

Report No.:MTi210621003-01E1Date of issue:July 27, 2021Applicant:Superior communications.Product name:Wireless Charging PadModel(s):09526PGFCC ID:YJW-09526PG

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- 1. The report shall not be partially reproduced without the written consent of the laboratory;
- 2. The test results of this report are only responsible for the samples submitted;
- 3. This report is invalid without the seal and signature of the laboratory;
- 4. This report is invalid if transferred, altered or tampered with in any form without authorization;
- 5. Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of Contents

1	GI	ENER	AL INFORMATION	. 5
	1.1	Featu	JRE OF EQUIPMENT UNDER TEST (EUT)	. 5
	1.2		MODE	
	1.3	EUT	TEST SETUP	. 5
	1.4	Ancii	LARY EQUIPMENT	. 5
2	SL	лим/	ARY OF TEST RESULT	. 6
	2.1	Oper	ATION CHANNEL LIST	. 6
	2.2	TEST	CHANNEL	. 6
3	TE	ST FA	CILITIES AND ACCREDITATIONS	. 7
	3.1	Test	LABORATORY	7
	3.2	Envir	RONMENTAL CONDITIONS	. 7
	3.3	MEAS	SUREMENT UNCERTAINTY	. 7
4	LIS	ST OF	TEST EQUIPMENT	. 8
5	TE	EST RE	SULTS	. 9
	51		NNA REQUIREMENT	٥
		1.1	Standard requirement	
		1.1 1.2	EUT Antenna	
	-	2.1	Limits	-
	5	2.2	Test Procedures	
	5.	2.3	Test Setup	10
	5.	2.4	Test Result	10
	5.3	Radi	ATED EMISSION	15
	5.	3.1	Limits	15
	5.	3.2	Test Procedures	16
		3.3	Test Setup	
	5.	3.4	Test Result	17
	5.4	Occu	IPIED BANDWIDTH	
	5.	4.1	Test method	
	5.	4.2	Test result	21
Ы	нотос	GRAPI	HS OF THE TEST SETUP	22
		-	HS OF THE EUT	24
		JKAPI		24

Micr ©test			
微	测	检	测

TEST RESULT CERTIFICATION					
Applicant's name:	Superior	communications.			
Address	5027 Irwi	indale Ave.Suite Irwindale Ave, CA 91706			
Manufacturer's Name:	Dong Gu	an Superior Communications Co., Ltd			
Address		₋i xiang East Road Shui Ping Village Dalang Town, an City, Guang Dong, China.			
Product description					
Product name:	Wireless	Charging Pad			
Trademark:	PUREGE	EAR			
Model Name:	09526PG	3			
Serial Model	N/A				
Standards:	FCC Par	CC Part 15C			
Test procedure:	ANSI C6	3.10-2013			
Date of Test					
Date (s) of performance of tests	:	June 25, 2021 ~July 07, 2021			
Test Result	:	Pass			
	est (EUT)	ted by Shenzhen Microtest Co., Ltd. and the test results is in compliance with the FCC requirements. And it is fied in the report.			
Testing Engineer :		Danny An			
		(Danny Xu)			
Technical Manager	:	(Leo Su			
		(Leo Su)			
Authorized Signatory	:	Tom Xue			
		(Tom Xue)			

1 GENERAL INFORMATION

1.1 Feature of equipment under test (EUT)

Product name:	Wireless Charging Pad
Model name:	09526PG
Model difference:	N/A
Operation frequency:	115–205 kHz
Modulation type:	ASK
Max output power:	15W
Antenna type:	Coil Antenna
Power supply:	DC 12V from adapter AC 120V/60Hz
Input:	5VDC/3A, 9VDC/2A, 12VDC/1.5A
Battery:	N/A
Adapter information:	Model:09525PG Input:100-240V~0.5A 50-60Hz Output:5V 3A, 9V 2A, 12V 1.5A
EUT serial number:	MTi210621003-01-S0001

1.2 Test mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test mode	Description
Mode 1	Wireless charging

Note:

1: The test modes were carried out for all operation modes. The final test mode of the EUT was the worst test mode for EMI, and its test data was showed.

2: EUT is tested under full load.

1.3 EUT test setup

See photographs of the test setup in the report for the actual setup and connections between EUT and support equipment.

1.4 Ancillary equipment

Equipment	Model	S/N	Manufacturer
Load	YBZ1.1	/	YBZ

2 Summary of Test Result

Item	FCC Part No.	Description of Test	Result
1	FCC PART 15.203	Antenna requirement	Pass
2	FCC PART 15.207	Conducted emission	Pass
3	FCC PART 15.209	Radiated emission	Pass
4	FCC Part 15.215	20dB bandwidth	Pass

2.1 Operation channel list

Channel	Frequency (kHz)
Low	115
Middle	136
High	205

2.2 Test channel

Channel	Frequency (kHz)
Middle	136

3 Test Facilities and Accreditations

3.1 Test laboratory

Test Laboratory	Shenzhen Microtest Co., Ltd
Location	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.
FCC Registration No.:	448573

3.2 Environmental conditions

Temperature:	15°C~35°C
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	±1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

4 List of test equipment

检测

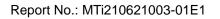
Micr©test

测

微

Equipmen t No.	Equipment Name	Manufact urer	Model	Serial No.	Calibration date	Due date
MTI-E043	EMI Test Receiver	Rohde≻ hwarz	ESCI7	101166	2021/06/02	2022/06/01
MTI-E044	TRILOG Broadband Antenna	schwarab eck	VULB 9163	9163-133 8	2021/05/30	2023/05/29
MTI-E047	Amplifier	Hewlett-P ackard	8447F	3113A061 50	2021/06/02	2022/06/01
MTI-E089	ESG Vector Signal Generator	Agilent	N5182A	MY49060 455	2021/06/02	2022/06/01
MTI-E058	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051 240	2021/06/02	2022/06/01
MTI-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350 296	2021/06/02	2022/06/01
MTI-E066	MXA Signal Analyzer	Agilent	N9020A	MY50143 483	2021/06/02	2022/06/01
MTI-E078	Synthesized Sweeper	Agilent	83752A	3610A019 57	2021/06/02	2022/06/01
MTI-E079	DC Power Supply	Agilent	E3632A	MY40027 695	2021/06/02	2022/06/01
MTI-E021	EMI Test Receiver	Rohde≻ hwarz	ESCS30	100210	2021/06/02	2022/06/01
MTI-E022	Pulse Limiter	Schwarzb eck	VSTD 9561-F	00679	2021/06/02	2022/06/01
MTI-E023	Artificial mains network	Schwarzb eck	NSLK 8127	NSLK 8127 #841	2021/06/02	2022/06/01
MTI-E046	Active Loop Antenna	Schwarzb eck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E048	Amplifier	Agilent	8449B	3008A024 00	2021/06/02	2022/06/01
MTI-E072	Thermometer Clock Humidity Monitor	-	HTC-1	/	2021/06/02	2022/06/01
MTI-E090	Test Loop Antenna	DATETEK	LA-001	77140963 4	2021/06/02	2022/06/01
	libration interval of the a international system uni		ruments is 12	or 24 months	and the calibrat	ions are

5 Test Results


5.1 Antenna requirement

5.1.1 Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device

5.1.2 EUT Antenna

The EUT antenna is Coil Antenna. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.

5.2 Conducted emission

5.2.1 Limits

For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following tables. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal using a 50 μ H/50 ohms line impedance stabilization network (LISN).

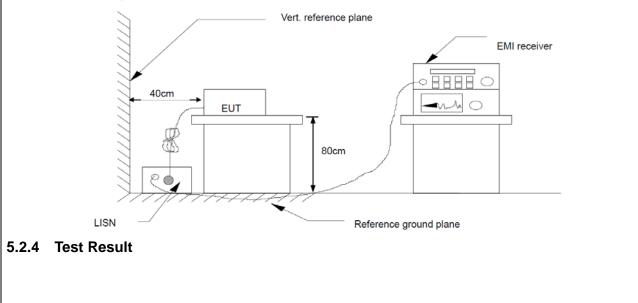
Frequency	Conducted li	mit (dBµV)
(MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.5 -5	56	46
5 -30	60	50

Note:

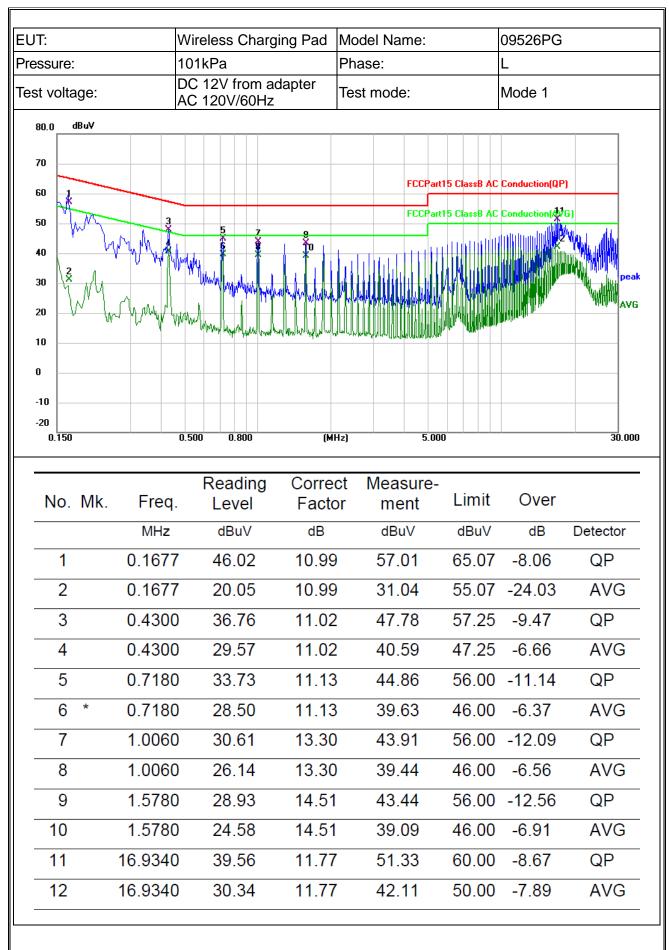
the limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

5.2.2 Test Procedures

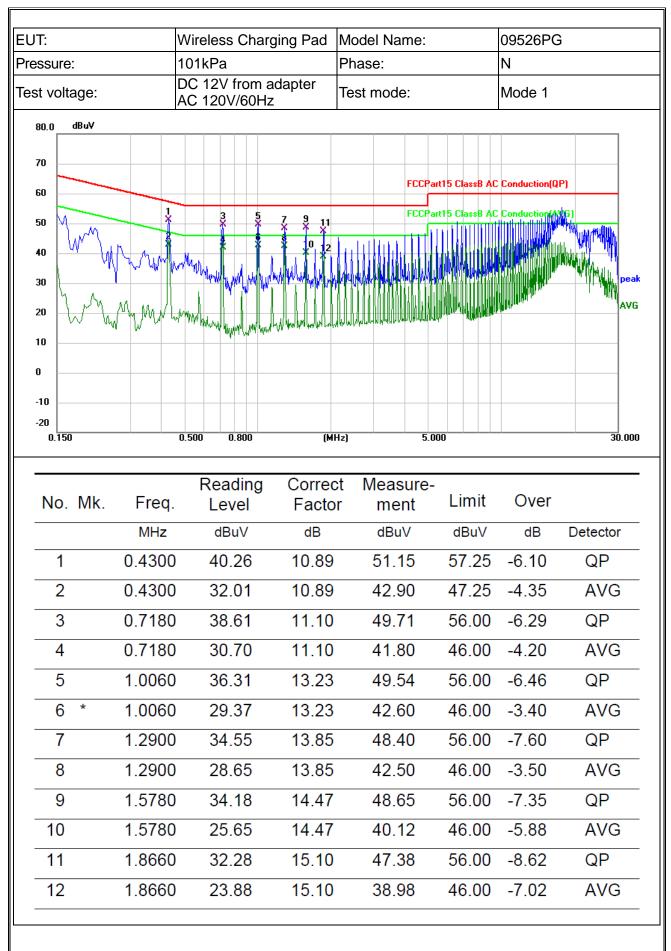
The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

