

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248

www.lsr.com

TEST REPORT # 310192 LSR Job #: C-942

Compliance Testing of:

Dispenser Communication Module

Test Date(s):

June 29th - July 14th, August 13th, 18th, and 19th 2010.

Prepared For:

Ecolab 655 Lone Oak Drive F6 Eagan, MN 55121

In accordance with:

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.249 and 15.209
Industry Canada (IC) RSS 210 Annex 2
Transmitters Operating in the
Frequency Band 902 MHz – 928 MHz and 9 kHz to 490 kHz

This Test Report is issued under the Authority of:

Signature: Thomas Date: 08.27.10

Test Report Reviewed by:

Thomas T. Smith, Manager EMC Test Services

Signature: Thomas TSaudt Date: 08.27.10

Tested by:

Khairul Aidi Zainal, Senior EMC Engineer

Signature: Date: 08.27.10

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

EXH	IBIT 1: INTRODUCTION	
1.1	Scope	4
1.2	Normative References	4
1.3	LS Research, LLC Test Facility	5
1.4	Location of Testing	5
1.5	Test Equipment Utilized	5
EXH	IBIT 2: PERFORMANCE ASSESSMENT	
2.1	Client Information	6
2.2	Equipment Under Test (EUT) Information	6
2.3	Associated Antenna Description	6
2.4	EUT's Technical Specifications	7
2.5	Product Description	8
EXH	IBIT 3: EUT OPERATING CONDITIONS & CONFIGURATIONS DURING	
3.1	Climate Test Conditions	9
3.2	Applicability & Summary of EMC Emission Test Results	9
3.3	Modifications Incorporated in the EUT for Compliance Purposes	9
3.4	Deviations & Exclusions from Test Specifications	9
0.4	Deviations & Exclusions from Test openineations	J
FXH	IBIT 4: DECLARATION OF CONFORMITY	10
	BIT I. BESEAUTHOR OF SOME STAMP	10
EXH	IBIT 5: RADIATED EMISSIONS TESTING	
5.1	Test Setup	11
5.2	Test Procedure	11
5.3	Test Equipment Utilized	12
5.4	Test Results	12
5.5	Calculation of Radiated Emissions Limits	14
5.6	Radiated Emissions Test Data Chart	16
5.7	Test Setup Photo(s) – Radiated Emissions Test	20
5.8	Screen Captures – Radiated Emissions Test	21
EXH	IBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE	28
	,	
-		•

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 2 of 41

TABLE OF CONTENTS (Page 2 of 2)

EXHIBIT 7: OCCUPIED BANDWIDTH		
7.1 Limits	29	
7.2 Method of Measurements	29	
7.3 Test Data	29	
7.4 Screen Captures – Occupied Bandwidth	30	
EXHIBIT 8: BAND-EDGE MEASUREMENTS		
8.1 Method of Measurements	32	
EXHIBIT 9: FREQUENCY & POWER STABILITY OVER VOLTAGE	34	
VARIATIONS		
APPENDICES		
APPENDIX A: TEST EQUIPMENT LIST 35		
APPENDIX B: TEST STANDARDS – RADIO	37	
APPENDIX C: UNCERTAINTY STATEMENT	38	
APPENDIX D: ANTENNA SPECIFICATIONS	39	

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 3 of 41

EXHIBIT 1. INTRODUCTION

1.1 <u>SCOPE</u>

References:	FCC Part 15, Subpart C, Section 15.249 and 15.209 FCC Part 2, Section 2.1043 paragraph (b)1. RSS GEN and RSS 210 Annex 2	
Title:	FCC: Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC: Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment	
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.	
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	Commercial, Industrial or Business Residential	

1.2 NORMATIVE REFERENCES

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 4 of 41

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lsr.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 **LOCATION OF TESTING**

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 <u>TEST EQUIPMENT UTILIZED</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 5 of 41

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 **CLIENT INFORMATION**

Manufacturer Name:	Ecolab
Address:	655 Lone Oak Drive F6, Eagan MN 55121
Contact Name:	Cheryl Littau

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	Dispenser Communication Module
Model Number:	DCM1PT
Serial Number:	10240154

2.3 ASSOCIATED ANTENNA DESCRIPTION

The antennas used in this device are a Johanson 900 MHz ceramic chip antenna (P/N 0915AT43A0026) and a KGEA-WT low frequency antenna.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 6 of 41

2.4 <u>EUT'S TECHNICAL SPECIFICATIONS</u>

Additional Information:

EUT Frequency Range (in MHz)	906.4 MHz to 921.6 MHz
	0.1348 MHz
RF Power in Watts	
Minimum:	0.000627 Watts
Maximum:	0.000656 Watts
Field Strength at 3 meters	900 MHz Transceiver : 93.4 dBμV/m .
	134.8 kHz Transmitter: 93.2 dBµV/m.
Occupied Bandwidth	900 MHz Transceiver : 126.6 kHz
	134.8 kHz Transmitter: 134.0 kHz
Type of Modulation	GFSK for 900MHz radio.
	Burst Width Modulation for LF radio.
Emission Designator	127KF1D (900MHz radio)
	34KG1D (134.8 kHz radio)
EIRP (in mW)	900 MHz Transceiver : 0.656 mW
	134.8 kHz Transmitter: N/A
Transmitter Spurious (worst case) at 3	51.46 dBµV/m (5529.6 MHz)
meters	
Stepped (Y/N)	No
Step Value:	N/A
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Microprocessor Model # (if applicable)	CC430F5137
Antenna Information	
Detachable/non-detachable	Non-detachable
Туре	Ceramic chip antenna
	LF coil antenna
Gain (in dBi)	Ceramic chip = -1.0 dBi (Data Sheet)
	LF Coil = Not available.
EUT will be operated under FCC Rule	15.249 and 15.209
Part(s)	
EUT will be operated under RSS Rule	RSS 210 Annex 2
Part(s)	
Modular Filing	☐ Yes ⊠ No
Portable or Mobile?	Portable

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 7 of 41

2.5 **PRODUCT DESCRIPTION**

The Ecolab Dispenser Communication Module is permanently mounted next to, and connected to, dispensers in patient care areas of hospitals to allow the transmission of information regarding dispenser use to the hand Hygiene Badge of employees using the dispenser. This transmission of information is achieved by utilizing a 900 MHz transceiver and a 134.8 kHz transmitter. These two radios will never transmit at the same time.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 8 of 41

