



Test report No.: 2360570R-RFUSV01S-A

# TEST REPORT

|                                                            |                                                                                      |
|------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Product Name                                               | Wi-Fi 6/6E Sensor                                                                    |
| Trademark                                                  | 7SIGNAL, Inc.                                                                        |
| Model and /or type reference                               | 7S6300                                                                               |
| FCC ID                                                     | YLF7S6300                                                                            |
| Applicant's name / address                                 | 7signal<br>6155 Rockside Road, Suite 110, Independence, Ohio 44131,<br>United States |
| Manufacturer's name                                        | 7SIGNAL, Inc.                                                                        |
| Test method requested, standard                            | FCC CFR Title 47 Part 15 Subpart C<br>ANSI C63.4: 2014, ANSI C63.10: 2013            |
| Verdict Summary                                            | IN COMPLIANCE                                                                        |
| Documented By<br>(Senior Project Specialist / Genie Chang) |  |
| Tested By<br>(Senior Engineer / Ivan Chuang)               |   |
| Tested By<br>(Senior Engineer / Alan Chen)                 |  |
| Date of Receipt                                            | 2023/06/17                                                                           |
| Date of Issue                                              | 2023/09/05                                                                           |
| Report Version                                             | V1.0                                                                                 |

---

**INDEX**


---

|                                                 | Page      |
|-------------------------------------------------|-----------|
| <b>1. Summary of Reference Test Data.....</b>   | <b>5</b>  |
| 1.1. Introduction .....                         | 5         |
| 1.2. Difference Description .....               | 5         |
| 1.3. Spot Check Verification Data Section ..... | 5         |
| 1.4. Reference Section .....                    | 6         |
| <b>2. General Information.....</b>              | <b>7</b>  |
| 2.1. EUT Description.....                       | 7         |
| 2.2. Tested System Details.....                 | 9         |
| 2.3. Configuration of Tested System .....       | 9         |
| 2.4. EUT Exercise Software .....                | 9         |
| 2.5. Test Facility .....                        | 10        |
| 2.6. List of Test Item and Equipment .....      | 11        |
| 2.7. Uncertainty .....                          | 12        |
| <b>3. Maximum Power Output .....</b>            | <b>13</b> |
| 3.1. Test Setup .....                           | 13        |
| 3.2. Limits.....                                | 13        |
| 3.3. Test Procedure .....                       | 13        |
| 3.4. Test Result of Maximum Power Output .....  | 14        |
| <b>4. Radiated Emission .....</b>               | <b>20</b> |
| 4.1. Test Setup .....                           | 20        |
| 4.2. Limits.....                                | 21        |
| 4.3. Test Procedure .....                       | 22        |
| 4.4. Test Result of Radiated Emission .....     | 24        |
| <b>5. Band Edge .....</b>                       | <b>25</b> |
| 5.1. Test Setup .....                           | 25        |
| 5.2. Limits.....                                | 25        |
| 5.3. Test Procedure .....                       | 26        |
| 5.4. Test Result of Band Edge .....             | 27        |

Appendix 1: EUT Test Photographs

Appendix 2: Product Photos-Please refer to the file: 2360570R-Product Photos

---

## Competences and Guarantees

---

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

**IMPORTANT:** No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

---

## General conditions

---

1. The test results relate only to the samples tested.
2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
3. This report must not be used to claim product endorsement by TAF or any agency of the government.
4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

## Revision History

---

| Report No.          | Version | Description              | Issued Date |
|---------------------|---------|--------------------------|-------------|
| 2360570R-RFUSV01S-A | V1.0    | Initial issue of report. | 2023/09/05  |

## 1. Summary of Reference Test Data

### 1.1. Introduction

This application is intended to reuse the test data from FCC ID: A8J-ECW336, certified on 07/08/2022, due to the fact that this products is hardware-wise identical.

According to KDB 484596 D01v01, the FCC Part 15C (equipment class: DTS) reuse the original test result of FCC ID: A8J-ECW336 and perform spot-check.

| DTS                        |             |                           |
|----------------------------|-------------|---------------------------|
| Test Item                  | Data Reused | Remark                    |
| Conducted Emission         | Yes         | N/A                       |
| Radiated Band Edge         | Yes         | Verify worst-case channel |
| Radiated Spurious Emission | Yes         | Verify worst-case channel |
| 6dB Bandwidth              | Yes         | N/A                       |
| Maximum Power Output       | Yes         | Verify all output power   |
| RF Antenna Conducted Test  | Yes         | N/A                       |
| Power Spectral Density     | Yes         | N/A                       |
| Duty Cycle                 | Yes         | N/A                       |

The applicant takes full responsibility that the test data as referenced in this report represent compliance for the FCC ID: YLF7S6300.

### 1.2. Difference Description

7S6300 (FCC ID: YLF7S6300), use the same MCU chipset (IPQ8072A), share the same chipset baseline, hardware design, support same bands, the difference is only on software version change from master mode to slave mode.

### 1.3. Spot Check Verification Data Section

The radiated emission and radiated band edge tests were performed according to the worst result of FCC ID: A8J-ECW336. After evaluation and verification, this change does not affect RF characteristic.

Therefore, re-use test data which has been recorded in Test Report of FCC ID: A8J-ECW336 (DEKRA Report No.: 2230212R-RFUSWL2V01-A).