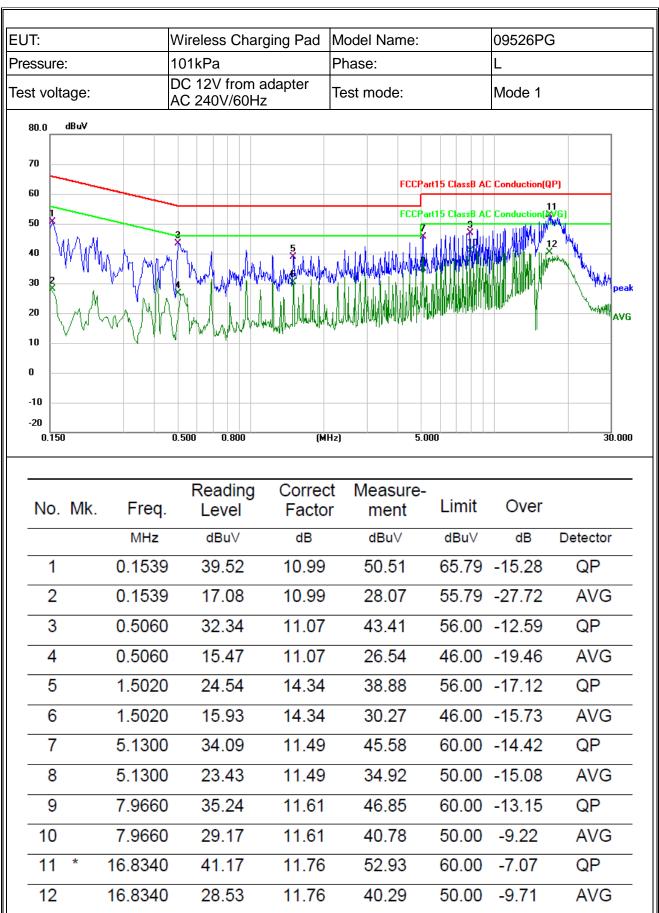

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

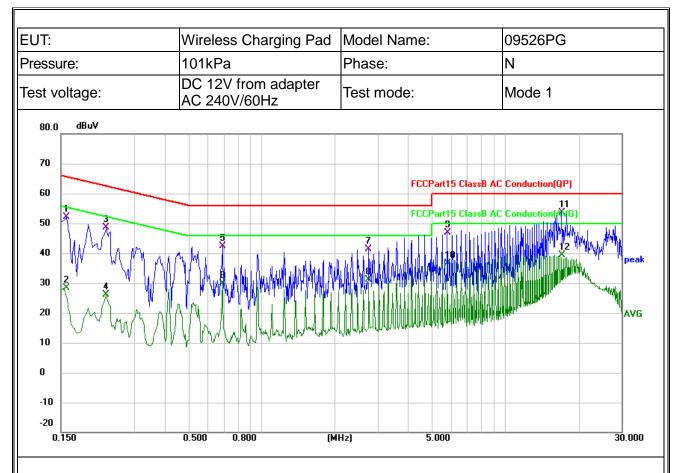
I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.


LISN is at least 80 cm from nearest part of EUT chassis.

For the actual test configuration, please refer to the related Item – photographs of the test setup.


5.2.3 Test Setup





Report No.: MTi210621003-01E1

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector
1	0.1580	41.12	10.94	52.06	65.57	-13.51	QP
2	0.1580	17.45	10.94	28.39	55.57	-27.18	AVG
3	0.2300	37.69	10.92	48.61	62.45	-13.84	QP
4	0.2300	15.30	10.92	26.22	52.45	-26.23	AVG
5	0.6900	31.39	11.07	42.46	56.00	-13.54	QP
6	0.6900	18.91	11.07	29.98	46.00	-16.02	AVG
7	2.7580	29.96	11.39	41.35	56.00	-14.65	QP
8	2.7580	19.70	11.39	31.09	46.00	-14.91	AVG
9	5.7940	35.48	11.40	46.88	60.00	-13.12	QP
10	5.7940	25.27	11.40	36.67	50.00	-13.33	AVG
11 *	17.1020	41.82	11.74	53.56	60.00	-6.44	QP
12	17.1020	27.64	11.74	39.38	50.00	-10.62	AVG

5.3 Radiated emission

5.3.1 Limits

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

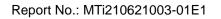
LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)		
FREQUENCT (MILZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

The limit for radiated test was performed according to FCC PART 15C.

The tighter limit applies at the band edges.


Emission level (dBuV/m)=20log Emission level (uV/m).

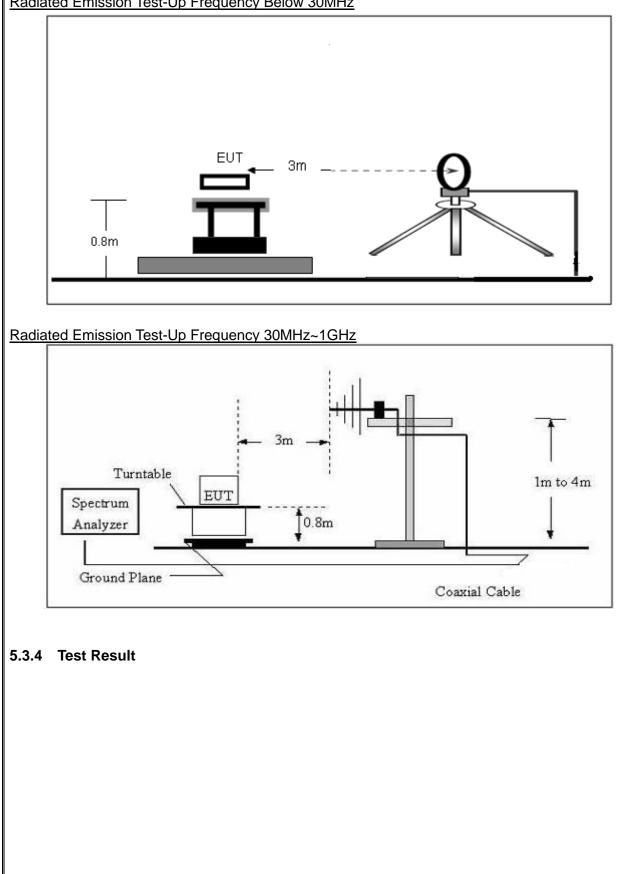
FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 - 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average			

Receiver Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP	
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP	

5.3.2 Test Procedures


- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
- h. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

5.3.3 Test Setup

Radiated Emission Test-Up Frequency Below 30MHz

3

4

6

5 *

0.1454

0.4347

1.0024

3.3843

AV

AV

peak

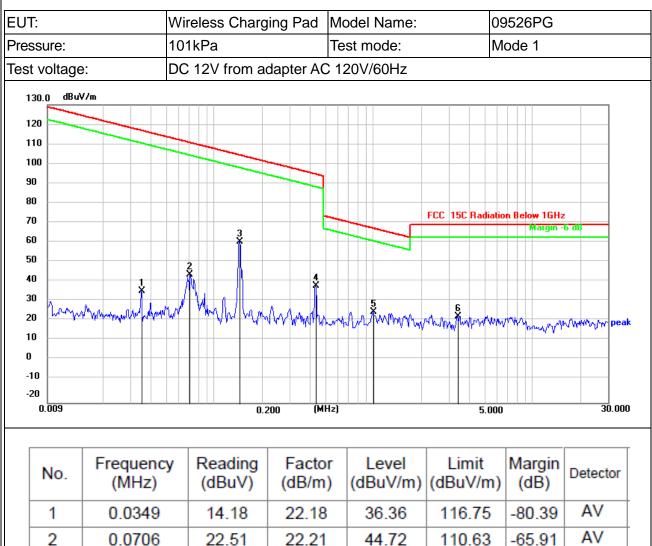
peak

-43.18

-55.62

-41.68

-45.83


104.35

94.84

67.60

69.50

Frequency range (9kHz – 30MHz)

21.84

21.73

22.43

21.87

61.17

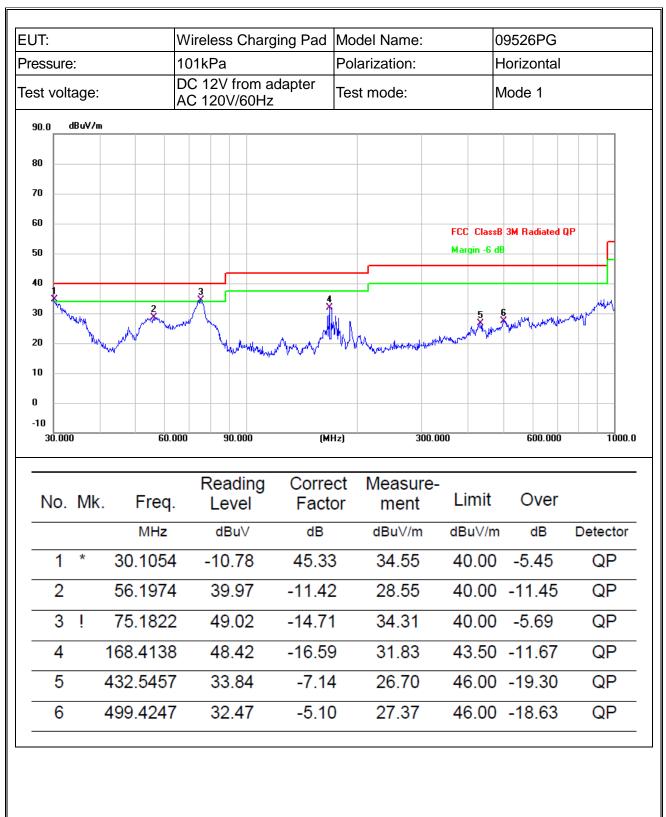
39.22

25.92

23.67

39.33

17.49

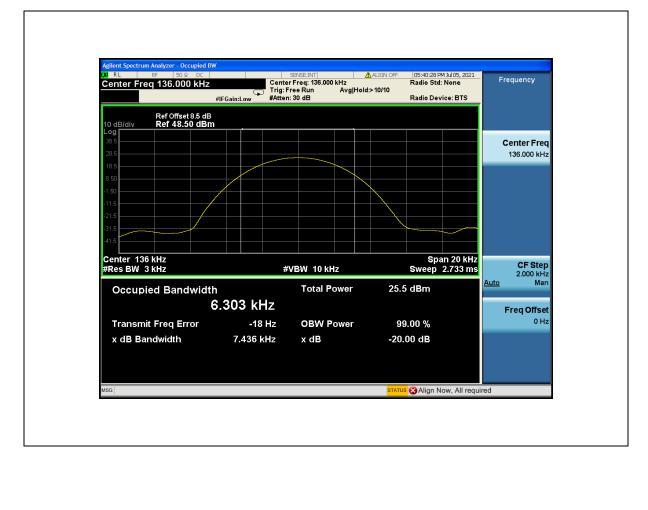

3.49

1.80

UT:	Wireless Charging Pad Ire: 101kPa		Model Name: Polarization:		09526PG Vertical			
ressure:								
est volta	age:		DC 12V from adapter AC 120V/60Hz Test mode: Mode 1					
90.0	dBu∀/m							
80								
70								
60								
50						FCC Clas Margin -6	sB 3M Radiated (dB	
40								
30					3		6	hand
			\mathcal{A}	2	Multima who	mandure man man	M M M M M M M M M M M M M M M M M M M	at the second se
	han the second	alleman	Hell Mundy	weekbaard have a walk		×		
10								
0								
-10								
-10 30.000	D	60.00	0 90.00	D (M	Hz)	300.000	600.000	1000.0
30.000		60.00	no 90.000 Readii		-	ıre-		1000.0
30.000	Mk.	Freq.		ng Corre	ect Measu	ire-		1000.0
30.000			Readi	ng Corre I Fact	ect Measu	ıre- t Limit	Over	1000.0
30.000	Mk.	Freq.	Readii Leve	ng Corre I Fact ⁄ dB	ect Measu or men dBuV/r	ıre- t Limit m dBu∨/r	Over m dB	
30.000	Mk.	Freq. MHz	Readii Leve dBu∨	ng Corre I Fact dB 2 -17.33	ect Measu or men dBuV/r 3 32.29	ure- t Limit m dBuV/r 9 40.00	Over m dB	Detector
30.000 No.	Mk. * 7 12	Freq. MHz 75.4464	Readii Leve dBuV 49.62	ng Corre I Fact / dB 2 -17.33 7 -15.06	ect Measu or men dBuV/r 3 32.29 6 22.01	ure- t Limit m dBuV/r 9 40.00 1 43.50	Over m dB) -7.71	Detector QP
30.000 No.	Mk. * 7 12 17	Freq. MHz 75.4464 26.3286	Readin Leve dBuV 49.62 37.07	ng Corre I Fact 2 -17.33 7 -15.06 1 -14.30	ect Measu or men dBuV/r 3 32.29 6 22.01 0 32.61	ure- t Limit m dBu∨/r 9 40.00 1 43.50 1 43.50	Over m dB) -7.71) -21.49	Detector QP QP
30.000 No.	Mk. * 7 12 17 33	Freq. MHz 75.4464 26.3286 75.6516	Readin Leve dBuV 49.62 37.07 46.9	ng Corre I Fact 2 -17.3 7 -15.0 1 -14.3 2 -8.5 4	ect Measu or men dBuV/r 3 32.29 6 22.01 0 32.61 4 27.68	ure- t Limit m dBu∨/r 9 40.00 1 43.50 1 43.50 3 46.00	Over m dB) -7.71) -21.49) -10.89	Detector QP QP QP

