

FCC & ISED CANADA CERTIFICATION TEST REPORT

FOR THE

DCR008, BLUETOOTH SPEAKER

FCC ID: YJ7DCR008 IC ID: 9082A-DCR008

WLL REPORT # 17918-01 REV 2

Prepared for:

Stanley Black & Decker, Inc. 701 E. Joppa Road Towson, Maryland 21286

Prepared By:

Washington Laboratories, Ltd. 4840 Winchester Boulevard. Ste #5 Frederick, Maryland 21703

Testing Certificate AT-1448

FCC & ISED Canada Certification Test Report

for the

Stanley Black & Decker, Inc. FCC ID: YJ7DCR008 IC ID: 9082A-DCR008

November 17, 2022 WLL Report# 17918-01 Rev 2

Prepared by:

nu mchi

Ryan Mascaro RF Test Engineer

Reviewed by:

Steven D. Koster President

Abstract

This report has been prepared on behalf of Stanley Black & Decker, Inc.to support the attached application for a 2.4GHz Bluetooth Transmitter. The test report and application are submitted for a Frequency Hopping Spread Spectrum (FHSS) Transmitter under Part 15.247 of the FCC Rules and under Innovation Science and Economic Development (ISED) Canada RSS-247, Issue 2 (2/2017). This test Report documents the test configuration and test results for the Stanley Black & Decker, Inc., DCR008. The information provided in this report is only applicable to device herein documented, as the EUT.

The radiated emissions portion of the testing was performed in the Free-space Anechoic Chamber Testsite (FACT) 3m Chamber of Washington Laboratories, Ltd., located at 4840 Winchester Boulevard, Suite #5. Frederick, MD 21703. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD.

Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Testing Certificate AT-1448 as an independent test laboratory. The Washington Laboratories, Ltd. ISED Canada number is 3035A.

The Stanley Black & Decker, Inc., DCR008 complies with the requirements for a FHSS Bluetooth Transmitter under Part 15.247 of the FCC Rules and under Innovation Science and Economic Development (ISED) Canada RSS-247, Issue 2 (2/2017).

Revision History	Description of Change	Date		
Rev 0	Initial Release	November 17, 2022		
Rev 1	TCB Comments; Dated 2/1/2023	February 6, 2023		
Rev 2	TCB Comments; Dated 2/15/2023	February 16, 2023		

Table of Contents

1	Introduction	8
	1.1 Compliance Statement	8
	1.2 Test Scope	8
	1.3 Testing Algorithm	8
	1.4 Test Location	9
	1.5 Contract Information	9
	1.6 Test and Support Personnel	9
	1.7 Test Dates	9
2	Test Results	. 11
	2.1 Transmitter Output Power	. 11
	2.1.1 Measurement Method and Results	. 11
	2.2 Channel Occupied Bandwidth	. 21
	2.2.1 Measurement Method and Results	. 21
	2.3 Number of Channels Used	. 31
	2.3.1 Measurement Method and Results	. 31
	2.4 Time of Occupancy (Dwell Time)	
	2.4.1 Measurement Method and Results	. 38
	2.5 Channel Carrier Separation	
	2.5.1 Measurement Method and Results	. 45
	2.6 Bandedge Compliance (Antenna Port Conducted)	
	2.6.1 Measurement Method and Results	. 49
	2.7 Conducted Spurious Emissions	
	2.7.1 Measurement Method and Results	
	2.8 General Field Strength Requirements – Radiated Emissions	. 91
	2.8.1 Requirements	. 91
	2.8.2 Test Procedure Summary	. 91
	2.8.3 Radiated Data Reduction and Reporting	. 92
	2.8.4 Measurement Method and Results	. 93
	2.9 AC Powerline Conducted Emissions	121
	2.9.1 Requirements	121
	2.9.2 Test Procedure	121
	2.9.3 Conducted Data Reduction and Reporting	122
	2.9.4 Test Data	122
3	Equipment Under Test	
	3.1 EUT Identification & Description	124
	3.2 Test Configuration	124
	3.3 Measurements	128
	3.3.1 References	128
	3.4 Measurement Uncertainty	128
4	Test Equipment	130

List of Tables

Table 1: Certification Testing Summary and Compliance Results	10
Table 2: Transmitter Output Power – Test Results	11
Table 3: Channel Occupied Bandwidth – Test Results	21
Table 4: Number of Channels Used – Test Results	31
Table 5: Time of Occupancy – Test Results	38
Table 6: Channel Carrier Separation – Test Results	45
Table 7: Bandedge Compliance – Test Results	49
Table 8: Radio Fundamental, EUT Axis Evaluation (GFSK, Center Channel)	93
Table 9: Radiated Emissions Test Data – 30 MHz to 1000 MHz	94
Table 10: Radiated Emissions Test Data – 1 GHz to 25 GHz (GFSK, Low Channel)	97
Table 11: Radiated Emissions Test Data – 1 GHz to 25 GHz (GFSK, Center Channel)	. 102
Table 12: Radiated Emissions Test Data – 1 GHz to 25 GHz (GFSK, High Channel)	. 107
Table 13: Radiated Emissions Test Data – 1 GHz to 25 GHz (π /4DQPSK, Center Channel)	. 112
Table 14: Radiated Emissions Test Data – 1 GHz to 25 GHz (8DPSK, Center Channel)	. 117
Table 15: AC Power Conducted Emissions Test Data	. 123
Table 16: Radio Device Summary	. 125
Table 17: System Configuration List	
Table 18: Support Equipment	. 127
Table 19: Cable Configuration	. 127
Table 20: Expanded Uncertainty List	. 129
Table 21: Test Equipment List	. 130

