

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313

914 WEST PATAPSCO AVENUE ● BALTIMORE, MARYLAND 21230-3432 ● PHONE (410) 354-3300 ● FAX (410) 354-3313 33439 WESTERN AVENUE ● UNION CITY, CALIFORNIA 94587 ● PHONE (510) 489-6300 ● FAX (510) 489-6372 3162 BELICK STREET ● SANTA CLARA, CA 95054 ● PHONE (408) 748-3585 ● FAX (510) 489-6372 13301 MCCALLEN PASS ● AUSTIN, TX 78753 ● PHONE (512) 287-2500 ● FAX (512) 287-2513

Electromagnetic Compatibility MPE Calculation

For the

Alarm.com Model ADC-200C-EVD-IS

Tested under

Title 47 of the Code of Federal Regulations (CFR), Part 15 Subpart C

MET Report: EMC34716-MPE

April 26, 2012

Prepared For:

Alarm.com 8150 Leesburg Pike, Suite 1400 Vienna, VA 22182

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

Electromagnetic Compatibility MPE Calculation

For the

Alarm.com Model ADC-200C-EVD-IS

Tested under

Title 47 of the Code of Federal Regulations (CFR), Part 15 Subpart C

MET Report: EMC34716-MPE

Benjamin Taylor, Project Engineer Electromagnetic Compatibility Lab

Benjamin C. Taylor

Jennifer Warnell
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the applicable limits. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Title 47 of the CFR, Part 15, Subpart C under normal use and maintenance.

Shawn McMillen, Wireless Manager, Electromagnetic Compatibility Lab

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(b) Peak Power Output and RF Exposure

Test Purpose: Co-location of two modules, Z-wave module YL6-143200T5V4 and YL6-

143200C5V4IS

RF Exposure Requirements: §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions

of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's

guidelines.

RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure

(MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to

the provisions of Sec. 2.1093 of this chapter.

MPE Calculation – Co-Location of Z-wave module YL6-143200T5V4 and YL6-143200C5V4IS

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \sqrt{PG / 4\pi S}$

MPE Limit Calculation: EUT's operating frequencies @ <u>902-928MHz</u>; highest conducted power = 11.22dBm (peak) therefore, Limit for Uncontrolled exposure: 0.6 mW/cm²

EUT maximum antenna gain = 0 dBi.

where, $S = Power Density (mW/cm^2)$

P = Power Input to antenna (13.243mW)

G = Antenna Gain (1 numeric)

 $S = (33.574 \text{m}*1/4*3.14*20.0^2) = 0.0067 \text{mW/cm}^2$ @ 20cm separation

MPE Limit Calculation: EUT's operating frequencies @ 908; highest conducted power = -1.28dBm (peak) therefore, Limit for Uncontrolled exposure: 0.6 mW/cm²

EUT maximum antenna gain = 0 dBi.

where, $S = Power Density (mW/cm^2)$

P = Power Input to antenna (0.745 mW)

G = Antenna Gain (1 numeric)

 $S = (0.745 \text{m} \cdot 1/4 \cdot 3.14 \cdot 20.0^2) = 0.148 \text{mW/cm}^2$ @ 20cm separation

MPE Calculation - Co-Location of Z-wave module YL6-143200T5V4 and YL6-143200C5V4IS

MPE Summary:

Frequency Range	MPE Result (mW/cm ²)	Limit (mW/cm ²)	
902-928MHz	0.0067	0.6	
902-928MHz	0.148	0.6	

Test Requirements: [MPE1 + MPE2 < 0.6]

Test Results:

MPE(1)	MPE(2)	Calculation		S as a
Frequency 902- 928(MHZ)	Frequency 902- 928(MHZ)	[MPE(1) + MPE(2) < 0.6]	MPE Result (mW/cm ²)	fraction of the limit (%)
0.0067	0.148	0.0067 + 0.148 = 0.569m	0.1547	25.78