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	71° F
Humidity:	42 %
Pressure:	751 mmHg

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)
FCC: 15.207 IC: RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	N/A
IC: RSS GEN section 4.6.1	20 dB Bandwidth	YES
FCC: 15.249(A), 15.209 & 1.1310 IC: RSS 210 A2.9 (a) & A2.1	Maximum Output Power	YES
FCC: 1.1307, 1.1310, 2.1091 & 2.1093 IC: RSS 102	RF Exposure Limit	YES
FCC: 15.249(a) & 15.209 IC: RSS 210 A2.9(a) & A2.1	Transmitter harmonics	YES
FCC: 15.249(d), 15.209 & 15.205 IC: RSS 210 A2.9(b) & A2.1	Transmitter Radiated Emissions	YES

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC). The Receiver Test Report is available upon request.

3.3	<u>MODIFICATIO</u>	NS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES
	■ None	⊠ Yes (explain below)

The power level of the transmitter was set to setting 8B. In addition five (5) 1.8 pF capacitors were added to pins 27, 31, 35, 36 and 37 of the CC430F5137 microcontroller.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 9 of 41

EXHIBIT 4.DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.249 & 15.209 and Industry Canada RSS-210, Annex 2.1 & Annex 2.9.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
·	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 10 of 41

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuously transmitting modulated mode using power as provided by a battery. The unit has the capability to operate on 3 channels, controllable using shorting pins.

The applicable limits apply at a 3 meter distance. Measurements above 3 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of four (3) standard channels: **906.4 MHz, 913.8 MHz and 921.6 MHz** to comply with FCC Part 15.35.

5.2 Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 9 kHz to 10000 MHz was scanned and investigated. In cases where emissions below 30MHz were found, measurements of those emissions were repeated on the OATS at a 10m measurement distance. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height.

The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT.

For emissions below 30 MHz, an active loop antenna was used. The loop antenna was set at a height of 1m above the conducting ground plane and it was rotated about its vertical and horizontal axes (while utilizing the turntable to rotate the EUT) in order to measure the maximum radiated RF emissions.

A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz.

In the frequency range of 30 MHz to 3 GHz, the maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height while for the range of 3 GHz to 10 GHz the antenna was raised and lowered between 1 and 1.8 meters in height. In addition, the polarity of the antenna was switched between horizontal and vertical polarity.

The EUT was positioned in three orthogonal positions for the test.

Battery Voltage was periodically checked to ensure sufficient supply.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 11 of 41

5.3 Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement ($dB\mu V/m$) + Antenna correction Factor +Cable factor (dB) + Miscelaneous factors when applicable (dB) – amplification factor when applicable (dB).

The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 <u>Test Results</u>

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part **15.249 & 15.209** and Canada **RSS-210**, **Annex 2.9 & Annex 2.1**. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 12 of 41

5.5 SAMPLE CALCULATION OF RADIATED EMISSIONS LIMITS AND REPORTED DATA

Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement ($dB\mu V/m$) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) – amplification factor when applicable (dB).

Field Strength of Fundamental Frequencies:

The fundamental emissions for an intentional radiator in the 902-928 MHz band, operating under FCC part 15.249 and RSS 210 A2.9 limits, must have electric field strength of no greater than 50 mV/m, for the fundamental frequency, when measured at 3 meters, and harmonic field strength of no greater than 500 μ V/m, when measured at 3 meters. Spurious emissions outside the 902-928 MHz band shall be attenuated by at least 50 dB below the level of the fundamental, or meet the limits expressed in FCC part 15.209 under general emission limits.

Field Strength of Fundamental Frequencies is Limited to 50,000 μ V/m, or 94 dB μ V/m. Field Strength of Harmonic and Spurious Frequencies is Limited by FCC 15.249 a and d The harmonic limit of –50 dBc with respect to the fundamental limit would be:

 $94 \text{ dB}\mu\text{V/m} - 50 \text{ dB} = 44 \text{ dB}\mu\text{V/m},$

with the exception of where FCC 15.209 allows for a higher limit to be used.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
902-928	50,000	94.0
30-88 ; 88-216	159	44.0
216-902 ; 928-960	500	46.0*
960-40,000	500	54.0*

The following table depicts the general radiated emission limits obtained from Title 47 CFR, part 15.209a, for radiated emissions measurements, including restricted band limits as expressed in 47 CFR, part 15.205.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-40,000	500	54.0

Sample conversion from field strength µV/m to dBµV/m:

 $dB\mu V/m = 20 \log_{10} (3m limit)$

 $30 - 88 \text{ MHz example:} \qquad dB\mu V/m = 20 \log_{10} (100)$

 $40.0 \text{ dB}\mu\text{V/m} = 20 \log_{10} (100)$

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 13 of 41

902-928 MHz example: =20 log_{10} (50000/1) =93.98 $dB\mu V/m$

For measurements made at 1 meter, a 9.5 dB correction may be been invoked.

960 MHz to 40,000 MHz 500 μV/m or 54.0 dBμV/m at 3 meters 54.0 + 9.5 = 63.5 dBμV/m at 1 meter

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dB μ V/m).

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 14 of 41

5.6

RADIATED EMISSIONS TEST DATA CHART
Measurements of Electromagnetic Radiated Emissions
Frequency Range Inspected: 10 kHz to 10000 MHz

Manufacturer:	Ecola	bs						
Date(s) of Test:	June	29 th to July 14 th , August	: 13 th a	and 18	3 th 2010.			
Project Engineer:	Khair	Chairul Aidi Zainal						
Test Engineer(s):	Khair	ul Aidi Zainal						
Voltage:	3.0 V	DC						
Operation Mode:	Conti	Continuous transmit and modulated.						
Environmental	Temp	Temperature: 71°F						
Conditions in the Lab:	Relat	ive Humidity: 42 %						
EUT Power:		Single Phase 120 VAC		3 PhaseVAC				
EUT FOWEI.	Χ	Battery			Other:	Other:		
EUT Placement:	X	80cm non-conductive	table		10cm Space	cers		
EUT Test Location:	X	3 Meter Semi-Anechoi	С	Х	3/10m OA	rs.		
LOT TOST LOCATION.		FCC Listed Chamber		3/10III 3/13				
Measurements:		Pre-Compliance		Prelir	minary	Χ	Final	
Detectors Used:	X	Peak	Χ	Quas	si-Peak	Χ	Average	