List of Figures

Figure 1: GFSK (1Mbps) – Low Channel, Peak Power Output	12
Figure 2: GFSK (1Mbps) – Center Channel, Peak Power Output	
Figure 2: GFSK (1Mbps) – Echer Channel, Peak Power Output	
Figure 5: OTSK (1900ps) – Tigit Channel, Feak Fower Output Figure 4: $\pi/4DQPSK$ (2Mbps) – Low Channel, Peak Power Output	
Figure 5: $\pi/4DQPSK$ (2Mbps) – Center Channel, Peak Power Output	
Figure 6: $\pi/4DQPSK$ (2Mbps) – High Channel, Peak Power Output.	
Figure 7: 8DPSK (3Mbps) – Low Channel, Peak Power Output	
Figure 8: 8DPSK (3Mbps) – Center Channel, Peak Power Output	
Figure 9: 8DPSK (3Mbps) – High Channel, Peak Power Output.	
Figure 10: GFSK (1Mbps) – Low Channel, Occupied Bandwidth	
Figure 11: GFSK (1Mbps) – Center Channel, Occupied Bandwidth	
Figure 12: GFSK (1Mbps) – High Channel, Occupied Bandwidth	
Figure 13: π/4DQPSK (2Mbps) – Low Channel, Occupied Bandwidth	
Figure 14: π/4DQPSK (2Mbps) – Center Channel, Occupied Bandwidth	
Figure 15: π/4DQPSK (2Mbps) – High Channel, Occupied Bandwidth	
Figure 16: 8DPSK (3Mbps) – Low Channel, Occupied Bandwidth	
Figure 17: 8DPSK (3Mbps) – Center Channel, Occupied Bandwidth	29
Figure 18: 8DPSK (3Mbps) – High Channel, Occupied Bandwidth	30
Figure 19: GFSK (1Mbps) – Number of Channels Used, Plot 1	32
Figure 20: GFSK (1Mbps) – Number of Channels Used, Plot 2	
Figure 21: π/4DQPSK (2Mbps) – Number of Channels Used, Plot 1	34
Figure 22: π/4DQPSK (2Mbps) – Number of Channels Used, Plot 2	
Figure 23: 8DPSK (3Mbps) – Number of Channels Used, Plot 1	36
Figure 24: 8DPSK (3Mbps) – Number of Channels Used, Plot 2	
Figure 25: GFSK Transmitter 5-Second Evaluation (Hopping)	39
Figure 26: GFSK Transmitter Evaluation (Hopping) – Single Dwell Time	
Figure 27: π/4DQPSK Transmitter 5-Second Evaluation (Hopping)	
Figure 28: $\pi/4DQPSK$ Transmitter Evaluation (Hopping) – Single Dwell Time	
Figure 29: 8DPSK Transmitter 5-Second Evaluation (Hopping)	43
Figure 30: 8DPSK Transmitter Evaluation (Hopping) – Single Dwell Time	
Figure 31: GFSK (1Mbps) – Channel Separation.	
Figure 32: π/4DQPSK (2Mbps) – Channel Separation	
Figure 33: 8DPSK (3Mbps) – Channel Separation	
Figure 34: GFSK (1Mbps) – Lower Band Edge	
Figure 35: GFSK (1Mbps) – Upper Band Edge	
Figure 36: $\pi/4DQPSK$ (2Mbps) – Lower Band Edge	
Figure 37: π/4DQPSK (2Mbps) – Upper Band Edge	
Figure 38: 8DPSK (3Mbps) – Lower Band Edge	
Figure 39: 8DPSK (3Mbps) – Lower Band Edge	
Figure 40: GFSK (1Mbps) Low Channel, Conducted Spurious – Plot 1	
Figure 41: GFSK (1Mbps) Low Channel, Conducted Spurious – Plot 2	
Page 6 of	

Page-6 of 130

Figure 42: GFSK (1Mbps) Low Channel, Conducted Spurious – Plot 3	59
Figure 43: GFSK (1Mbps) Low Channel, Conducted Spurious – Plot 4	
Figure 44: GFSK (1Mbps) Low Channel, Conducted Spurious – Plot 5	
Figure 45: GFSK (1Mbps) Low Channel, Conducted Spurious – Plot 6	
Figure 46: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 1	
Figure 47: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 2	
Figure 48: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 3	
Figure 49: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 4	
Figure 50: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 5	
Figure 51: GFSK (1Mbps) Center Channel, Conducted Spurious – Plot 6	
Figure 52: GFSK (1Mbps) High Channel, Conducted Spurious – Plot 1	
Figure 53: GFSK (1Mbps) High Channel, Conducted Spurious – Plot 2	
Figure 54: GFSK (1Mbps) High Channel, Conducted Spurious – Plot 3	
Figure 55: GFSK (1Mbps) High Channel, Conducted Spurious – Plot 4	
Figure 56: GFSK (1Mbps) High Channel, Conducted Spurious – Plot 5	
Figure 57: GFSK (1Mbps) High Channel, Conducted Spurious – Plot 6	
Figure 58: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 1	
Figure 59: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 2	
Figure 60: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 3	
Figure 61: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 4	
Figure 62: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 5	
Figure 63: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 6	
Figure 64: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 1	
Figure 65: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 2	
Figure 66: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 3	
Figure 67: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 4	
Figure 68: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 5	
Figure 69: 8DPSK (3Mbps) Center Channel, Conducted Spurious – Plot 6	
Figure 70: GFSK (1Mbps) Low Channel – 6 GHz to 9 GHz (Corrected Field Strength)	99
Figure 71: GFSK (1Mbps) Low Channel – 9 GHz to 18 GHz (Corrected Field Strength)	100
Figure 72: GFSK (1Mbps) Center Channel – 6 GHz to 9 GHz (Corrected Field Strength)	104
Figure 73: GFSK (1Mbps) Center Channel – 9 GHz to 18 GHz (Corrected Field Strength)	105
Figure 74: GFSK (1Mbps) High Channel – 6 GHz to 9 GHz (Corrected Field Strength)	109
Figure 75: GFSK (1Mbps) High Channel – 9 GHz to 18 GHz (Corrected Field Strength)	110
Figure 76: π/4DQPSK (2Mbps) Center Channel – 6 GHz to 9 GHz (Corrected Field Strength)	114
Figure 77: π/4DQPSK (2Mbps) Center Channel – 9 GHz to 18 GHz (Corrected Field Strength)	
Figure 78: 8DPSK (3Mbps) Center Channel – 6 GHz to 9 GHz (Corrected Field Strength)	
Figure 79: 8DPSK (3Mbps) Center Channel – 9 GHz to 18 GHz (Corrected Field Strength)	
Figure 80: EUT Sample Diagram – Device Specifications	
Figure 81: EUT Block Diagram – Testing Configuration	

1 Introduction

1.1 Compliance Statement

The Stanley Black & Decker, Inc., DCR008 complies with the requirements for a FHSS Bluetooth Transmitter under Part 15.247 of the FCC Rules and under Innovation Science and Economic Development (ISED) Canada RSS-247, Issue 2 (2/2017).

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with C63.10 "ANSI Procedures for Compliance Testing of Unlicensed Wireless Devices". The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation. Table 1 provides the series and results of testing for compliance with for a FHSS device; full test results are shown in subsequent report sub-sections.

1.3 Testing Algorithm

The DCR008, Bluetooth Speaker was provided to the test laboratory, in two sample configurations: (1) a conducted (at the antenna port) sample and (2) a wireless radiated (PCB trace antenna) sample. The EUT low, center, and high channels were tunable through the support laptop's interface. Prior to all testing, the transmitter power was adjusted [via software] to the maximum allowable setting withing the support software, indicated by a numerical value of "8". This setting achieved the reported peak transmit output power denoted in Table 2. The EUT was tested in a manner that produced the worst-case emission levels, which are provided in the test results data section(s) of this report.

1.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Frederick, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Testing Certificate AT-1448 as an independent test laboratory. The Washington Laboratories, Ltd. ISED Canada number is 3035A.