#### 1.4. Reference Section

| Rule Part | Operating Frequency (MHz) | Current FCC ID | Reference Original FCC ID | Reference Exhibit Type                                     |
|-----------|---------------------------|----------------|---------------------------|------------------------------------------------------------|
| 15C (DTS) | 2412~2462                 | YLF7S6300      | A8J-ECW336                | RF Test Report_2.4G<br>(Report No.: 2230212R-RFUSWL2V01-A) |

| Comparison Table (The worst result) |                             |                 |                |             |
|-------------------------------------|-----------------------------|-----------------|----------------|-------------|
| Test Item                           | Test Mode / Frequency (MHz) | Test Result     |                |             |
|                                     |                             | Original FCC ID | Current FCC ID | Margin (dB) |
| Radiated Emission                   | 11b / 2462                  | -0.58           | -0.75          |             |
| Radiated Band Edge                  | 11g / 2437                  | -0.09           | -1.01          |             |

## 2. General Information

### 2.1. EUT Description

|                              |                                                                                     |
|------------------------------|-------------------------------------------------------------------------------------|
| Product Name                 | Wi-Fi 6/6E Sensor                                                                   |
| Trademark                    | 7SIGNAL, Inc.                                                                       |
| Model and /or type reference | 7S6300                                                                              |
| EUT Rated Voltage            | AC 100-240V / 50-60Hz                                                               |
| EUT Test Voltage             | AC 120V / 60Hz                                                                      |
| Frequency Range              | 802.11b/g/n/ac/ax-20: 2412-2462 MHz, 802.11n/ac/ax-40: 2422-2452 MHz                |
| Number of Channels           | 802.11b/g/n/ac/ax-20MHz: 11, 802.11n/ac/ax-40MHz: 7                                 |
| Data Speed                   | 802.11b: 1-11 Mbps, 802.11g: 6-54 Mbps, 802.11ax: up to 1147.1 Mbps                 |
| Type of Modulation           | DSSS (DBPSK, DQPSK, CCK)<br>OFDM, OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM) |
| Channel Control              | Auto                                                                                |

### Antenna List

| No. | Manufacturer | Part No. | Antenna Type | Peak Gain             |
|-----|--------------|----------|--------------|-----------------------|
| 1   | Senao        | 7S6300   | PIFA         | 4.07 dBi for 2400 MHz |
| 2   | Senao        | 7S6300   | PIFA         | 4.26 dBi for 2400 MHz |
| 3   | Senao        | 7S6300   | PIFA         | 3.89 dBi for 2400 MHz |
| 4   | Senao        | 7S6300   | PIFA         | 3.15 dBi for 2400 MHz |

|                                |                                        |
|--------------------------------|----------------------------------------|
| For CDD power directional gain | For Beamforming power directional gain |
| 4.26dBi for 2.4 GHz            | 10.28dBi for 2.4 GHz                   |

#### For CDD mode:

2.4GHz: Directional gain = 4.26 dBi

(Directional gain =  $G_{ANT\ MAX} + \text{Array Gain}$ , Array Gain = 0 dB for  $N_{ANT} \leq 4$ )

#### For Beamforming mode:

2.4GHz: Directional gain = 10.28 dBi

(Directional gain =  $G_{ANT\ MAX} + \text{Array Gain}$ , Array Gain =  $10 * \log(4) = 6.02$  dB)

|                          |
|--------------------------|
| For PSD directional gain |
| 9.88dBi for 2.4 GHz      |

2.4GHz: Directional gain = 9.88 dBi

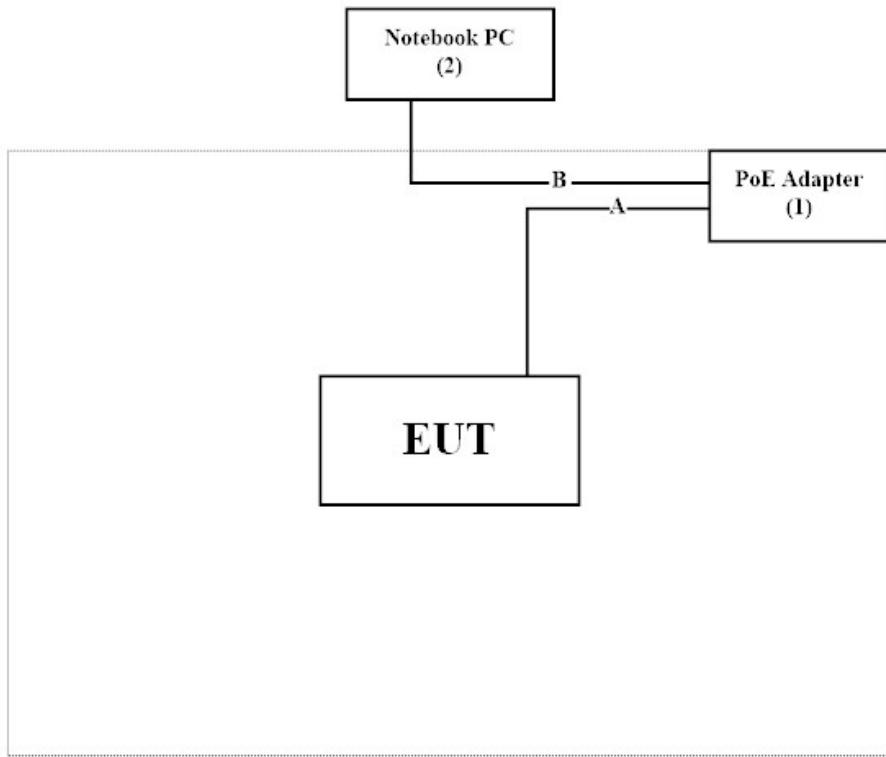
Directional gain =  $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / N_{ANT}]$  dBi

