

Test Report

Report No.: MTi211025011-01E1

Date of issue: Nov. 15, 2021

Applicant: Superior Communications.

Product: Magnetic Wireless Charger

Model(s): 06496, 06514

FCC ID: YJW-06496

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of the EUT	
2	Summary of Test Result	7
3	Test Facilities and accreditations	8
	3.1 Test laboratory	8
4	List of test equipment	9
5	Test Results	10
	5.1 Standard requirement	
6	Photographs of the test setup	25
7	Photographs of the EUT	26

Test Result Certification				
Applicant: Superior Communications.				
Address:	5027 Irwindale Ave. Suite Irwindale Ave California United States.			
Manufacturer:	Shenzhen Powerqi Technology Co., Ltd.			
Address:	Room 201, 302, 401 of A4 Building, Block A, Fangxing Science and Technology Park, No. 13 of Baonan Road, Longgang District, Shenzhen, China			
Product description				
Product name: Magnetic Wireless Charger				
Trademark:	AT&T			
Model name:	06496			
Serial Model: 06514				
Standards: FCC 47 CFR Part 15 Subpart C				
Test method: ANSI C63.10-2013				
Date of Test				
Date of test:	2021-10-28~ 2021-11-04			
Test result: Pass				

Test Engineer	:	Crnay aw
		(Cindy Qin)
Reviewed By:	:	leon chen
		(Leon Chen)
Approved By:	:	Tom Xue
		(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	e: Magnetic Wireless Charger	
Model name:	06496	
Series Model: 06514		
Model difference:	All the models are the same circuit and module, except the model name	
Electrical rating:	Input: DC 5V3A / 9V2.22A / 12V1.67A Output: 5W/ 7.5W / 10W / 15W	
Accessories:	N/A	
RF specification:		
Operation frequency:	115 kHz – 205 kHz	
Modulation type:	ASK	
Antenna type: Coil Antenna		

1.2 Description of test modes

All the test modes were carried out with the EUT in normal operation, the final test mode of the EUT was the worst test mode for emission test, which was shown in this report and defined as:

No.	Emission test modes	
Mode 1	Operating mode (5W)	
Mode 2	Operating mode (7.5W)	
Mode 3	Operating mode (10W)	
Mode 4	Operating mode (15W)	
Mode 5	Stand-by mode	

The worst test mode of conducted emissions: Mode 4

The worst test mode of radiated emissions: Mode 3

1.3 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
Load	/	/	YBZ			
Adapter	HW-090200CH0	/	Huizhou BYD Electronics Co., Ltd.			
Mobile phone	S9+	/	SAMSUNG			
Support cable list						
Description	Length (m)	From	То			
/	/	/	/			

1.4 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C~35°C
Humidity:	20 % RH ~ 75 % RH
Atmospheric pressure:	98 kPa~101 kPa

1.5 Measurement uncertainty

Measurement	Uncertainty		
Conducted emission (150 kHz~30 MHz)	± 2.5 dB		
Radiated emission (9kHz~30MHz)	± 4.2 dB		
Radiated emission (30 MHz~1 GHz)	± 4.2 dB		
Radiated emission (above 1 GHz)	± 4.3 dB		
Temperature	±1 degree		
Humidity	± 5 %		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web:www.mtitest.com E-mail: mti@51mti.com

2 Summary of Test Result

No.	FCC reference	Description of test	Result		
	Emission				
1	FCC Part 15.203	Antenna requirement	Pass		
2	FCC Part 15.207	AC power line Conducted emissions	Pass		
3	FCC Part 15.209	Radiated emissions	Pass		
4	FCC Part 15.215	Occupied bandwidth	Pass		

Note: N/A means not applicable.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China
Telephone: (86-755)88850135	
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2021/06/02	2022/06/01
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTi-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2021/06/02	2022/06/01
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2021/06/02	2022/06/01
MTi-E005	EMI test receiver	R&S	ESPI7	100314	2021/06/02	2022/06/01
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2021/04/16	2022/04/15
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2021/05/06	2022/05/05
MTi-E122	MXA signal analyzer	Agilent	N9020A	MY5444085 9	2021/05/06	2022/05/05
MTi-E001	Artificial Mains Network	R&S	ESH2-Z5	100263	2021/06/02	2022/06/01
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2021/06/02	2022/06/01
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2021/06/02	2022/06/01
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2021/06/02	2022/06/01
MTi-E026	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	NTFM 8158 #199	2021/06/02	2022/06/01
MTi-E021	EMI Test Receiver	R&S	ESCS30	100210	2021/06/02	2022/06/01
MTi-E024	Artificial power network	Schwarzbeck	NSLK8127	01001	2021/06/02	2022/06/01

5 Test Results

5.1 Standard requirement

15.203 requirement

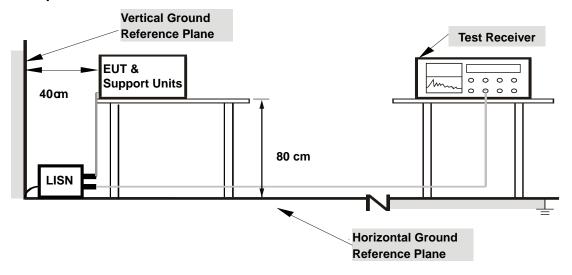
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2 Description of the EUT antenna

The antenna of EUT is coil antenna, which is integrated on the main PCB of the EUT and no consideration of replacement.

5.3 AC power line Conducted emissions

5.3.1 Limits


Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.3.2 Test Procedures

- a) The test setup is refer to the standard ANSI C63.10-2013.
- b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).
- c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.
- d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.
- e) The test data of the worst-case condition(s) was recorded.

5.3.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.3.4 Test Result

Calculation formula:

Measurement (dB μ V) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

est mode:	Mode 4	Phase:	L	
ower supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	CE chamber 1	
80.0 dBuV				
70				
60		FCCPart15 ClassB AC C	onduction(QP)	
50	1 3 5	FCCPart15 ClassB AT1 C	onduction(AVG)	
40	<u>~~^^^^</u>	the figure of the state of the	Maria maria ant	
30		10 12	peak	
20	▔ ▐ ▗▗▗▗ ▗ ▕ ▗▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗	\PYN\He-4\PV\He\T\\He\P\T\The\P\The\The\The\The\The\The\The\The\The\The		
10	17.7 11 11 11 11 11 11 11 11 11 11 11 11 11		***************************************	
0				
-10				
-20 0.150	0.500 0.800 (M	Hz) 5.000	30.000	

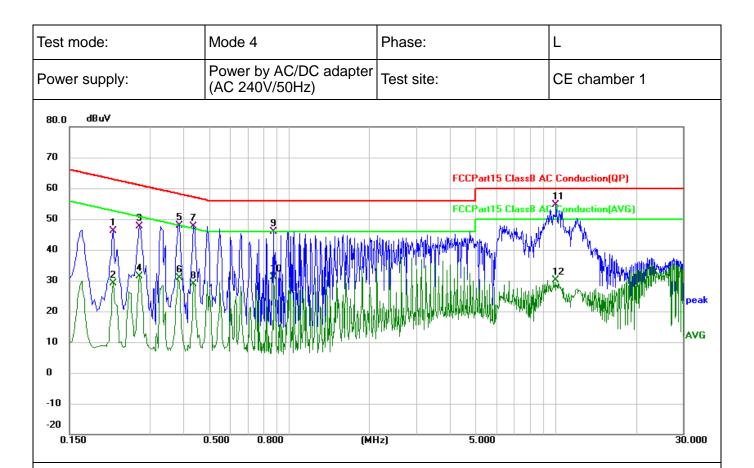
1 2	MHz 0.4900	dBuV	dB	dBuV	10.17		
	0.4900	22.04		uDu v	dBuV	dB	Detector
2		33.61	11.06	44.67	56.17	-11.50	QP
2	0.4900	19.10	11.06	30.16	46.17	-16.01	AVG
3	0.6020	33.64	11.09	44.73	56.00	-11.27	QP
4	0.6020	16.64	11.09	27.73	46.00	-18.27	AVG
5	0.8700	31.29	12.94	44.23	56.00	-11.77	QP
6	0.8700	15.91	12.94	28.85	46.00	-17.15	AVG
7	2.3540	26.91	16.09	43.00	56.00	-13.00	QP
8	2.3540	19.21	16.09	35.30	46.00	-10.70	AVG
9 *	6.9940	40.06	11.64	51.70	60.00	-8.30	QP
10	6.9940	20.86	11.64	32.50	50.00	-17.50	AVG
11	9.2140	39.14	11.59	50.73	60.00	-9.27	QP
12	9.2140	20.16	11.59	31.75	50.00	-18.25	AVG

30.000

-10 -20 0.150

0.500

0.800


Test mode	e:	Mode 4	Mode 4			Phase: N		Phase: N					
Power su	pply:	Power I (AC 120	oy AC/ OV/60H	/DC adapter Hz)	Test site: CE o			CE chaml	chamber 1				
80.0	dBuV												ı
70													
60											nduction(QP)		
50	Λ	1 3	5		3			A Parlie	issB /	T Con	nduction(AVG)		
40				ht/Myrvir/NormAweith	MANATAN B	444	MAHMA		10		My Marine	فالأسل	
30			.W. I. S	المرامل				Mil	P. Valent	**************************************			peak
20 10			/////W	₼\₼₼₼\₩	ik dan kerajik atau	.,						1	AVG
0		1 1 1 4											

(MHz)

5.000

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.4900	34.11	10.91	45.02	56.17	-11.15	QP
2	0.4900	18.12	10.91	29.03	46.17	-17.14	AVG
3	0.6060	34.35	11.00	45.35	56.00	-10.65	QP
4	0.6060	17.62	11.00	28.62	46.00	-17.38	AVG
5	0.8820	31.15	12.92	44.07	56.00	-11.93	QP
6	0.8820	13.57	12.92	26.49	46.00	-19.51	AVG
7	2.3580	27.07	16.10	43.17	56.00	-12.83	QP
8	2.3580	16.78	16.10	32.88	46.00	-13.12	AVG
9 *	7.1580	40.68	11.42	52.10	60.00	-7.90	QP
10	7.1580	21.27	11.42	32.69	50.00	-17.31	AVG
11	9.2220	39.26	11.51	50.77	60.00	-9.23	QP
12	9.2220	20.60	11.50	32.10	50.00	-17.90	AVG

	_	asure- nent Limit	O∨er	
: dBuV dB	dBuV dB d	BuV dBuV	dB	Detector
9 35.04 10.98	35.04 10.98 46	3.02 62.90	-16.88	QP
9 18.21 10.98	18.21 10.98 29	9.19 52.90	-23.71	AVG
0 36.54 11.00	36.54 11.00 47	7.54 61.00	-13.46	QP
0 20.38 11.00	20.38 11.00 3	1.38 51.00	-19.62	AVG
0 37.01 10.99	37.01 10.99 48	3.00 58.15	-10.15	QP
0 19.91 10.99	19.91 10.99 30	0.90 48.15	-17.25	AVG
36.56 11.02	36.56 11.02 47	7.58 57.10	-9.52	QP
0 17.94 11.02	17.94 11.02 28	3.96 47.10	-18.14	AVG
32.82 12.98	32.82 12.98 45	5.80 56.00	-10.20	QP
0 18.04 12.98	18.04 12.98 3 ²	1.02 46.00	-14.98	AVG
9 43.17 11.57	43.17 11.57 54	4.74 60.00	-5.26	QP
9 18.45 11.57	18.45 11.57 30	0.02 50.00	-19.98	AVG

Test i	mode:	Mode 4		Phase:	N
Powe	er supply:	Power by (AC 240V	AC/DC adapter //50Hz)	Test site:	CE chamber 1
80.0	dBuV				
70					
60					AC Conduction(QP)
50	* B	3	5	FCCPart15 ClassB	11 ACXConduction(AVG)
40	n A AAAA				r 70 M
30					12
20	}			thi thuritar obtation in the profit	peak
10	L CONTRACTOR OF THE SECTION OF THE S		MAN HAK NA KAMA AT AT ATA	1 1 100	AVG
0					
-10					
-20	150				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBu∀	dBuV	dB	Detector
1		0.3300	36.26	10.91	47.17	59.45	-12.28	QP
2		0.3300	19.59	10.91	30.50	49.45	-18.95	AVG
3		0.4940	36.02	10.92	46.94	56.10	-9.16	QP
4		0.4940	18.85	10.92	29.77	46.10	-16.33	AVG
5		1.0020	32.51	13.21	45.72	56.00	-10.28	QP
6		1.0020	17.52	13.21	30.73	46.00	-15.27	AVG
7		2.1380	28.31	15.67	43.98	56.00	-12.02	QP
8		2.1380	20.44	15.67	36.11	46.00	-9.89	AVG
9		6.5539	36.29	11.41	47.70	60.00	-12.30	QP
10		6.5539	18.79	11.41	30.20	50.00	-19.80	AVG
11	*	9.9539	42.25	11.53	53.78	60.00	-6.22	QP
12		9.9539	18.83	11.53	30.36	50.00	-19.64	AVG

5.4 Radiated emissions

5.4.1 Limits

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note 1: the tighter limit applies at the band edges.

Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

5.4.2 Test setup

According to ANSI C63.10, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device

Lowest frequency generated in the device	Upper frequency range of measurement			
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower			
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower			
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified			

Frequency range of measurements for unlicensed wireless device with digital device

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement
Below 1.705 MHz	30 MHz
1.705 MHz to 108 MHz	1000 MHz
108 MHz to 500 MHz	2000 MHz
500 MHz to 1000 MHz	5000 MHz
Above 1000 MHz	5th harmonic of the highest frequency or 40 GHz, whichever is lower

Test instrument setup

Frequency	Test receiver / Spectrum analyzer setting
9 kHz ~ 150 kHz	Quasi Peak / 200 kHz
150 kHz ~ 30 MHz	Quasi Peak / 9 kHz
30 MHz ~ 1 GHz	Quasi Peak / 120 kHz

5.4.3 Test Procedures

The EUT is placed on a non-conducting table 80cm above the ground plane for measurement blew 1 GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10-2013.

For measurement blew 1 GHz, the resolution bandwidth is set as item 5.4.2.

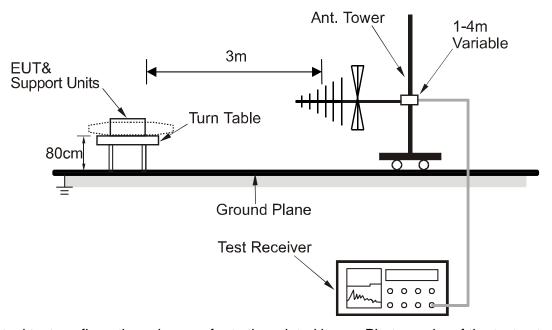
The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned form 1 to 4m meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and horizontal positions.

Special requirements for 9 KHz to 30 MHz:

The lowest height of the magnetic antenna shall be 1 m above the ground


When the EUT contains a loop antenna that can only be placed in a vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, and then orthogonal to the axis. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.

When the EUT contains a loop antenna that can be placed in a horizontal or vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, orthogonal to the axis, and then with the measurement antenna horizontal. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.



5.4.4 Test Setup

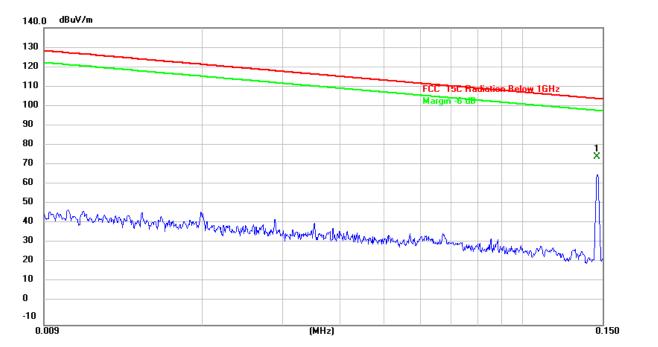
Blew 30 MHz:

Blew 1 GHz:

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.4.5 Test result

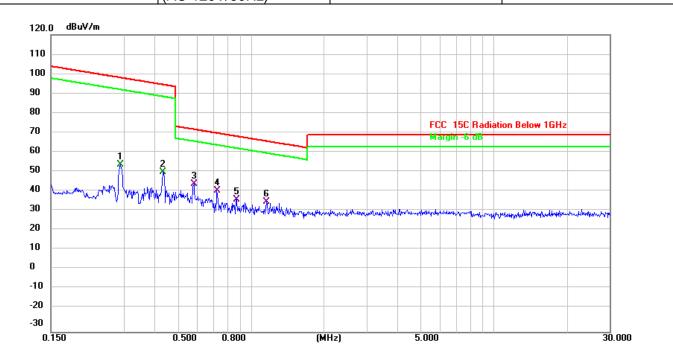
Calculation formula:


Measurement (dB μ V/m) = Reading Level (dB μ V) + Correct Factor (dB/m) Over (dB) = Measurement (dB μ V/m) – Limit (dB μ V/m)

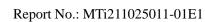
Note: For 9 kHz - 30 MHz testing, all the required orthogonal orientations of the measurement loop antenna were performed for pre-scan, the maximum radiated transmissions (Site axis) were recorded.

Frequency 9 kHz ~ 150 kHz

Test mode:	Mode 4	Polarization:	Site axis
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2



MHz dBuV dB dBuV/m dBuV/m dB Detecto 1 * 0.1455 54.48 20.48 74.96 104.29 -29.33 AVG	No. Mk.	Freq.	Reading Level		Measure- ment		Over	
1 * 0.1455 54.48 20.48 74.96 104.29 -29.33 AVG		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
7.100 01.10 20.10 11.120 20.00 7.100	1 *	0.1455	54.48	20.48	74.96	104.29	-29.33	AVG



Frequency 150 kHz ~ 30 MHz

Test mode:	Mode 4	Polarization:	Site axis
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 2

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
0.2893	33.99	20.54	54.53	98.36	-43.83	AVG
0.4351	30.39	20.58	50.97	94.83	-43.86	AVG
0.5823	24.10	20.63	44.73	72.31	-27.58	QP
0.7236	20.61	20.69	41.30	70.42	-29.12	QP
0.8710	16.11	20.75	36.86	68.82	-31.96	QP
1.1595	15.17	20.81	35.98	66.34	-30.36	QP
	MHz 0.2893 0.4351 0.5823 0.7236 0.8710	Freq. Level MHz dBuV 0.2893 33.99 0.4351 30.39 0.5823 24.10 0.7236 20.61 0.8710 16.11	Freq. Level Factor MHz dBuV dB 0.2893 33.99 20.54 0.4351 30.39 20.58 0.5823 24.10 20.63 0.7236 20.61 20.69 0.8710 16.11 20.75	Freq. Level Factor ment MHz dBuV dB dBuV/m 0.2893 33.99 20.54 54.53 0.4351 30.39 20.58 50.97 0.5823 24.10 20.63 44.73 0.7236 20.61 20.69 41.30 0.8710 16.11 20.75 36.86	Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 0.2893 33.99 20.54 54.53 98.36 0.4351 30.39 20.58 50.97 94.83 0.5823 24.10 20.63 44.73 72.31 0.7236 20.61 20.69 41.30 70.42 0.8710 16.11 20.75 36.86 68.82	Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 0.2893 33.99 20.54 54.53 98.36 -43.83 0.4351 30.39 20.58 50.97 94.83 -43.86 0.5823 24.10 20.63 44.73 72.31 -27.58 0.7236 20.61 20.69 41.30 70.42 -29.12 0.8710 16.11 20.75 36.86 68.82 -31.96

1000.000

600.000

Frequency 30 MHz ~ 1 GHz

40

30

20

10

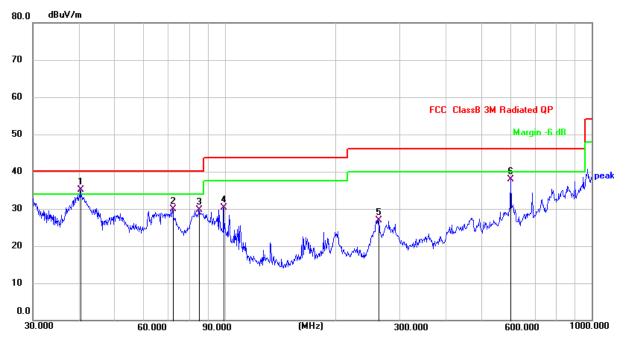
0.0 30.000

60.000

90.000

Test mode:	Mode 3	Polarization:	Horizontal		
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 1		
80.0 dBuV/m					
70					
60		FCC ClassB	3M Radiated QP		
50			Margin -6 dB		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		83.5221	42.65	-17.01	25.64	40.00	-14.36	QP
2		198.5880	49.39	-13.06	36.33	43.50	-7.17	QP
3		293.0842	38.32	-10.67	27.65	46.00	-18.35	QP
4		601.4265	41.32	-3.61	37.71	46.00	-8.29	QP
5		833.3171	39.35	-0.11	39.24	46.00	-6.76	QP
6	*	890.7277	37.93	2.11	40.04	46.00	-5.96	QP


(MHz)

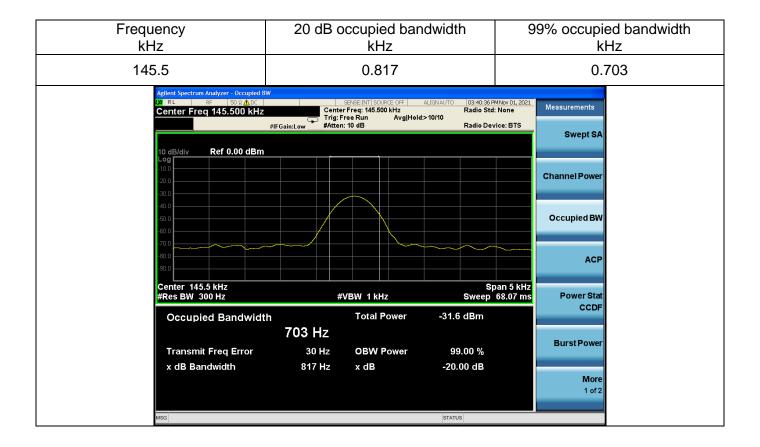
300.000

Frequency 30 MHz ~ 1 GHz

Test mode:	Mode 3	Polarization:	Vertical
Power supply:	Power by AC/DC adapter (AC 120V/60Hz)	Test site:	RE chamber 1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	40.4172	48.42	-13.28	35.14	40.00	-4.86	QP
2		72.0843	43.12	-13.15	29.97	40.00	-10.03	QP
3		84.9995	46.01	-16.40	29.61	40.00	-10.39	QP
4		99.1797	43.26	-12.88	30.38	43.50	-13.12	QP
5	2	261.9752	37.73	-10.79	26.94	46.00	-19.06	QP
6	6	01.4265	38.05	-0.23	37.82	46.00	-8.18	QP

5.5 Occupied bandwidth test


5.5.1 Test Procedures

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation.
- d) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement
- e) Set detection mode to peak and trace mode to max hold.
- f) Determine the "-xx dB down amplitude" using [(reference value) xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

5.5.2 Test Result

Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

6 Photographs of the test setup

See the APPENDIX 2 – Test Setup Photo.

7 Photographs of the EUT

See the APPENDIX 1 - EUT Photo.

----End of Report----

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web:www.mtitest.com E-mail: mti@51mti.com