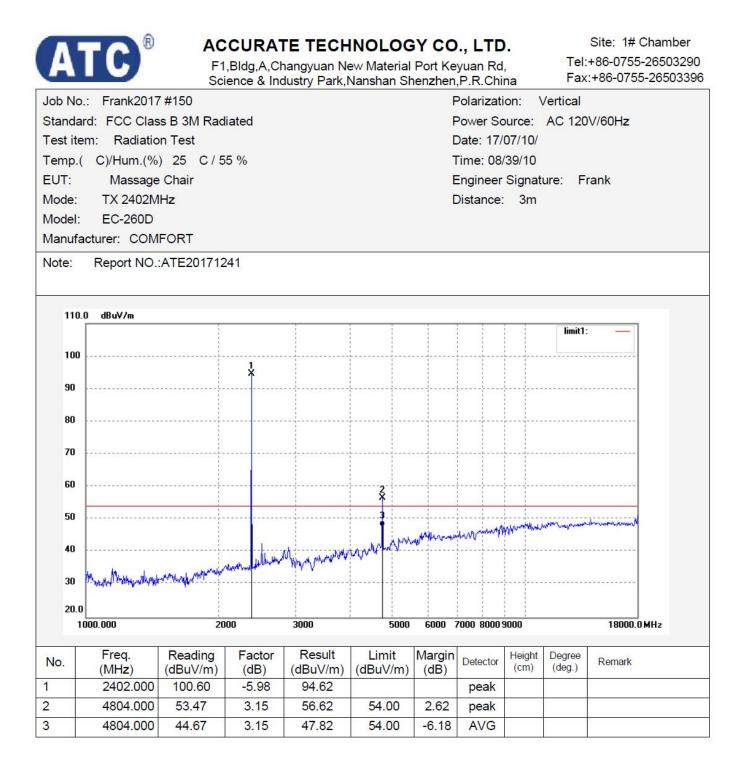


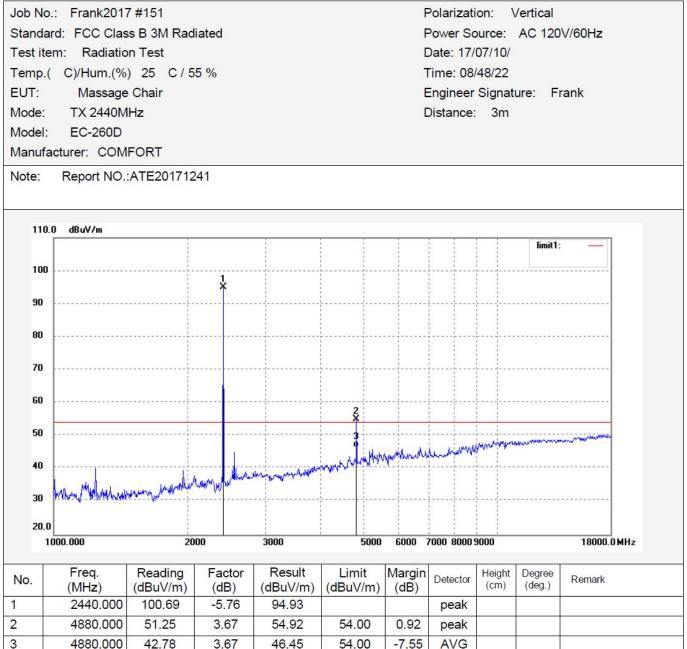




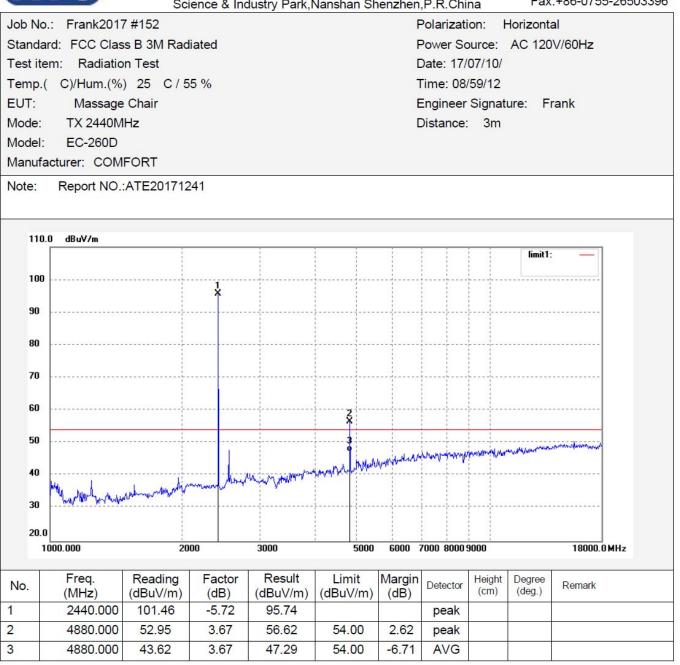

ATC®

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Report No.: ATE20171241 Page 48 of 50

ACCURATE TECHNOLOGY CO., LTD.