## 802.11b/g/n/ac/ax-20 MHz Center Frequency of Each Channel:

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 01      | 2412      | 02      | 2417      | 03      | 2422      | 04      | 2427      |
| 05      | 2432      | 06      | 2437      | 07      | 2442      | 08      | 2447      |
| 09      | 2452      | 10      | 2457      | 11      | 2462      | --      | --        |

## 802.11n/ac/ax-40 MHz Center Frequency of Each Channel:

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 03      | 2422      | 04      | 2427      | 05      | 2432      | 06      | 2437      |
| 07      | 2442      | 08      | 2447      | 09      | 2452      | --      | --        |


## 2.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Product       | Manufacturer | Model No.      | Serial No. | Power Cord |
|---------------|--------------|----------------|------------|------------|
| 1 PoE Adapter | EnGenius     | EPA5006GP      | N/A        | N/A        |
| 2 Notebook PC | DELL         | Latitude E6440 | N/A        | N/A        |

| Cable Type  | Cable Description  |
|-------------|--------------------|
| A LAN Cable | Non-shielded, 1.5m |
| B LAN Cable | Non-shielded, 3m   |

## 2.3. Configuration of Tested System



## 2.4. EUT Exercise Software

|    |                                                                |
|----|----------------------------------------------------------------|
| 1. | Setup the EUT as shown in Section 2.3.                         |
| 2. | Execute software “QSPR Version V5.0-00197” on the Notebook PC. |
| 3. | Configure the test mode, the test channel, and the data rate.  |
| 4. | Press “OK” to start the continuous transmit.                   |
| 5. | Verify that the EUT works properly.                            |

## 2.5. Test Facility

Ambient conditions in the laboratory:

| Performed Item    | Items            | Required | Actual  |
|-------------------|------------------|----------|---------|
| Radiated Emission | Temperature (°C) | 10~40 °C | 22.9 °C |
|                   | Humidity (%RH)   | 10~90 %  | 59.3 %  |
| Conductive        | Temperature (°C) | 10~40 °C | 22.0 °C |
|                   | Humidity (%RH)   | 10~90 %  | 55.0 %  |

|        |                                                       |
|--------|-------------------------------------------------------|
| USA    | FCC Registration Number: TW0033                       |
| Canada | CAB Identifier Number: TW3023 / Company Number: 26930 |

|                  |                                              |
|------------------|----------------------------------------------|
| Site Description | Accredited by TAF<br>Accredited Number: 3023 |
|------------------|----------------------------------------------|

|                    |                                                                             |
|--------------------|-----------------------------------------------------------------------------|
| Test Laboratory    | DEKRA Testing and Certification Co., Ltd.<br>Linkou Laboratory              |
| Address            | No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C. |
| Performed Location | No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.   |
| Phone Number       | +886-3-275-7255                                                             |
| Fax Number         | +886-3-327-8031                                                             |

## 2.6. List of Test Item and Equipment

### For Conducted Measurements / HY-SR02

|   | Equipment           | Manufacturer | Model No. | Serial No. | Cal. Date  | Due Date   |
|---|---------------------|--------------|-----------|------------|------------|------------|
| V | Peak Power Analyzer | KEYSIGHT     | 8990B     | MY51000539 | 2023/05/15 | 2024/05/14 |
| V | Power Sensor        | KEYSIGHT     | N1923A    | MY59240002 | 2023/05/18 | 2024/05/17 |
| V | Power Sensor        | KEYSIGHT     | N1923A    | MY59240003 | 2023/05/18 | 2024/05/17 |

Note:

1. All equipment are calibrated every one year.
2. The test instruments marked with "V" are used to measure the final test results.
3. Test Software Version: RF Conducted Test Tools R3 V3.0.0.14.

### For Radiated Measurements / HY-CB03

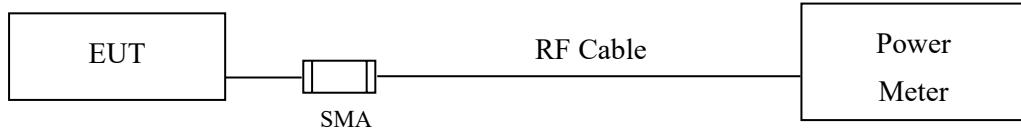
|   | Equipment         | Manufacturer  | Model No.         | Serial No.   | Cal. Date  | Due Date   |
|---|-------------------|---------------|-------------------|--------------|------------|------------|
| V | Loop Antenna      | AMETEK        | HLA6121           | 49611        | 2023/02/21 | 2024/02/20 |
| V | Bi-Log Antenna    | SCHWARZBECK   | VULB9168          | 9168-675     | 2021/08/11 | 2023/08/10 |
| V | Horn Antenna      | RF SPIN       | DRH18-E           | 210507A18ES  | 2023/05/11 | 2024/05/10 |
| V | Horn Antenna      | Com-Power     | AH-840            | 101100       | 2021/10/04 | 2023/10/03 |
| V | Pre-Amplifier     | SGH           | 0301              | 20211007-10  | 2023/01/10 | 2024/01/09 |
| V | Pre-Amplifier     | SGH           | PRAMP118          | 20200701     | 2023/01/10 | 2024/01/09 |
| V | Pre-Amplifier     | EMCI          | EMC05820SE        | 980310       | 2023/01/10 | 2024/01/09 |
| V | Pre-Amplifier     | EMCI          | EMC184045SE       | 980369       | 2023/01/10 | 2024/01/09 |
|   | Coaxial Cable     | EMCI          | EMC102-KM-KM-600  | 1160314      |            |            |
|   | Coaxial Cable     | EMCI          | EMC102-KM-KM-7000 | 170242       |            |            |
| V | Filter            | MICRO TRONICS | BRM50702          | G269         | 2023/01/05 | 2024/01/04 |
| V | Filter            | MICRO TRONICS | BRM50716          | G196         | 2023/01/05 | 2024/01/04 |
| V | EMI Test Receiver | R&S           | ESR               | 102793       | 2022/12/05 | 2023/12/04 |
| V | Spectrum Analyzer | R&S           | FSV3044           | 101113       | 2023/02/04 | 2024/02/03 |
| V | Coaxial Cable     | SGH           | SGH18             | 2021005-1    | 2023/01/10 | 2024/01/09 |
|   | Coaxial Cable     | SGH           | SGH18             | 202108-4     |            |            |
|   | Coaxial Cable     | SGH           | SGH18             | GD20110223-1 |            |            |
|   | Coaxial Cable     | SGH           | HA800             | GD20110222-3 |            |            |