1.5 Contract Information

Customer:	Stanley Black & Decker, Inc.
Purchase Order Number:	V603822
Quotation Number:	73709

1.6 Test and Support Personnel

Washington Laboratories, LTD	Ryan Mascaro
Customer Representative	Cedric Valiente

1.7 Test Dates

11/9/2022 – 11/14/2022 & 2/6/2023 (also see Section 4 of this report)

Table 1: Certification Testing Summary and Compliance Res	ults
---	------

FCC Rule Part	ISED Canada Rule Part	Test Description	Result
15.247(b)(1)	RSS-247; 5.4(b)	Transmit Output Power	Pass
15.247(a)(1) 2.1049	RSS-247; 5.1(a)	Channel Occupied Bandwidth	Pass
15.247 (a)(1)(iii)	RSS-247; 5.1(d)	Number of Channels Used	Pass
15.247 (a)(1)(iii)	RSS-247; 5.1(d)	Time of Occupancy (Dwell Time)	Pass
15.247(a)(1)	RSS-247; 5.1(b)	Channel Carrier Separation	Pass
15.247(d) DA 00-705	RSS-247; 5.5	Bandedge Compliance (20dB)	Pass
15.247(d)	RSS-247; 5.5	Conducted Spurious Emissions	Pass
15.205(a) 15.209(a)	RSS-Gen; 8.9 RSS-Gen; 8.10	General Field Strength Requirements	Pass
15.205	RSS-Gen; 6.8	Antenna Requirement	Pass †
15.207	RSS-Gen; 8.8	AC Powerline Conducted Emissions	Pass

† the EUT employs a custom PCB trace antenna; designed and manufactured by the Applicant. The EUT does not have an antenna connector.

2 Test Results

2.1 Transmitter Output Power

For frequency hopping systems operating in the 2400 MHz to 2483.5 MHz band, that employ at least 75 non-overlapping hopping channels, the maximum conducted output power (measured at the antenna port) shall not exceed 30 dBm (1 Watt). For all other frequency hopping systems, inclusive of the EUT, in the 2400 MHz to 2483.5 MHz band the maximum conducted output power (measured at the antenna port) shall not exceed 21 dBm (125 mW). Additionally, ISED Canada requires that the EIRP shall not exceed 4 Watts, except as provided in RSS-247, Section 5.4(e).

2.1.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.5.

The EUT was configured in a fully-modulated mode, with the hopping stopped.

The EUT employs a PCB trace antenna with a maximum gain of -1.5 dBi.

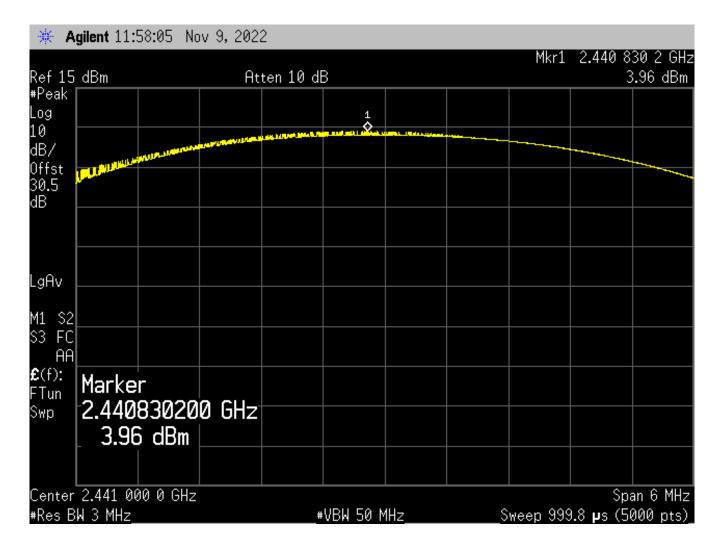
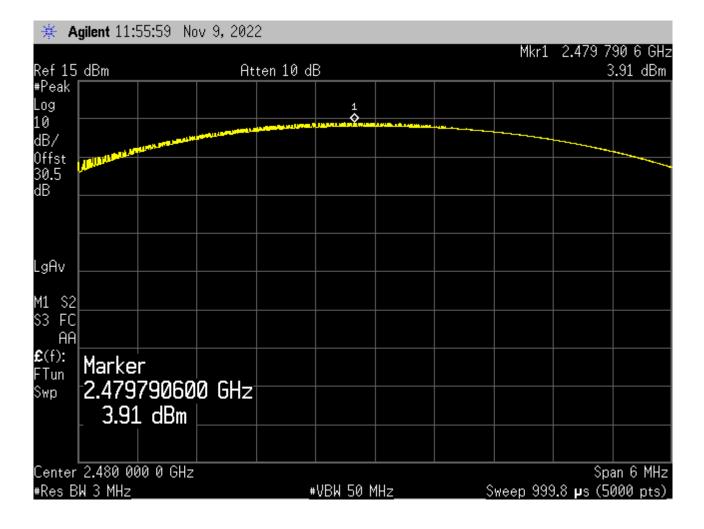
3.96 + -1.5 = 2.46 dBm EIRP (calculated), which is far below the 4W limit for Canada.

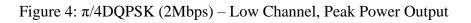
Modulation Mode (Data Rate)		Frequency (MHz)	Peak Power (dBm)		
	DUS	2402 MHz	3.80		
GFSK	DH5	2441 MHz	3.96		
	(1Mbps)	2480 MHz	3.91		
π/4DQPSK	2DH5	2402 MHz	3.76		
		2441 MHz	3.85		
	(2Mbps)	2480 MHz	3.76		
8DPSK	20115	2402 MHz	3.76		
	3DH5	2441 MHz	3.76		
	(3Mbps)	2480 MHz	3.77		

Table 2: Transmitter Output Power - Test Results	
--	--

* A	gilent 13:4	44:23 No	v 9,2022	2						
								Mkr1		44 9 GHz
Ref 15	dBm		At	ten 10 di	3				3	.80 dBm
#Peak Log										
10										
	MANNA MANA	IN MARKEN A	and the Real Property lies in the second							_
Offst 30.5										
30.5 dB										
LgAv										
LALIA										
M1 S2										
S3 FC AA										
£ (f):	Marke	-								
FTun										
Ѕ₩р	2.401	74490 1 dBm	0 GHZ							
	2.402 00	10 0 GHz								an 6 MHz
#Res B	W 3 MHz_			#	VBW 50 M	1Hz	S	weep 999	9.8 µ s (50	000 pts)_

Figure 1: GFSK (1Mbps) – Low Channel, Peak Power Output


Figure 2: GFSK (1Mbps) - Center Channel, Peak Power Output

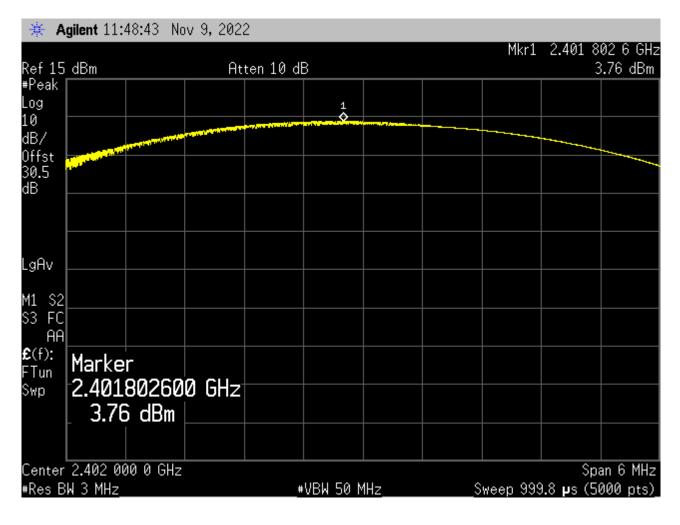
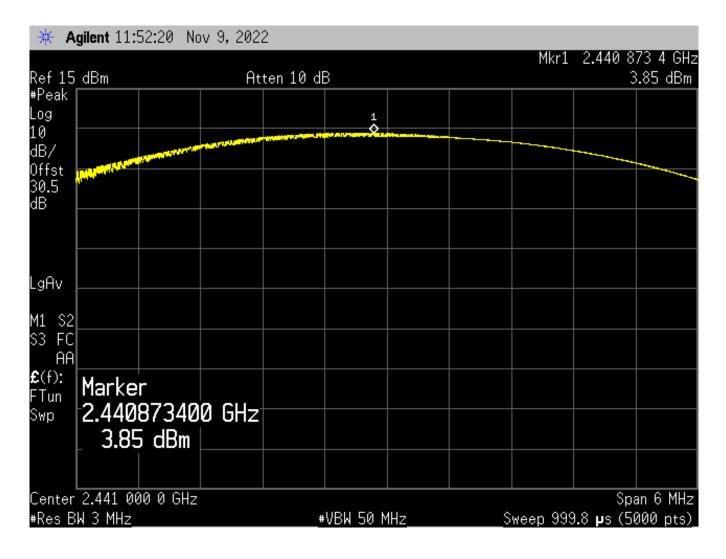


Figure 3: GFSK (1Mbps) – High Channel, Peak Power Output



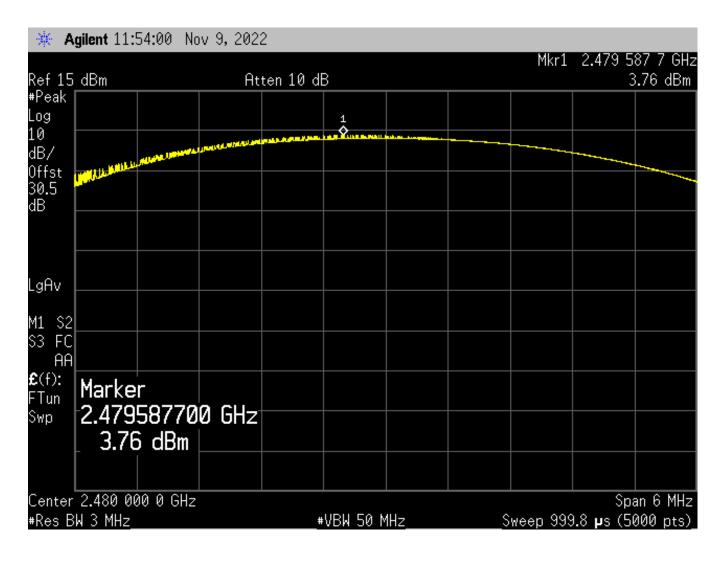


Figure 5: $\pi/4DQPSK$ (2Mbps) – Center Channel, Peak Power Output

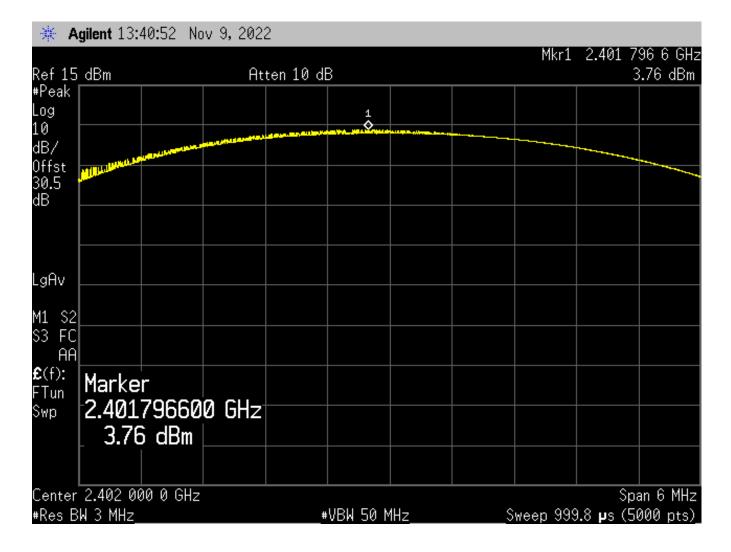


Figure 6: $\pi/4DQPSK$ (2Mbps) – High Channel, Peak Power Output

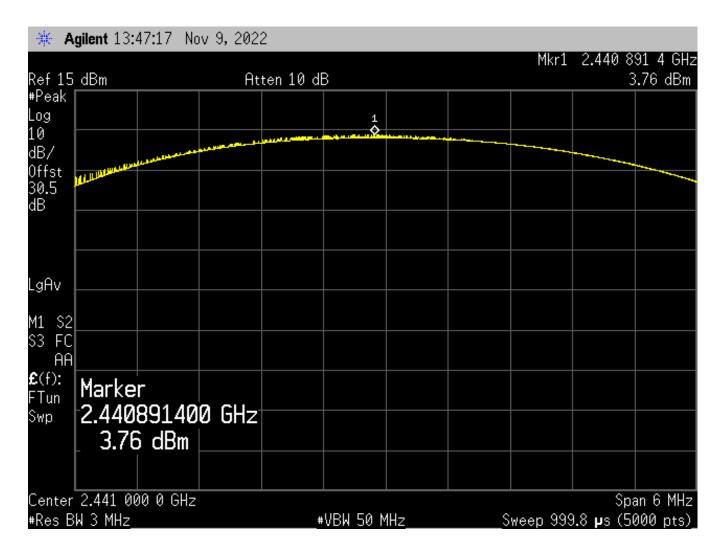


Figure 7: 8DPSK (3Mbps) – Low Channel, Peak Power Output

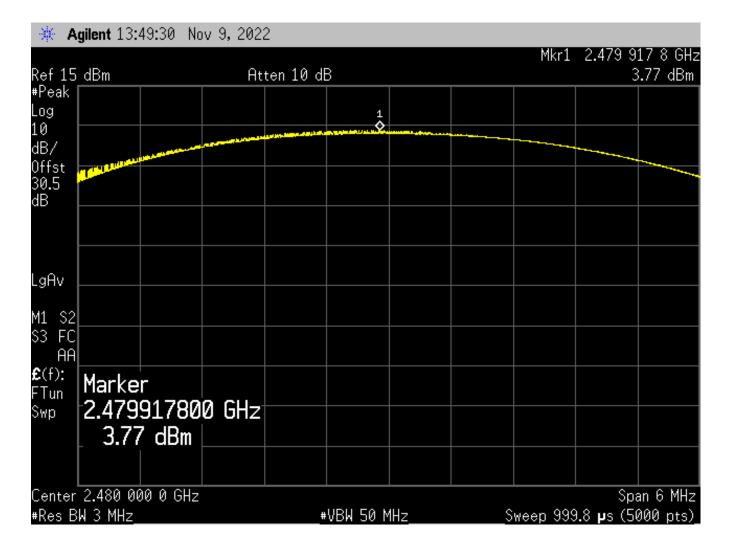


Figure 8: 8DPSK (3Mbps) - Center Channel, Peak Power Output

Figure 9: 8DPSK (3Mbps) – High Channel, Peak Power Output

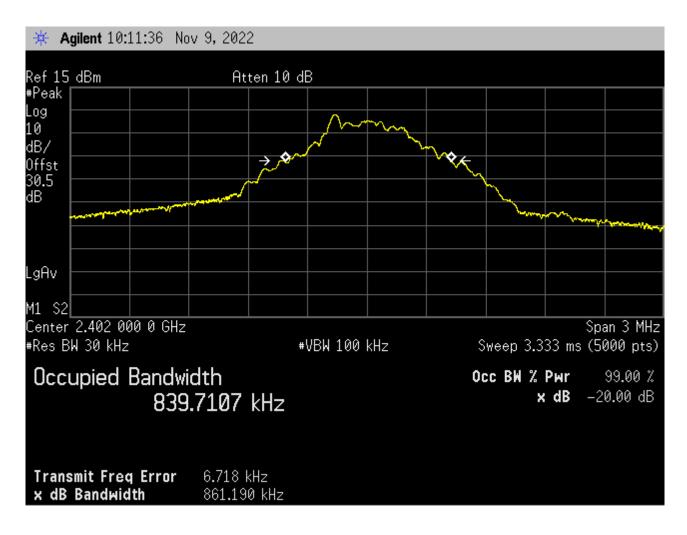
2.2 Channel Occupied Bandwidth

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 MHz to 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

The occupied bandwidth of a frequency hopping channel is the 20dB emission bandwidth, measured with the hopping stopped. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.

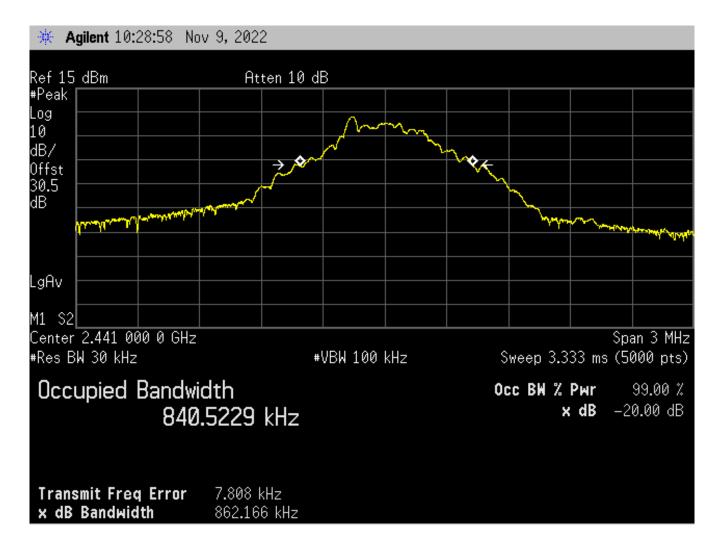
2.2.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 6.9.2


The EUT was configured in a fully-modulated mode, with the hopping stopped.

Modulation	Mode (Data Rate)	Frequency (MHz)	20dB Bandwidth	99% Bandwidth		
GFSK	DH5 (1Mbps)	2402 MHz	861.2 kHz	839.7 kHz		
		2441 MHz	862.2 kHz	840.5 kHz		
		2480 MHz	862.3 kHz	849.0 kHz		
π/4DQPSK	2DH5 (2Mbps)	2402 MHz	1.19 MHz	1.12 MHz		
		2441 MHz	1.19 MHz	1.12 MHz		
		2480 MHz	1.19 MHz	1.12 MHz		
8DPSK	3DH5 (3Mbps)	2402 MHz	1.20 MHz	1.13 MHz		
		2441 MHz	1.23 MHz	1.13 MHz		
		2480 MHz	1.23 MHz	1.13 MHz		

