

RF Exposure Evaluation

Client Information:

Applicant:	Superior Communications.
Applicant add.:	5027 Irwindale Ave.Suite Irwindale Ave California United States
Manufacturer:	Shenzhen Powerqi Technology Co.,Ltd.
Manufacturer add.:	Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang District, Shenzhen, China
Product Information:	
Product Name:	Qi2.0 Magnetic Charging Car Dock
Model No.:	06720
Brand Name:	(AT&T)
Test samples.:	AITSZ24042902001
FCC ID:	YJW-06720
Applicable standards:	FCC CFR 47 PART 1, § 1.1310 KDB 680106 D01 Wireless Power Transfer v04
Prepared By:	

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

Date of Receipt:Apr. 29, 2024Date of Test:Apr. 29, 2024 ~ May 24, 2024Date of Issue:May 24, 2024Test Result:Pass

This device described above has been tested by Guangdong Asia Hongke Test Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited, this document may be altered or revised by Guangdong Asia Hongke Test Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Sean She

Approved by:

Reviewed by:

Sean She

1 CONTENTS

co	VER P	AGE	Page
1	CON	2	
2 TES		T FACILITY	4
	2.1	Deviation from standard	4
	2.2	Abnormalities from standard conditions	4
	2.3	Test Location	4
3	GEN	JERAL INFORMATION	5
4	TES	T METHODOLOGY	6
	4.1	Measuring Standard	6
	4.2	Requirements	6
	4.3	Limits	6
	4.4	Test Setup	7
	4.5	Test Procedure	7
5	Equ	ipment Approval Considerations	8
	5.1	Description of the test mode	9
	5.2	Peripheral List	9
	5.3	Test Instruments list	9
	5.4	Duty Cycle:	10
	5.5	Test Result	11
	1.1	Test Setup photo	12

 Page 3 of 14
 Report No.: AITSZ24042902W2

Revision History

Revision	Issue Date	Revisions	Revised By
00	May 24, 2024	Initial Issue	Eder Zhan

2 TEST FACILITY

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC — Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

2.1 Deviation from standard

None

2.2 Abnormalities from standard conditions

None

2.3 Test Location

Guangdong Asia Hongke Test Technology Limited

Address: B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

3 GENERAL INFORMATION

EUT Name:	Qi2.0 Magnetic Charging Car Dock
Model No:	06720
Serial Model:	06740, 4972S
Test sample(s) ID:	AITSZ24042902001
Sample(s) Status:	Engineer sample
Operation frequency:	113kHz-205kHz, 360kHz
Modulation Technology:	MSK
Antenna Type:	Loop coil Antenna
Antenna gain:	0dBi
Hardware version .:	N/A
Software version .:	N/A
Power supply:	Input: 5V=3A,9V=2.22A,12V=1.67A Output: 15W
Model different:	Only the place of production is different
Note:	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

4 TEST METHODOLOGY

4.1 Measuring Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to §1.1310 and §2.1091 RF exposure is calculated. According KDB680106 D01: KDB 680106 D01 Wireless Power Transfer v04.

4.2 Requirements

According to the item 3 of KDB 680106 D01v04:

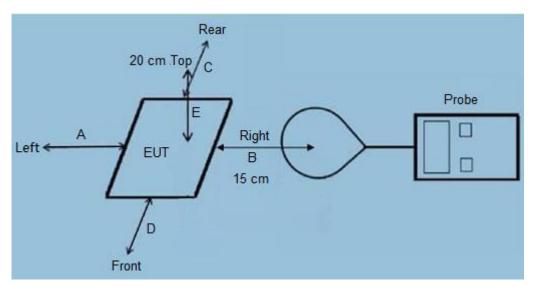
Inductive wireless power transfer applications that meet all of the following requirements are excluded from submitting an RF exposure evaluation.

(1) Mobile Device and Portable Device Configurations

(2) Equipment Authorization Procedures for Devices Operating at Frequencies Below 4 MHz

(3) The aggregate H-field strengths anywhere at or beyond 15 cm surrounding the device, and 20 cm away from the top surface.

4.3 Limits


The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) Limits for Maximum Permissible Exposure (MPE)

Frequency range Electric field strength (MHz) (V/m)		Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)			
(A) Limits for Occupational/Controlled Exposures							
0.3-3.0	614	1.63	*(100)	6			
3.0-30	1842/f	4.89/f	*(900/f ²)	6			
30-300	61.4	0.163	1.0	6			
300-1500	/	/	f/300	6			
1500-100,000	/	/	5	6			
	(B) Limits for Genera	Population/Uncontrolle	d Exposure				
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	*(180/f ²)	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	1	f/1500	30			
1500-100,000	/	/	1.0	30			
	valent power density	determined with respect	to 1.1307(c) and	d (d) of the FC			

rules. The emissions should be within the limits at 300kHz in Table 1 of 1.130/(c) and (d) of the FCC rules. The emissions should be within the limits at 300kHz in Table 1 of 1.1310(use the 300kHz limits for 150kHz:614V/m,1.63A/m).

4.4 Test Setup

4.5 Test Procedure

1) The RF exposure test was performed in anechoic chamber.

2) The measurement probe was placed at test distance (15 cm from all sides and 20 cm from the top) which is between the edge of the charger and the geometric center of probe.

3) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E,F) were completed.

4) The EUT was measured according to the dictates of KDB 680106 D01 Wireless Power Transfer v04.

Remark: The EUT's test position A, B, C, D, E and F is valid for the E and H field measurements.

5 Equipment Approval Considerations

The EUT does comply with KDB 680106 D01 as follow table.

Requirements of section 5 of KDB 680106 D01		Description
Mobile Device and Portable Device Configurations	Yes	Mobile Device
Equipment Authorization Procedures for Devices Operating at Frequencies Below 4 MHz	Yes	The device operate in the frequency range 113kHz-205kHz, 360kHz
RF Exposure compliance may be ensured only for a minimum separation distance that is greater than 20 cm, while use conditions at smaller distances can still be considered unlikely.	Yes	The EUT H-field strengths at 15 cm surrounding the device and 20 cm above the top surface.

5.1 Description of the test mode

Equipment under test was operated during the measurement under the following conditions:

Test Mode	Description					
Mode 1	AC Adapter + EUT + Phone	Record				
Mode 2	Test the EUT in idle mode.	Pre-tested				
Note: 1. All test modes were pre-tested, but we only recorded the worst case in this report.						

5.2 Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	signal cable
1	Phone	Apple	iphone 14 Pro max	N/A	N/A	N/A
2	USB-C Smart charger 65W	Jiangxi Ji 'an Aohai Technology Co., LTD	CD127	N/A	N/A	N/A

5.3 Test Instruments list

Test Equipment	Manufacturer	Model No.	SN.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
Magnetic Amplitude and Gradient Probe System	SPEAG	MAGPy-8H3D+E3D V2 & MAGPy-DAS V2	3107 & 3097	03.15.2024	03.14.2025

5.4 Duty Cycle:

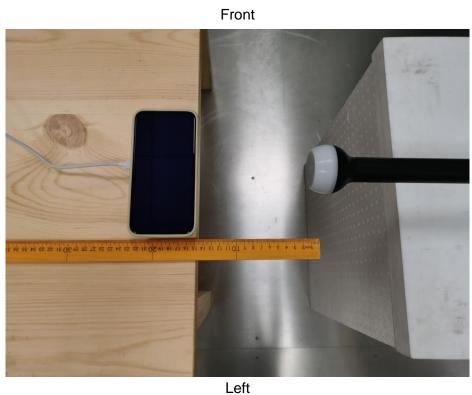
Mode	ON Time(ms)	Period(ms)	Duty Cycle(%)
Operating(113kHz-205kHz)	/	/	100
Operating(360kHz)	/	/	100

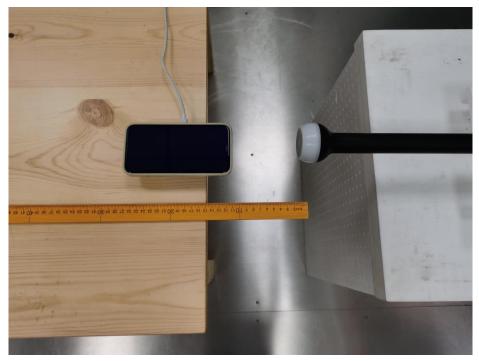
Spectrum				
Ref Level -20.00 dBm	🔵 RBW 3 kHz			()
Att OdB 👄 SWT :	5 s 😑 VBW 10 kHz			
SGL DC				
●1Pk Clrw				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
-80 dBm				
-90 dBm				
-100 dBm				
-110 dBm				
110 0.011				
CF 145.7 kHz	691	pts		500.0 ms/
			Ready	····· · · · · · · · · · · · · · · · ·

Keysight Spectrum Analyzer - Swept SA RF 50 Ω Δ DC	SENSE:PULSE		05:58:11 PM May 24, 2024
Center Freq 360.000 kHz	PNO: Wide + Trig: Free R IFGain:Low Atten: 6 dB		TRACE 1 2 3 4 5 6 TYPE WWWWW DET N N N N N N
10 dB/div Ref -20.00 dBm			
-30.0			
-40.0			
-50.0			
	Action and a second	and the second sec	ىمىر سىرىمىيەلىلەتلەرلىرىمى
-70.0			
-90.0			
-100			
-110			
Center 360.000 kHz Res BW 3.0 kHz	#VBW 10 kHz	Sweep	Span 0 Hz 500.0 ms (1001 pts)
MSG		tore and the status status status and the status s	

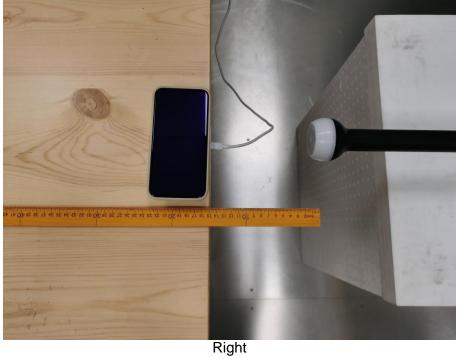
5.5 Test Result

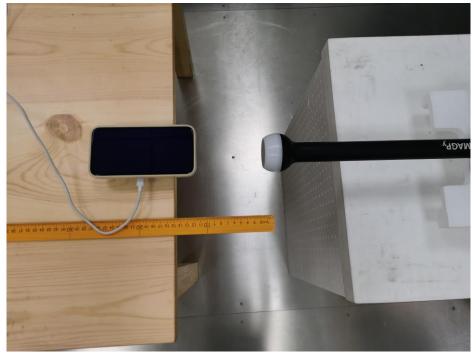
MPE							
Test distance	Battery levels	Probe from EUT Side	E-field (V/m)	H-field (A/m)			
20cm	< 1%	Тор	11.54	0.61			
15cm	< 1%	Тор	11.50	0.57			
15cm	< 1%	Left	11.53	0.60			
15cm	< 1%	Right	11.28	0.57			
15cm	< 1%	Front	11.22	0.63			
15cm	< 1%	Rear	11.50	0.49			
Limit			614	1.63			
Margin Limit (%)			1.88%	38.65%			


MPE						
Test	Pottony lovele	Probe from EUT Side	E-field	H-field		
distance	Battery levels	Probe from EUT Side	(V/m)	(A/m)		
20cm	< 50%	Тор	10.79	0.49		
15cm	< 50%	Тор	9.87	0.46		
15cm	< 50%	Left	10.67	0.48		
15cm	< 50%	Right	10.18	0.65		
15cm	< 50%	Front	10.69	0.42		
15cm	< 50%	Rear	10.22	0.41		
Limit			614	1.63		
Margin Limit (%)			1.76%	39.88%		


MPE							
Test	Pottony lovolo	Probe from EUT Side	E-field	H-field			
distance	Battery levels	Probe from EUT Side	(V/m)	(A/m)			
20cm	< 99%	Тор	10.21	0.32			
15cm	< 99%	Тор	8.93	0.35			
15cm	< 99%	Left	9.73	0.30			
15cm	< 99%	Right	9.99	0.32			
15cm	< 99%	Front	9.63	0.46			
15cm	< 99%	Rear	9.28	0.25			
Limit			614	1.63			
Margin Limit (%)			1.66%	28.22%			

Note: All test modes were pre-tested, but we only recorded the worst case in this report.


1.1 Test Setup photo



End of report