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 15 of 41

The following table depicts the level of radiated fundamental:

A. 900 MHz Radio

FREQ	ANT	EUT	HEIGHT	AZIMUTH	PEAK	Q.PEAK	AVERAGE	LIMIT	MARGIN
(MHz)			(m)	(°)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dB)
921.59	Н	F	1.59	101	93.7	93.2	91.5	94.0	0.8
913.80	Н	F	1.62	101	94.4	93.4	91.9	94.0	0.6
906.40	Н	F	1.00	96	93.6	93.2	91.4	94.0	0.8

Note:

1. H = Horizontal, V = Vertical, F=Flat.

B. Low Frequency Radio

:	3.0 M MEASUREMENTS OF FUNDAMENTAL								
FREQ	LOOP	EUT	HEIGHT	AZIMUTH	PEAK	Q.PEAK	AVERAGE	LIMIT	MARGIN
(MHz)	ANT		(m)	(°)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dB)
0.135	V	V	1.00	87	93.2	93.2	93.2	105.0	11.8

1	10.0 M MEASUREMENTS OF FUNDAMENTAL								
FREQ	LOOP	EUT	HEIGHT	AZIMUTH	PEAK	Q.PEAK	AVERAGE	LIMIT	MARGIN
(MHz)	ANT		(m)	(°)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dB)
0.135	V	٧	1.00	86	69.9	67.9	66.8	84.1	17.3

Note:

2. H = Horizontal, V = Vertical, F=Flat.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 16 of 41

RADIATED EMISSIONS DATA CHART (continued)

C. Harmonics of 900Mhz radio

The following table depicts the level of harmonic emissions seen on the low channel:

Antenna	Frequency	Peak	Average	Limit	Margin	Height	Azimuth	EUT
Polarization	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	Orientation
Note 3	1812.8	48.8	40.9	54.0	13.1			
Note 3	2719.2	39.2	31.1	54.0	22.9			
Vertical	3625.6	52.3	46.0	63.5	17.5	100.0	71	F
Horizontal	4532.0	49.4	41.3	63.5	22.2	104.3	341	٧
Horizontal	5438.4	62.8	60.6	63.5	2.9	109.4	37	V
Horizontal	6344.8	56.4	53.5	63.5	10.0	106.3	38	V
Horizontal	7251.2	48.9	37.5	63.5	26.0	109.1	309	V
Horizontal	8157.6	50.2	40.6	63.5	22.9	108.6	269	S
Horizontal	9064.0	48.5	37.6	63.5	25.9	108.1	281	S

The following table depicts the level of harmonic emissions seen on middle channel:

Antenna Polarization	Frequency (MHz)	Peak (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Azimuth (°)	EUT Orientation
Note 3	1827.6	48.8	40.9	54.0	13.1	(6/11)	()	Officiation
Note 3	2741.4	38.9	31.1	54.0	22.9			
Horizontal	3655.2	50.8	42.2	63.5	21.3	133.5	143	V
Horizontal	4569.0	49.8	41.8	63.5	21.7	100.0	327	S
Horizontal	5482.8	62.3	60.4	63.5	3.1	105.4	21	V
Horizontal	6396.6	57.0	53.8	63.5	9.7	100.8	35	V
Horizontal	7310.4	47.7	36.2	63.5	27.3	108.6	8	V
Horizontal	8224.2	51.5	42.5	63.5	21.0	110.9	275	S
Horizontal	9138.0	48.6	36.6	63.5	26.9	101.0	7	V

The following table depicts the level of harmonic emissions seen on high channel:

	The following table depicts the level of harmonic chilesions seen of high charmon											
Antenna	Frequency	Peak	Average	Limit	Margin	Height	Azimuth					
Polarization	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)					
Note 3	1843.2	48.7	40.9	54.0	13.1							
Note 3	2764.8	39.1	31.3	54.0	22.7							
Horizontal	3686.4	53.1	45.9	63.5	17.6	127.7	162					
Horizontal	4608.0	51.9	45.6	63.5	17.9	117.2	333					
Vertical	5529.6	62.9	61.0	63.5	2.5	103.0	20					
Horizontal	6451.2	56.9	53.6	63.5	9.9	105.3	36					
Vertical	7372.8	48.3	36.9	63.5	26.6	102.7	38					
Vertical	8294.4	49.7	39.8	63.5	23.7	110.7	190					
Vertical	9216.0	48.8	37.3	63.5	26.2	109.4	23					

Notes:

- 1) A Peak Detector was used in measurements above 1 GHz, for average measurement, the peak detector was used with lower VBW. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.
- Measurements above 3 GHz were made at 1 meter of separation from the EUT. The applicable limit was adjusted to reflect the measurement distance.
- 3) Measurement at receiver system noise floor.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
·	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 17 of 41

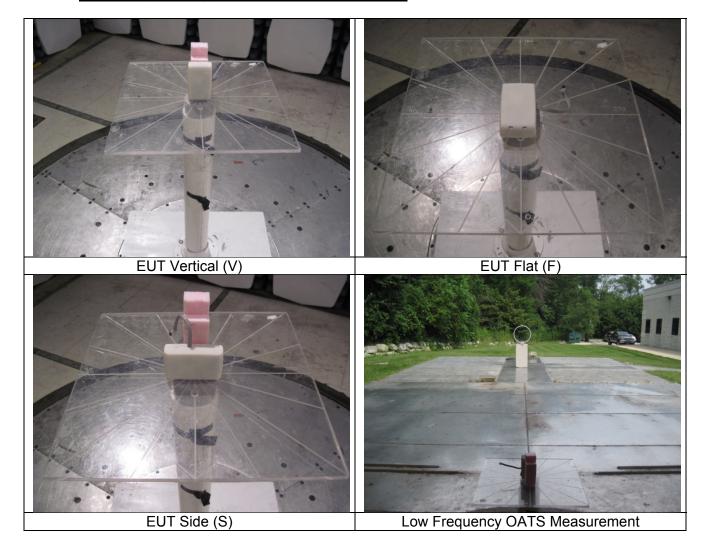
D. Harmonics of the Low Frequency Radio.