Note:

1. Bi-Log Antenna and Horn Antenna (AH-840) is calibrated every two years, the other equipment are calibrated every one year.
2. The test instruments marked with "V" are used to measure the final test results.
3. Test Software Version: E3 230303 dekra V9.

## 2.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.


The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of  $k=2$ , providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

| Test Item         | Uncertainty                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------|
| Peak Power Output | $\pm 1.05$ dB                                                                                                     |
| Radiated Emission | 9kHz~30MHz: $\pm 3.88$ dB<br>30MHz~1GHz: $\pm 4.42$ dB<br>1GHz~18GHz: $\pm 4.28$ dB<br>18GHz~40GHz: $\pm 3.90$ dB |
| Band Edge         | $\pm 4.28$ dB                                                                                                     |

### 3. Maximum Power Output

#### 3.1. Test Setup



#### 3.2. Limits

The maximum peak power shall be less 1 Watt.

#### 3.3. Test Procedure

The EUT was tested according to C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using C63.10:2013 Section 11.9.1.3 PKPM1 Peak power meter method. The maximum average conducted output power using C63.10:2013 Section 11.9.2.3 Measurement using a power meter (PM). (Measurement using a gated RF average-reading power meter). The maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### 3.4. Test Result of Maximum Power Output

Product : Wi-Fi 6/6E Sensor  
 Test Item : Maximum Power Output  
 Test Mode : Transmit (802.11b)  
 Test Date : 2023/07/11

#### Chain A+B+C+D

| Frequency<br>(MHz) | Data Rate<br>(Mbps) | Chain A<br>Power<br>(dBm) | Chain B<br>Power<br>(dBm) | Chain C<br>Power<br>(dBm) | Chain D<br>Power<br>(dBm) | Chain<br>A+B+C+D<br>Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------------|----------------|--------|
| 2412               | 1                   | 17.25                     | 17.99                     | 17.70                     | 17.58                     | 23.66                              | <30dBm         | Pass   |
| 2437               | 1                   | 20.11                     | 20.13                     | 20.23                     | 20.17                     | 26.18                              | <30dBm         | Pass   |
| 2462               | 1                   | 16.54                     | 16.60                     | 16.48                     | 16.40                     | 22.53                              | <30dBm         | Pass   |

Note: Total Power (dBm) =  $10 \times \text{LOG}(\text{Chain A (mW)} + \text{Chain B (mW)} + \text{Chain C (mW)} + \text{Chain D (mW)})$

Product : Wi-Fi 6/6E Sensor  
Test Item : Maximum Power Output  
Test Mode : Transmit (802.11g)  
Test Date : 2023/07/11

**Chain A+B+C+D**

| Frequency<br>(MHz) | Data Rate<br>(Mbps) | Chain A<br>Power<br>(dBm) | Chain B<br>Power<br>(dBm) | Chain C<br>Power<br>(dBm) | Chain D<br>Power<br>(dBm) | Chain<br>A+B+C+D<br>Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------------|----------------|--------|
| 2412               | 6                   | 15.94                     | 16.25                     | 16.10                     | 16.04                     | 22.10                              | <30dBm         | Pass   |
| 2437               | 6                   | 19.82                     | 20.05                     | 19.84                     | 19.88                     | 25.92                              | <30dBm         | Pass   |
| 2462               | 6                   | 16.14                     | 16.22                     | 16.14                     | 16.25                     | 22.21                              | <30dBm         | Pass   |

Note: Total Power (dBm) =  $10 \times \text{LOG} (\text{Chain A (mW)} + \text{Chain B (mW)} + \text{Chain C (mW)} + \text{Chain D (mW)})$

Product : Wi-Fi 6/6E Sensor  
Test Item : Maximum Power Output  
Test Mode : Transmit (802.11ax20)  
Test Date : 2023/07/11

**Chain A+B+C+D**

| Frequency<br>(MHz) | Data Rate<br>(Mbps) | Chain A<br>Power<br>(dBm) | Chain B<br>Power<br>(dBm) | Chain C<br>Power<br>(dBm) | Chain D<br>Power<br>(dBm) | Chain<br>A+B+C+D<br>Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------------|----------------|--------|
| 2412               | MCS0                | 16.64                     | 16.81                     | 16.59                     | 16.63                     | 22.69                              | <30dBm         | Pass   |
| 2437               | MCS0                | 18.15                     | 18.67                     | 18.25                     | 18.44                     | 24.40                              | <30dBm         | Pass   |
| 2462               | MCS0                | 14.88                     | 14.92                     | 14.71                     | 14.85                     | 20.86                              | <30dBm         | Pass   |