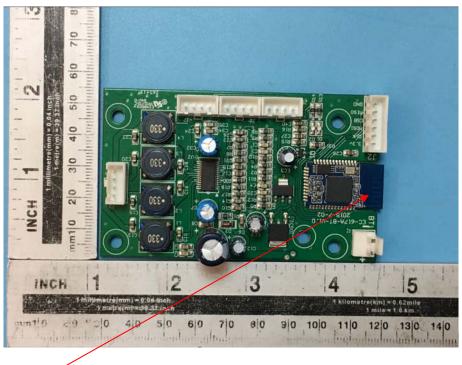
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		Sc	ience & Ind	dustry Park,I	Nanshan Sh	lenzhen	,P.R.Chi	na	⊦ax	:+86-0755-265033		
b No.	.: Frank201	7 #153				F	Polarizati	on: H	lorizonta	al		
anda	rd: FCC Clas	s B 3M Rad	liated			F	Power Sc	ource:	AC 120	V/60Hz		
st ite	m: Radiatio	on Test				۵	Date: 17/	07/10/				
Гетр.(С)/Hum.(%) 25 С / 55 %							Time: 09/10/54					
EUT: Massage Chair							Engineer Signature: Frank					
ode:	TX 2480M	lHz				0	Distance:	3m				
del:	EC-260D											
anufa	cturer: COM	FORT										
te:	Report NO.	:ATE201712	241									
110.	0 dBu∀/m						; ;		limit1:			
100												
100			×									
90												
80												
70												
60					z							
50					1							
50	WWW		1	1	i i	ntas a da	L. MARNER	Wymmu	e malantinetterne	adorg a segurar and		
40			· · · · · · · · · · · · · · · · · · ·	IN THE MANAGEM	Hard William	AND HANNING YOUNG	W. W. IN	[
	A To de antifició acon de alta	nether when the	Apped 1 may and all the	MAN V								
30	A Managara ang ang ang ang ang ang ang ang ang an											
20.0												
1	000.000	20	00	3000	5000	6000 7	7000 8000 9	3000		18000.0 MHz		
	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Demerk		
D .	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark		
	2480.000	102.80	-5.55	97.25			peak					
	4960.000	51.94	4.54	56.48	54.00	2.48	peak					
	4960.000	42.36	4.54	46.90	54.00	-7.10	AVG	1				

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

			ence & Inc	dustry Park,	Vanshan Sh	enzhen	,P.R.Chi	na	гах	:+86-0755-2650338			
Job No	o.: Frank2017	#154				F	Polarizati	ion: \	/ertical				
Standard: FCC Class B 3M Radiated								Power Source: AC 120V/60Hz					
Test item: Radiation Test								Date: 17/07/10/					
Temp.(C)/Hum.(%) 25 C / 55 % EUT: Massage Chair							lime: 09/	/21/02					
							Engineer Signature: Frank						
Mode: TX 2480MHz								Distance: 3m					
Model	: EC-260D												
Manuf	acturer: COM	FORT											
Note:		ATE201712	241										
110	D.O dBuV/m								limit1:	_			
100		2 8 8											
100		1	1 X										
90													
80													
70													
										2003476794639657428036			
60													
50					Ś.								
50					2		Later Marine Marine	markens	romaniphites	Manual Manua			
40 30	man nutur	windsmither	www.uller	ann mar an	mound	destrol formation of							
20.	.0												
	1000.000	20	00	3000	5000	6000 7	7000 8000	9000		18000.0 MHz			
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark			
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Delector	(cm)	(deg.)	IVEILIGIN			
	2480.000	101.30	-5.55	95.75			peak						
2	4960.000	49.99	4.54	54.53	54.00	0.53	peak						
3	4960.000	40.94	4.54	45.48	54.00	-8.52	AVG						


11.ANTENNA REQUIREMENT

11.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

Device is equipped with external Antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 2.0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna