

FCC & ISED CANADA CERTIFICATION TEST REPORT

FOR THE

DCR010, BLUETOOTH SPEAKER

FCC ID: YJ7DCR010B

IC ID: 9082A-DCR010B

WLL REPORT # 18284-01 REV 0

Prepared for:

Stanley Black & Decker, Inc. 701 E. Joppa Road Towson, Maryland 21286

Prepared By:

Washington Laboratories, Ltd. 4840 Winchester Boulevard. Ste #5 Frederick, Maryland 21703

Testing Certificate AT-1448

FCC & ISED Canada Certification Test Report

for the

Stanley Black & Decker, Inc.

FCC ID: YJ7DCR010B

IC ID: 9082A-DCR010B

August 16, 2023

WLL Report# 18284-01 Rev 0

Prepared by:

Ryan Mascaro RF Test Engineer

Reviewed by:

Steven D. Koster President

Abstract

This report has been prepared on behalf of Stanley Black & Decker, Inc.to support the attached application for a 2.4GHz Bluetooth Transmitter. The test report and application are submitted for a Frequency Hopping Spread Spectrum (FHSS) Transmitter under Part 15.247 of the FCC Rules and under Innovation Science and Economic Development (ISED) Canada RSS-247, Issue 2 (2/2017). This test Report documents the test configuration and test results for the Stanley Black & Decker, Inc., FN2D. The information provided in this report is only applicable to the device herein documented, as the EUT.

The radiated emissions portion of the testing was performed in the Free-space Anechoic Chamber Test-site (FACT) 3m Chamber of Washington Laboratories, Ltd., located at 4840 Winchester Boulevard, Suite #5. Frederick, MD 21703. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD.

Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Testing Certificate AT-1448 as an independent test laboratory. The Washington Laboratories, Ltd. ISED Canada number is 3035A.

The Stanley Black & Decker, Inc., FN2D complies with the requirements for a FHSS Bluetooth Transmitter under Part 15.247 of the FCC Rules and under Innovation Science and Economic Development (ISED) Canada RSS-247, Issue 2 (2/2017).

Revision History	Description of Change	Date
Rev 0	Initial Release	August 16, 2023
Rev 1	Update Antenna Gain from .76 to .45 dBi	November 8, 2023

Report 18284-01 Rev 0 Page-3 of 118

Table of Contents

1	Introduction	8
	1.1 Compliance Statement	8
	1.2 Test Scope	8
	1.3 Testing Algorithm	8
	1.4 Test Location	9
	1.5 Contract Information	
	1.6 Test and Support Personnel	9
	1.7 Test Dates	9
2	Test Results	
	2.1 Transmitter Output Power	
	2.1.1 Measurement Method and Results	. 11
	2.2 Channel Occupied Bandwidth	
	2.2.1 Measurement Method and Results	
	2.3 Number of Channels Used	
	2.3.1 Measurement Method and Results	
	2.4 Time of Occupancy (Dwell Time)	
	2.4.1 Measurement Method and Results	
	2.5 Channel Carrier Separation	
	2.5.1 Measurement Method and Results	
	2.6 Bandedge Compliance (Antenna Port Conducted)	
	2.6.1 Measurement Method and Results	
	2.7 Conducted Spurious Emissions	
	2.7.1 Measurement Method and Results	
	2.8 General Field Strength Requirements – Radiated Emissions	
	2.8.1 Requirements	
	2.8.2 Test Procedure Summary	
	2.8.3 Radiated Data Reduction and Reporting	
	2.8.4 Measurement Method and Results	
	2.9 AC Powerline Conducted Emissions	
	2.9.1 Requirements	
	2.9.2 Test Procedure	
	2.9.3 Conducted Data Reduction and Reporting	
_	2.9.4 Test Data	
3	Equipment Under Test	
	3.1 EUT Identification & Description	
	3.2 Test Configuration	
	3.3 Measurements	
	3.3.1 References	
	3.4 Measurement Uncertainty	
4	Test Equipment	118

List of Tables

Table 1: Certification Testing Summary and Compliance Results	10
Table 2: Transmitter Output Power – Test Results	11
Table 3: Channel Occupied Bandwidth – Test Results	21
Table 4: Number of Channels Used – Test Results	
Table 5: Time of Occupancy – Test Results	38
Table 6: Channel Carrier Separation – Test Results	45
Table 7: Bandedge Compliance – Test Results	49
Table 8: Radio Fundamental, EUT Axis Evaluation (8DPSK, Low Channel)	
Table 9: Radiated Emissions Test Data – 30 MHz to 1000 MHz	81
Table 10: Radiated Emissions Test Data – 1 GHz to 25 GHz (3Mbps, Low Channel)	84
Table 11: Radiated Emissions Test Data – 1 GHz to 25 GHz (3Mbps, Center Channel)	89
Table 12: Radiated Emissions Test Data – 1 GHz to 25 GHz (3Mbps, High Channel)	94
Table 13: Radiated Emissions Test Data – 1 GHz to 25 GHz (1Mbps, Center Channel)	99
Table 14: Radiated Emissions Test Data – 1 GHz to 25 GHz (2Mbps, Center Channel)	104
Table 15: AC Powerline Conducted Emissions Test Data	110
Table 16: Radio Device Summary	113
Table 17: System Configuration List	114
Table 18: Support Equipment	114
Table 19: Cable Configuration	115
Table 20: Expanded Uncertainty List	117
Table 21: Test Equipment List	118

List of Figures

Figure 1: GFSK (1Mbps) – Low Channel, Peak Power Output	12
Figure 2: GFSK (1Mbps) – Center Channel, Peak Power Output	13
Figure 3: GFSK (1Mbps) – High Channel, Peak Power Output	14
Figure 4: $\pi/4DQPSK$ (2Mbps) – Low Channel, Peak Power Output	15
Figure 5: π/4DQPSK (2Mbps) – Center Channel, Peak Power Output	16
Figure 6: π/4DQPSK (2Mbps) – High Channel, Peak Power Output	17
Figure 7: 8DPSK (3Mbps) – Low Channel, Peak Power Output	
Figure 8: 8DPSK (3Mbps) – Center Channel, Peak Power Output	19
Figure 9: 8DPSK (3Mbps) – High Channel, Peak Power Output	20
Figure 10: GFSK (1Mbps) – Low Channel, Occupied Bandwidth	22
Figure 11: GFSK (1Mbps) – Center Channel, Occupied Bandwidth	23
Figure 12: GFSK (1Mbps) – High Channel, Occupied Bandwidth	24
Figure 13: π/4DQPSK (2Mbps) – Low Channel, Occupied Bandwidth	25
Figure 14: π/4DQPSK (2Mbps) – Center Channel, Occupied Bandwidth	26
Figure 15: π/4DQPSK (2Mbps) – High Channel, Occupied Bandwidth	27
Figure 16: 8DPSK (3Mbps) – Low Channel, Occupied Bandwidth	28
Figure 17: 8DPSK (3Mbps) – Center Channel, Occupied Bandwidth	29
Figure 18: 8DPSK (3Mbps) – High Channel, Occupied Bandwidth	30
Figure 19: GFSK (1Mbps) – Number of Channels Used, Plot 1	32
Figure 20: GFSK (1Mbps) – Number of Channels Used, Plot 2	33
Figure 21: π/4DQPSK (2Mbps) – Number of Channels Used, Plot 1	34
Figure 22: π/4DQPSK (2Mbps) – Number of Channels Used, Plot 2	35
Figure 23: 8DPSK (3Mbps) – Number of Channels Used, Plot 1	
Figure 24: 8DPSK (3Mbps) – Number of Channels Used, Plot 2	37
Figure 25: GFSK Transmitter 5-Second Evaluation (Hopping)	
Figure 26: GFSK Transmitter Evaluation (Hopping) – Single Dwell Time	40
Figure 27: π/4DQPSK Transmitter 5-Second Evaluation (Hopping)	
Figure 28: π/4DQPSK Transmitter Evaluation (Hopping) – Single Dwell Time	42
Figure 29: 8DPSK Transmitter 5-Second Evaluation (Hopping)	43
Figure 30: 8DPSK Transmitter Evaluation (Hopping) – Single Dwell Time	44
Figure 31: GFSK (1Mbps) – Channel Separation	46
Figure 32: π/4DQPSK (2Mbps) – Channel Separation	47
Figure 33: 8DPSK (3Mbps) – Channel Separation	48
Figure 34: GFSK (1Mbps) – Lower Band Edge	
Figure 35: GFSK (1Mbps) – Upper Band Edge	51
Figure 36: π/4DQPSK (2Mbps) – Lower Band Edge	52
Figure 37: π/4DQPSK (2Mbps) – Upper Band Edge	
Figure 38: 8DPSK (3Mbps) – Lower Band Edge	
Figure 39: 8DPSK (3Mbps) – Upper Band Edge	
Figure 40: 8DPSK (3Mbps) Low Channel, Conducted Spurious – Plot 1	
Figure 41: 8DPSK (3Mbps) Low Channel, Conducted Spurious – Plot 2	58

Figure 42: 8DPSK (3Mbps) Low Channel, Conducted Spurious – Plot 3	59
Figure 43: 8DPSK (3Mbps) Low Channel, Conducted Spurious – Plot 4	60
Figure 44: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 1	61
Figure 45: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 2	62
Figure 46: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 3	63
Figure 47: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 4	64
Figure 48: 8DPSK (3Mbps) High Channel, Conducted Spurious – Plot 1	65
Figure 49: 8DPSK (3Mbps) High Channel, Conducted Spurious – Plot 2	66
Figure 50: 8DPSK (3Mbps) High Channel, Conducted Spurious – Plot 3	67
Figure 51: 8DPSK (3Mbps) High Channel, Conducted Spurious – Plot 4	68
Figure 52: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 1	70
Figure 53: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 2	
Figure 54: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 3	72
Figure 55: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 4	73
Figure 56: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 1	74
Figure 57: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 2	75
Figure 58: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 3	76
Figure 59: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 4	77
Figure 60: 8DPSK (3Mbps) Low Channel – 12 GHz to 18 GHz (Corrected Field Strength)	86
Figure 61: 8DPSK (3Mbps) Low Channel – 18 GHz to 25 GHz (Corrected Field Strength)	87
Figure 62: 8DPSK (3Mbps) Center Channel – 12 GHz to 18 GHz (Corrected Field Strength)	91
Figure 63: 8DPSK (3Mbps) Center Channel – 18 GHz to 25 GHz (Corrected Field Strength)	92
Figure 64: 8DPSK (3Mbps) High Channel – 12 GHz to 18 GHz (Corrected Field Strength)	96
Figure 65: 8DPSK (3Mbps) High Channel – 18 GHz to 25 GHz (Corrected Field Strength)	97
Figure 66: GFSK (1Mbps) Center Channel – 12 GHz to 18 GHz (Corrected Field Strength)	101
Figure 67: GFSK (1Mbps) Center Channel – 18 GHz to 25 GHz (Corrected Field Strength)	102
Figure 68: π/4DQPSK (2Mbps) Center Channel – 12 GHz to 18 GHz (Corrected Field Strength)	106
Figure 69: π/4DQPSK (2Mbps) Center Channel – 18 GHz to 25 GHz (Corrected Field Strength)	107
Figure 70: EUT Testing Configuration (Example Only)	112

1 Introduction

1.1 Compliance Statement

The Stanley Black & Decker, Inc., FN2D complies with the requirements for a FHSS Bluetooth Transmitter under Part 15.247 of the FCC Rules and under Innovation Science and Economic Development (ISED) Canada RSS-247, Issue 2 (2/2017).

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with C63.10 "ANSI Procedures for Compliance Testing of Unlicensed Wireless Devices". The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation. Table 1 provides the series and results of testing for compliance with for a FHSS device; full test results are shown in subsequent report sub-sections.

1.3 Testing Algorithm

The DCR010, Bluetooth Speaker was provided to the test laboratory, in two sample configurations: (1) a conducted (at the antenna port) sample and (2) a wireless radiated (PCB trace antenna) sample. The EUT low, center, and high channels were tunable through the support laptop's interface. Prior to all testing, the transmitter power was adjusted [via software] to the maximum allowable setting withing the support software, indicated by a numerical value of "8". This setting achieved the reported peak transmit output power denoted in Table 2. The EUT was tested in a manner that produced the worst-case emission levels, which are provided in the test results data section(s) of this report.

1.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Frederick, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Testing Certificate AT-1448 as an independent test laboratory. The Washington Laboratories, Ltd. ISED Canada number is 3035A.

1.5 Contract Information

Customer: Stanley Black & Decker, Inc.

Purchase Order Number: M865023a

Quotation Number: 74164

1.6 Test and Support Personnel

Washington Laboratories, LTD Ryan Mascaro and Thuan Ta

Customer Representative Kirwan Magdamo

1.7 Test Dates

8/1/2023 to 8/10/2023 (also see Section 4 of this report)

Table 1: Certification Testing Summary and Compliance Results

FCC Rule Part	ISED Canada Rule Part	Test Description	Result
15.247(b)(1)	RSS-247; 5.4(b)	Transmit Output Power Pa	
15.247(a)(1) 2.1049	RSS-247; 5.1(a)	Channel Occupied Bandwidth Pas	
15.247(a)(1)(iii)	RSS-247; 5.1(d)	Number of Channels Used	Pass
15.247(a)(1)(iii)	RSS-247; 5.1(d)	Time of Occupancy (Dwell Time)	Pass
15.247(a)(1)	RSS-247; 5.1(b)	Channel Carrier Separation	Pass
15.247(d) DA 00-705	RSS-247; 5.5	Bandedge Compliance (20dB)	
15.247(d)	RSS-247; 5.5	Conducted Spurious Emissions	Pass
15.205(a) 15.209(a)	RSS-Gen; 8.9 RSS-Gen; 8.10	General Field Strength Requirements	Pass
15.203	RSS-Gen; 6.8	Antenna Requirement Pass	
15.207	RSS-Gen; 8.8	AC Powerline Conducted Emissions Pass	

 $[\]dagger$ the EUT employs a custom PCB trace antenna that cannot be removed. The EUT does not have an antenna connector.

2 Test Results

2.1 Transmitter Output Power

For frequency hopping systems operating in the 2400 MHz to 2483.5 MHz band, that employ at least 75 non-overlapping hopping channels, the maximum conducted output power (measured at the antenna port) shall not exceed 30 dBm (1 Watt). Additionally, ISED Canada requires that the EIRP shall not exceed 4 Watts, except as provided in RSS-247, Section 5.4(e).

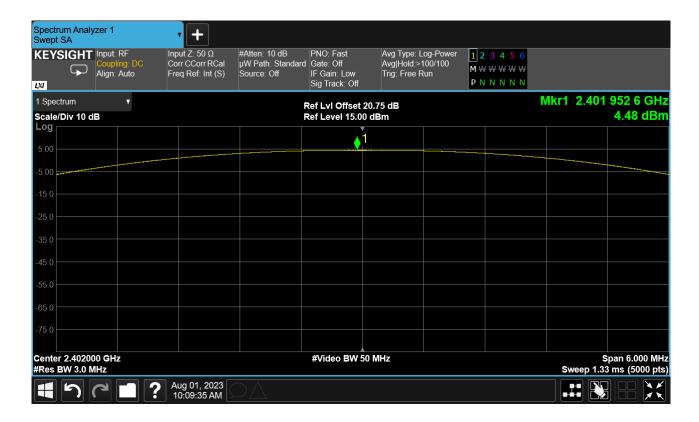
2.1.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.5.

The EUT was configured in a fully-modulated mode, with the hopping stopped.

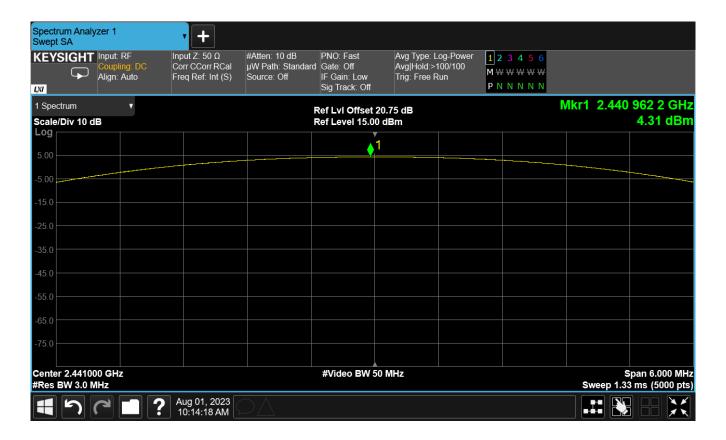
The EUT employs a PCB trace antenna with a maximum gain of +0.45 dBi.

4.70 + .45 = 5.15 dBm EIRP (calculated), which is far below the 4W limit.

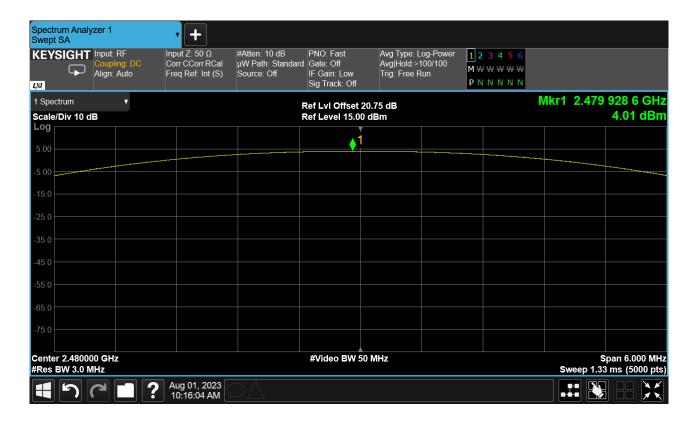

Table 2: Transmitter Output Power – Test Results

Modulation	Mode (Data Rate)	Frequency (MHz)	Peak Power (dBm)		
	DH5 (1Mbps)	2402 MHz	4.48		
GFSK		2441 MHz	4.31		
		2480 MHz	4.01		
	2DH5 (2Mbps)	2402 MHz	4.44		
π/4DQPSK		2441 MHz	4.28		
		2480 MHz	3.97		
8DPSK	3DH5 (3Mbps)	2402 MHz	4.70		
		2441 MHz	4.53		
		2480 MHz	4.23		

Report 18284-01 Rev 0 Page-11 of 118


Figure 1: GFSK (1Mbps) – Low Channel, Peak Power Output

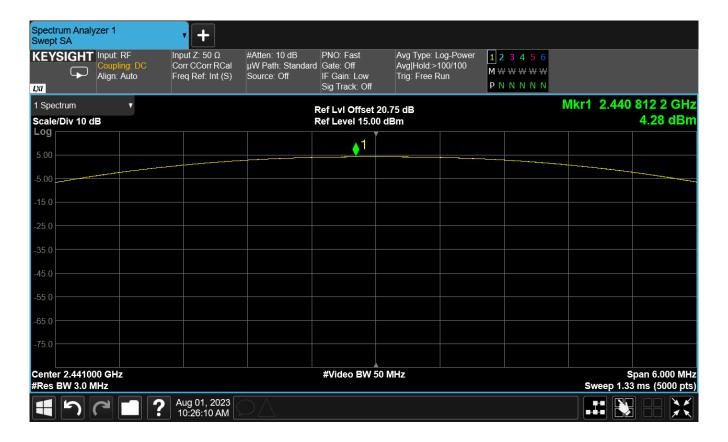
Report 18284-01 Rev 0 Page-12 of 118


Figure 2: GFSK (1Mbps) – Center Channel, Peak Power Output

Report 18284-01 Rev 0 Page-13 of 118

Figure 3: GFSK (1Mbps) – High Channel, Peak Power Output

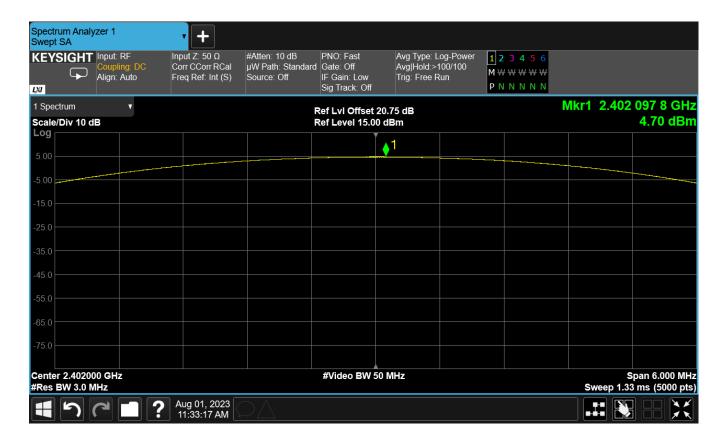
Report 18284-01 Rev 0 Page-14 of 118


Figure 4: π/4DQPSK (2Mbps) – Low Channel, Peak Power Output

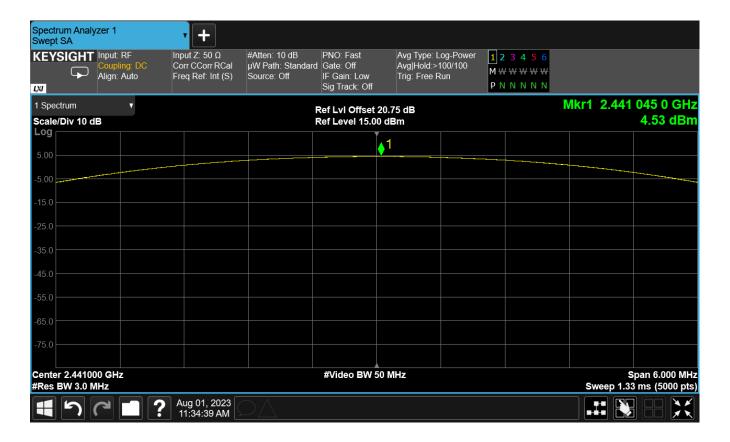
Report 18284-01 Rev 0 Page-15 of 118

Figure 5: π/4DQPSK (2Mbps) – Center Channel, Peak Power Output

Report 18284-01 Rev 0 Page-16 of 118


Figure 6: $\pi/4DQPSK$ (2Mbps) – High Channel, Peak Power Output

Report 18284-01 Rev 0 Page-17 of 118


Figure 7: 8DPSK (3Mbps) – Low Channel, Peak Power Output

Report 18284-01 Rev 0 Page-18 of 118


Figure 8: 8DPSK (3Mbps) – Center Channel, Peak Power Output

Report 18284-01 Rev 0 Page-19 of 118

Figure 9: 8DPSK (3Mbps) – High Channel, Peak Power Output

Report 18284-01 Rev 0 Page-20 of 118

2.2 Channel Occupied Bandwidth

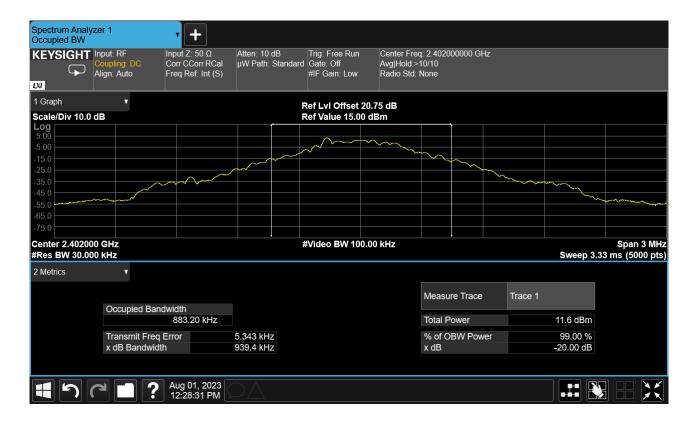
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 MHz to 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

The occupied bandwidth of a frequency hopping channel is the 20dB emission bandwidth, measured with the hopping stopped. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.

2.2.1 Measurement Method and Results

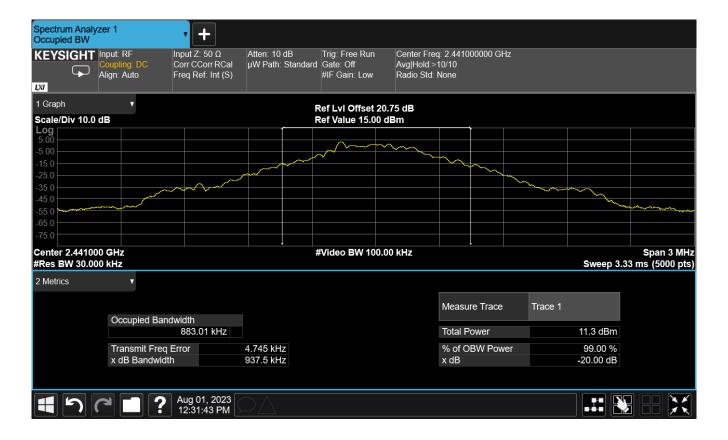
This test was performed as specified in ANSI C63.10 (2013), Section 6.9.2

The EUT was configured in a fully-modulated mode, with the hopping stopped.

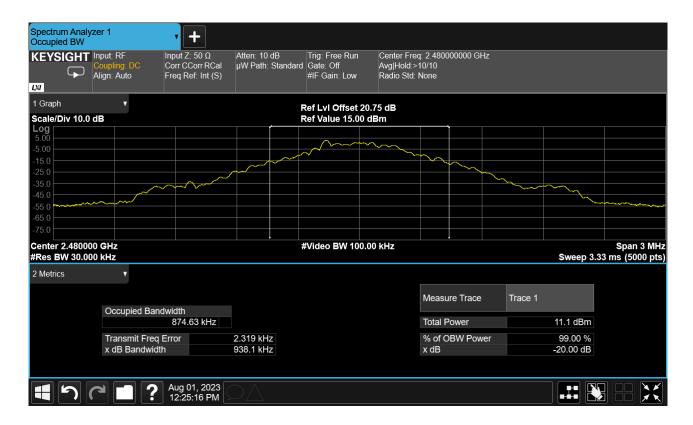

Table 3: Channel Occupied Bandwidth – Test Results

Modulation	Mode (Data Rate)	Frequency (MHz)	20dB Bandwidth	99% Bandwidth	
	DH5 (1Mbps)	2402	939.40 kHz	883.20 kHz	
GFSK		2441	937.50 kHz	883.01 kHz	
		2480	938.10 kHz	874.63 kHz	
	20115	2402	1.270 MHz	1.170 MHz	
π/4DQPSK	2DH5 (2Mbps)	2441	1.267 MHz	1.169 MHz	
		2480	1.259 MHz	1.168 MHz	
	20115	2402	1.244 MHz	1.157 MHz	
8DPSK	3DH5 (3Mbps)	2441	1.244 MHz	1.156 MHz	
		2480	1.244 MHz	1.155 MHz	

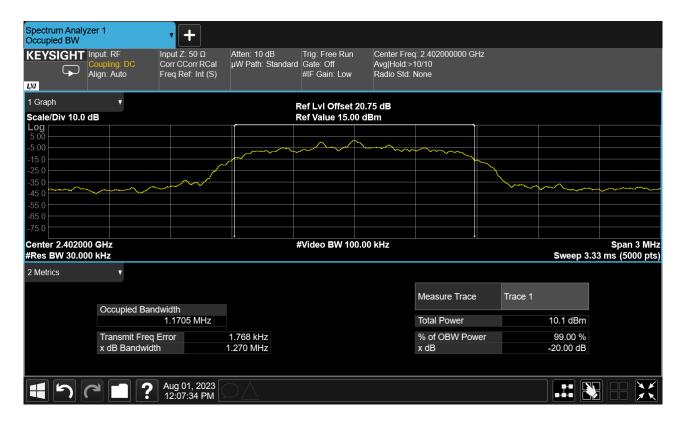
Report 18284-01 Rev 0 Page-21 of 118


Figure 10: GFSK (1Mbps) – Low Channel, Occupied Bandwidth

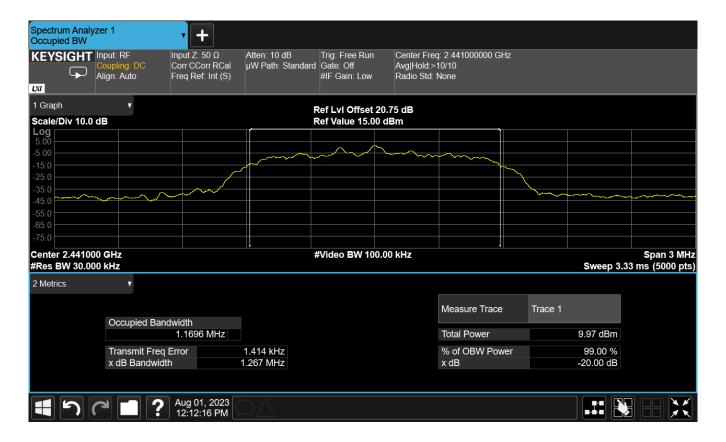
Report 18284-01 Rev 0 Page-22 of 118


Figure 11: GFSK (1Mbps) - Center Channel, Occupied Bandwidth

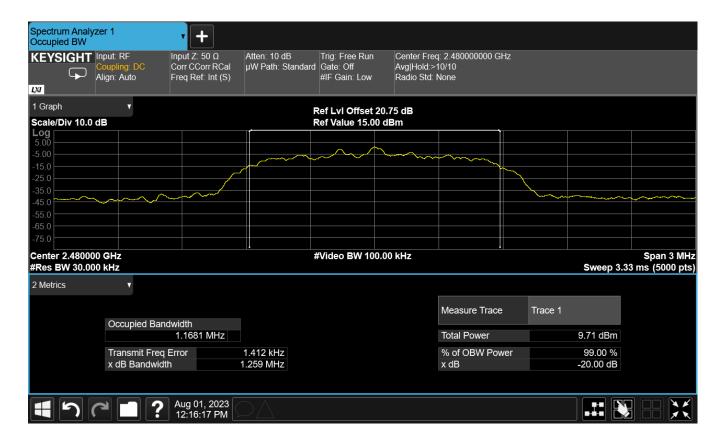
Report 18284-01 Rev 0 Page-23 of 118


Figure 12: GFSK (1Mbps) – High Channel, Occupied Bandwidth

Report 18284-01 Rev 0 Page-24 of 118


Figure 13: π/4DQPSK (2Mbps) – Low Channel, Occupied Bandwidth

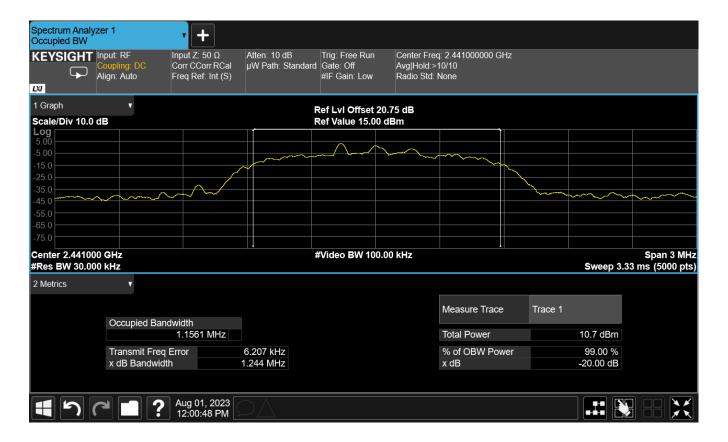
Report 18284-01 Rev 0 Page-25 of 118


Figure 14: π/4DQPSK (2Mbps) – Center Channel, Occupied Bandwidth

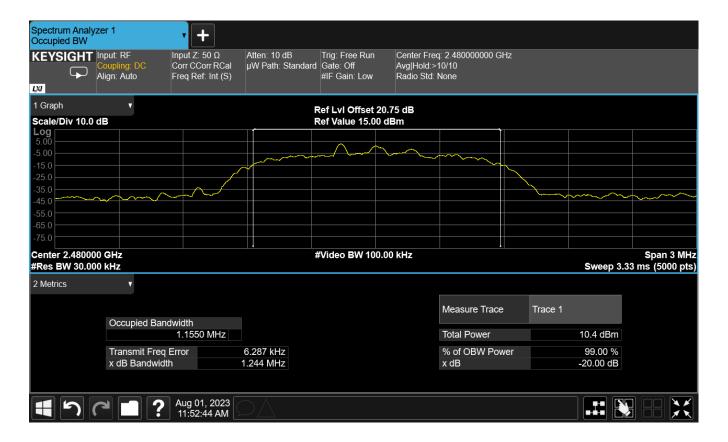
Report 18284-01 Rev 0 Page-26 of 118

Figure 15: π/4DQPSK (2Mbps) – High Channel, Occupied Bandwidth

Report 18284-01 Rev 0 Page-27 of 118


Figure 16: 8DPSK (3Mbps) – Low Channel, Occupied Bandwidth

Report 18284-01 Rev 0 Page-28 of 118


Figure 17: 8DPSK (3Mbps) – Center Channel, Occupied Bandwidth

Report 18284-01 Rev 0 Page-29 of 118

Figure 18: 8DPSK (3Mbps) – High Channel, Occupied Bandwidth

Report 18284-01 Rev 0 Page-30 of 118

2.3 Number of Channels Used

Frequency hopping systems in the 2400 MHz to 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 400 ms within a period of 400 ms multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.3.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.1 and 7.8.3

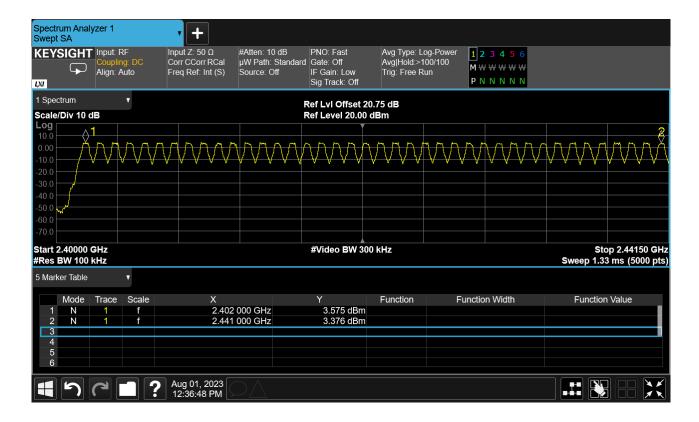
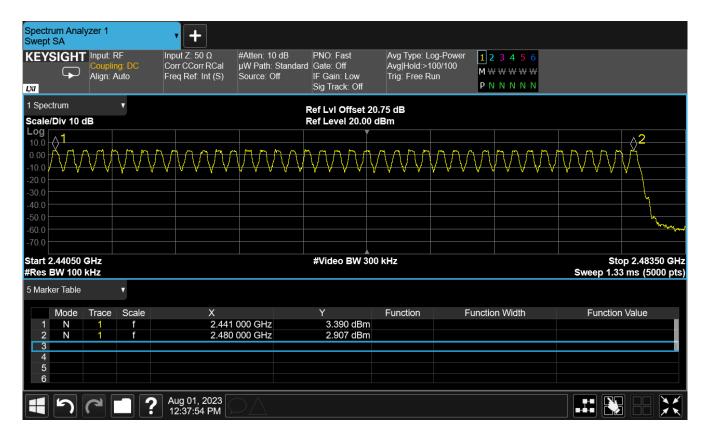
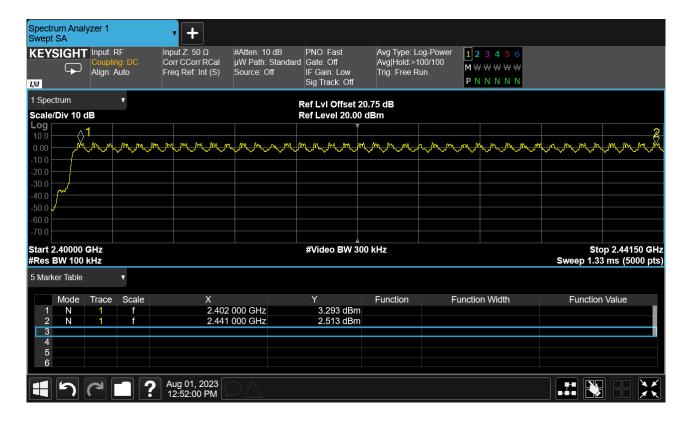

The EUT was configured in a fully-modulated mode, with the hopping enabled.

Table 4: Number of Channels Used – Test Results

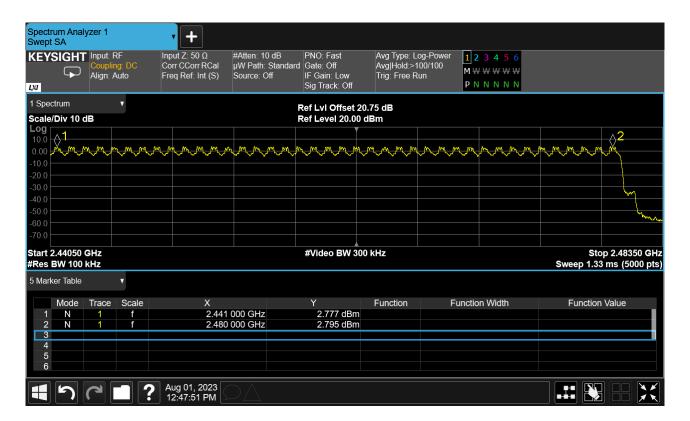
Modulation	Mode (Data Rate)	EUT Channels Used	Requirement
GFSK	DH5 (1Mbps)	79 Channels	15 Channels
π/4DQPSK	DQPSK 2DH5 (2Mbps) 79		15 Channels
8DPSK	8DPSK 3DH5 (3Mbps)		15 Channels


Figure 19: GFSK (1Mbps) – Number of Channels Used, Plot 1

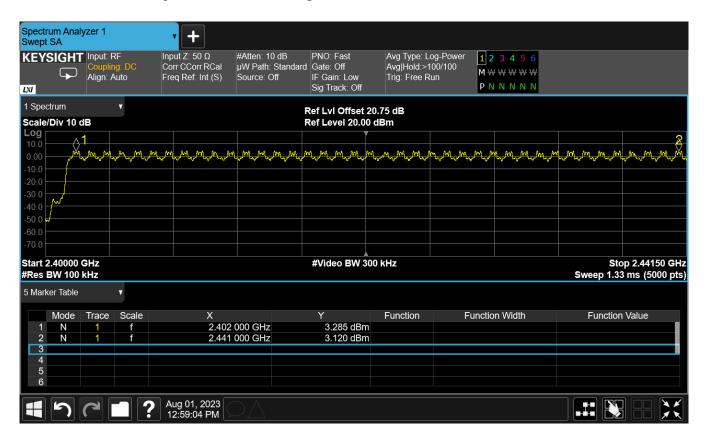
Report 18284-01 Rev 0 Page-32 of 118


Figure 20: GFSK (1Mbps) – Number of Channels Used, Plot 2

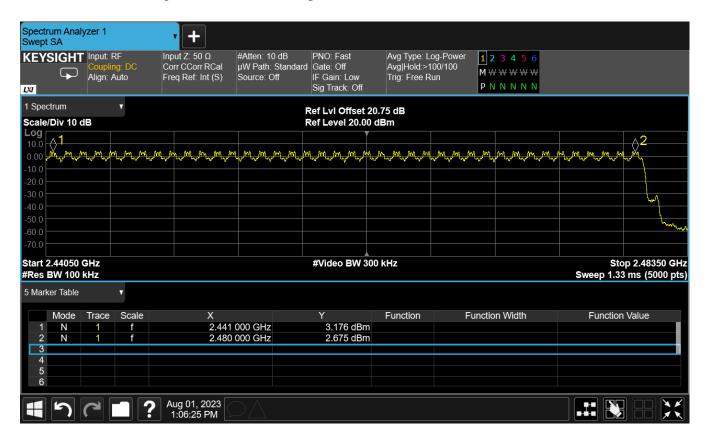
Report 18284-01 Rev 0 Page-33 of 118


Figure 21: $\pi/4$ DQPSK (2Mbps) – Number of Channels Used, Plot 1

Report 18284-01 Rev 0 Page-34 of 118


Figure 22: π/4DQPSK (2Mbps) – Number of Channels Used, Plot 2

Report 18284-01 Rev 0 Page-35 of 118


Figure 23: 8DPSK (3Mbps) – Number of Channels Used, Plot 1

Report 18284-01 Rev 0 Page-36 of 118

Figure 24: 8DPSK (3Mbps) – Number of Channels Used, Plot 2

Report 18284-01 Rev 0 Page-37 of 118

2.4 Time of Occupancy (Dwell Time)

Frequency hopping systems in the 2400 MHz to 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 400 ms within a period of 400 ms multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.4.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.4.

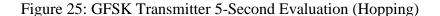
The EUT was configured in a fully-modulated mode, with the hopping enabled.

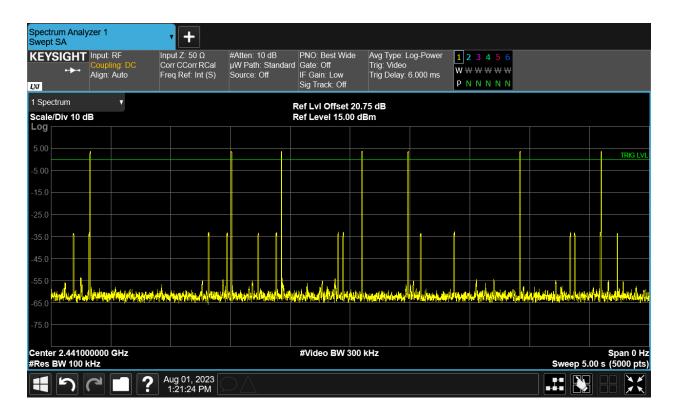
The limits prescribed in this section shall be defined as follows:

 $79_{\text{CHAN}} * 0.4 \text{ second} = 31.6 \text{ second period}$

Time of Occupancy Limit = 0.4s/31.6s

A multiplier factor of 6.32 shall be employed to extrapolate the total average time of occupancy of any channel over a 31.6 second period. This factor is based on a 5 second transmitter evaluation.


5 * 6.32 = 31.6

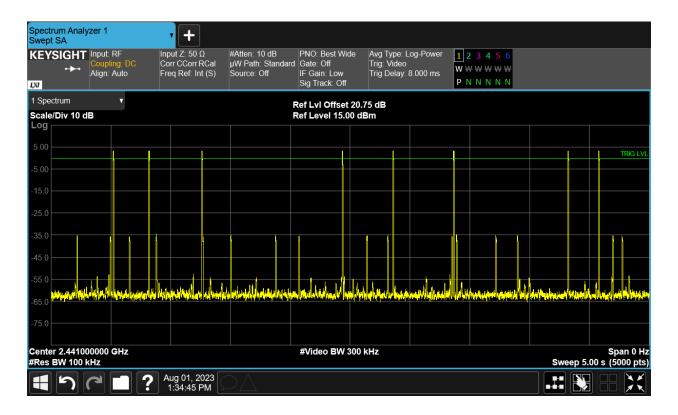

Table 5: Time of Occupancy – Test Results

Modulation	Transmissions in 5 seconds	Transmissions in 31.6 seconds	Single Transmission Period	EUT Occupancy Dwell	Occupancy Limit
GFSK	14	89	2.91 ms	258.9 ms	400 ms
π/4DQPSK	16	101	2.95 ms	297.9 ms	400 ms
8DPSK	16	101	2.95 ms	297.9 ms	400 ms

Report 18284-01 Rev 0 Page-38 of 118

^{*} in this case, it appears that there may only be seven full-power transmitter hops; however, after further investigation there are actually 14 individual transmitter hops in a given 5-second evaluation period. See next plot for detailed measurement.

Report 18284-01 Rev 0 Page-39 of 118


Figure 26: GFSK Transmitter Evaluation (Hopping) – Single Dwell Time

Report 18284-01 Rev 0 Page-40 of 118

^{*} in this case, it appears that there may only be eight full-power transmitter hops; however, after further investigation there are actually 16 individual transmitter hops in a given 5-second evaluation period. See next plot for detailed measurement.

Report 18284-01 Rev 0 Page-41 of 118

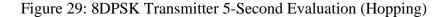


Figure 28: $\pi/4$ DQPSK Transmitter Evaluation (Hopping) – Single Dwell Time

Report 18284-01 Rev 0 Page-42 of 118

^{*} in this case, it appears that there may only be eight full-power transmitter hops; however, after further investigation there are actually 16 individual transmitter hops in a given 5-second evaluation period. See next plot for detailed measurement.

Report 18284-01 Rev 0 Page-43 of 118

Figure 30: 8DPSK Transmitter Evaluation (Hopping) – Single Dwell Time

Report 18284-01 Rev 0 Page-44 of 118

2.5 Channel Carrier Separation

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 MHz to 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Each frequency must be used equally on the average by each transmitter.

2.5.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.2

The EUT was configured in a fully-modulated mode, with the hopping stopped.

The minimum separation requirement is based on two-thirds of the 20 dB bandwidth.

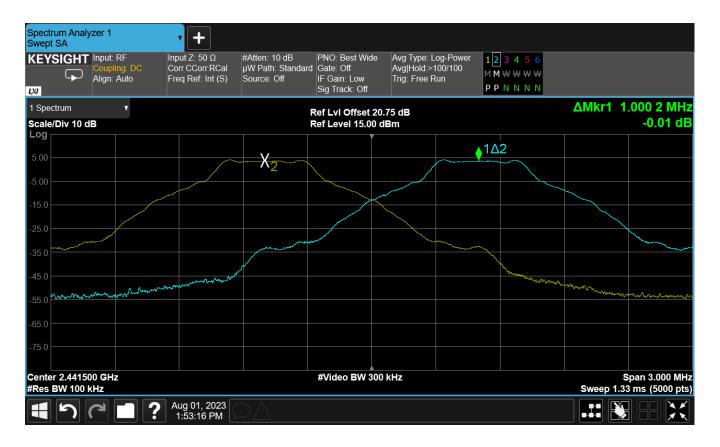
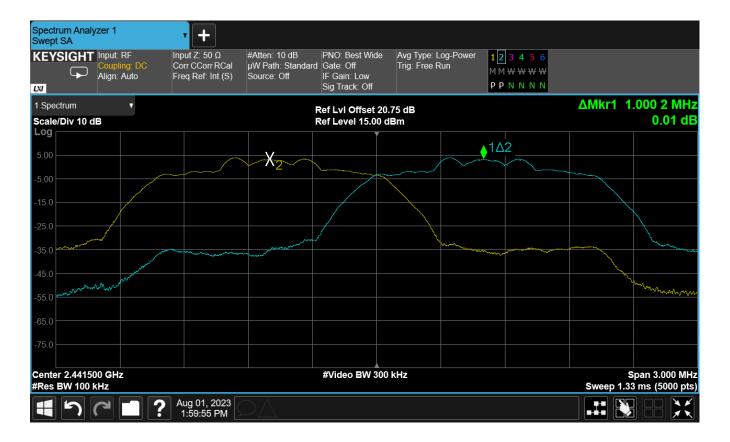

The EUT was evaluated at the low, center, and high channels, and a few other random channels that the transmitter employs. All of the hopping channel carriers are separated by exactly 1.0 MHz, regardless of the modulation or mode.

Table 6: Channel Carrier Separation – Test Results

Modulation	Mode (Data Rate)	20dB Bandwidth	Minimum Separation Requirement	EUT Carrier Separation		
GFSK	DH5 (1Mbps)	939.40 kHz	626.27 kHz	1.0 MHz		
π/4DQPSK	2DH5 (2Mbps)	1.270 MHz	846.67 kHz	1.0 MHz		
8DPSK	3DH5 (3Mbps)	1.244 MHz	829.33 kHz	1.0 MHz		


Figure 31: GFSK (1Mbps) – Channel Separation

Report 18284-01 Rev 0 Page-46 of 118

Figure 32: π/4DQPSK (2Mbps) – Channel Separation

Report 18284-01 Rev 0 Page-47 of 118

Figure 33: 8DPSK (3Mbps) - Channel Separation

Report 18284-01 Rev 0 Page-48 of 118

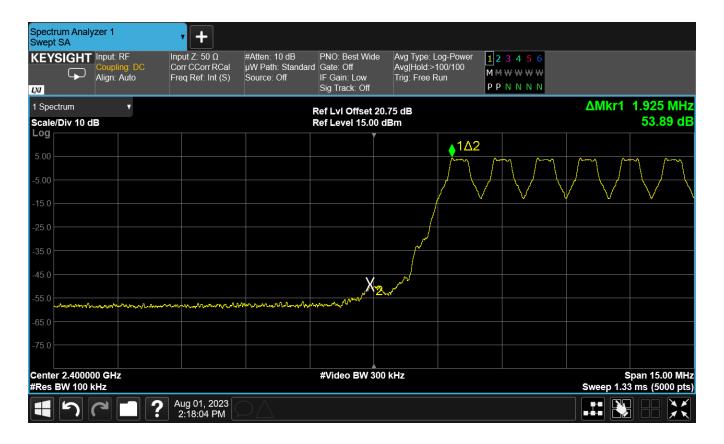
2.6 Bandedge Compliance (Antenna Port Conducted)

In any 100 kHz bandwidth, outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

2.6.1 Measurement Method and Results

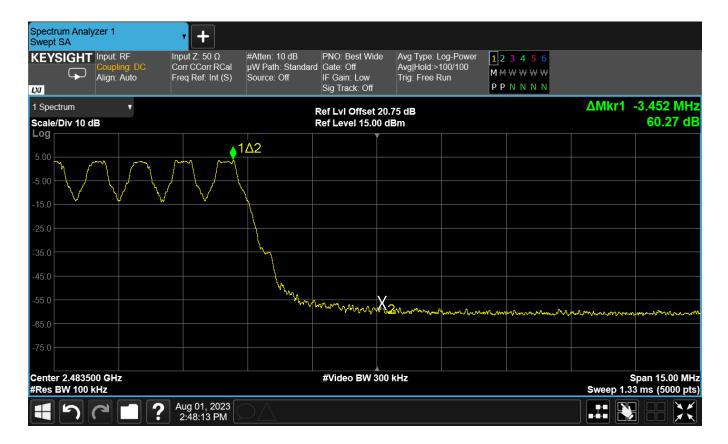
This test was performed as specified in ANSI C63.10 (2013), Section 7.8.1 and 7.8.6.

The EUT was configured in a fully-modulated mode, with the hopping enabled.

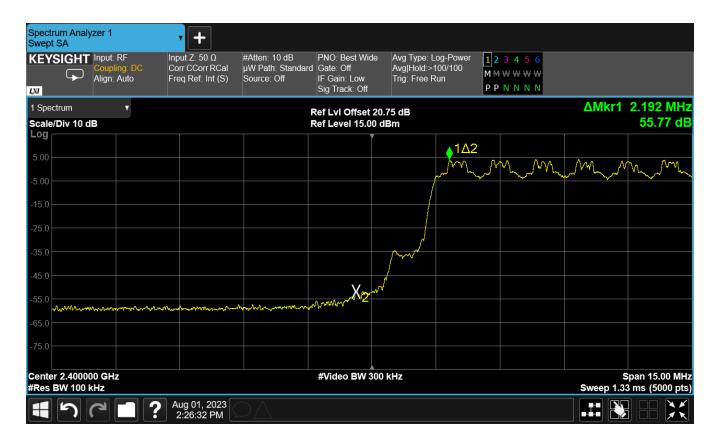

Table 7: Bandedge Compliance – Test Results

Modulation	Mode (Data Rate)	Low Channel (2402 MHz)	High Channel (2480 MHz)
GFSK	DH5 (1Mbps)	53.89 dB	60.27 dB
π/4DQPSK	2DH5 (2Mbps)	55.77 dB	62.25 dB
8DPSK	3DH5 (3Mbps)	56.01 dB	62.23 dB

Report 18284-01 Rev 0 Page-49 of 118


Figure 34: GFSK (1Mbps) – Lower Band Edge

Report 18284-01 Rev 0 Page-50 of 118


Figure 35: GFSK (1Mbps) – Upper Band Edge

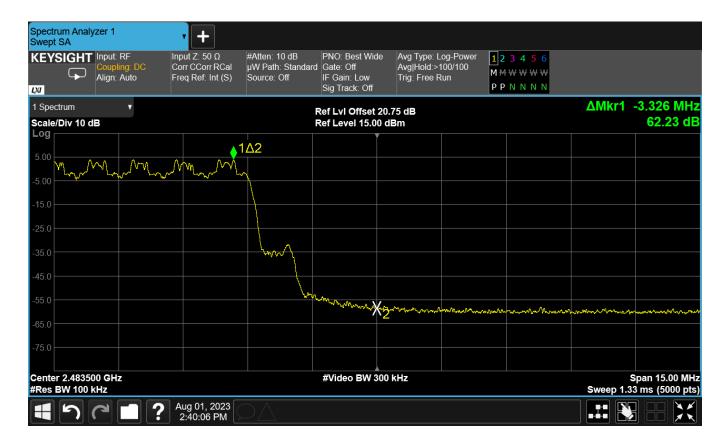
Report 18284-01 Rev 0 Page-51 of 118


Figure 36: $\pi/4$ DQPSK (2Mbps) – Lower Band Edge

Report 18284-01 Rev 0 Page-52 of 118

Figure 37: π/4DQPSK (2Mbps) – Upper Band Edge

Report 18284-01 Rev 0 Page-53 of 118


Figure 38: 8DPSK (3Mbps) – Lower Band Edge

Report 18284-01 Rev 0 Page-54 of 118

Figure 39: 8DPSK (3Mbps) – Upper Band Edge

Report 18284-01 Rev 0 Page-55 of 118

2.7 Conducted Spurious Emissions

In any 100 kHz bandwidth, outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

2.7.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.8 and 11.11.

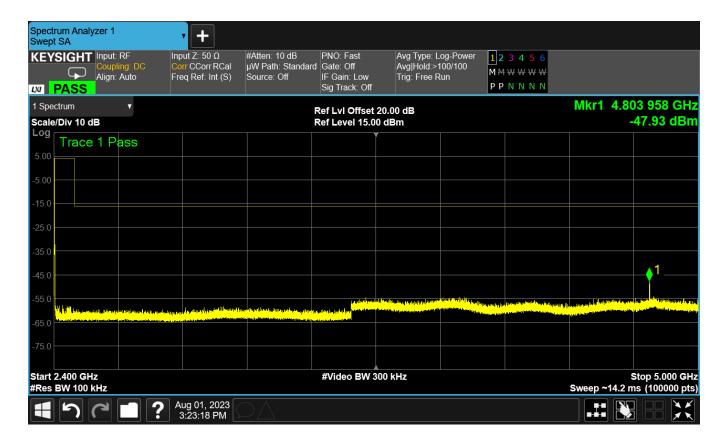
The EUT was configured in a fully-modulated mode, with the hopping stopped.

The amplitude of the EUT carrier frequency was measured to determine the emissions limit (20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz to 25 GHz, to include the 10th harmonic of the fundamental

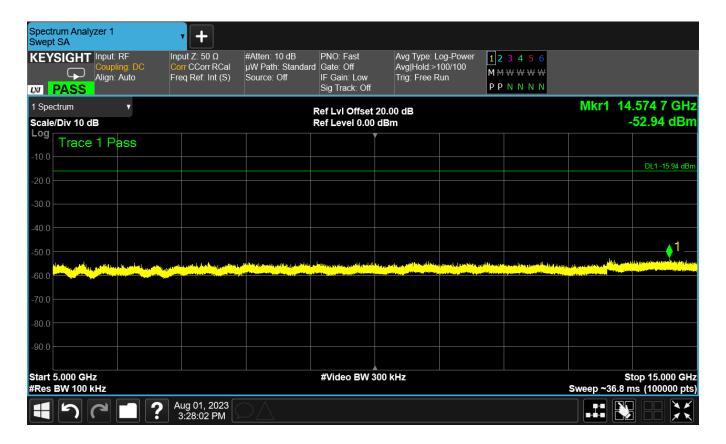
The reduced testing procedures outlined in ANSI C63.10 (2013), Section 5.6.2 and 5.6.2.2 were also employed. The spurious emission test data correlating to the center channel of all three modulation modes is provided below. The worst-case mode (3Mbps/8DPSK) was utilized to provide the spurious emission test data for the low and high channels.

The EUT complies with the requirements for spurious emissions at the antenna port.

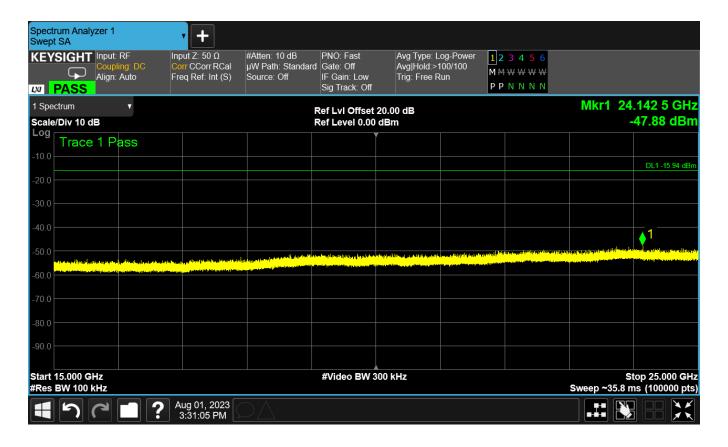
The final test data is provided in the following plots.