Note: Total Power (dBm) =  $10 \times \text{LOG}(\text{Chain A (mW)} + \text{Chain B (mW)} + \text{Chain C (mW)} + \text{Chain D (mW)})$

Product : Wi-Fi 6/6E Sensor  
Test Item : Maximum Power Output  
Test Mode : Transmit (802.11ax40)  
Test Date : 2023/07/11

**Chain A+B+C+D**

| Frequency<br>(MHz) | Data Rate<br>(Mbps) | Chain A<br>Power<br>(dBm) | Chain B<br>Power<br>(dBm) | Chain C<br>Power<br>(dBm) | Chain D<br>Power<br>(dBm) | Chain<br>A+B+C+D<br>Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------------|----------------|--------|
| 2422               | MCS0                | 15.42                     | 15.48                     | 15.26                     | 15.22                     | 21.37                              | <30dBm         | Pass   |
| 2437               | MCS0                | 14.79                     | 14.81                     | 14.64                     | 14.81                     | 20.78                              | <30dBm         | Pass   |
| 2452               | MCS0                | 14.42                     | 14.45                     | 14.34                     | 14.49                     | 20.45                              | <30dBm         | Pass   |

Note: Total Power (dBm) =  $10 \times \text{LOG}(\text{Chain A (mW)} + \text{Chain B (mW)} + \text{Chain C (mW)} + \text{Chain D (mW)})$

Product : Wi-Fi 6/6E Sensor  
Test Item : Maximum Power Output  
Test Mode : Transmit (802.11ax20)-Beamforming  
Test Date : 2023/07/11

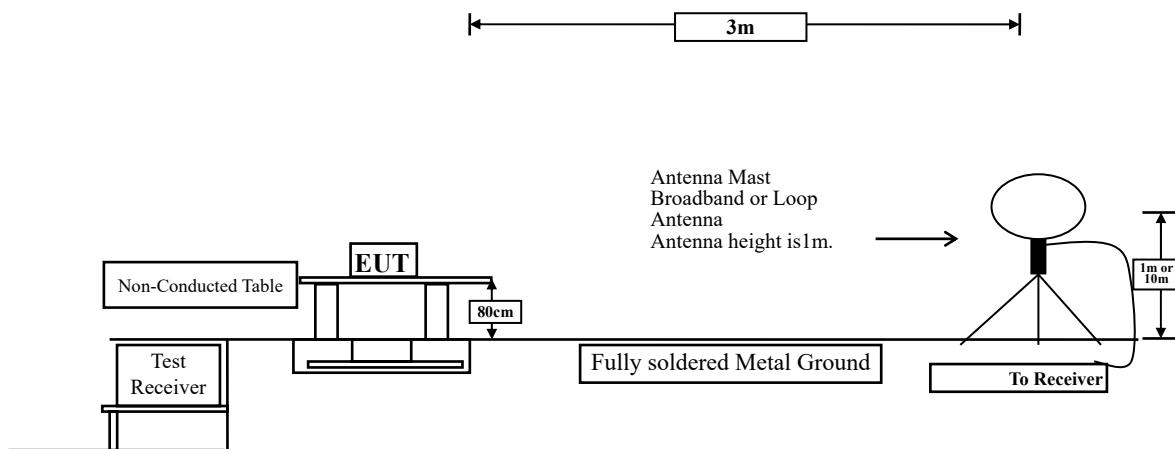
**Chain A+B+C+D**

| Frequency<br>(MHz) | Data Rate<br>(Mbps) | Chain A<br>Power<br>(dBm) | Chain B<br>Power<br>(dBm) | Chain C<br>Power<br>(dBm) | Chain D<br>Power<br>(dBm) | Chain<br>A+B+C+D<br>Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------------|----------------|--------|
| 2412               | MCS0                | 10.62                     | 10.79                     | 10.57                     | 10.61                     | 16.67                              | <30dBm         | Pass   |
| 2437               | MCS0                | 12.13                     | 12.65                     | 12.23                     | 12.42                     | 18.38                              | <30dBm         | Pass   |
| 2462               | MCS0                | 8.86                      | 8.90                      | 8.69                      | 8.83                      | 14.84                              | <30dBm         | Pass   |

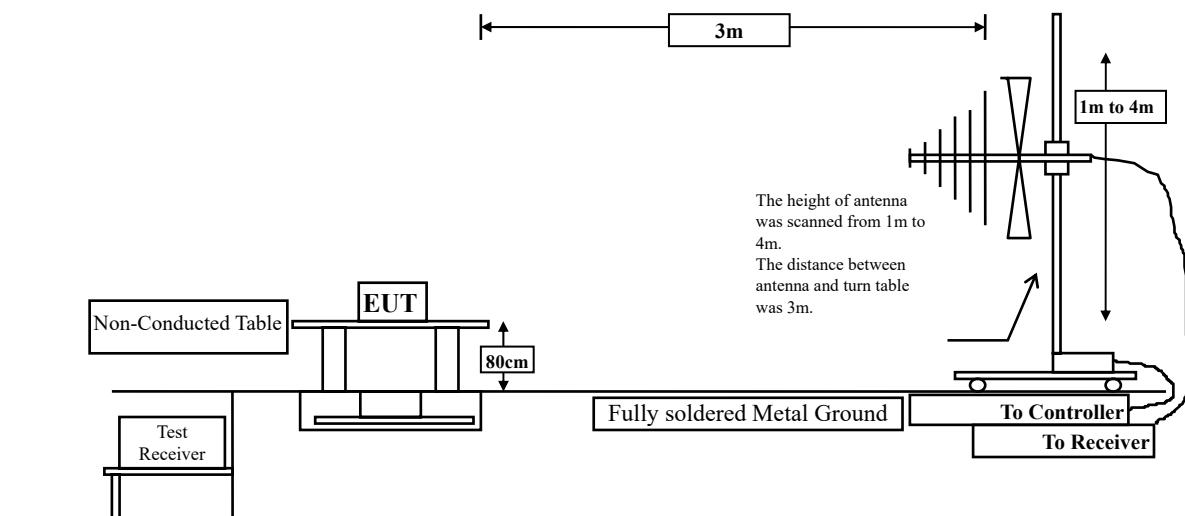
Note: Total Power (dBm) =  $10 \times \text{LOG}(\text{Chain A (mW)} + \text{Chain B (mW)} + \text{Chain C (mW)} + \text{Chain D (mW)})$

Product : Wi-Fi 6/6E Sensor  
Test Item : Maximum Power Output  
Test Mode : Transmit (802.11ax40)-Beamforming  
Test Date : 2023/07/11

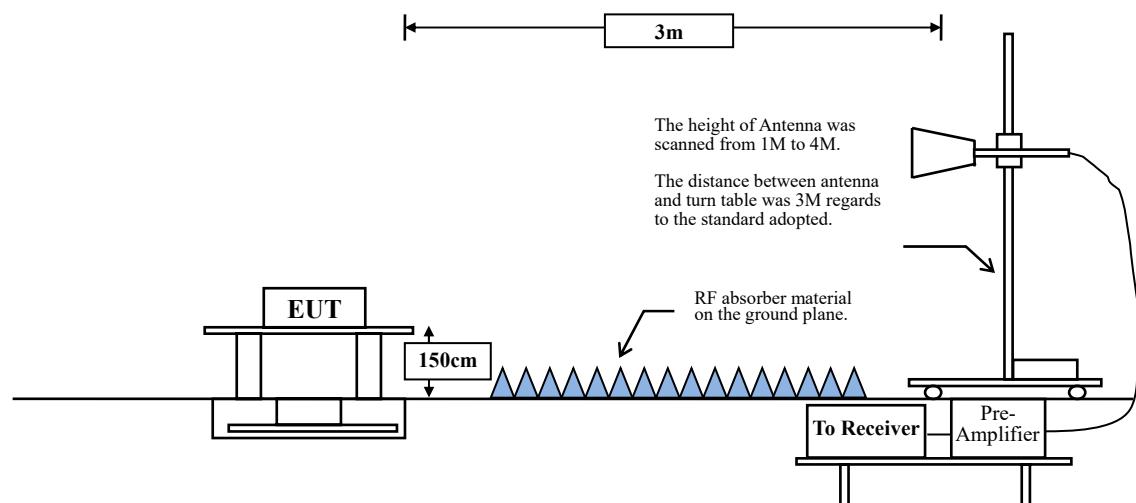
**Chain A+B+C+D**


| Frequency<br>(MHz) | Data Rate<br>(Mbps) | Chain A<br>Power<br>(dBm) | Chain B<br>Power<br>(dBm) | Chain C<br>Power<br>(dBm) | Chain D<br>Power<br>(dBm) | Chain<br>A+B+C+D<br>Power<br>(dBm) | Limit<br>(dBm) | Result |
|--------------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------------|----------------|--------|
| 2422               | MCS0                | 9.40                      | 9.46                      | 9.24                      | 9.20                      | 15.35                              | <30dBm         | Pass   |
| 2437               | MCS0                | 8.77                      | 8.79                      | 8.62                      | 8.79                      | 14.76                              | <30dBm         | Pass   |
| 2452               | MCS0                | 8.40                      | 8.43                      | 8.32                      | 8.47                      | 14.43                              | <30dBm         | Pass   |

Note: Total Power (dBm) =  $10 \times \text{LOG}(\text{Chain A (mW)} + \text{Chain B (mW)} + \text{Chain C (mW)} + \text{Chain D (mW)})$


## 4. Radiated Emission

### 4.1. Test Setup


Radiated Emission Under 30 MHz



Radiated Emission Below 1 GHz



Radiated Emission Above 1 GHz



## 4.2. Limits

### ➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

| FCC Part 15 Subpart C Paragraph 15.209 Limits |                                      |                                        |
|-----------------------------------------------|--------------------------------------|----------------------------------------|
| Frequency<br>MHz                              | Field strength<br>(microvolts/meter) | <i>Measurement distance</i><br>(meter) |
| 0.009-0.490                                   | 2400/F(kHz)                          | 300                                    |
| 0.490-1.705                                   | 24000/F(kHz)                         | 30                                     |
| 1.705-30                                      | 30                                   | 30                                     |
| 30-88                                         | 100                                  | 3                                      |
| 88-216                                        | 150                                  | 3                                      |
| 216-960                                       | 200                                  | 3                                      |
| Above 960                                     | 500                                  | 3                                      |

Remarks:

1. RF Voltage (dB $\mu$ V) = 20 log RF Voltage ( $\mu$ V)
2. In the Above Table, the tighter limit applies at the band edges.
3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

#### 4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range from 9kHz - 10th Harmonic of fundamental was investigated.

**RBW and VBW Parameter setting:**

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

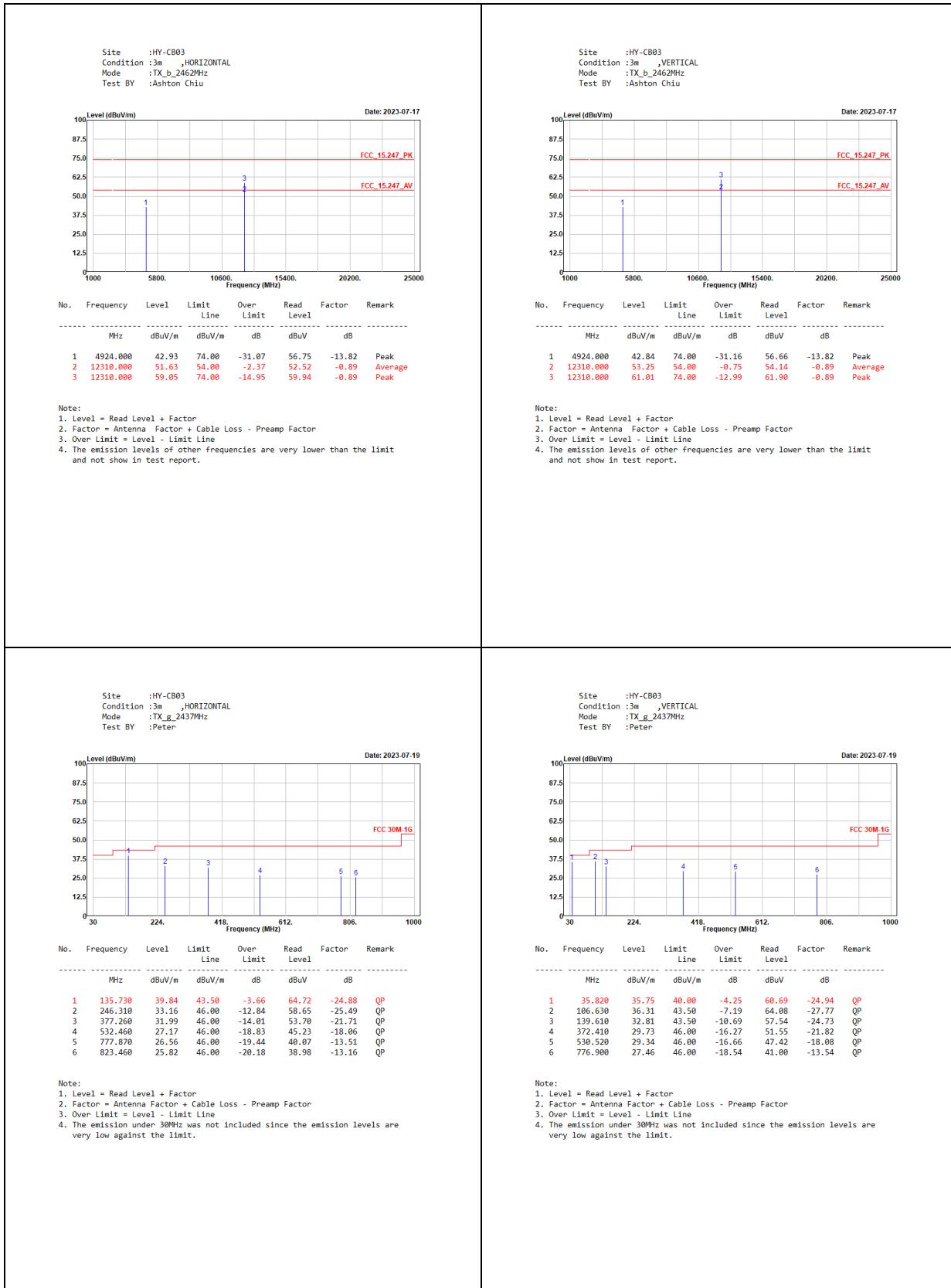
RBW = as specified in Table 1.

VBW  $\geq 3 \times$  RBW.

**Table 1 - RBW as a function of frequency**

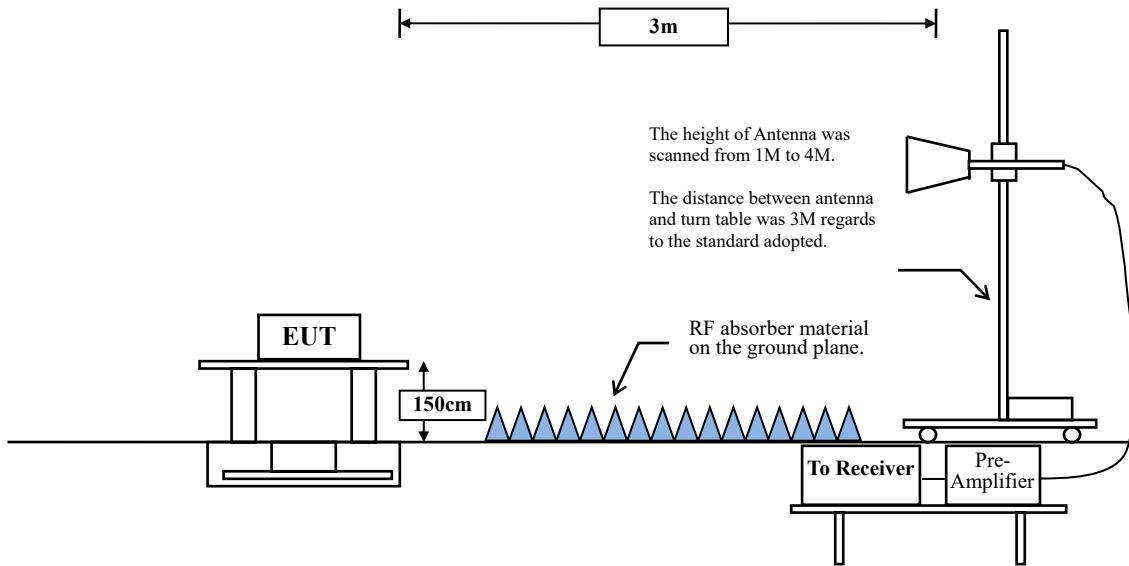
| Frequency   | RBW         |
|-------------|-------------|
| 9-150 kHz   | 200-300 Hz  |
| 0.15-30 MHz | 9-10 kHz    |
| 30-1000 MHz | 100-120 kHz |
| > 1000 MHz  | 1 MHz       |

According to C63.10 Section 11.12.2.5 Average measurement procedure.