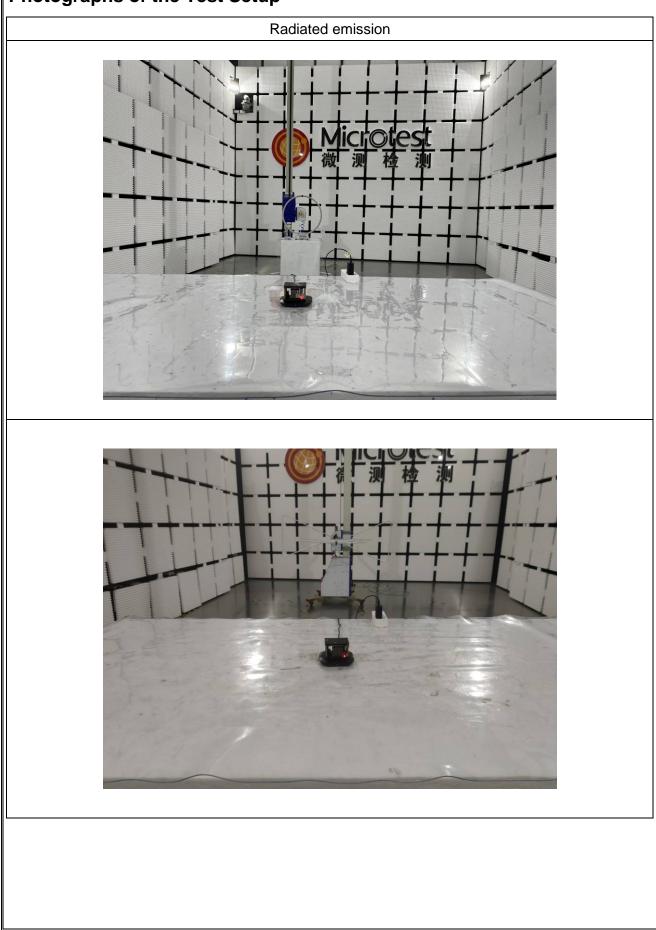
5.4 Occupied bandwidth

5.4.1 Test method

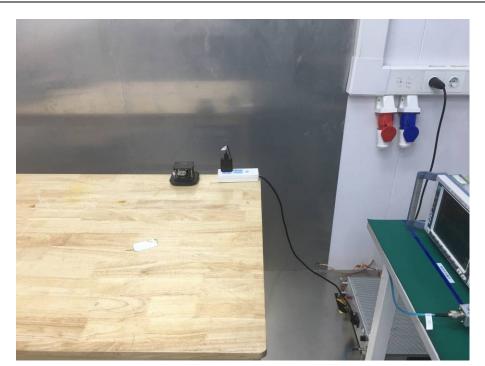

Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥1% of the 20 dB bandwidth VBW ≥RBW Sweep = auto Detector function = peak Trace = max hold The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta

marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth and 99% occupied bandwidth of the emission.

5.4.2 Test result


Frequency (kHz)	20dB emission bandwidth (kHz)	99% occupied bandwidth (kHz)
136	7.436	6.303

Test plots as below:



Photographs of the Test Setup

Conducted emission

Photographs of the EUT

See the APPENDIX 1- EUT PHOTO.

----END OF REPORT----

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China.Tel: (86-755)88850135Fax: (86-755) 88850136Web:www.mtitest.comE-mail: mti@51mti.com