	3.0 M ME	ASUREMEI	NTS OF HA	RMONICS					
FREQ	LOOP	EUT	HEIGHT	AZIMUTH	PEAK	Q.PEAK	AVERAGE	LIMIT	MARGIN
(MHz)	ANT		(m)	(°)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dB)
0.270			Note 3		54.0	49.7	42.9		
0.404	V	٧	1.00	279	53.0	51.6	46.8	95.5	48.7
0.539			Note 3		45.7	42.5	35.6		
0.674	V	٧	1.00	270	47.7	44.9	40.4	71.0	26.1
0.809			Note 3		31.6	28.6	24.3		
0.944	V	F	1.00	258	46.3	44.1	40.8	68.1	24.0
1.078			Note 3		39.5	35.7	28.9		
1.213	V	F	1.00	103	41.7	39.8	35.9	65.9	26.1
1.348			Note 3		36.7	33.4	26.7		

Notes:

- 1) Harmonics seen at a 3m separation was also measured at 10m separation on the OATS. These harmonics were all buried within the system noise floor.
- 2) H = Horizontal, V = Vertical, F=Flat.
- 3) Measurement at receiver system noise floor.

E. Significant spurious emissions other than harmonics.


FREQ	ANT	EUT	HEIGHT	AZIMUTH	PEAK	Q.PEAK	AVERAGE	LIMIT	MARGIN
(MHz)			(m)	(°)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dBµv/m)	(dB)
789.80	Н	٧	1.00	0	32.5	27.5	20.5	46.0	18.5
754.60	V	V	1.00	0	32.3	26.5	19.9	46.0	19.5
298.33	V	٧	1.00	0	32.5	26.1	19.6	46.0	19.9
182.08	Н	V	1.00	218	22.6	15.8	7.9	43.0	27.2

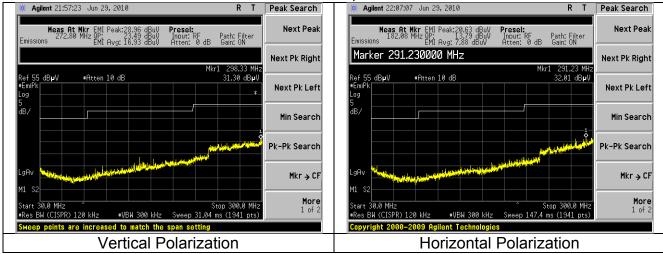
Note:

- 1. H = Horizontal, V = Vertical, F= Flat.
- 2. Data listed above are measurements of the system noise floor.
- 3. There were no spurious emissions detected above the noise floor.

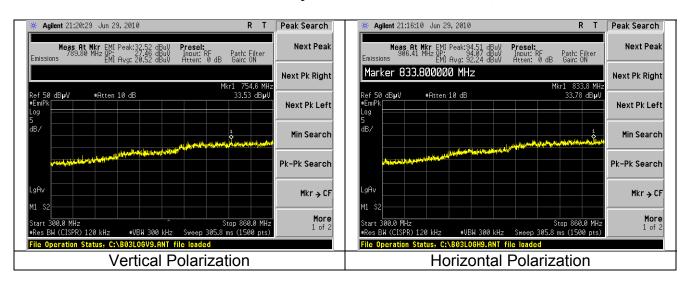
Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 18 of 41

5.7 <u>Test Setup Photo(s) – Radiated Emissions Test</u>

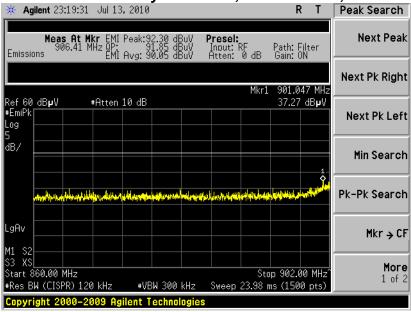
Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 19 of 41

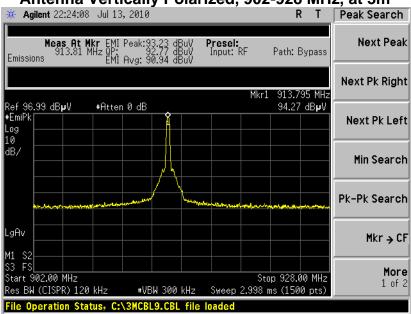

5.8 <u>Screen Captures - Radiated Emissions Test</u>

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a peak detector with video averaging is utilized when measuring frequencies above 1 GHz.

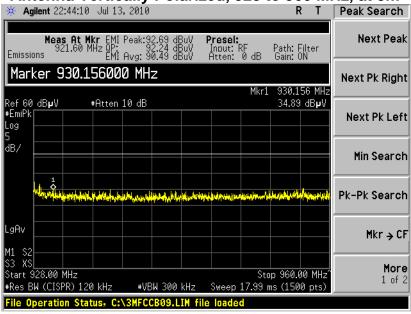

The signature scans shown here are from worst-case emissions, as measured on channels low, middle and high, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

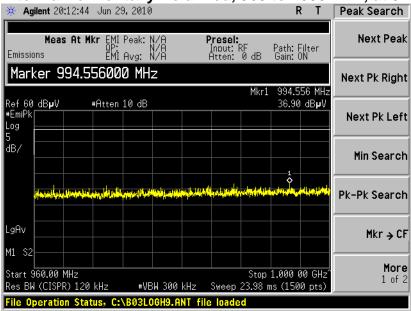
5.8.1 <u>900 MHz Radio</u>


Antenna Horizontally Polarized, 300-860 MHz, at 3m

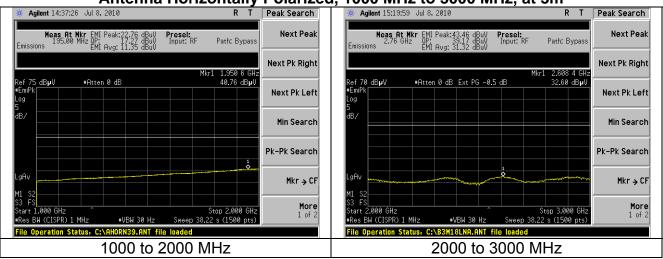

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 20 of 41

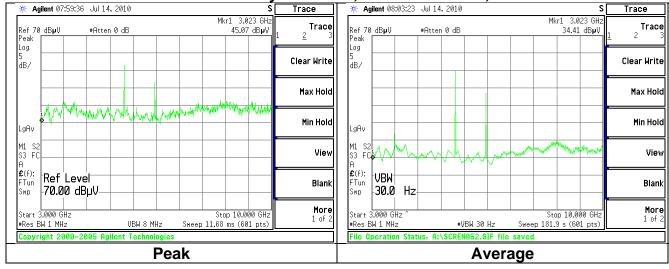
<u>Screen Captures - Radiated Emissions Testing</u> (continued)