Figure 40: 8DPSK (3Mbps) Low Channel, Conducted Spurious – Plot 1

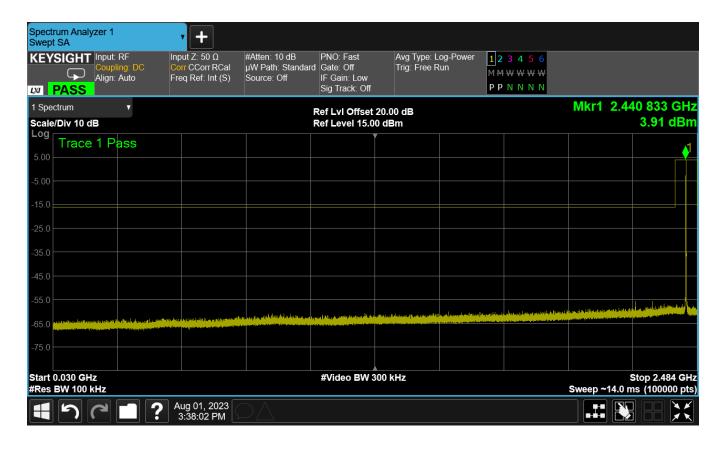
Report 18284-01 Rev 0 Page-57 of 118


Figure 41: 8DPSK (3Mbps) Low Channel, Conducted Spurious – Plot 2

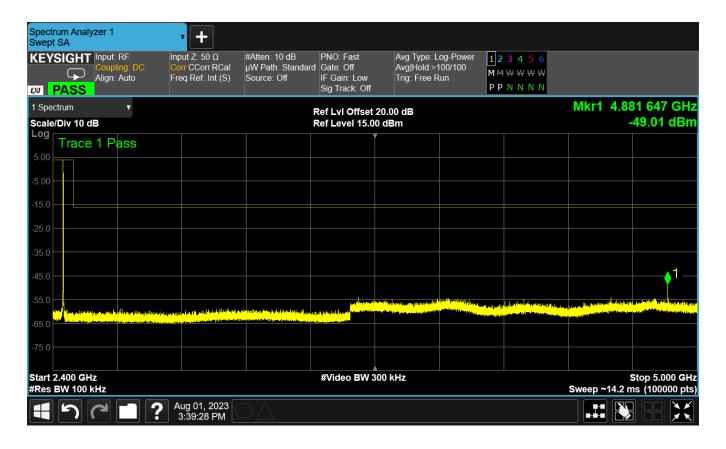
Report 18284-01 Rev 0 Page-58 of 118


Figure 42: 8DPSK (3Mbps) Low Channel, Conducted Spurious – Plot 3

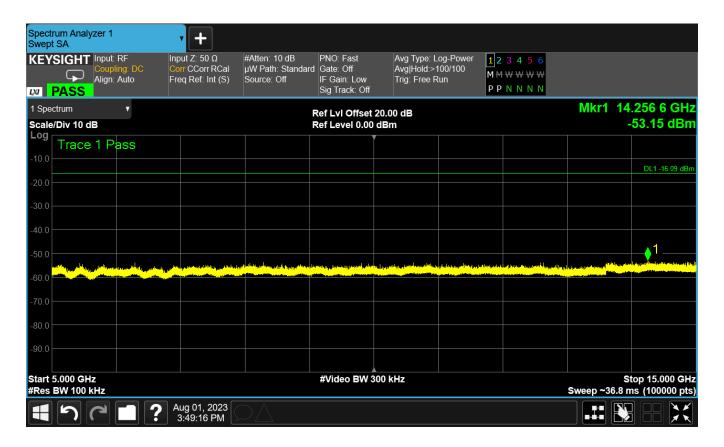
Report 18284-01 Rev 0 Page-59 of 118


Figure 43: 8DPSK (3Mbps) Low Channel, Conducted Spurious – Plot 4

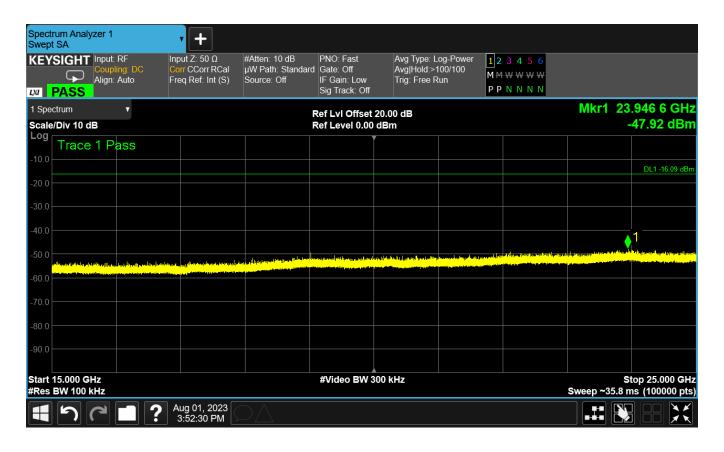
Report 18284-01 Rev 0 Page-60 of 118


Figure 44: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 1

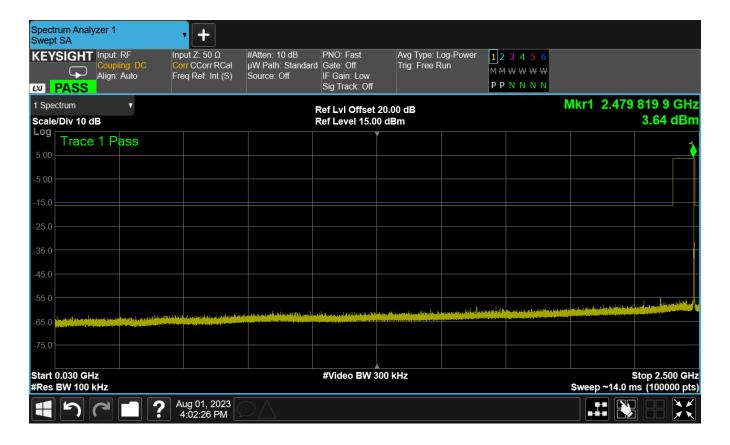
Report 18284-01 Rev 0 Page-61 of 118


Figure 45: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 2

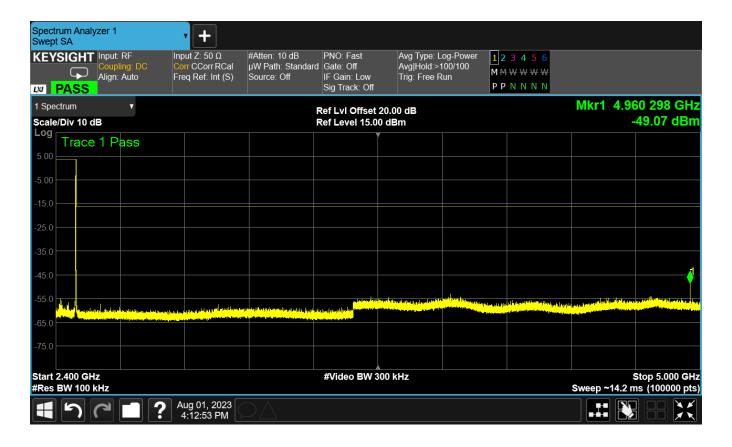
Report 18284-01 Rev 0 Page-62 of 118


Figure 46: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 3

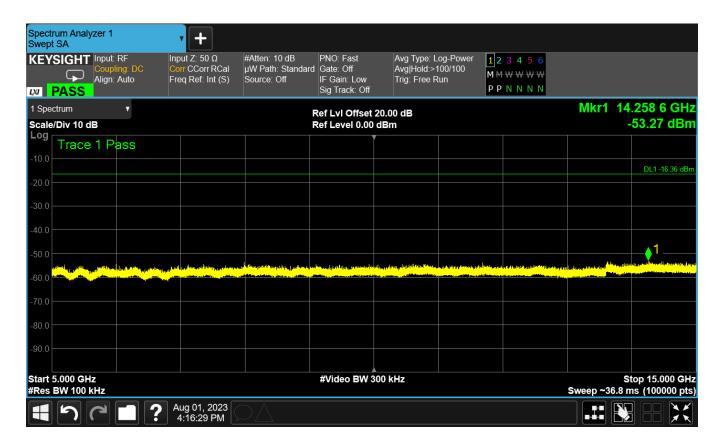
Report 18284-01 Rev 0 Page-63 of 118


Figure 47: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 4

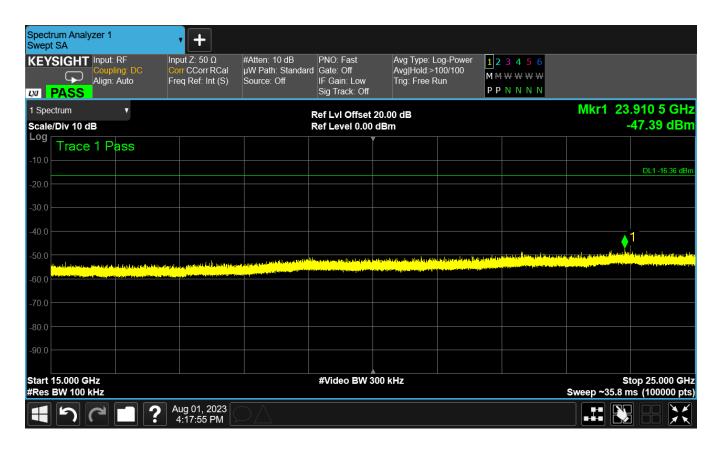
Report 18284-01 Rev 0 Page-64 of 118


Figure 48: 8DPSK (3Mbps) High Channel, Conducted Spurious – Plot 1

Report 18284-01 Rev 0 Page-65 of 118


Figure 49: 8DPSK (3Mbps) High Channel, Conducted Spurious – Plot 2

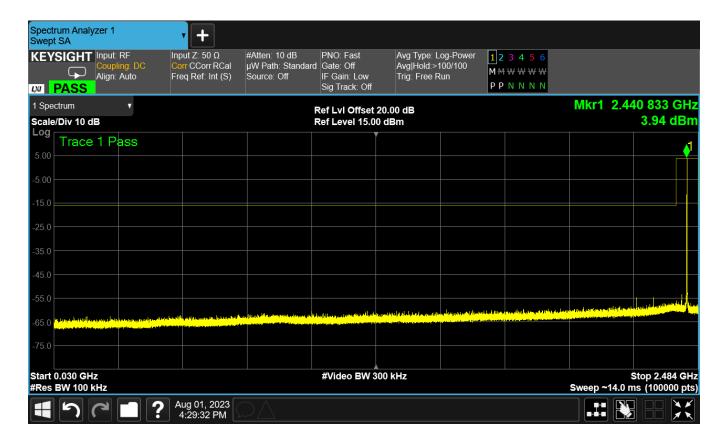
Report 18284-01 Rev 0 Page-66 of 118


Figure 50: 8DPSK (3Mbps) High Channel, Conducted Spurious – Plot 3

Report 18284-01 Rev 0 Page-67 of 118

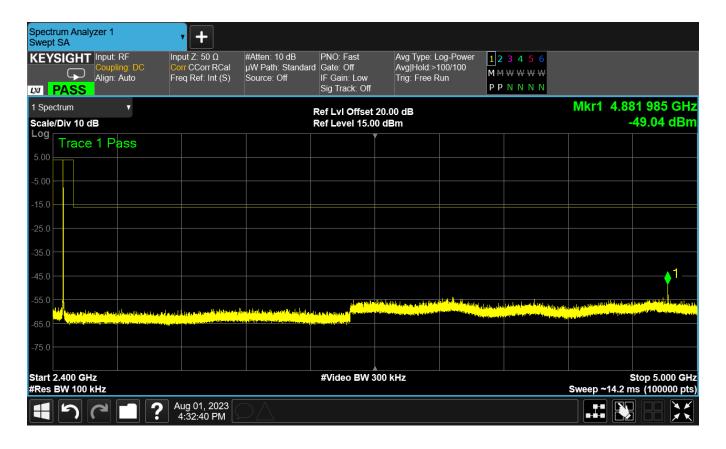
Figure 51: 8DPSK (3Mbps) High Channel, Conducted Spurious – Plot 4

Report 18284-01 Rev 0 Page-68 of 118

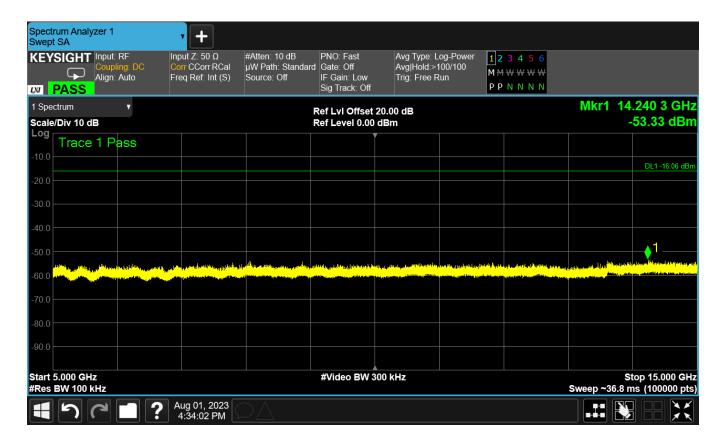


This Page Intentionally Left Blank

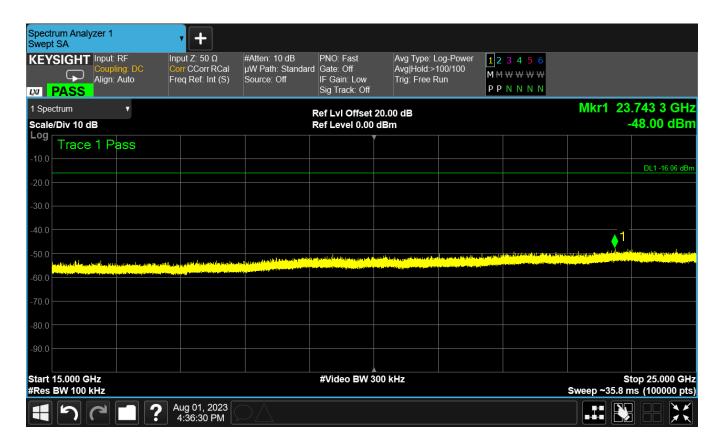
Report 18284-01 Rev 0 Page-69 of 118


Figure 52: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 1

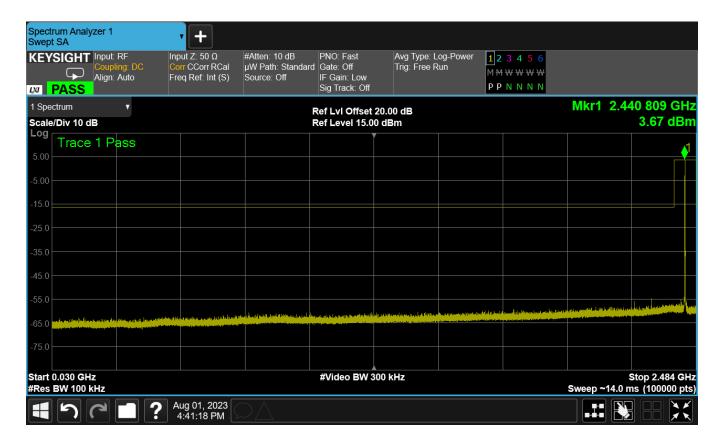
Report 18284-01 Rev 0 Page-70 of 118


Figure 53: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 2

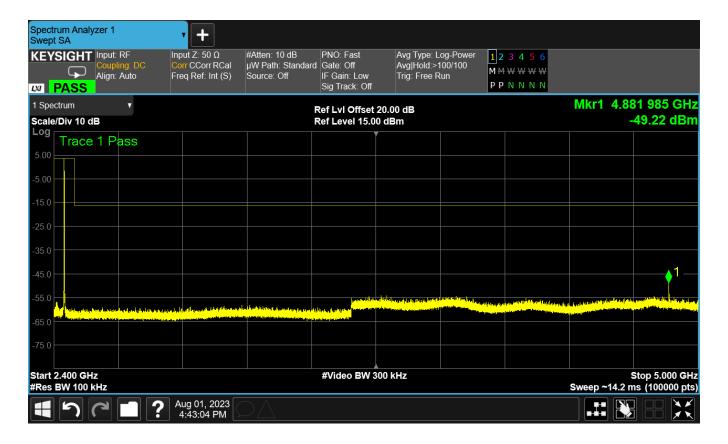
Report 18284-01 Rev 0 Page-71 of 118


Figure 54: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 3

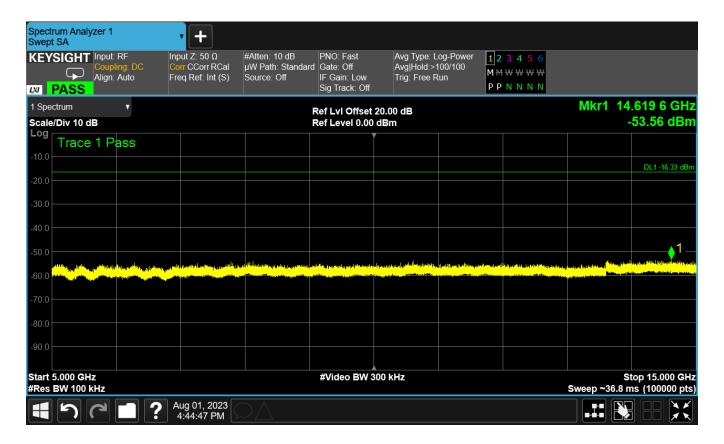
Report 18284-01 Rev 0 Page-72 of 118


Figure 55: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 4

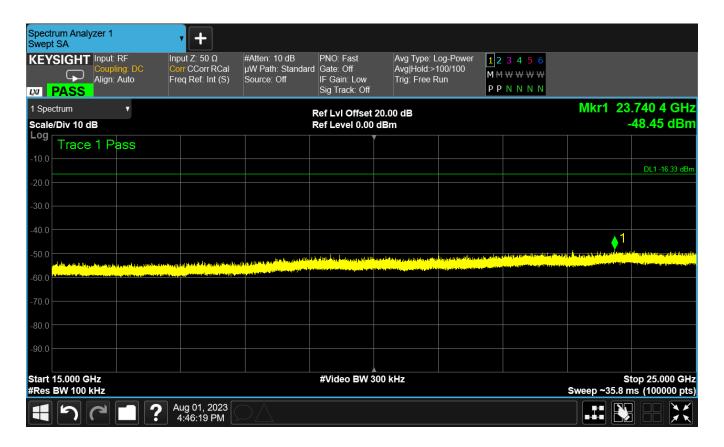
Report 18284-01 Rev 0 Page-73 of 118


Figure 56: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 1

Report 18284-01 Rev 0 Page-74 of 118


Figure 57: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 2

Report 18284-01 Rev 0 Page-75 of 118


Figure 58: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 3

Report 18284-01 Rev 0 Page-76 of 118

Figure 59: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 4

Report 18284-01 Rev 0 Page-77 of 118

2.8 General Field Strength Requirements – Radiated Emissions

2.8.1 Requirements

Compliance Standard: FCC Part 15.205 and 15.209

FCC Compliance Limits				
Frequency Range	3m I	Limit		
30 – 88 MHz	100 μV/m (QP)			
88 – 216 MHz	150 μV	/m (QP)		
216 – 960 MHz	200 μV/m (QP)			
> 960 MHz	500 μV/m (AVG)	5000 μV/m (Peak)		

2.8.2 Test Procedure Summary

The requirements of FCC Part 15, RSS-Gen, and ICES-003 call for the EUT to be placed on a 1m X 1.5m non-conductive motorized turntable at a height of 80cm for radiated testing of frequencies up to 1000 MHz, and a height of 1.5m for testing of frequencies above 1000 MHz. Please note that the radiated emissions measured during this testing, were performed at a distance of 3-meters.

An initial pre-scan of the EUT was performed to identify any emissions that exceed, or come within 6dB of, the applicable limit. This pre-scan was performed a with the employment of a spectrum analyzer peak detector function. The highest amplitude (worst-case) emissions noted during the pre-scan were selected for final compliance measurements.

The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Broadband log periodic and double-ridged horn antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The output of the antenna was connected to the input of the spectrum analyzer and the emissions in the frequency range of 30 MHz to 25 GHz were evaluated. The EUT peripherals were placed on the table in accordance with ANSI C63.4. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

Report 18284-01 Rev 0 Page-78 of 118

The detector function was set to quasi-peak for measurements below 1 GHz. The measurement bandwidth of the spectrum analyzer system was set to at least 120 kHz, with all post-detector filtering no less than 10 times the measurement bandwidth. For measurements above 1 GHz, both the peak and the average levels are recorded, using a measurement bandwidth of 1 MHz. For average measurements, a video bandwidth setting of 10 Hz was used, in the case of video averaging; otherwise, an EMI AVG detector shall be employed.

To ensure that the support laptop did not interfere with radiated measurements of frequencies above 1GHz, the applicant has completely disabled the WiFi & BT capabilities within the computer's bios. For measurements of frequencies below 1000 MHz, the was shielded from the test site via the use of EMF/EMI Faraday Blankets. Overall, the support laptop, and power supply, did not impact the 3m radiated emissions testing due to the shielding effectiveness of these protective materials.

2.8.3 Radiated Data Reduction and Reporting

To convert the raw spectrum analyzer radiated data into a form that can be compared with the FCC limits, it is necessary to account for various calibration factors that are supplied with the antenna(s) and other measurement equipment. These factors include the antenna factor ((AF)(in dB/m)), cable loss factors ((CF)(in dB)), and the pre-amplifier gain [if applicable] ((G)(in dB)). These correction values are algebraically added to the raw Spectrum Analyzer Voltage (in dB μ V) to obtain the corrected radiated electric field, which shall be the final corrected logarithm amplitude ((Corr. Meas.)(in dB μ V/m)). This logarithm amplitude is then compared to the FCC limit, which has been converted to a unit of log in dB μ V/m.

Example:

Spectrum Analyzer Voltage: VdBµV (SA)
Antenna Correction Factor: AFdB/m
Cable Correction Factor: CFdB
Pre-Amplifier Gain (if applicable): GdB

Electric Field: $EdB\mu V/m = V dB\mu V (SA) + AFdB/m + CFdB - GdB$

To convert from linear units of measure: dBuV/m = 20LOG(uV/m)

To convert FCC limits, based on $D_{Measure}$: 3m Limit = 10m Limit + 20LOG(10/3)

Environmental Conditions During Radiated Emissions Testing

Ambient Temperature:	20 °C
Relative Humidity:	55 %

Report 18284-01 Rev 0 Page-79 of 118

2.8.4 Measurement Method and Results

The reduced testing procedures outlined in ANSI C63.10 (2013), Section 5.6.2 and 5.6.2.2 were employed. The radiated spurious emission test data correlating to the center channel of all three modulation modes is provided below. The worst-case mode, with regard to peak power output, (8DPSK/3Mbps) was utilized to provide the radiated spurious emission test data for the low and high channels.

For testing below 1000 MHz, the EUT was configured in a normal production mode, with the BT portion paired to a companion device. The digital portion was exercised by streaming music from the companion device to the EUT and playing music through the EUT speakers during the test.

For testing above 1000 MHz, the EUT was configured in a fully-modulated mode, with the hopping stopped. The BT portion was controlled by the applicant's software and the appropriate channels, modes, and data rates were elected as necessary.

The EUT was tested while positioned in the worst-case orientation, based the three-axes orthogonal plane evaluation of the fundamental field strength at 3-meters.

The EUT complies with the requirements this section.

There were no emissions detected from the EUT above 5000 MHz.

Table 8: Radio Fundamental, EUT Axis Evaluation (8DPSK, Low Channel)

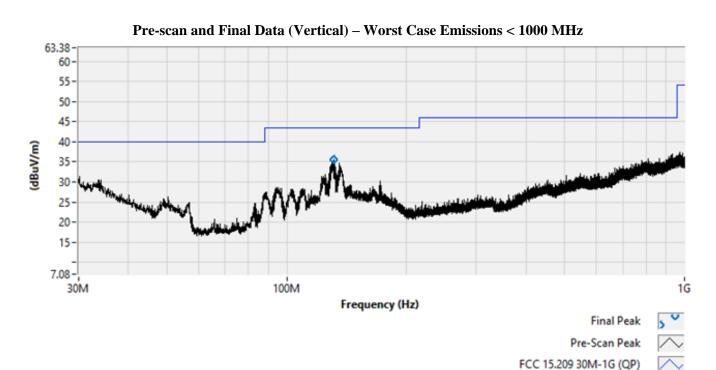
Frequency (MHz)	Ant. Polarity (H/V)	Corr. Meas. (dBuV/m)	Turn Table (degree)	Antenna Height (cm)	Detector	EUT Orientation
2402.00	V	100.20	95	165	Peak	X-Axis
2402.00	V	98.80	210	175	Peak	Y-Axis
2402.00	V	93.70	180	185	Peak	Z-Axis
2402.00	Н	99.70	140	155	Peak	X-Axis
2402.00	Н	92.70	100	170	Peak	Y-Axis
2402.00	Н	99.01	140	165	Peak	Z-Axis

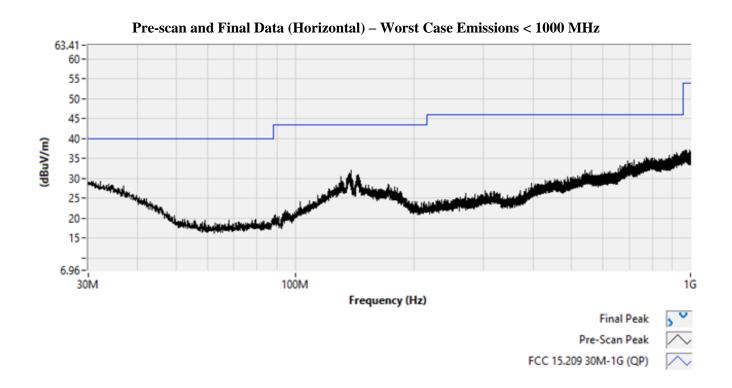
Report 18284-01 Rev 0 Page-80 of 118

Table 9: Radiated Emissions Test Data – 30 MHz to 1000 MHz

Frequency (MHz)	Detector	Corr. Meas. (dBuV/m)	QP Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
131.381	Peak	35.552	43.5	-7.948	300	Vert, 110

As previously mentioned, for measurements of frequencies below 1000 MHz, the EUT was configured in a normal production mode, with the BT portion paired to a companion device. The digital portion was exercised by streaming music from the companion device to the EUT and playing music through the EUT speakers during the test.


Prior to testing below 1000 MHz, it was confirmed that changing the modulation type, data rate, and/or carrier center frequency, had no impact on the emissions in the frequency range of 30 MHz to 1000 MHz.


The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 9.

In this case, thousands of points were collected and all Peak emissions meet the QP limits of FCC Rule Part 15.209 and 15.205.

Report 18284-01 Rev 0 Page-81 of 118

Report 18284-01 Rev 0 Page-82 of 118

This Page Intentionally Left Blank

Report 18284-01 Rev 0 Page-83 of 118

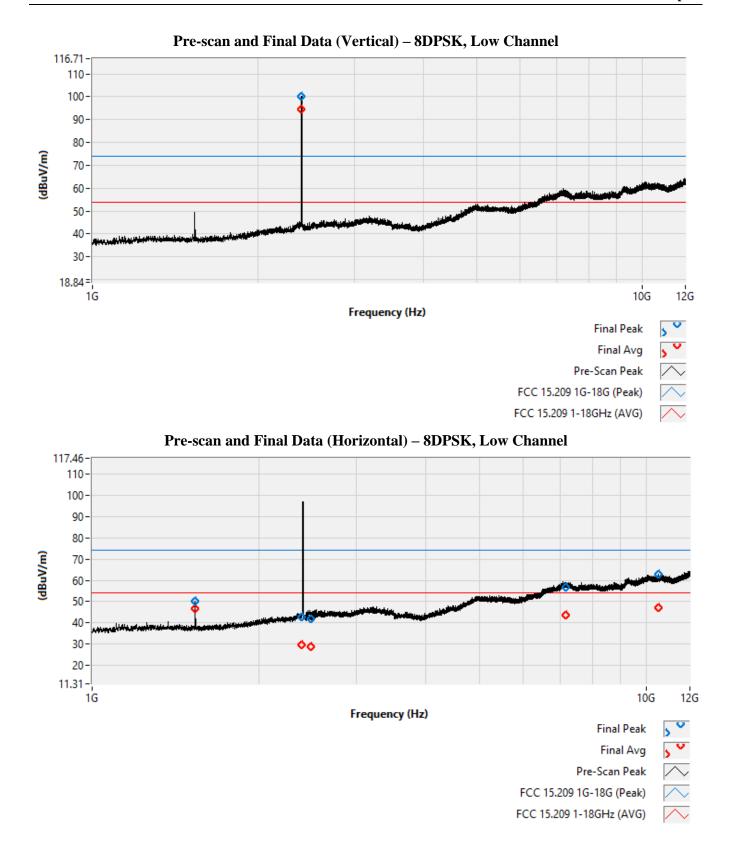
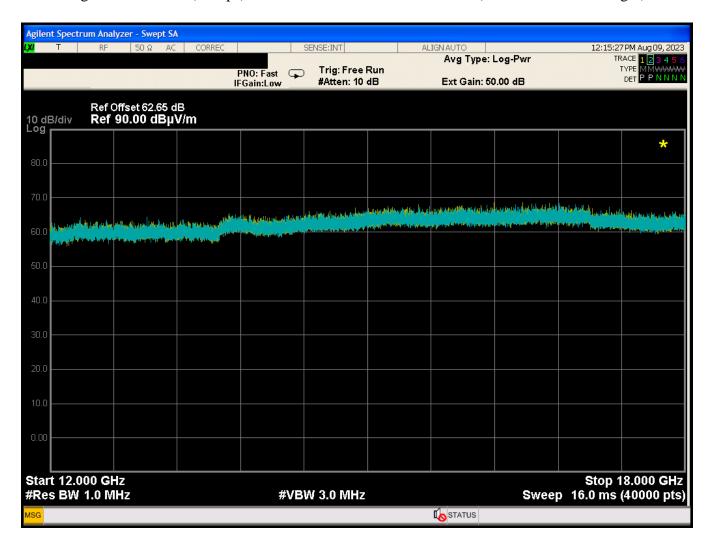


Table 10: Radiated Emissions Test Data – 1 GHz to 25 GHz (3Mbps, Low Channel)

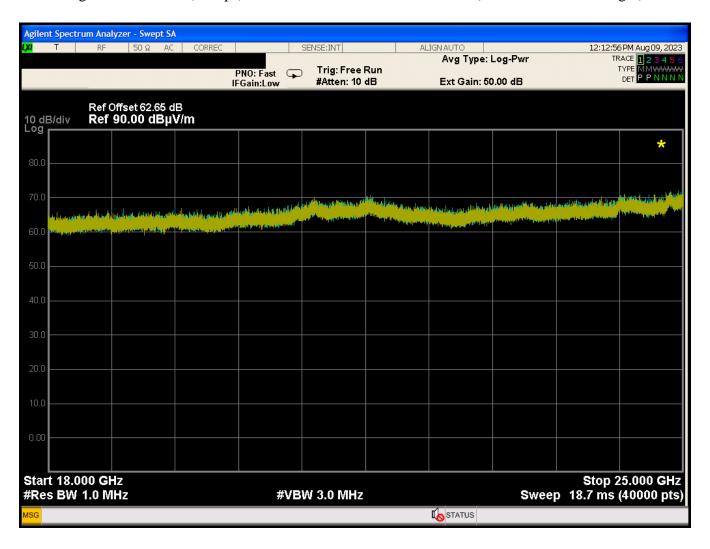
Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.536	Peak	50.249	74	-23.751	140	Horiz, 155
1.550	AVG	46.700	54	-7.300	140	Horiz, 155
2.390	Peak	42.837	74	-31.163	140	Horiz, 155
2.370	AVG	29.643	54	-24.357	140	Horiz, 155
2.402	Peak	100.193			95	Vert, 165
2.402	AVG					
2.4835	Peak	41.712	74	-32.288	140	Horiz, 155
2.4033	AVG	29.001	54	-24.999	140	Horiz, 155
7.160	Peak	56.820	74	-17.180	140	Horiz, 155
7.100	AVG	43.461	54	-10.539	140	Horiz, 155
10.543	Peak	63.010	74	-10.990	180	Horiz, 130
10.343	AVG	47.007	54	-6.993	140	Horiz, 155

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 10. (3DH5, Low Channel).



Report 18284-01 Rev 0 Page-85 of 118

Figure 60: 8DPSK (3Mbps) Low Channel – 12 GHz to 18 GHz (Corrected Field Strength)



Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

Figure 61: 8DPSK (3Mbps) Low Channel – 18 GHz to 25 GHz (Corrected Field Strength)

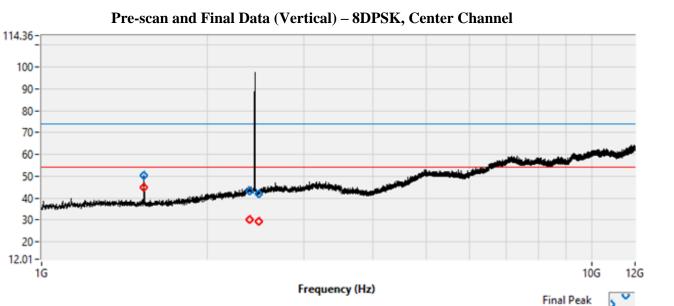
Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

Report 18284-01 Rev 0 Page-87 of 118

This Page Intentionally Left Blank

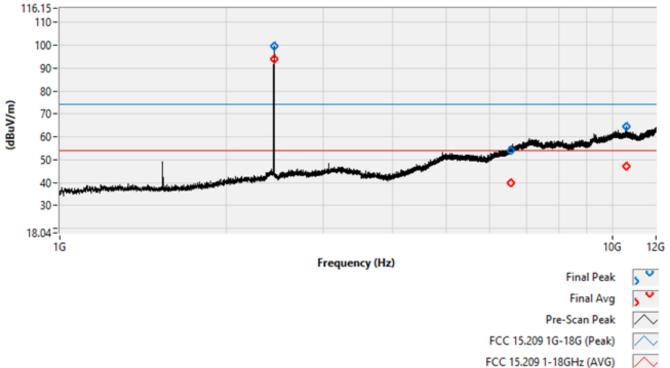
Report 18284-01 Rev 0 Page-88 of 118


Table 11: Radiated Emissions Test Data – 1 GHz to 25 GHz (3Mbps, Center Channel)

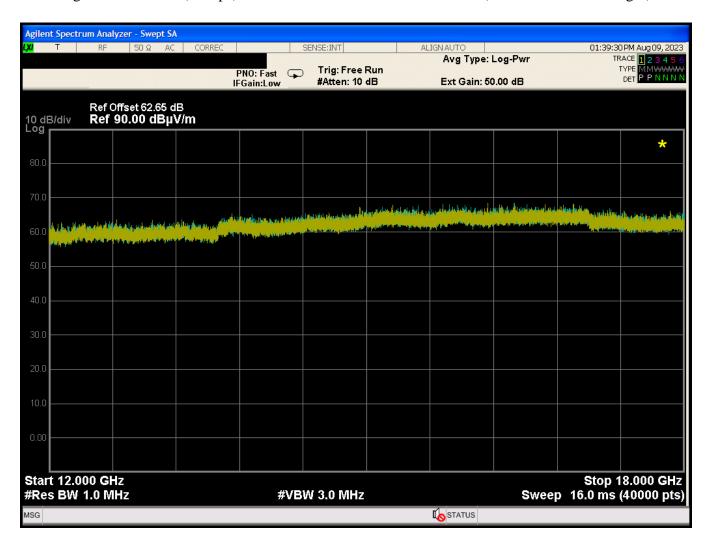
Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.536	Peak	50.235	74	-23.765	95	Vert, 165
1.550	AVG	44.984	54	-9.016	95	Vert, 165
2.390	Peak	43.080	74	-30.920	95	Vert, 165
2.390	AVG	29.951	54	-24.049	95	Vert, 165
2.441	Peak	99.727			140	Horiz, 155
2.441	AVG					
2.4835	Peak	41.926	74	-32.074	95	Vert, 165
2.4033	AVG	29.073	54	-24.927	95	Vert, 165
6.561	Peak	53.996	74	-20.004	140	Horiz, 155
0.301	AVG	39.793	54	-14.207	140	Horiz, 155
10.588	Peak	64.281	74	-9.719	140	Horiz, 155
10.366	AVG	46.935	54	-7.065	140	Horiz, 155

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 11. (3DH5, Center Channel).

(dBuV/m)

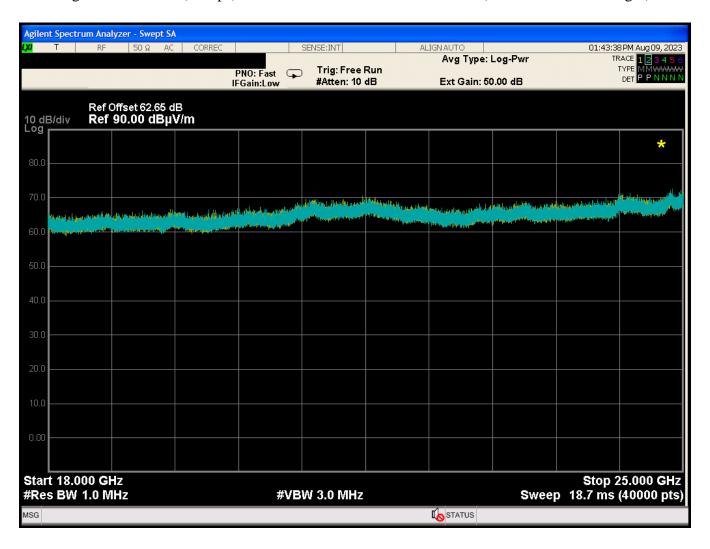


Final Avg


Pre-scan and Final Data (Horizontal) – 8DPSK, Center Channel

Report 18284-01 Rev 0 Page-90 of 118

Figure 62: 8DPSK (3Mbps) Center Channel – 12 GHz to 18 GHz (Corrected Field Strength)



Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

Figure 63: 8DPSK (3Mbps) Center Channel – 18 GHz to 25 GHz (Corrected Field Strength)

Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

This Page Intentionally Left Blank

Report 18284-01 Rev 0 Page-93 of 118

Table 12: Radiated Emissions Test Data – 1 GHz to 25 GHz (3Mbps, High Channel)

Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.536	Peak	50.938	74	-23.062	95	Vert, 165
1.550	AVG	48.198	54	-5.802	95	Vert, 165
2.390	Peak	42.200	74	-31.800	95	Horiz, 165
2.370	AVG	29.251	54	-24.749	95	Horiz, 165
2.480	Peak	98.94			95	Vert, 165
2.400	AVG					
2.4835	Peak	47.416	74	-26.584	95	Vert, 165
2.4033	AVG	34.366	54	-19.634	95	Vert, 165
10.208	Peak	63.300	74	-10.700	180	Horiz, 130
10.206	AVG	46.86	54	-7.14	95	Horiz, 165

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 12. (3DH5, High Channel).

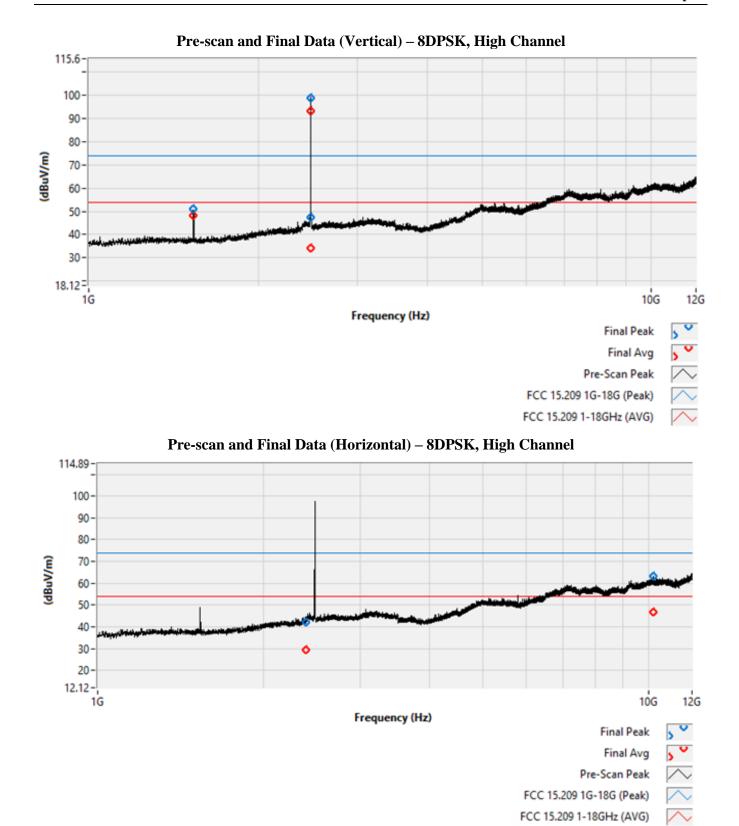
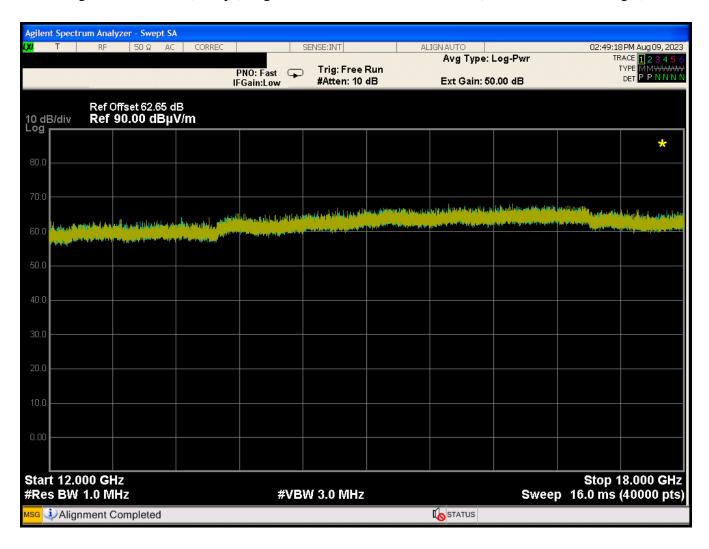
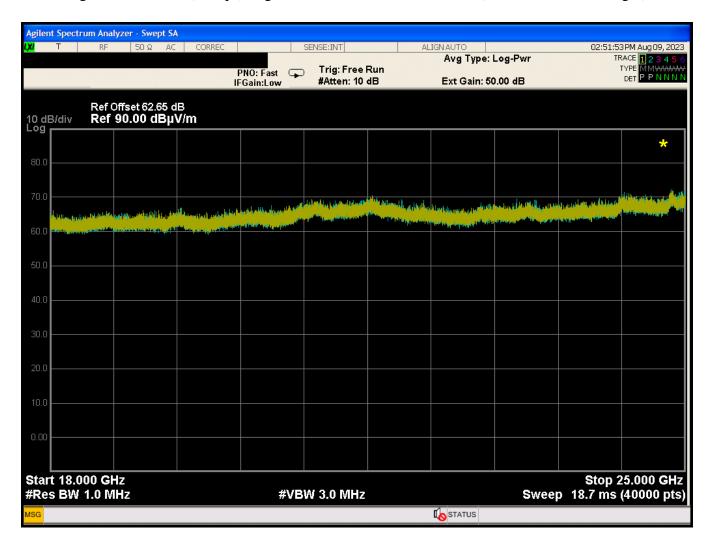



Figure 64: 8DPSK (3Mbps) High Channel – 12 GHz to 18 GHz (Corrected Field Strength)



Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

Figure 65: 8DPSK (3Mbps) High Channel – 18 GHz to 25 GHz (Corrected Field Strength)

Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

This Page Intentionally Left Blank

Report 18284-01 Rev 0 Page-98 of 118

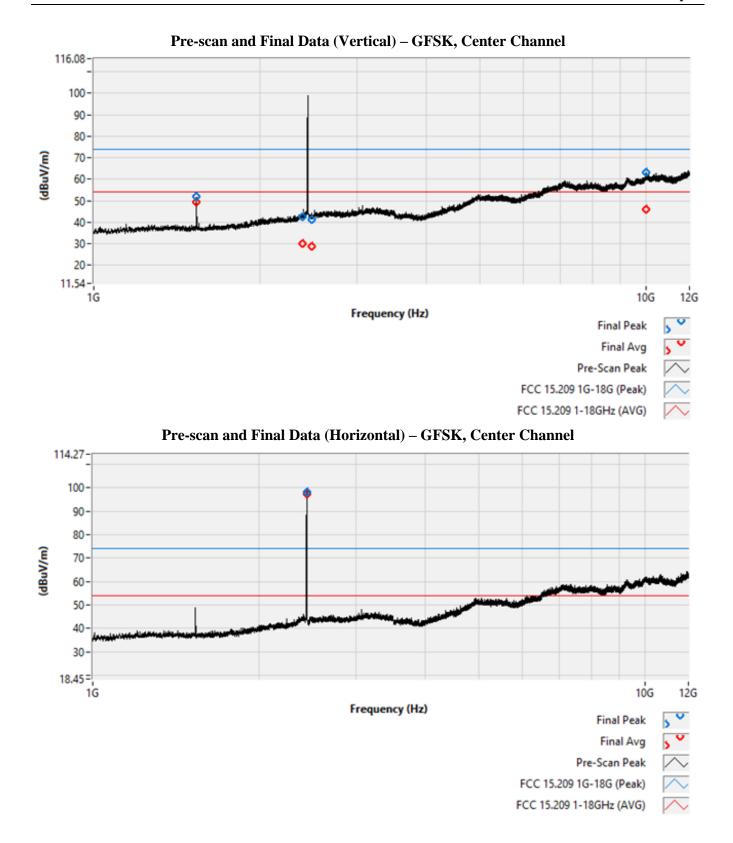
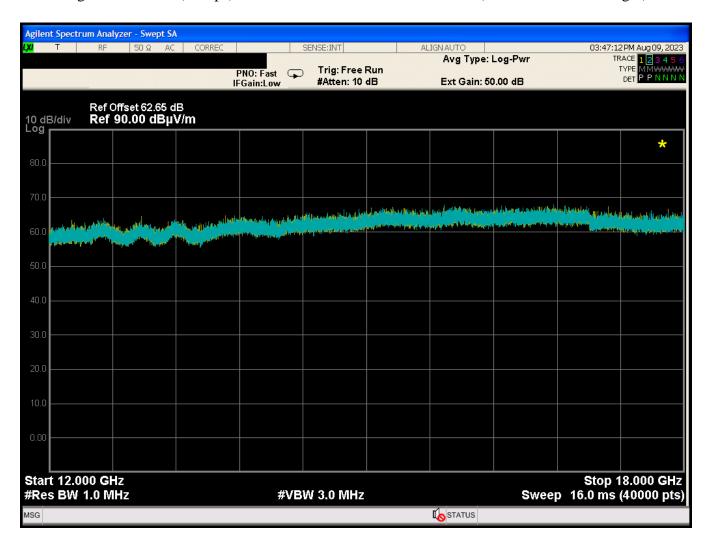


Table 13: Radiated Emissions Test Data – 1 GHz to 25 GHz (1Mbps, Center Channel)

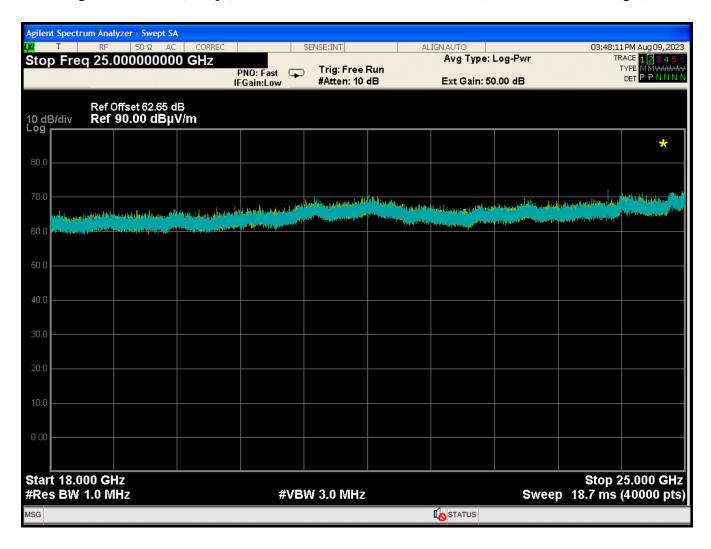
Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.536	Peak	52.060	(1) 74	-21.940	95	Vert, 165
1.550	AVG	49.341	(2) 54	-4.659	95	Vert, 165
2.390	Peak	42.708	(1) 74	-31.292	95	Vert, 165
2.370	AVG	29.929	(2) 54	-24.071	95	Vert, 165
2.441	Peak	98.281			140	Horiz, 170
2.771	AVG					
2.4835	Peak	41.405	(1) 74	-32.595	95	Vert, 160
2.4033	AVG	28.958	(2) 54	-25.042	95	Vert, 160
10.024	Peak	63.235	(1) 74	-10.765	100	Vert, 165
10.024	Avg	45.954	(2) 54	-8.046	100	Vert, 165

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 13. (DH5, Center Channel)



Report 18284-01 Rev 0 Page-100 of 118

Figure 66: GFSK (1Mbps) Center Channel – 12 GHz to 18 GHz (Corrected Field Strength)



Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

Figure 67: GFSK (1Mbps) Center Channel – 18 GHz to 25 GHz (Corrected Field Strength)

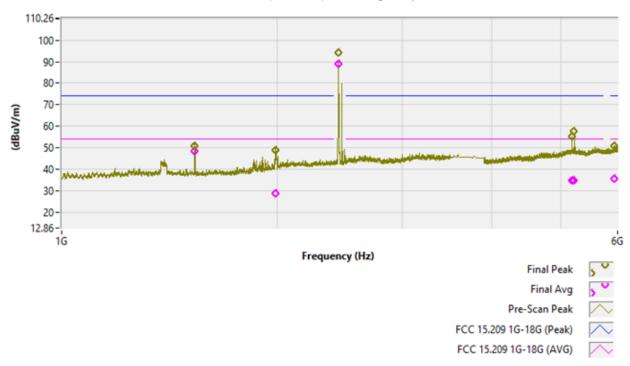
Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

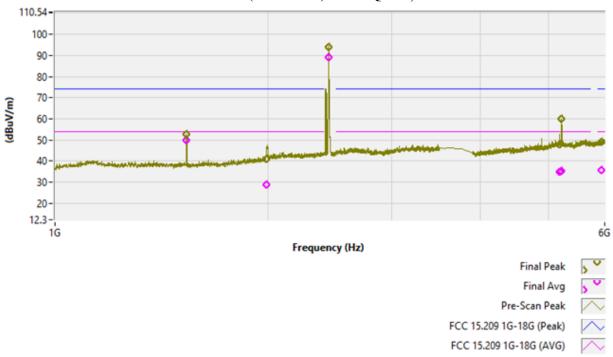
Report 18284-01 Rev 0 Page-102 of 118

This Page Intentionally Left Blank

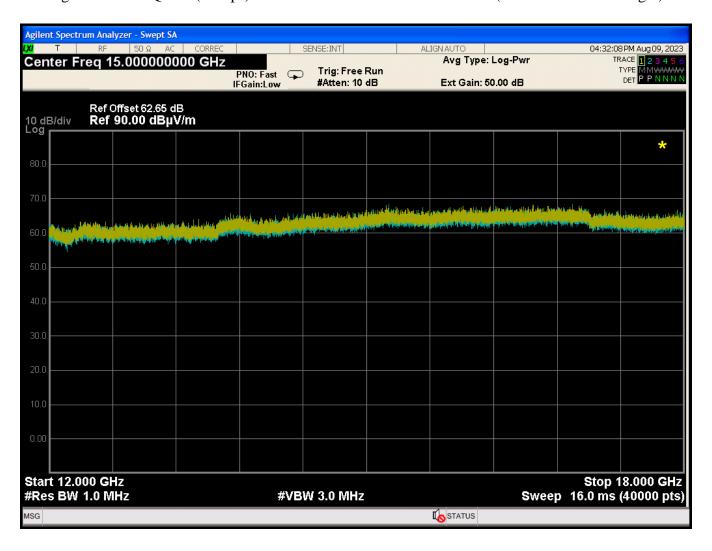
Report 18284-01 Rev 0 Page-103 of 118


Table 14: Radiated Emissions Test Data – 1 GHz to 25 GHz (2Mbps, Center Channel)

Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.536	Peak	52.723	74	-21.277	270	Horiz, 150
1.550	Avg	49.939	54	-4.061	270	Horiz, 150
1.990	Peak	49.034	74	-24.966	180	Vert, 150
1.990	Avg	29.086	54	-24.914	180	Vert, 150
2.441	Peak	93.943			270	Horiz, 150
5.180	Peak	55.405	74	-18.595	270	Vert, 150
3.180	Avg	34.884	54	-19.116	270	Vert, 150
5.214	Peak	59.855	74	-14.145	75	Horiz, 150
3.214	Avg	35.181	54	-18.819	75	Horiz, 150
5.935	Peak	50.877	74	-23.123	0	Vert, 150
3.933	Avg	35.832	54	-18.168	0	Horiz, 150
7.584	Peak	49.868	74	-24.132	0	Vert, 150
7.364	Avg	35.162	54	-18.838	0	Vert, 150
11.267	Peak	51.732	74	-22.268	0	Vert, 150
11.207	Avg	36.999	54	-17.001	0	Vert, 150

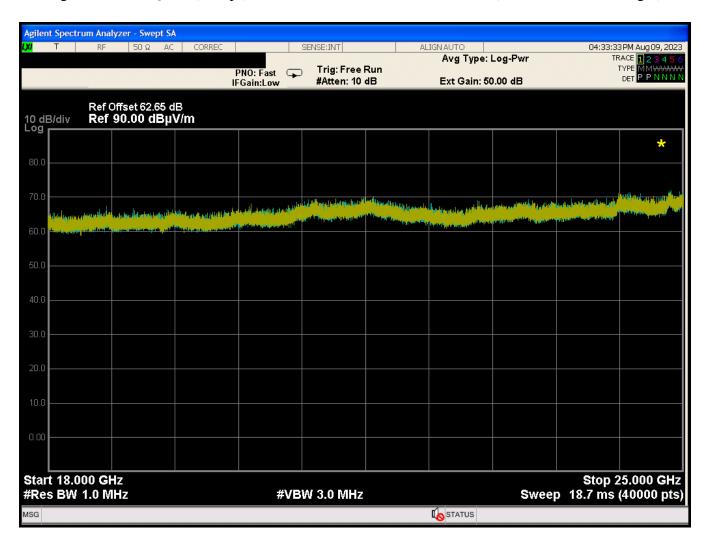

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 14. (2DH5, Center Channel)

Pre-scan and Final Data (Vertical) – $\pi/4$ DQPSK, Center Channel


Pre-scan and Final Data (Horizontal) – $\pi/4$ DQPSK, Center Channel

Report 18284-01 Rev 0 Page-105 of 118

Figure 68: π/4DQPSK (2Mbps) Center Channel – 12 GHz to 18 GHz (Corrected Field Strength)



Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

Figure 69: π/4DQPSK (2Mbps) Center Channel – 18 GHz to 25 GHz (Corrected Field Strength)

Trace 1 = Ambient

Trace 2 = EUT Transmit Enabled

Report 18284-01 Rev 0 Page-107 of 118

2.9 AC Powerline Conducted Emissions

2.9.1 Requirements

Compliance Standard: FCC Part 15.207

FCC Compliance Limits					
Frequency Range	Class A Dig	Class A Digital Device		gital Device	
Trequency Range	Quasi-peak	Average	Quasi-peak	Average	
0.15 – 0.5 MHz	79 dBμV	66 dBμV	66 to 56 dBμV	56 to 46 dBμV	
0.5 – 5 MHz	79 dBμV	66 dBµV	56 dBμV	46 dBμV	
0.5 – 30 MHz	73 dBμV	60 dBμV	60 dBμV	50 dBμV	

2.9.2 Test Procedure

The requirements of FCC Part 15 and ICES-003 call for the EUT to be placed on an 80cm-high 1 X 1.5-meter non-conductive table above a ground plane. Power to the EUT was provided through a Solar Corporation $50~\Omega/50~\mu H$ Line Impedance Stabilization Network bonded to a 3 X 2-meter ground plane. The LISN has its AC input supplied from a filtered AC power source. Power was supplied to the peripherals through a second LISN. The peripherals were placed on the table in accordance with ANSI C63.4. Power and data cables were moved about to obtain maximum emissions.