Table 3: Channel Occupied Bandwidth - Test Results



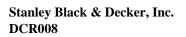
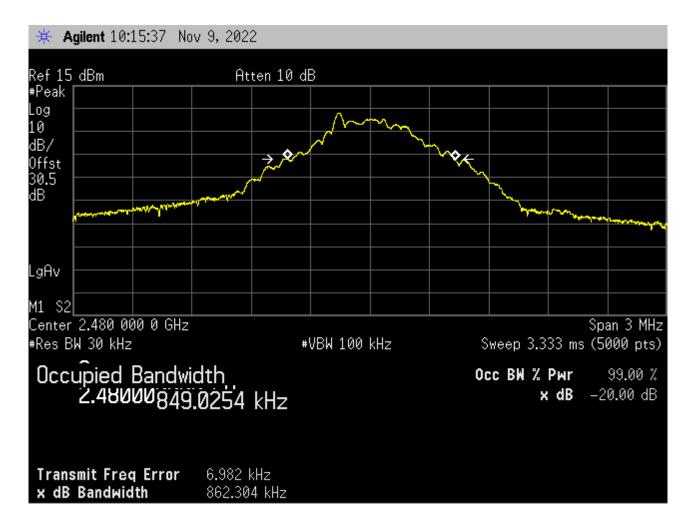
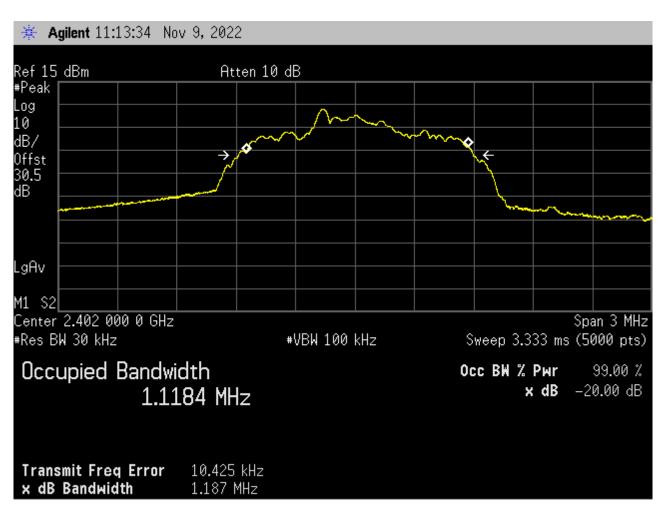
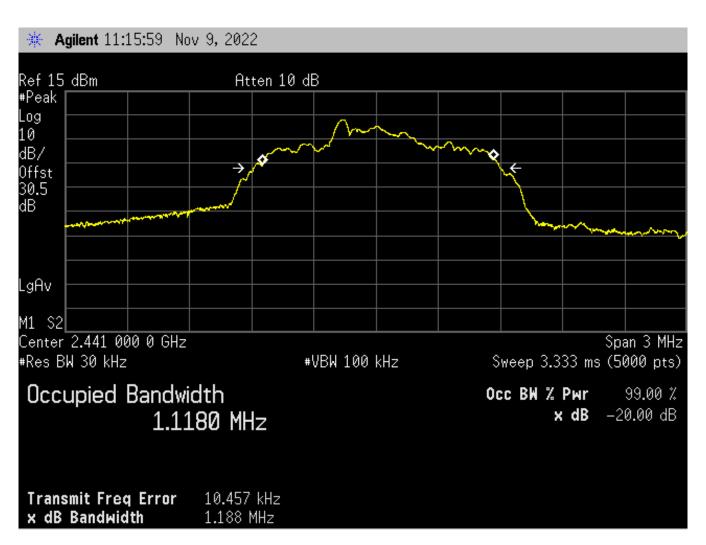
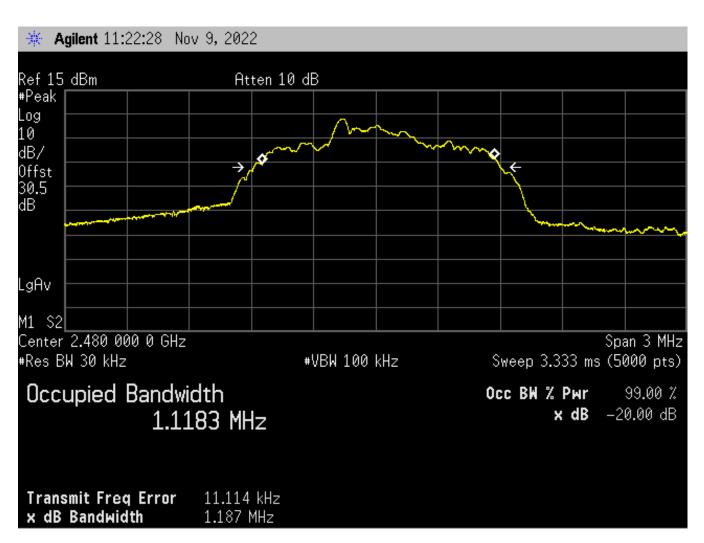
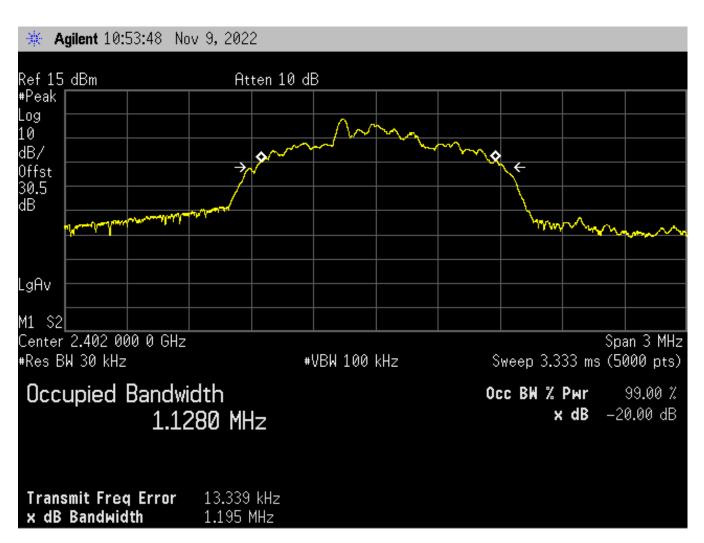

Figure 10: GFSK (1Mbps) - Low Channel, Occupied Bandwidth

Figure 11: GFSK (1Mbps) – Center Channel, Occupied Bandwidth


Figure 12: GFSK (1Mbps) - High Channel, Occupied Bandwidth


Figure 13: $\pi/4DQPSK$ (2Mbps) – Low Channel, Occupied Bandwidth


Figure 14: $\pi/4DQPSK$ (2Mbps) – Center Channel, Occupied Bandwidth

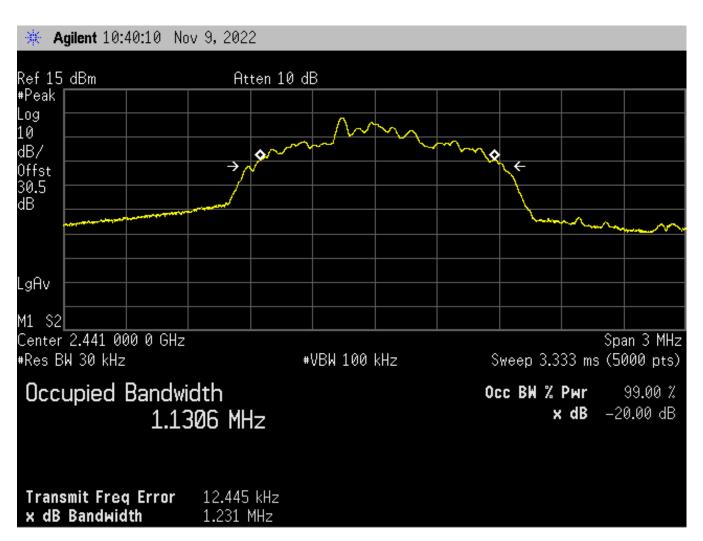

Figure 15: $\pi/4DQPSK$ (2Mbps) – High Channel, Occupied Bandwidth

Figure 16: 8DPSK (3Mbps) - Low Channel, Occupied Bandwidth

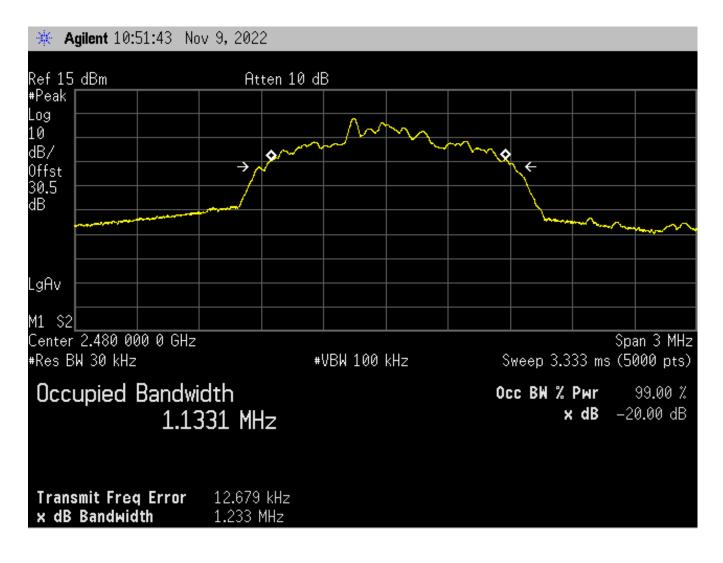


Figure 17: 8DPSK (3Mbps) – Center Channel, Occupied Bandwidth

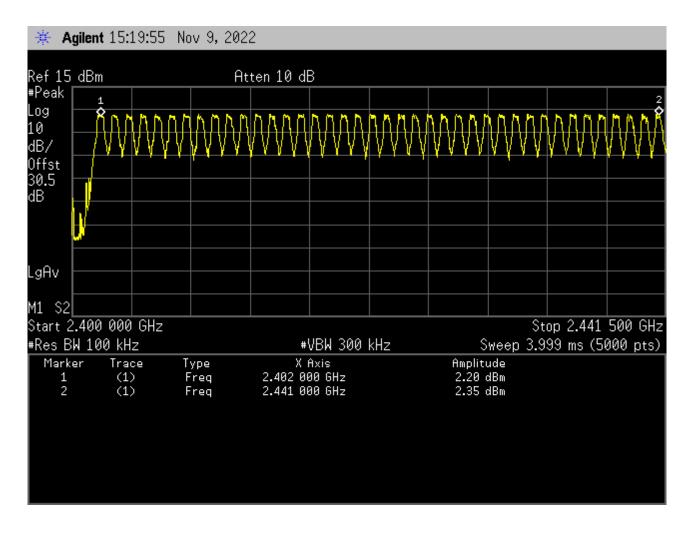
Figure 18: 8DPSK (3Mbps) – High Channel, Occupied Bandwidth

2.3 Number of Channels Used

Frequency hopping systems in the 2400 MHz to 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 400 ms within a period of 400 ms multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.3.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.1 and 7.8.3


The EUT was configured in a fully-modulated mode, with the hopping enabled.

Modulation	Mode (Data Rate)	EUT Channels Used	Requirement
GFSK	DH5 (1Mbps)	79 Channels	15 Channels
π/4DQPSK	2DH5 (2Mbps)	79 Channels	15 Channels
8DPSK	3DH5 (3Mbps)	79 Channels	15 Channels

