

Nemko Test Report: 44215RUS1Rev2

Applicant: WatchGuard Video
3001 Summit Ave.
Plano, TX 75074
USA

Equipment Under Test: MIC-WRL-TRN-400
(E.U.T.)

FCC ID: YJV-TRN400

In Accordance With: **FCC Part 15, Subpart C, 15.247 &
Industry Canada, RSS-210, Issue 8**
Frequency Hopping Transmitters

Tested By: Nemko USA Inc.
802 N. Kealy
Lewisville, Texas 75057-3136

TESTED BY:

David Light, Senior Wireless Engineer

DATE: 15 June 2010

APPROVED BY:

Michael Cantwell, GM

DATE: 8-Dec-2011

Total Number of Pages: 32

Table of Contents

SECTION 1. SUMMARY OF TEST RESULTS	3
SECTION 2. EQUIPMENT UNDER TEST (E.U.T.)	5
SECTION 3. CHANNEL SEPARATION	7
SECTION 4. TIME OF OCCUPANCY	10
SECTION 5. PEAK POWER OUTPUT	13
SECTION 6. SPURIOUS EMISSIONS (RADIATED)	14
SECTION 7. RECEIVER SPURIOUS	20
SECTION 8. TEST EQUIPMENT LIST	21
ANNEX A - TEST DETAILS	22
ANNEX B - TEST DIAGRAMS	30

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Section 1. Summary of Test Results

Manufacturer: WatchGuard Video

Model No.: MIC-WRL-TRN-400

Sample No.: 1

General: **All measurements are traceable to national standards.**

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 & Industry Canada RSS-210, Issue 8 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted in accordance with ANSI C63.4-2003. Radiated emissions are made in a semi-anechoic chamber. A description of the test facility is on file with the FCC and Industry Canada.

New Submission

Production Unit

Class II Permissive Change

Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NVLAP Lab Code 100426-0

Nemko USA, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety, for use by the company's employees only.

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

EQUIPMENT: MIC-WRL-TRN-400

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

PROJECT NO.: 44215RUS1

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a)/RSS-Gen 7.2.2	NA
Channel Separation	15.247(a)(1)/RSS-210 A8.1(b)	Complies
Time of Occupancy	15.247(a)(1)/RSS-210 A8.1(c)	Complies
20 dB Occupied Bandwidth	15.247(a)(1)/RSS-210 A8.1(c)	Complies
Peak Power Output	15.247(b)/RSS-210 A8.4(1)	Complies
Spurious Emissions (Antenna Conducted)	15.247(d)(RSS-210 A8.5	NT
Spurious Emissions (Radiated)	15.247(d)/RSS-210 A8.5	Complies
Receiver Spurious Emissions	RSS-Gen 7.2.3	Complies

Footnotes:

- 1) The EUT is powered by 3.6 Vdc Lithium battery.
- 2) The EUT has an integral antenna. All tests were performed radiated.

Revision: Original release was 16-Jun-2010. Report reviewed 12-Aug-2011 and determined to be valid but no statements were made in the Rev1 release stating that. Report re-reviewed 8-Dec-2011 and judged to be a valid report with no changes.

Section 2. Equipment Under Test (E.U.T.)**General Equipment Information**

Frequency Band: 902 – 928 MHz
 2400 – 2483.5 MHz
 5725 – 5850 MHz

Operating Frequency Range: 902.25 to 927.50 MHz

Spread Spectrum Technique: FHSS

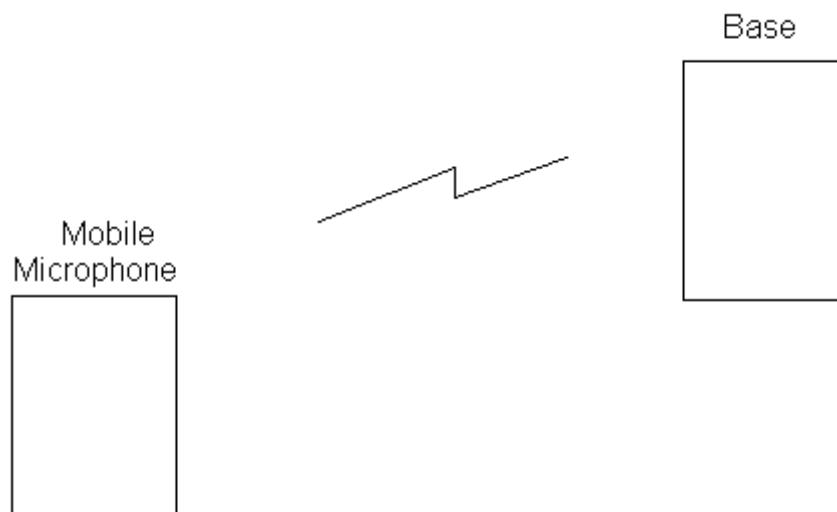
Modulation Type: FSK

Emission Designator: 200KF1D

Number of Channels: 50 to 51

Channel Spacing: 500 kHz

20 dB Bandwidth: 200 kHz


Transmitter ON time: 361.62 mS in 20 seconds

Input power: 3.6 Vdc

User Frequency Adjustment: None

Description of EUT

Microphone system is comprised of one MIC-WRL-TRN-400 "Transmitter" component and one MIC-WRL-CHG-400 "Base" component. These two components operate as a pair and comprise the operational wireless microphone system.

System Diagram

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Section 3. Channel Separation

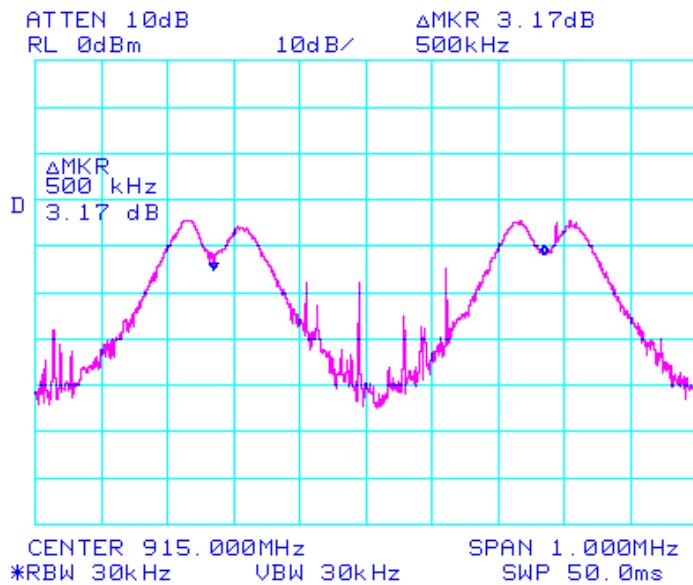
NAME OF TEST: Channel Separation	PARA. NO.: 15.247(a)(1)
TESTED BY: David Light	RSS-210 A8.1(b) DATE: 14 June 2010

Test Results: Complies.

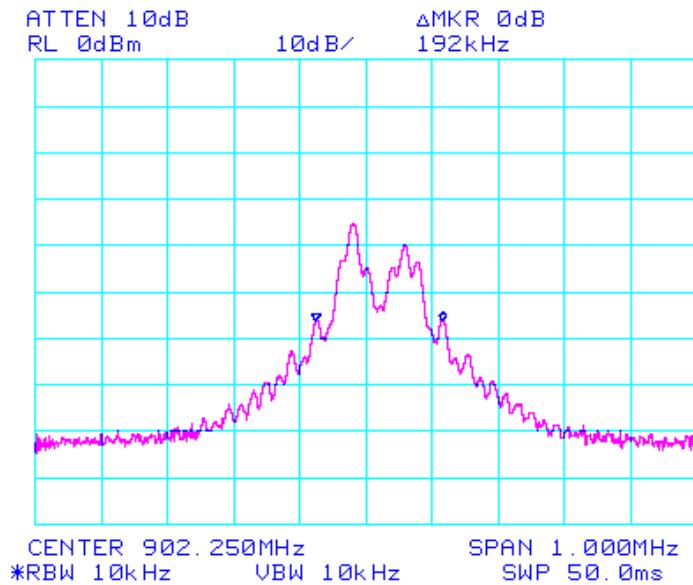
Measurement Data: See 20 dB BW plot

Measured 20 dB bandwidth: 200 kHz
Channel Separation: 500 kHz

Equipment Used: 1464-1082-802

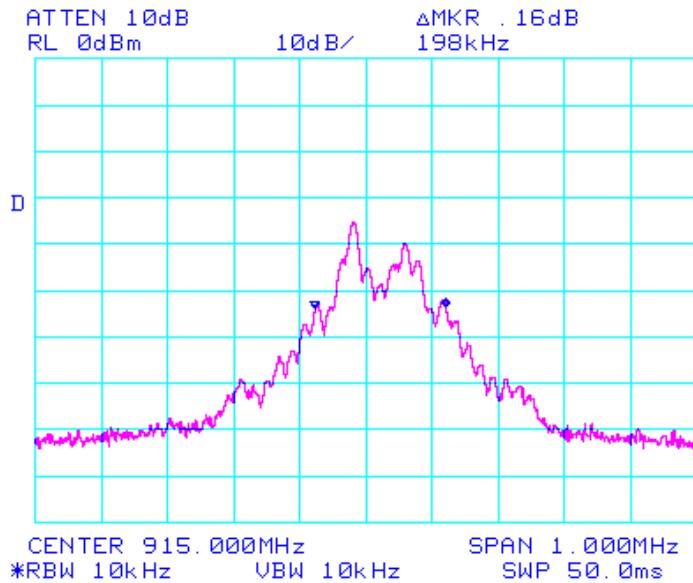

Measurement Uncertainty: 1X10⁻⁷ppm

Temperature: 22 °C

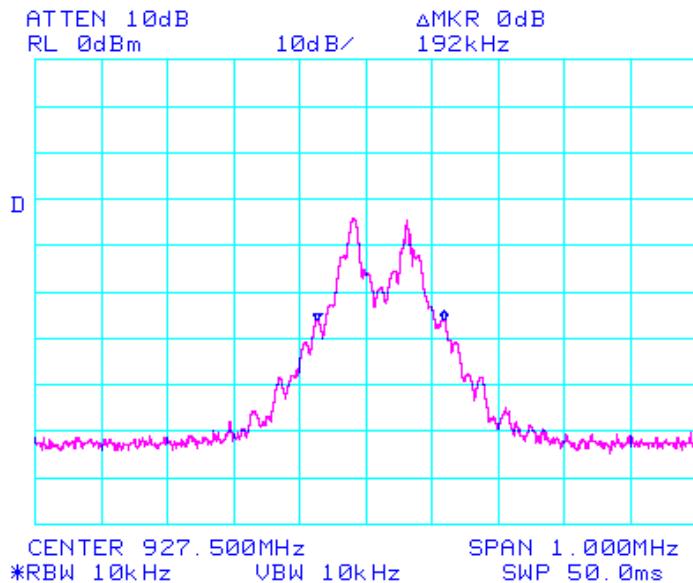

Relative Humidity: 35 %

Test Data

Channel Separation



Low Channel



Test Data – 20 dB Bandwidth

Mid Channel

High Channel

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Section 4. Time of Occupancy

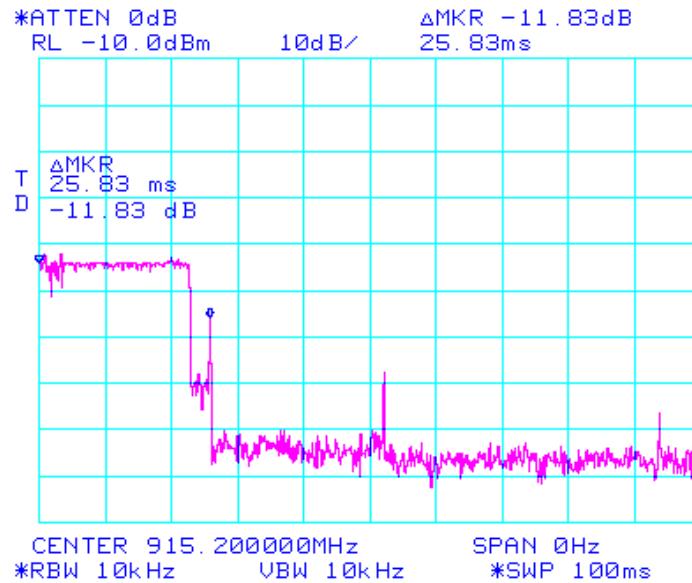
NAME OF TEST: Time of Occupancy	PARA. NO.: 15.247(a)(1)
TESTED BY: David Light	RSS-210 A8.1(c)
	DATE: 14 June 2010

Test Results: Complies.

Measurement Data:

Maximum Dwell Time On Any Channel: 361.62 mS/20 seconds

Equipment Used: 1464-1082-802

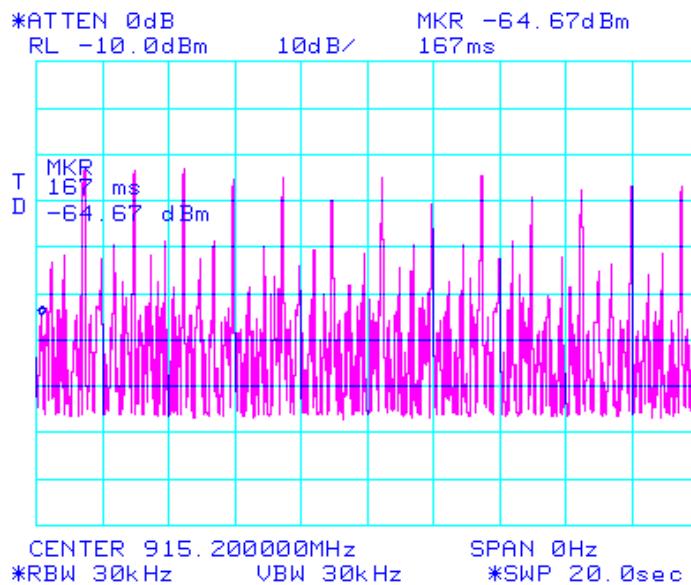

Measurement Uncertainty: 1X10⁻⁷ ppm

Temperature: 22 °C

Relative Humidity: 35 %

Test Data – Time of Occupancy

Pulse Width


$$\text{Duty Cycle Correction} = 20 \log (25.83/100) = -11.78 \text{ dB}$$

Test Data – Time of Occupancy

Transmitter ON time

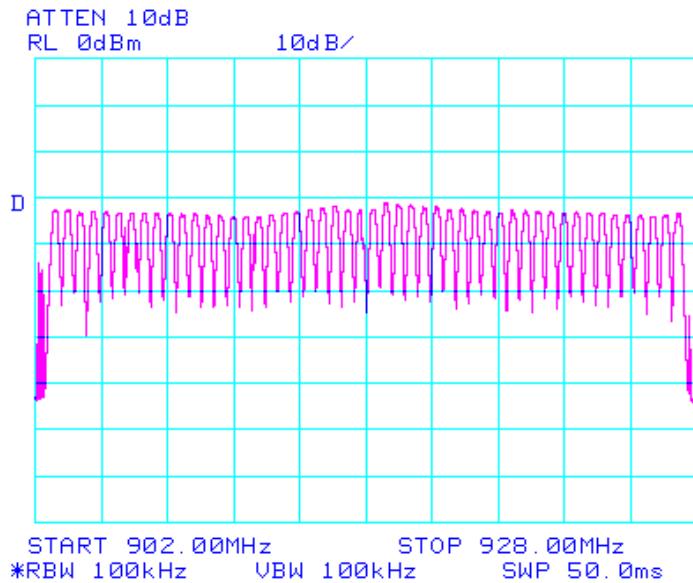
$$14 \text{ hops} @ 25.83 \text{ msec} = 361.62 \text{ msec}$$

Limit = 400 msec

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER


EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Test Data – Time of Occupancy

Number of hopping channels = 50

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Section 5. Peak Power Output

NAME OF TEST: Peak Power Output	PARA. NO.: 15.247 (b)
TESTED BY: David Light	RSS-210 A8.4(1)
	DATE: 14 June 2010

Test Results: Complies.**Measurement Data:** See attached plots.Detachable antenna? Yes No

Frequency (MHz)	Peak Power (dBm)	Peak Power (mW)	Antenna Type	Gain (dBi)	EIRP (dBm)	EIRP (mW)
902.25	22.3	169.8	Hybrid monopole	-10	12.3	17.0
915.00	21.0	125.9	Hybrid monopole	-10	11.0	12.6
927.50	18.3	67.6	Hybrid monopole	-10	8.3	6.8
Maximum EIRP (mW): 17.0*						

*The EIRP was measured using the signal substitution method. Peak output power is calculated using the stated antenna gain.

- This device was tested at +/- 15% input power per 15.31(e), with no variation in output power.
- For battery powered equipment, the device was tested with a fresh battery per 15.31(e).
- The device was tested on three channels per 15.31(l).
- This test was performed radiated.

Equipment Used: 1464-1484-1485-1480-993-1016-791**Measurement Uncertainty:** 1.7 dB**Temperature:** °C**Relative Humidity:** %**Analyzer Settings:** RBW/VBW = 1 MHz Peak Detector

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Section 6. Spurious Emissions (Radiated)

NAME OF TEST: Spurious Emissions (Radiated)	PARA. NO.: 15.247(d)
TESTED BY: David Light	RSS-210 A8.5
	DATE: 14 June 2010

Test Results:

Complies. The worst case emission was 49.1 dB μ V/m at 8235 MHz. This is 4.9 dB below the specification limit of 54 dB μ V/m.

Measurement Data: See attached table.

Duty Cycle Calculation: Refer to page 11

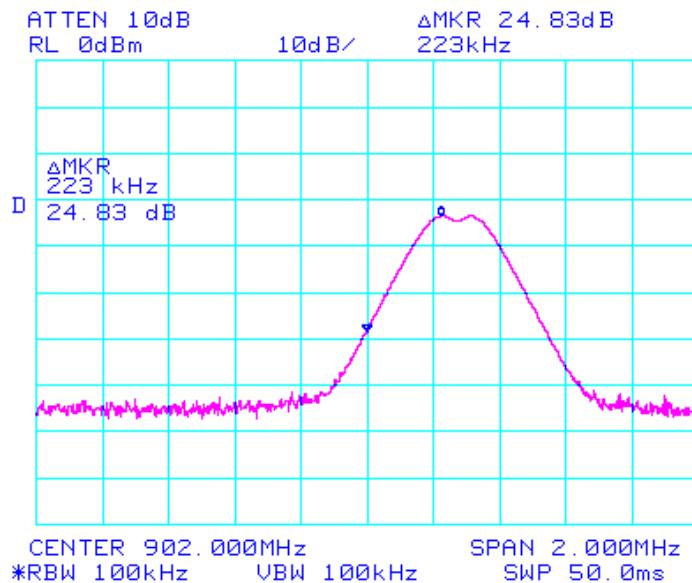
Duty Cycle correction factor(dB) = $20 \log (rf_{ON} \text{ in ms} / 100\text{ms})$

Notes:

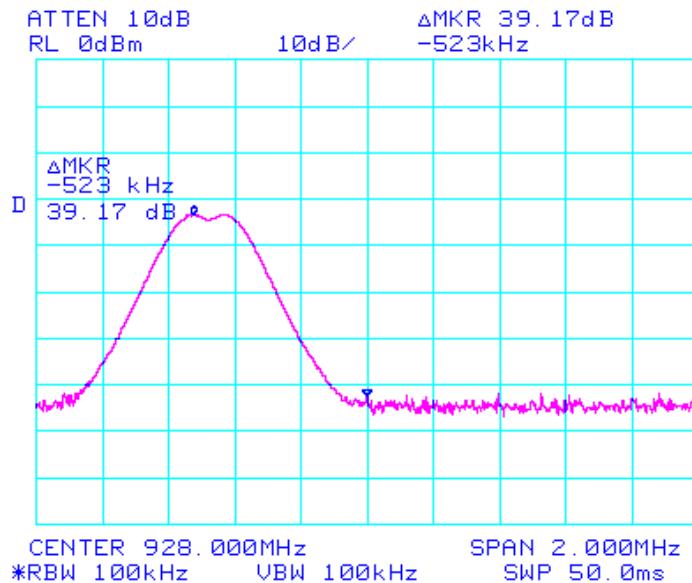
- For handheld devices, the EUT was tested on three orthogonal axis'
- The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency
- The device was tested on three channels
- All emissions within 20 dB of the specification limit are reported.

Equipment Used: 1464-1484-1485-1480-993-1016-791

Measurement Uncertainty: +/-3.6 dB


Temperature: 22 °C

Relative Humidity: 35 %


Analyzer Settings: RBW/VBW = 1 MHz Peak detector

Test Data - Radiated Emissions

Low Band Edge

Upper Band Edge

Test Data - Radiated Emissions – Lowest Channel

#	Freq MHz	Rdng dB μ V	Cable		Pre-A		Horn		Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
			Duty dB	dB	dB	dB	dB	dB					
1	2706.75	47.7	+0.8	+2.8	-32.7	+29.3	+0.0	36.2	54.0	-17.8	54.0	-17.8	Horiz
	Ave		-11.7										
2	3609.00	49.3	+0.8	+2.8	-32.7	+30.3	+0.0	38.8	54.0	-15.2	54.0	-15.2	Horiz
	Ave		-11.7										
3	4511.25	47.2	+1.0	+3.1	-32.5	+32.0	+0.0	39.1	54.0	-14.9	54.0	-14.9	Horiz
	Ave		-11.7										
4	5413.50	48.0	+1.2	+3.5	-31.8	+33.6	+0.0	54.5	74.0	-19.5	74.0	-19.5	Horiz
			+0.0										
5	5413.50	48.0	+1.2	+3.5	-31.8	+33.6	+0.0	42.8	54.0	-11.2	54.0	-11.2	Horiz
	Ave		-11.7										
6	6315.75	47.8	+1.3	+3.9	-31.3	+34.9	+0.0	56.6	74.0	-17.4	74.0	-17.4	Horiz
			+0.0										
7	6315.75	47.8	+1.3	+3.9	-31.3	+34.9	+0.0	44.9	54.0	-9.1	54.0	-9.1	Horiz
	Ave		-11.7										
8	7218.00	44.8	+1.2	+3.9	-32.2	+35.8	+0.0	41.8	54.0	-12.2	54.0	-12.2	Horiz
	Ave		-11.7										
9	8120.25	47.3	+1.4	+4.3	-33.0	+37.6	+0.0	57.6	74.0	-16.4	74.0	-16.4	Horiz
			+0.0										
10	8120.25	47.3	+1.4	+4.3	-33.0	+37.6	+0.0	45.9	54.0	-8.1	54.0	-8.1	Horiz
	Ave		-11.7										
11	9022.50	48.0	+1.4	+4.1	-33.7	+37.0	+0.0	56.8	74.0	-17.2	74.0	-17.2	Horiz
			+0.0										
12	9022.50	48.0	+1.4	+4.1	-33.7	+37.0	+0.0	45.1	54.0	-8.9	54.0	-8.9	Horiz
	Ave		-11.7										
13	2706.75	48.7	+0.8	+2.8	-32.7	+29.3	+0.0	37.2	54.0	-16.8	54.0	-16.8	Vert
	Ave		-11.7										
14	3609.00	49.5	+0.8	+2.8	-32.7	+30.3	+0.0	39.0	54.0	-15.0	54.0	-15.0	Vert
	Ave		-11.7										
15	4511.25	48.8	+1.0	+3.1	-32.5	+32.0	+0.0	40.7	54.0	-13.3	54.0	-13.3	Vert
	Ave		-11.7										
16	5413.50	47.8	+1.2	+3.5	-31.8	+33.6	+0.0	54.3	74.0	-19.7	74.0	-19.7	Vert
			+0.0										
17	5413.50	47.8	+1.2	+3.5	-31.8	+33.6	+0.0	42.6	54.0	-11.4	54.0	-11.4	Vert
	Ave		-11.7										
18	6315.75	46.5	+1.3	+3.9	-31.3	+34.9	+0.0	55.3	74.0	-18.7	74.0	-18.7	Vert
			+0.0										
19	6315.75	46.5	+1.3	+3.9	-31.3	+34.9	+0.0	43.6	54.0	-10.4	54.0	-10.4	Vert
	Ave		-11.7										
20	7218.00	47.3	+1.2	+3.9	-32.2	+35.8	+0.0	56.0	74.0	-18.0	74.0	-18.0	Vert
			+0.0										

Corr(dB μ V/m) = Rdng(dB) + Cables(dB) + PreA(dB) + Horn(dB) + Duty Cycle(dB)

Readings are Peak unless otherwise indicated.

Test Data - Radiated Emissions – Continued**Lowest Channel**

#	Freq MHz	Rdng dB μ V	Cable		Cable		Pre-A		Horn		Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
			Duty dB	dB	dB	dB	dB	dB	dB	dB					
21	7218.00 Ave	47.3	+1.2 -11.7	+3.9	-32.2	+35.8	+0.0	44.3	54.0	-9.7	Vert				
22	8120.25	46.8	+1.4 +0.0	+4.3	-33.0	+37.6	+0.0	57.1	74.0	-16.9	Vert				
23	8120.25 Ave	46.8	+1.4 -11.7	+4.3	-33.0	+37.6	+0.0	45.4	54.0	-8.6	Vert				
24	9022.50	50.7	+1.4 +0.0	+4.1	-33.7	+37.0	+0.0	59.5	74.0	-14.5	Vert				
25	9022.50 Ave	50.7	+1.4 -11.7	+4.1	-33.7	+37.0	+0.0	47.8	54.0	-6.2	Vert				

Mid Channel

#	Freq MHz	Rdng dB μ V	Cable		Cable		Pre-A		Horn		Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
			Duty dB	dB	dB	dB	dB	dB	dB	dB					
1	2745.00 Ave	51.2	+0.8 -11.7	+2.9	-32.7	+29.4	+0.0	39.9	54.0	-14.1	Vert				
2	3660.00 Ave	49.7	+0.8 -11.7	+2.8	-32.6	+30.5	+0.0	39.5	54.0	-14.5	Vert				
3	4575.00 Ave	47.8	+1.0 -11.7	+3.1	-32.5	+32.3	+0.0	40.0	54.0	-14.0	Vert				
4	5490.00	48.8	+1.2 +0.0	+3.5	-31.8	+33.6	+0.0	55.3	74.0	-18.7	Vert				
5	5490.00 Ave	48.8	+1.2 -11.7	+3.5	-31.8	+33.6	+0.0	43.6	54.0	-10.4	Vert				
6	6405.00	49.2	+1.3 +0.0	+3.9	-31.5	+35.1	+0.0	58.0	74.0	-16.0	Vert				
7	6405.00 Ave	49.2	+1.3 -11.7	+3.9	-31.5	+35.1	+0.0	46.3	54.0	-7.7	Vert				
8	7320.00	49.3	+1.2 +0.0	+4.0	-32.2	+35.8	+0.0	58.1	74.0	-15.9	Vert				
9	7320.00 Ave	49.3	+1.2 -11.7	+4.0	-32.2	+35.8	+0.0	46.4	54.0	-7.6	Vert				
10	8235.00	51.2	+1.3 +0.0	+4.3	-33.3	+37.3	+0.0	60.8	74.0	-13.2	Vert				
11	8235.00 Ave	51.2	+1.3 -11.7	+4.3	-33.3	+37.3	+0.0	49.1	54.0	-4.9	Vert				
12	9150.00	48.8	+1.3 +0.0	+4.3	-33.8	+37.0	+0.0	57.6	74.0	-16.4	Vert				

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210
 FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER
 EQUIPMENT: MIC-WRL-TRN-400 PROJECT NO.: 44215RUS1

13	9150.00	48.8	+1.3	+4.3	-33.8	+37.0	+0.0	45.9	54.0	-8.1	Vert
	Ave				-11.7						

Test Data - Radiated Emissions – Continued**Mid Channel**

#	Freq MHz	Rdng dB μ V	Cable Duty dB	Cable dB	Pre-A dB	Horn dB	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
14	2745.00	50.7	+0.8	+2.9	-32.7	+29.4	+0.0	39.4	54.0	-14.6	Horiz
	Ave			-11.7							
15	3660.00	50.2	+0.8	+2.8	-32.6	+30.5	+0.0	40.0	54.0	-14.0	Horiz
	Ave			-11.7							
16	4575.00	45.3	+1.0	+3.1	-32.5	+32.3	+0.0	37.5	54.0	-16.5	Horiz
	Ave			-11.7							
17	5490.00	49.0	+1.2	+3.5	-31.8	+33.6	+0.0	55.5	74.0	-18.5	Horiz
		+0.0									
18	5490.00	49.0	+1.2	+3.5	-31.8	+33.6	+0.0	43.8	54.0	-10.2	Horiz
	Ave			-11.7							
19	6405.00	46.3	+1.3	+3.9	-31.5	+35.1	+0.0	55.1	74.0	-18.9	Horiz
		+0.0									
20	6405.00	46.3	+1.3	+3.9	-31.5	+35.1	+0.0	43.4	54.0	-10.6	Horiz
	Ave			-11.7							
21	7320.00	47.0	+1.2	+4.0	-32.2	+35.8	+0.0	55.8	74.0	-18.2	Horiz
		+0.0									
22	7320.00	47.0	+1.2	+4.0	-32.2	+35.8	+0.0	44.1	54.0	-9.9	Horiz
	Ave			-11.7							
23	8235.00	49.7	+1.3	+4.3	-33.3	+37.3	+0.0	59.3	74.0	-14.7	Horiz
		+0.0									
24	8235.00	49.7	+1.3	+4.3	-33.3	+37.3	+0.0	47.6	54.0	-6.4	Horiz
	Ave			-11.7							
25	9150.00	46.7	+1.3	+4.3	-33.8	+37.0	+0.0	55.5	74.0	-18.5	Horiz
		+0.0									
26	9150.00	46.7	+1.3	+4.3	-33.8	+37.0	+0.0	43.8	54.0	-10.2	Horiz
	Ave			-11.7							

Highest Channel

#	Freq MHz	Rdng dB μ V	Cable Duty dB	Cable dB	Pre-A dB	Horn dB	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
1	2782.50	47.7	+0.8	+2.9	-32.7	+29.4	+0.0	36.4	54.0	-17.6	Vert
	Ave			-11.7							
2	3710.00	46.7	+0.8	+2.8	-32.5	+30.6	+0.0	36.7	54.0	-17.3	Vert
	Ave			-11.7							
3	4637.50	46.8	+1.0	+3.2	-32.5	+32.5	+0.0	39.3	54.0	-14.7	Vert
	Ave			-11.7							
4	5565.00	48.2	+1.2	+3.5	-31.9	+33.7	+0.0	54.7	74.0	-19.3	Vert
		+0.0									

Test Data - Radiated Emissions – Continued**Highest Channel**

#	Freq MHz	Rdng dB μ V	Cable	Cable	Pre-A	Horn	Dist Table	Corr dB μ V/m	Spec dB μ V/m	Margin dB	Polar Ant
			Duty dB	dB	dB	dB					
5	5565.00	48.2	+1.2 -11.7	+3.5	-31.9	+33.7	+0.0	43.0	54.0	-11.0	Vert
6	6492.50	46.7	+1.3 +0.0	+4.0	-31.7	+35.2	+0.0	55.5	74.0	-18.5	Vert
7	6492.50	46.7	+1.3 -11.7	+4.0	-31.7	+35.2	+0.0	43.8	54.0	-10.2	Vert
8	7420.00	47.8	+1.2 +0.0	+4.1	-32.0	+35.9	+0.0	57.0	74.0	-17.0	Vert
9	7420.00	47.8	+1.2 -11.7	+4.1	-32.0	+35.9	+0.0	45.3	54.0	-8.7	Vert
10	8347.50	48.8	+1.2 +0.0	+4.4	-33.5	+37.1	+0.0	58.0	74.0	-16.0	Vert
11	8347.50	48.8	+1.2 -11.7	+4.4	-33.5	+37.1	+0.0	46.3	54.0	-7.7	Vert
12	9275.00	47.5	+1.2 +0.0	+4.4	-33.8	+37.1	+0.0	56.4	74.0	-17.6	Vert
13	9275.00	47.5	+1.2 -11.7	+4.4	-33.8	+37.1	+0.0	44.7	54.0	-9.3	Vert
14	2782.50	47.3	+0.8 +0.0	+2.9	-32.7	+29.4	+0.0	47.7	74.0	-26.3	Horiz
15	2782.50	47.3	+0.8 -11.7	+2.9	-32.7	+29.4	+0.0	36.0	54.0	-18.0	Horiz
16	3710.00	46.7	+0.8 -11.7	+2.8	-32.5	+30.6	+0.0	36.7	54.0	-17.3	Horiz
17	4637.50	46.3	+1.0 -11.7	+3.2	-32.5	+32.5	+0.0	38.8	54.0	-15.2	Horiz
18	5565.00	47.5	+1.2 -11.7	+3.5	-31.9	+33.7	+0.0	42.3	54.0	-11.7	Horiz
19	6492.50	45.7	+1.3 +0.0	+4.0	-31.7	+35.2	+0.0	54.5	74.0	-19.5	Horiz
20	6492.50	45.7	+1.3 -11.7	+4.0	-31.7	+35.2	+0.0	42.8	54.0	-11.2	Horiz
21	7420.00	46.2	+1.2 +0.0	+4.1	-32.0	+35.9	+0.0	55.4	74.0	-18.6	Horiz
22	7420.00	46.2	+1.2 -11.7	+4.1	-32.0	+35.9	+0.0	43.7	54.0	-10.3	Horiz
23	8347.50	47.2	+1.2 +0.0	+4.4	-33.5	+37.1	+0.0	56.4	74.0	-17.6	Horiz
24	8347.50	47.2	+1.2 -11.7	+4.4	-33.5	+37.1	+0.0	44.7	54.0	-9.3	Horiz
25	9275.00	44.7	+1.2 -11.7	+4.4	-33.8	+37.1	+0.0	41.9	54.0	-12.1	Horiz

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Section 7. Receiver Spurious

NAME OF TEST: Spurious Emissions (Radiated)	PARA. NO.: RSS-Gen 7.2.3
TESTED BY: David Light	DATE: 14 June 2010

Test Results: Complies. The worst case emission was 35.4 dB μ V/m at 928 MHz. This is 10.6 dB below the specification limit of 40 dB μ V/m.

Measurement Data: This was the only emission within 20 dB of the specification limit.

Equipment Used: 1464-1484-1485-1480-993-1016-791

Measurement Uncertainty: +/-3.6 dB

Temperature: 22 °C

Relative Humidity: 35 %

Analyzer Settings: Emissions < 1 GHz RBW/VBW=100 kHz Peak detector
Emissions > 1 GHz RBW/VBW=1 MHz Peak detector

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Section 8. Test Equipment List

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
802	Near Field Probe Set	EMCO	7405	103	CNR	NA
993	Antenna, Horn	A.H. Systems	SAS-200/571	162	09-Sep-2009	09-Sep-2011
1016	Preamplifier	Hewlett Packard	8449A	2749A00159	23-Jun-2009	23-Jun-2010
1082	Cable, 2m	Astrolab	32027-2-29094-72TC		CBU	NA
1464	Spectrum Analyzer	Hewlett Packard	8563E	3551A04428	27-Feb-2009	27-Feb-2011
1480	Antenna, Bilog	Schaffner-Chase	CBL6111C	2572	28-Jan-2009	28-Jan-2010
1484	Cable	Storm	PR90-010-072		23-Jun-2009	23-Jun-2010
1485	Cable	Storm	PR90-010-216		23-Jun-2009	23-Jun-2010

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

ANNEX A - TEST DETAILS

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

NAME OF TEST: Channel Separation

PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

NAME OF TEST: Time of Occupancy

PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency Band (MHz)	20 dB Bandwidth	No. of Hopping Channels	Average Time of Occupancy
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 – 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
2400 – 2483.5	-----	75	=<0.4 sec. in 0.4 seconds multiplied by the number of hopping channels employed.
5725 – 5850	-----	75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz

VBW: = RBW

Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

NAME OF TEST: Occupied Bandwidth

PARA. NO.: 15.247(a)(1)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	Not defined
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Peak Power Output

PARA. NO.: 15.247(b)

Minimum Standard:

Frequency Band (MHz)	No. of Hopping Channels	Maximum Peak Power Output at Antenna Port
902 - 928	at least 50	1 watt
902 – 928	25 - 49	0.25 watts
2400 – 2483.5	75	1 watt
5725 – 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(d)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μ V/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC**Method Of Measurement:**30 MHz - 10th harmonic plot

RBW: 100 kHz

VBW: 300 kHz

Sweep: Auto

Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ: Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ: Peak of highest spurious level above center frequency.

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER
EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

NAME OF TEST: Radiated Spurious Emissions

PARA. NO.: 15.247(d)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC**15.205 Restricted Bands**

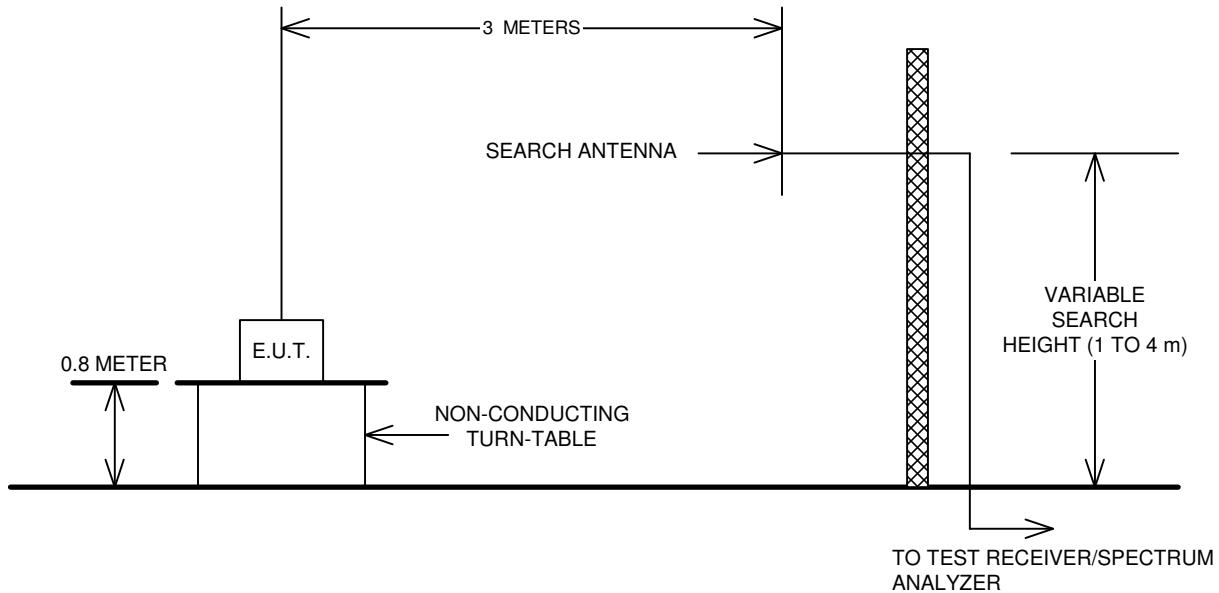
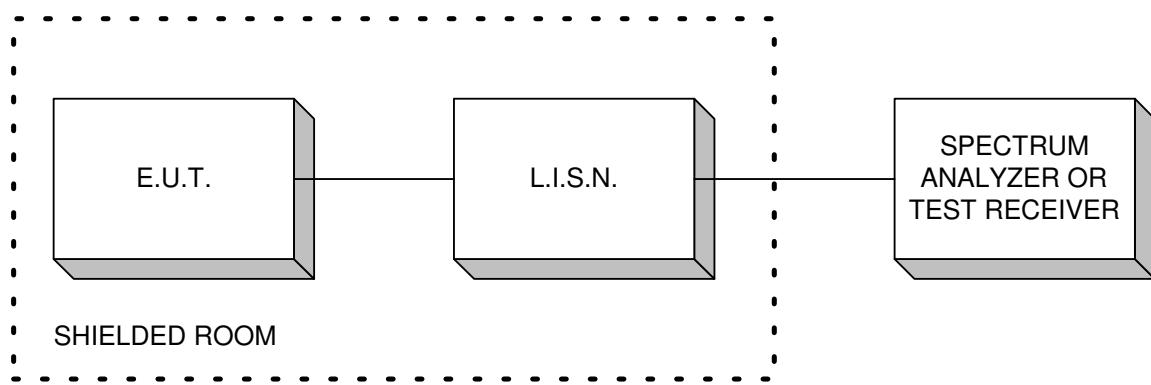
MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Number of channels tested:

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

Nemko USA, Inc.

FCC PART 15, SUBPART C & Industry Canada RSS-210



FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

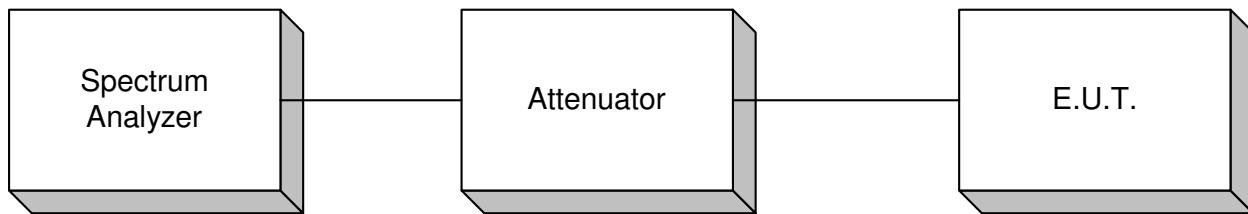
EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

ANNEX B - TEST DIAGRAMS

Test Site For Radiated Emissions**Conducted Emissions**

Nemko USA, Inc.


FCC PART 15, SUBPART C & Industry Canada RSS-210

FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: MIC-WRL-TRN-400

PROJECT NO.: 44215RUS1

Peak Power at Antenna Terminals