Antenna Vertically Polarized, 902-928 MHz, at 3m


Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
•	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 21 of 41

<u>Screen Captures - Radiated Emissions Testing</u> (continued)

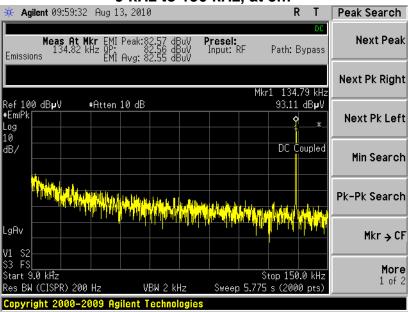

Antenna Horizontally Polarized, 960 to 1000 MHz, at 3m


Prepared For: Ecolab EUT: Dispenser Communication		LS Research, LLC
•	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 22 of 41

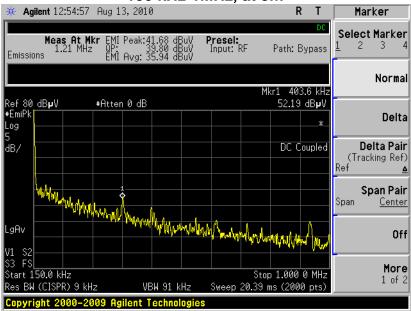
<u>Screen Captures - Radiated Emissions Testing</u> (continued)

Antenna Horizontally Polarized, 1000 MHz to 3000 MHz, at 3m

Antenna Vertically Polarized, 3000-10000 MHz, at 1m

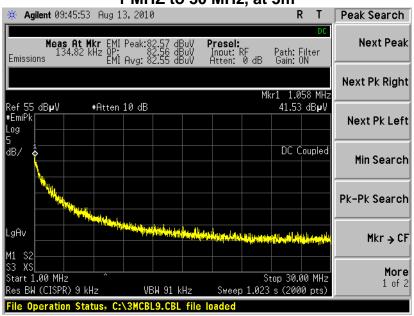

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
•	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 23 of 41

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak or Average detector function is utilized when measuring frequencies below 1 GHz.

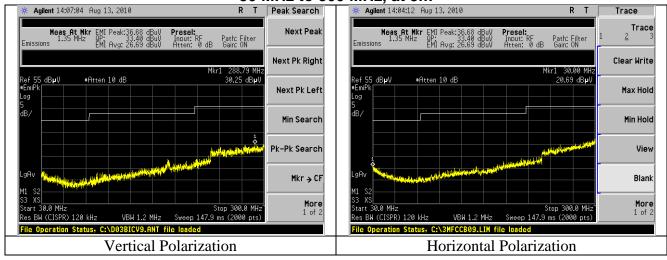

The signature scans shown here are from worst-case emissions with the sense antenna in either vertical or horizontal polarity for worst case presentations.

5.8.2 134.8 kHz LF transmitter

9 kHz to 150 kHz, at 3m

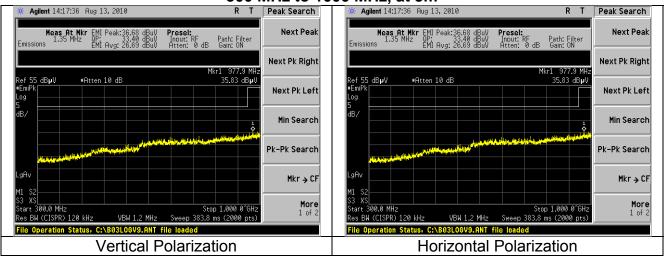


150 kHz-1MHz, at 3m



Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
•	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 24 of 41

1 MHZ to 30 MHz, at 3m



30 MHz to 300 MHz, at 3m

Prepared For: Ecolab EUT: Dispenser Communication		LS Research, LLC
·	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 25 of 41

300 MHz to 1000 MHz, at 3m

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 26 of 41

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE:

This test is not applicable since the EUT is battery powered.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 27 of 41

EXHIBIT 7. OCCUPIED BANDWIDTH:

7.1 Limits

There are no limits specified. The occupied bandwidth need only be reported.

7.2 Method of Measurements

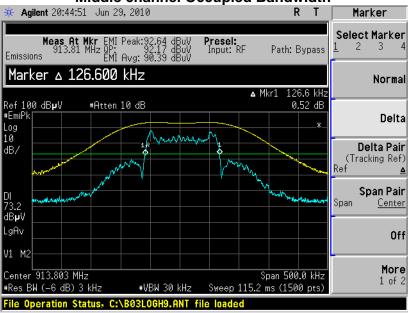
This test was performed radiated in a 3-meter semi-anechoic chamber. The resolution bandwidth was set such that it was greater than the occupied bandwidth. This maximum value for the fundamental was then used as reference for 20dBc.

The resolution bandwidth was then set to a value that was greater than or equal to 1% of the bandwidth. Using the 20dBc, marker, the bandwidth was measured.

7.3 Test Data

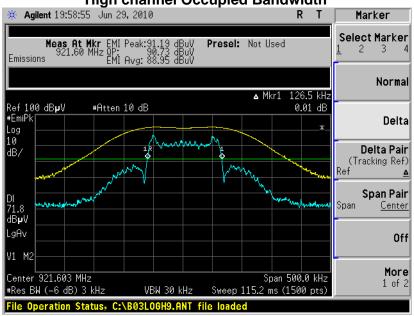
Center	Measured
Frequency	-20 dBc Occ.Bw
(MHz)	(kHz)
906.4	126.1
913.8	126.6
921.6	126.5

Center	Measured
Frequency	-20 dBc Occ.Bw
(MHz)	(kHz)
0.1348	34.0

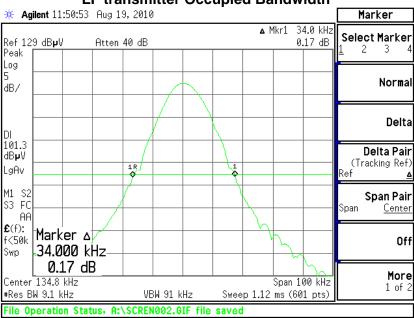

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
·	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 28 of 41

7.4 <u>Screen Captures - OCCUPIED BANDWIDTH</u>

Low channel Occupied Bandwidth



Middle channel Occupied Bandwidth



Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
•	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 29 of 41

High channel Occupied Bandwidth

LF transmitter Occupied Bandwidth

Note: This measurement was not taken in the 3m semi-anechoic chamber.

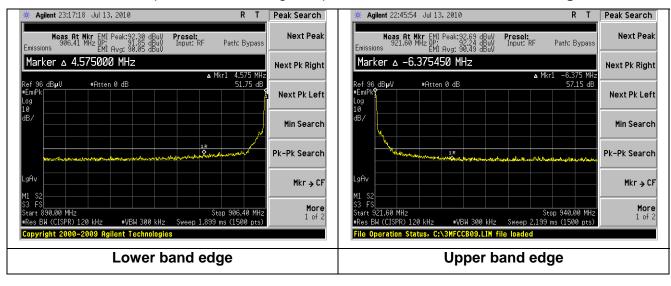
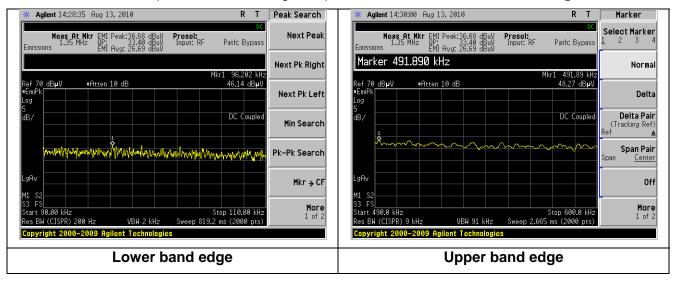

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
•	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 30 of 41

EXHIBIT 8.BAND-EDGE MEASUREMENTS

8.1 Method of Measurements


FCC 15.209(b) and 15.249(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the **902-928 MHz** and the **110-490 kHz** Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

Screen Capture Demonstrating Compliance at the 902-928 MHz Band-Edges

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 31 of 41

Screen Capture Demonstrating Compliance at the 110-490 kHz Band-Edges

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 32 of 41

EXHIBIT 9. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

The stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers.

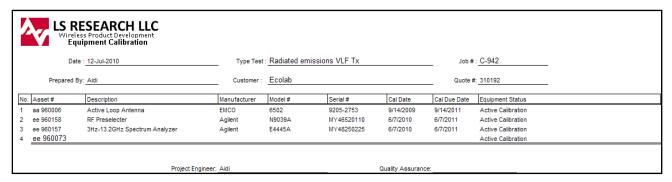
In this case, the EUT is powered via batteries. Therefore, using a variable DC power supply, the voltage was varied by - 15%.

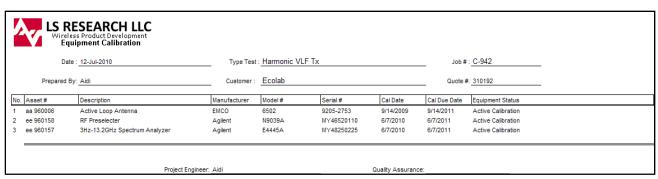
A spectrum analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the EUT was placed in continuous transmit CW mode.

900 MHz transceiver.

	3.0 VDC		2.55 V	DC		
	Frequency Power		Frequency Power		Deviation	Deviation
Channel	(Hz)	(dBµ/m)	(Hz)	(dBµ/m)	(Hz)	(dBµ/m)
Low	906408440	93.2	906408210	93.2	230	0.0
Middle	913806350	93.4	913806320	93.4	30	0.0
High	921604500	93.2	921604550	93.2	50	0.0

134.8 kHz Transmitter.


	3.0	VDC	2.55 VDC			
	Frequency	Power	Frequency	Power	Deviation	Deviation
Channel	(Hz)	(dBµ/m)	(Hz)	(dBµ/m)	(Hz)	(dBµ/m)
Low	134810	93.2	134819	93.2	9	0.0


The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle.

No anomalies were noted in the measured transmit power and the frequency stability was better than 100 ppm during the voltage variation tests.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 33 of 41

APPENDIX A



Ż	🛕 🗸 🚪 Wireles	SEARCH LLC s Product Development pment Calibration							
	Date :	12-Jul-2010	Type Test	: Fundamen	tal VLF Tx		Job #	: <u>C-942</u>	
	Prepared By:	Aidi	Customer :	Ecolab			Quote #	± <u>310192</u>	
No.	Asset #	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
1	aa 960006	Active Loop Antenna	EMCO	6502	9205-2753	9/14/2009	9/14/2011	Active Calibration	
2	ee 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration	
3	ee 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration	
		Project En	gineer: Aidi			Quality Assuran	ce:		

Wirele	ESEARCH LLC ss Product Development uipment Calibration						
Date	e : 12-Jul-2010	Type Test	: Radiated Emiss	sions (209)		Job#	: C-942
Prepared By	y:_Aidi	Customer :	Ecolab			Quote #	± <u>310192</u>
No. Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status
1 ee 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
2 ee 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
3 aa 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
4 aa 960150	Bicon Antenna	ETS	3110B	0003-3346	11/3/2009	11/3/2010	Active Calibration
5 aa 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/10/2009	11/10/2010	Active Calibration
6 aa 960081	Double Ridge Horn Antenna	EMCO	3115	6907	12/22/2009	12/22/2010	Active Calibration
7 ee 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/17/2009	9/17/2010	Active Calibration
8 aa 960144	Phaseflex	Gore	EKD01D010720	5800373	6/4/2010	6/4/2011	Active Calibration
	Project Er	ngineer: Aidi			Quality Assurance	e:	

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
·	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 34 of 41

	Wirel Ec	RESEARCH LLC less Product Development quipment Calibration	Type Test	: Occupied E	3andwidth (6dB & 20dE	3)	Job#	: <u>C-942</u>	
	Prepared	By: Aidi	Customer :	Ecolab			Quote #	310192	
No.	Asset #	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
1	ee 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration	
2	ee 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration	
3	aa 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration	
4	ee 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/17/2009	9/17/2010	Active Calibration	
5	aa 960006	Active Loop Antenna	EMCO	6502	9205-2753	9/14/2009	9/14/2011	Active Calibration	
		Project En	gineer: Aidi			Quality Assurance	e:		

7	🔺 🗸 🛕 Wireles	SEARCH LLC s Product Development ipment Calibration						
	Date	12-Jul-2010	Type Test	: Band-Edge			Job #	: C-942
	Prepared By	: Aidi	Customer :	Ecolab			Quote #	: 310192
No	Asset #	Description	Manufacturer	Model#	Serial #	Cal Date	Cal Due Date	Equipment Status
1	ee 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
2	ee 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
3	aa 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration
4	aa 960006	Active Loop Antenna	EMCO	6502	9205-2753	9/14/2009	9/14/2011	Active Calibration
		Project Engi	neer: Aidi		_	Quality Assurance	e:	

	📥 🗸 🚪 Wireles	ESEARCH LLC ss Product Development ipment Calibration							
	Date	: 12-Jul-2010	Type Test :	Fundamental			Job # :	C-942	-
	Prepared By	r: Aidi	Customer:	Ecolab			Quote #:	310192	_
N	o. Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status	
1	aa 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/16/2009	10/16/2010	Active Calibration	
2	ee 960013	EMI Receiver	HP	8546A System	3617A00320;3448A	9/17/2009	9/17/2010	Active Calibration	
3	ee 960014	EMI Receiver-filter section	HP	85460A	3448A00296	9/17/2009	9/17/2010	Active Calibration	
			Project Engineer: Aidi		Qı	uality Assurance	e:		

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
•	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 35 of 41

APPENDIX B TEST STANDARDS – CURRENT PUBLICATION DATES RADIO

STANDADD#	DATE		STANDARDS -
STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2009		
ANSI C63.10	2009		
CISPR 11	2009-05	2009-12 P	
CISPR 12	2007-05		
CISPR 14-1	2005-11	2008-11	
CISPR 14-2	2001-11	2001-11	2008-05
CISPR 16-1-1 Note 1	2010-01		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07
CISPR 22	2008-09		
CISPR 24	1997-09	2001-07	2002-10
EN 55011	2007-05		
EN 55014-1	2006		
EN 55014-2	1997		
EN 55022	2006	2007	
EN 60601-1-2	2007-03		
EN 61000-3-2	2006-05		
EN 61000-3-3	2008-12		
EN 61000-4-2	2009-05		
EN 61000-4-3	2006-07	2008-05	
EN 61000-4-4	2004		
EN 61000-4-5	2006-12		
EN 61000-4-6	2009-05		
EN 61000-4-8	1994	2001	
EN 61000-4-11	2004-10		
EN 61000-6-1	2007-02		
EN 61000-6-2	2005-12		
EN 61000-6-3	2007-02		
EN 61000-6-4	2007-02		
FCC 47 CFR, Parts 0-15,	0000		
18, 90, 95 FCC Public Notice DA 00-	2009		
1407	2000		
FCC ET Docket # 99-231	2002		
FCC Procedures	2007		
ICES 001	2006-06		
ICES 002	2009-08		
ICES 003	2004-02		
IEC 60601-1-2 Note 1	2007-03		
IEC 61000-3-2	2005-11	2008-03	2009-02
IEC 61000-3-3	2008-06		
IEC 61000-4-2	2008-12		
IEC 61000-4-3	2008-04	incl in 2008-04	2009-12 FD

STANDARD#	DATE	Am. 1	Am.
IEC 61000-4-4	2004-07	2010-10	
IEC 61000-4-5	2005-11		
IEC 61000-4-6	2008-10		
IEC 61000-4-8	2009-09		
IEC 61000-4-11	2004-03		
IEC 61000-6-1	2005-03		
IEC 61326-1	2006-06		
ISO 14982	1998-07		
MIL Std. 461E	1999-08		
RSS GEN	2007-06		
RSS 119	2007-06		
RSS 123	1999-11		
RSS 125	2000-03		
RSS 131	2003-07		
RSS 136	2002-10		
RSS 137	2009-02		
RSS 210	2007-06		
RSS 213	2005-12		
RSS 243	2005-11		
RSS 310	2007-06		
Note 1: Test not on LSF	2 Scone of Ac	oreditation	1
odated on 02-03-10	COUPE OF ACI	or GurialiOII.	

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 36 of 41

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 37 of 41

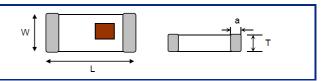
Appendix D

Antenna Specification(s)

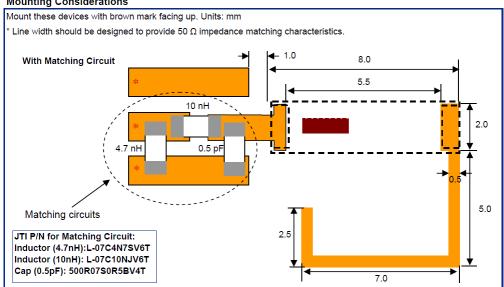
"High Frequency Ceramic Solutions"

915 MHz Antenna P/N 0915AT43A0026 Page 1 of 3 Detail Specification: 02/20/09

General Specifications


Part Number	0915AT43A0026
Frequency Range	902 - 928
Peak Gain	-1.0 dBi typ. (XZ-total)
Average Gain	-4.0 dBi typ. (XZ-total)
Return Loss	8.5 dB min.
Impedance	50 Ω
Input Power	2W max.

Operating Temperature	-40 to +85°C
Storage Temperature Range	+5~+35°C, Humidity 45~75%RH
Reel Quanity	1,000


No.	Function	Terminal Configuration
1	Feeding Point	1 n <u> </u>
2	NC	2 1
] "

Mechanical Dimensions

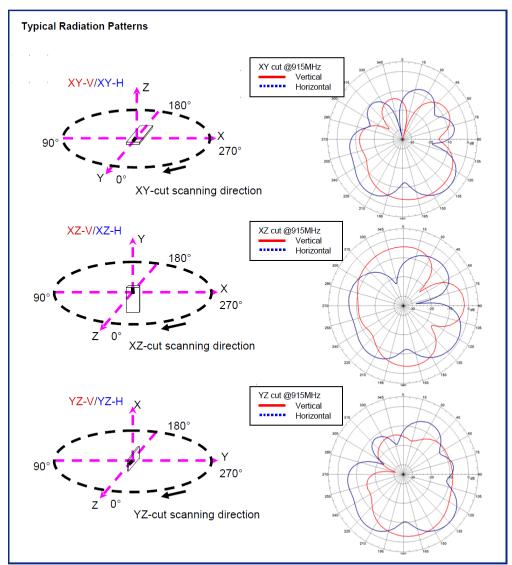
	ln	mm	
L	0.276 ± 0.008	7.00 ± 0.20	
W	0.079 ± 0.008	2.00 ± 0.20	
Т	0.031 +.004/008	0.80 +0.1/-0.2	
а	0.020 ± 0.012	0.50 ± 0.30	

Mounting Considerations

Johanson Technology, Inc. reserves the right to make design changes without notice. All sales are subject to Johanson Technology, Inc. terms and conditions.

www.johansontechnology.com

4001 Calle Tecate • Camarillo, CA 93012 • TEL 805.389.1166 FAX 805.389.1821


2008 Johanson Technology, Inc. All Rights Reserved

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 38 of 41

"High Frequency Ceramic Solutions"

 915 MHz Antenna
 P/N 0915AT43A0026

 Detail Specification: 02/20/09
 Page 3 or 3

Johanson Technology, Inc. reserves the right to make design changes without notice. All sales are subject to Johanson Technology, Inc. terms and conditions.

www.johansontechnology.com

4001 Calle Tecate • Camarillo, CA 93012 • TEL 805.389.1166 FAX 805.389.1821

2008 Johanson Technology, Inc. All Rights Reserved

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
·	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 39 of 41

NEW **PREMO**

KGEA-WT

Keyless go emitter antenna winding heat shrink tube (33 μ H - 500 μ H)

This part can offer the possibility to welding directly on PCB or the customer directly over-moulded for different applications of readers RF antennas and thus far reducing

This solution of emitter antenna winding

first solution of emitter antenna winding ferrite has 2 options:

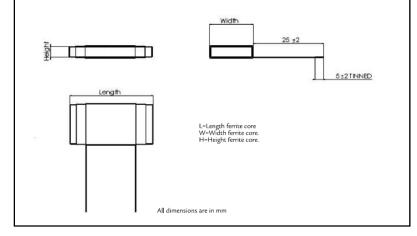
(1) Only winding along all ferrite
(2) Winding ferrite assembly with heat shrink tube.

Characteristics

Characteristics

Different sizes of emitter antenna (small, medium, big) and ranges diameter wire (Ø=0.100, 0.180, 0.300 and 0.500mm)

High reading distance depending of the size ferrite core


Designed for a range of working frequency LF (20kHz, 125kHz and 134,2kHz).

Antenna current. Max. 4 App, Duty 30%

High stability in temperature (-40°C to +125°C).

- Good cost/performance ratio.
- The part can be to protect with heat shrink tube to avoid handling problems.

Dimensions:

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
·	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 40 of 41

KGEA-WT

Keyless go emitter antenna winding heat shrink tube (33 μH - 500 μH)

Electrical specifications:

Operating Frequency @ 125 kHz; dimensions ferrite core=68x7x3mm.

P/N	L (mH)	Q	SRF (MHz)	lpp máx (Amp)(*)
KGEA-WT680703-B-0108J	0.108	>90	>2.15	2-4
KGEA-WT680703-B-0240J	0.240	>100	>2.15	2-4
KGEA-WT680703-B-0322J	0.332	>115	>2.15	2-4
KGEA-WT680703-B-0400J	0.400	>115	>2.15	2-4
KGEA-WT680703-B-0500J	0.500	>120	>2.15	2-4

RFID Transponder Inductors

Operating Frequency @ 134,2 kHz; dimensions ferrite core=68x7x3.

P/N	L (mH)	Q	SRF (MHz)	lpp máx (Amp)(*)
KGEA-WT680703-C-0033J	0.033	>75	>2.15	2-4
KGEA-WT680703-C-0108J	0.108	>90	>2.15	2-4
KGEA-WT680703-C-0345J	0.345	>110	>2.15	2-4
KGEA-WT680703-C-0425J	0.425	>125	>2.15	2-4
KGEA-WT680703-C-0650J	0.650	>125	>2.15	2-4

Operating Frequency @ 20khz; dimensions ferrite core=60x19x4mm.

P/N	L (mH)	Q	SRF (MHz)	lpp máx (Amp)(*)
KGEA-WT601904-A-0161J	0.161	>75	>1	2-4
KGEA-WT601904-A-0345J	0.345	>80	>1	2-4
KGEA-WT601904-A-0470J	0.470	>85	>1	2-4
KGEA-WT601904-A-0500J	0.500	>90	>1	2-4

Operating Frequency @ 20khz; dimensions ferrite core=40x19x4mm.

P/N	L (mH)	Q	SRF (MHz)	lpp máx (Amp)(*)
KGEA-WT401904-A-0161J	0.161	>60	>1	2-4
KGEA-WT401904-A-0345J	0.345	>70	>1	2-4
KGEA-WT401904-A-0470J	0.470	>75	>1	2-4
KGEA-WT401904-A-0500J	0.500	>80	>1	2-4

Tolerance J=5%.
Add under the chart: This chart is a reference guide for the most common required values at working frequency of 125 kHz. Any other inductance value at LF or tighter tolerances can be provided. Please contact our sales department for any inquiry.

Sensitivity measured with Helmholtz coils H=8.36 App/m @125 kHz. Contact us for measurement specification.

Prepared For: Ecolab	EUT: Dispenser Communication	LS Research, LLC
·	Module	
Report #310192	Model #:DCM1PT	Template: 15.249 8-11-2010
LSR Job #:C-942	Serial #:10240154	Page 41 of 41