RBW = 1MHz.

VBW = 10Hz, when duty cycle  $\geq 98\%$

VBW  $\geq 1/T$ , when duty cycle  $< 98\%$


(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

#### 4.4. Test Result of Radiated Emission



## 5. Band Edge

### 5.1. Test Setup



### 5.2. Limits

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

### 5.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

#### **RBW and VBW Parameter setting:**

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

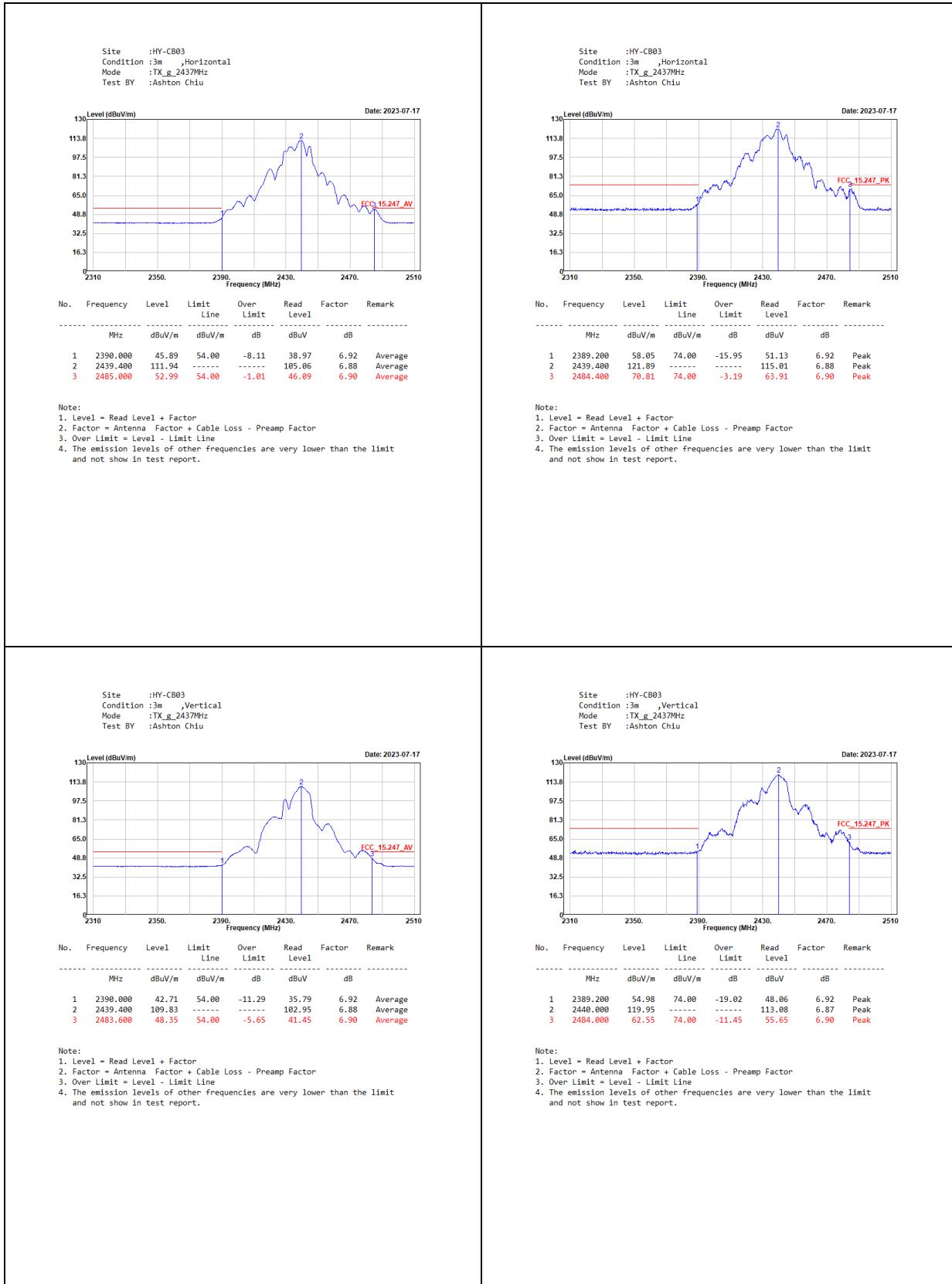
RBW = as specified in Table 1.

VBW  $\geq$  3 x RBW.

**Table 1 - RBW as a function of frequency**

| Frequency   | RBW         |
|-------------|-------------|
| 9-150 kHz   | 200-300 Hz  |
| 0.15-30 MHz | 9-10 kHz    |
| 30-1000 MHz | 100-120 kHz |
| > 1000 MHz  | 1 MHz       |

According to C63.10 Section 11.12.2.5 Average measurement procedure.


RBW = 1MHz.

VBW = 10Hz, when duty cycle  $\geq$  98 %

VBW  $\geq$  1/T, when duty cycle < 98 %

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

## 5.4. Test Result of Band Edge