The 50 Ω output of the LISN was connected to the input of the spectrum analyzer and the emissions in the frequency range of 150 kHz to 30 MHz were measured. The detector function was set to quasi-peak, peak, or average as appropriate, and the resolution bandwidth during testing was at least 9 kHz, with all post-detector filtering no less than 10 times the resolution bandwidth. For average measurements, the post-detector filter was set to 10 Hz.

These emissions must meet the limits specified in §15.207 for quasi-peak and average measurements.

Environmental Conditions During Conducted Emissions Testing

Ambient Temperature:	22.2 °C
Relative Humidity:	45 %

2.9.3 Conducted Data Reduction and Reporting

The comparison between the Conducted emissions level and the FCC limit is calculated as shown in the following example:

Spectrum Analyzer Voltage: VdBµV(raw)

LISN Correction Factor: LISN dB
Cable Correction Factor: CF dB

Voltage: $VdB\mu V = V dB\mu V (raw) + LISN dB + CF dB$

2.9.4 Test Data

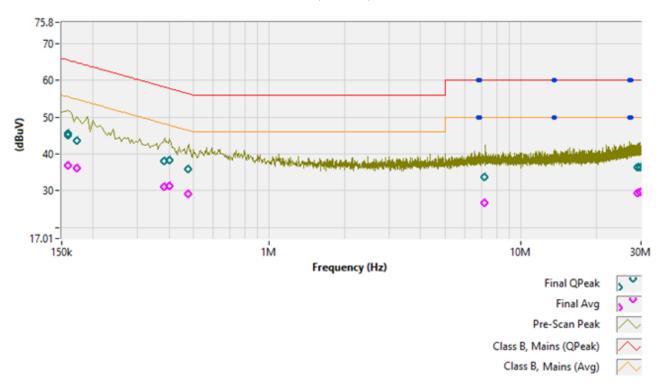
The EUT complies with the Class B Conducted Emissions requirements.

The Conducted Emissions test data is provided in the table below.

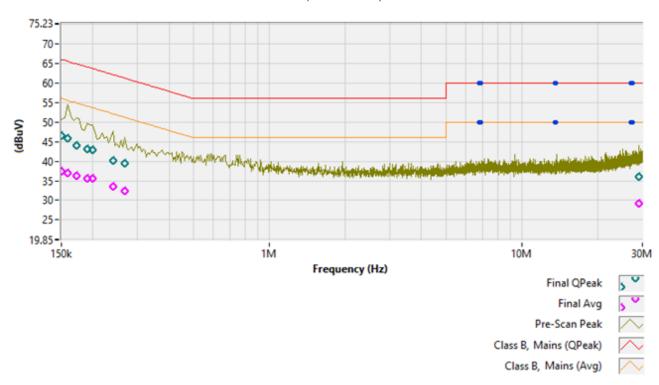
The EUT was coupled directly to the AC mains network via the EUT power cable.

During this test, the EUT was configured in a normal production mode, with the BT portion paired to a companion device. The digital portion was exercised by streaming music from the companion device to the EUT and playing music through the EUT speakers during the test.

Prior to this testing, it was confirmed that changing the modulation type, data rate, and/or carrier center frequency, had no impact on the AC powerline emissions.


Table 15: AC Powerline Conducted Emissions Test Data

	120VAC	C, 60Hz – Neutral (TX	(On)	
Frequency (MHz)	Detector	Corr. Meas. (dBuV)	Limit (dBuV)	Delta (dB)
0.150	QP	45.071	65.51	-20.444
0.159	AVG	36.804	55.51	-18.711
0.170	QP	43.692	64.86	-21.17
0.172	AVG	36.064	54.86	-18.799
0.383	QP	38.147	58.19	-20.049
0.383	AVG	31.148	48.19	-17.048
0.402	QP	38.249	57.80	-19.553
0.402	AVG	31.347	47.80	-16.455
0.475	QP	35.869	56.40	-20.556
0.473	AVG	29.040	46.42	-17.384
7.180	QP	33.719	60.00	-26.281
7.160	AVG	26.806	50.00	-23.194
	120VAC,	60Hz – Phase/Line (T	•	
Frequency (MHz)	Detector	Corr. Meas. (dBuV)	Limit (dBuV)	Delta (dB)
0.170	QP	46.509	66	-19.490
0.150	AVG	37.366	56	-18.634
0.150	QP	45.761	65.51	-19.754
0.159	AVG	26004	CC C1	
	AVG	36.884	55.51	-18.632
0.172	QP	36.884	55.51 64.86	-18.632 -20.791
0.172				-20.791
	QP	44.071	64.86	-20.791 -18.656
0.172 0.190	QP AVG	44.071 36.206	64.86 54.86	-20.791 -18.656 -20.953
0.190	QP AVG QP AVG QP	44.071 36.206 43.060	64.86 54.86 64.01	-20.791 -18.656 -20.953 -18.438
	QP AVG QP AVG	44.071 36.206 43.060 35.575	64.86 54.86 64.01 54.01	-18.632 -20.791 -18.656 -20.953 -18.438 -20.812 -17.962
0.190	QP AVG QP AVG QP	44.071 36.206 43.060 35.575 42.817	64.86 54.86 64.01 54.01 63.62	-20.791 -18.656 -20.953 -18.438 -20.812

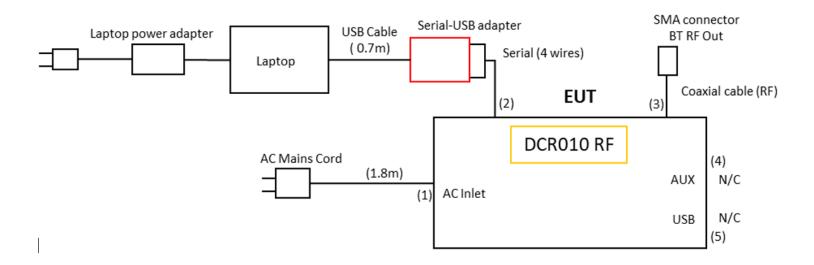

Report 18284-01 Rev 0 Page-110 of 118

Pre-scan and Final Data (Neutral) - Transmit Enabled

Pre-scan and Final Data (Phase/Line) - Transmit Enabled

Report 18284-01 Rev 0 Page-111 of 118

3 Equipment Under Test


3.1 EUT Identification & Description

The Stanley Black & Decker, Inc., FN2D is a Bluetooth speaker audio system that operates in the GHz ISM band. The DCR010 employs Bluetooth 5.2 Simplex mode (BDR/EDR). The EUT does not support BLE. The DCR010 is primarily powered by 120VAC, 60Hz; however, the EUT can also be powered by an external DeWalt re-chargeable Li-ion battery. Please know that the EUT is not sold with the external battery. The battery is not provided with the EUT at the consumer point-of-sale. The EUT is not capable of charging the battery.

3.2 Test Configuration

For the purposes of testing, the EUT was provided in two sample configurations. (1) ability to set fixed transmit frequency via +5 VDC USB interface and (2) Normal/production (powered by AC mains). For conducted antenna port testing, and radiated emissions testing above 1000 MHz, the BT radio portion was powered by +5 VDC via the support laptop. This USB interface allowed for the command and control of the BT radio channels, power, and modulation schemes. The manufacturer provided a testing software application on the support laptop for control of the BT radio. When the software tool was used, the EUT was set to transmit at its maximum possible output power. This is indicated by a Transmitter Gain Setting of "8".

Figure 70: EUT Testing Configuration (Example Only)

Report 18284-01 Rev 0 Page-112 of 118

Table 16: Radio Device Summary

Manufacturer and Applicant:	Stanley Black & Decker, Inc.	
FCC ID:	YJ7DCR010B	
IC ID:	9082A-DCR010B	
HVIN:	FN2D	
Serial Number of Unit Tested:	See Table 17	
FCC Rule Part:	§15.247	
TX Frequency Range:	2402 MHz – 2480 MHz	
Maximum Peak Output Power:	4.7 dBm (3.0 mW)	
Modulation:	GFSK, π/4DQPSK, 8DPSK	
Date Rate:	1Mbps, 2Mbps, 3Mbps	
Number of Channels:	79	
FCC Emission Designator:	1M24F1D (recommended or TCB to correct)	
ISED Emission Designator:	1M17F1D (recommended or TCB to correct)	
Keying:	Automatic	
Type of Information:	BT V5.2 (A2DP, AVRCP, HFP)	
Pulsed Transmitter:	No	
Antenna Manufacturer:	Dongguan Finemost Electronics Co., Ltd.	
Antenna Type:	PCB Trace, "Meander Line" (Peak Gain: +0.45 dBi)	
Antenna Connector:	N/A	
Calculated EIRP:	5.15 dBm (based on antenna gain)	
Measured EIRP from F/S:	100.2 dBuV/m + 20LOG(3) - 104.7 = 5.04 dBm (EIRP)	
Interface Cables:	See Table 19	
Software/Firmware:	Actions BT Tool v2.22 (TX Gain Setting: "8")	
EUT Power Source & Voltage:	120 VAC, 1PH, 60 Hz	
ISED – RSS-102, Annex A:	+0.007 W/m ² @ 20cm (calculated)	
Highest TX Spurious Emission:	23.91 GHz (Conducted) -47.39 dBm (Peak) (Noise Floor)	
Ingliest IA Spurious Emission.	1.536 GHz (3m, Radiated); 49.939 dBuV/m (AVG)	

Report 18284-01 Rev 0 Page-113 of 118

Table 17: System Configuration List

Name / Description	Model Number	Part Number	Serial Number	Rev.#
DCR010 RF (w/AC cord)	DCR010	N/A	N/A	N/A
DCR010V EMC (w/AC cord)	DCR010	N/A	728287	N/A
CMCR001 RF	CMCR001	N/A	08395	N/A
AC adapter for CMCR001	GQ36-1200270-AU	N/A	N/A	N/A
CMCR001U EMC	CMCR001	N/A	082396	N/A
AC adapter for CMCR001	GQ36-1200270-AU	N/A	N/A	N/A

Table 18: Support Equipment

Name / Description	Manufacturer	Model Number	Customer Calibration Data
Laptop Lenovo ThinkPad		W510, Type 4391-G18 R9-F5D87 11/07	N/A
Laptop power supply	Lenovo	N/A	N/A
USB to serial adapter	N/A (red PCB adapter)	N/A	N/A
USB A to mini-USB N/A (for USB to serial)		N/A	N/A

Report 18284-01 Rev 0 Page-114 of 118

Table 19: Cable Configuration

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded	Termination Box ID & Port ID
1	DCR010 RF AC inlet	AC mains cord	1	1.8	No	120VAC
2	DCR010 RF - Serial	Serial-USB adapter (red)	1	0.7	Yes	N/A
3	DCR010 RF - RF out	Coax with SMA connector (instead of internal antenna)	1	N/A	Yes	EMC Receiver
4	DCR010 RF - AUX	Not tested at this time	0	N/A	N/A	N/A
5	DCR010 RF - USB	Not tested at this time	0	N/A	N/A	N/A

3.3 Measurements

3.3.1 References

ANSI C63.2 (1/2016) Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 (1/2014) American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

ANSI C63.10 (6/2013) American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

3.4 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 (R2002) with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_c = \pm \sqrt{\frac{a^2}{div_a^2} + \frac{b^2}{div_b^2} + \frac{c^2}{div_c^2} + \dots}$$

Where:

uc = standard uncertainty

a, b, $c_{,,,}$ = individual uncertainty elements

Diva, b, c = the individual uncertainty element divisor based on the

probability distribution

Divisor = 1.732 for rectangular distribution

Divisor = 2 for normal distribution

Divisor = 1.414 for trapezoid distribution

Report 18284-01 Rev 0 Page-116 of 118

Equation 2: Expanded Uncertainty

$$U = ku_c$$

Where:

U = expanded uncertainty

k = coverage factor

k \leq 2 for 95% coverage (ANSI/NCSL Z540-2 Annex G)

uc = standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is not used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 20 below.

Table 20: Expanded Uncertainty List

Scope	Standard(s)	Expanded Uncertainty
Conducted Emissions	CISPR11, CISPR22, CISPR32, CISPR14, FCC Part 15	± 2.63 dB
Radiated Emissions	CISPR11, CISPR22, CISPR32, CISPR14, FCC Part 15	± 4.55 dB

Report 18284-01 Rev 0 Page-117 of 118

4 Test Equipment

Table 21: Test Equipment List

Test Name:	Conducted RF Emissions	Test Dates: 8/1/2023 – 8/3/2023		
Asset # Manufacturer/Model		Description	Cal. Due	
00933	KEYSIGHT	EXA SPECTRUM ANALYZER	12/5/2024	
00869	MINI-CIRCUITS	HF COAXIAL CABLE, SMA	12/28/2023	
N/A	WEINSCHEL, 54A-20	3.5MM, 20DB ATTN. S/N: J9924	6/14/2024	

Test Name:	3-meter Radiated Emissions	Test Completion Date: 8/9/2023	
Asset #	Manufacturer/Model	Description	Cal. Due
00933	KEYSIGHT	EXA SPECTRUM ANALYZER	12/5/2024
00823	AGILENT, N9010A	EXA SPECTRUM ANALYZER	6/7/2024
00644	SUNOL SCIENCES CORP.	BICONALOG ANTENNA	11/7/2024
00626	ARA, DRG-118/A	HORN ANTENNA	6/19/2024
00977	JUNKOSHA, MWX322	ARMORED COAX. CABLE	12/28/2023
00806	MINI-CIRCUITS	SMA COAXIAL CABLE	12/28/2023
00834	ULTIFLEX, UFA 2108	SMA COAXIAL CABLE	12/28/2023
00276	ELECTRO-METRICS	RF PRE-AMPLIFIER	5/9/2024
00066	B&Z (HP), BZ-01002650	PRE-AMPLIFIER	5/24/2024
00742	PENN ENG., WR284	WAVEGUIDE PASS FILTER	6/27/2025
00281	ITC. 21A-3A1	WAVEGUIDE PASS FILTER	6/27/2025
00721	WEINSCHEL, DS109	TUNABLE ATTENUATOR	Cal. Before Use
N/A	NARDA, 4779-3	SMA, 3DB ATTN. S/N: 9801	6/14/2024

Test Name:	AC Mains Powerline Emissions	Test Completion Date: 8/3/2023	
Asset # Manufacturer/Model		Description	Cal. Due
00823	AGILENT, N9010A	EXA SPECTRUM ANALYZER	6/7/2024
00895	HP, 11947A	TRANSIENT LIMITER	2/14/2024
00125	SOLAR, LISN	8028-50-TS-24-BNC	5/25/2024
00126	SOLAR, LISN	8028-50-TS-24-BNC	5/25/2024
00330	WLL, BNC CABLE	CE SITE 1 CABLE	5/24/2024

Report 18284-01 Rev 0 Page-118 of 118