Table 4: Number of Channels Used – Test Results

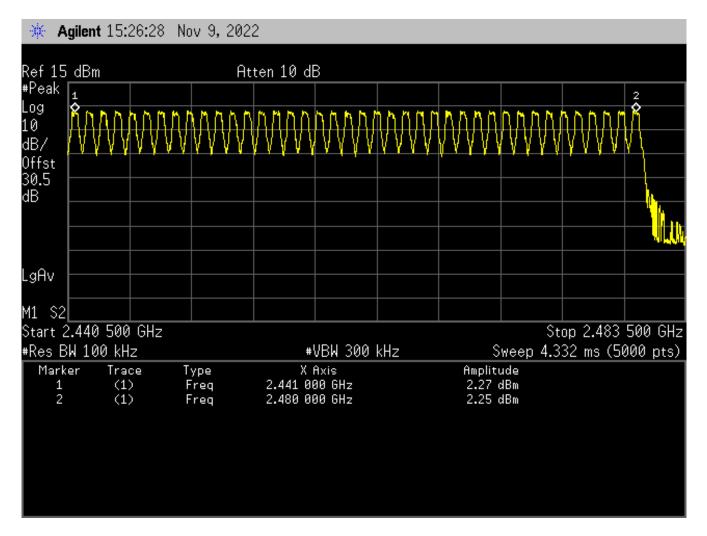


Figure 19: GFSK (1Mbps) – Number of Channels Used, Plot 1

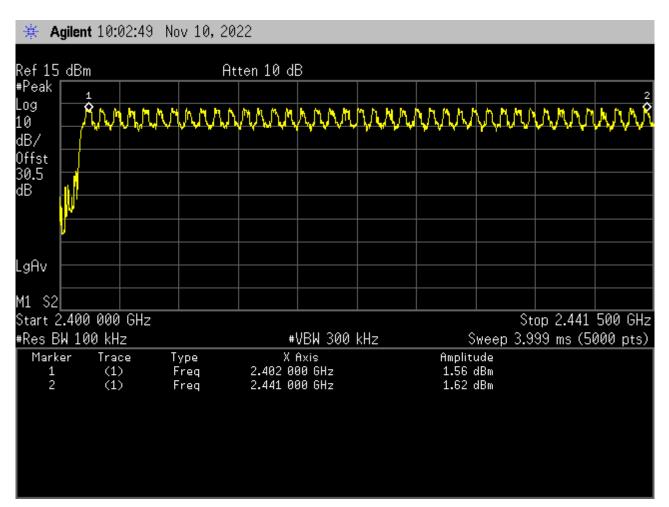


Figure 20: GFSK (1Mbps) – Number of Channels Used, Plot 2

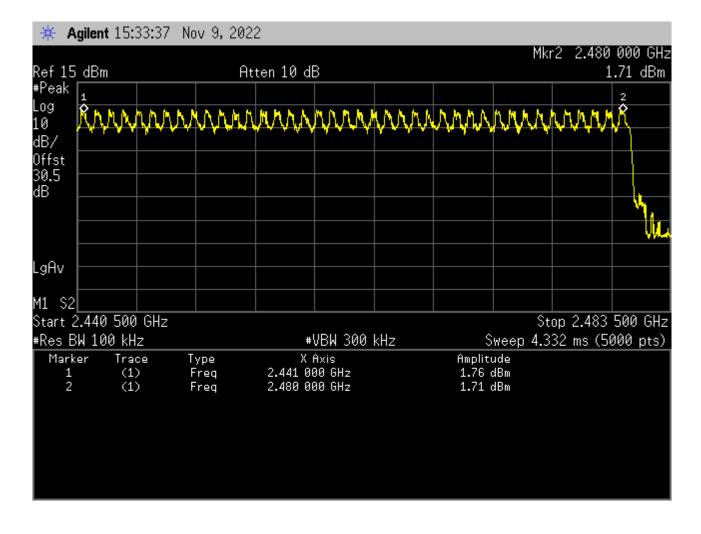


Figure 21: $\pi/4DQPSK$ (2Mbps) – Number of Channels Used, Plot 1

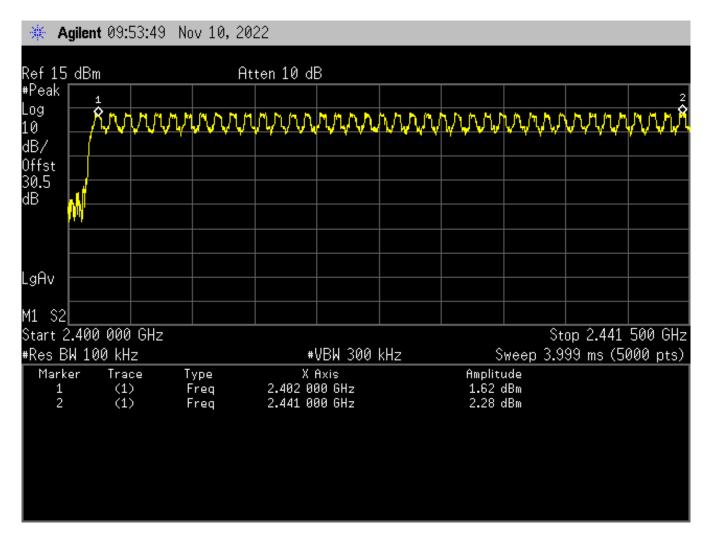


Figure 22: $\pi/4DQPSK$ (2Mbps) – Number of Channels Used, Plot 2

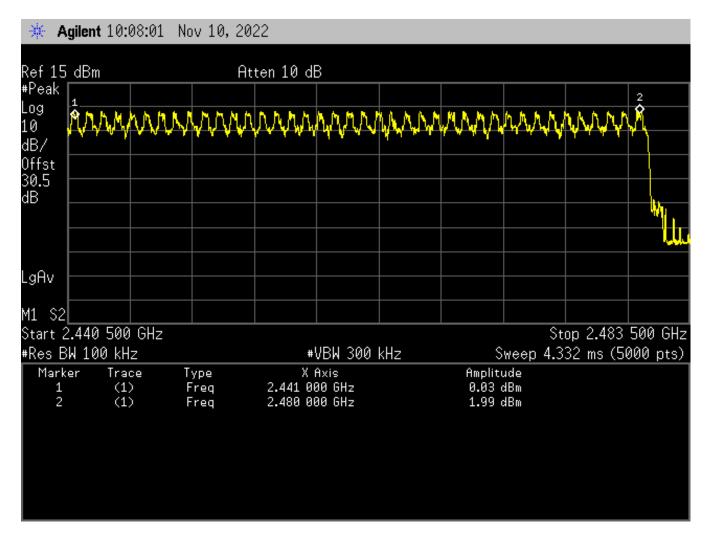


Figure 23: 8DPSK (3Mbps) – Number of Channels Used, Plot 1

2.4 Time of Occupancy (Dwell Time)

Frequency hopping systems in the 2400 MHz to 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 400 ms within a period of 400 ms multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.4.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.4.

The EUT was configured in a fully-modulated mode, with the hopping enabled.

The limits prescribed in this section shall be defined as follows:

 $79_{CHAN} * 0.4$ second = 31.6 second period

16

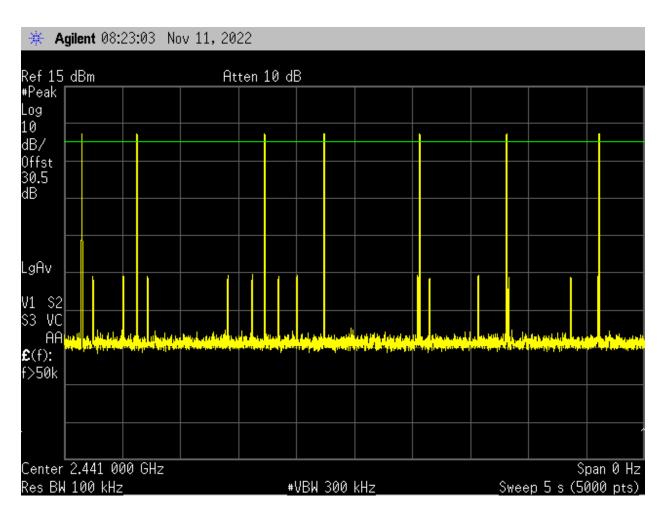
Time of Occupancy Limit = 0.4s/31.6s

A multiplier factor of 6.32 shall be employed to extrapolate the total average time of occupancy of any channel over a 31.6 second period. This factor is based on a 5 second transmitter evaluation.

5 * 6.32 = 31.6

Modulation	Transmissions in 5 seconds	Transmissions in 31.6 seconds	Single Transmission Period	EUT Occupancy Dwell	Occupancy Limit	
GFSK	14	89	2.91 ms	258.9 ms	400 ms	
π/4DQPSK	16	101	2.95 ms	297.9 ms	400 ms	

2.95 ms


297.9 ms

101

8DPSK

400 ms

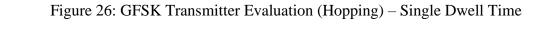
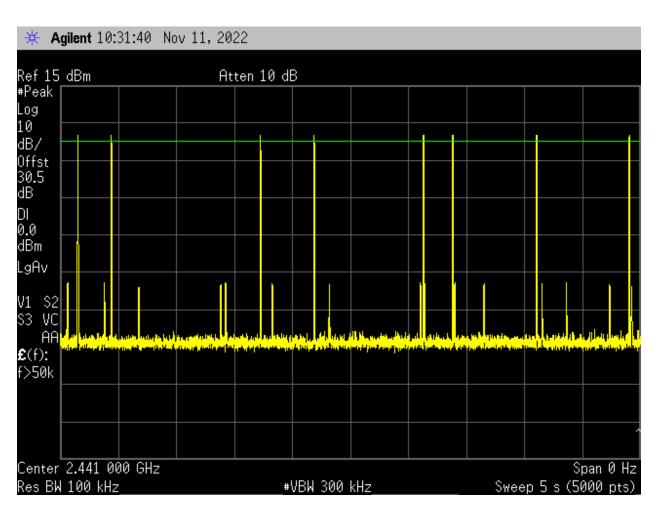


Figure 25: GFSK Transmitter 5-Second Evaluation (Hopping)


* in this case, it appears that there may only be seven full-power transmitter hops; however, after further investigation there are actually 14 individual transmitter hops in a given 5-second evaluation period. See next plot for detailed measurement.

🔆 Agilent 08:51:55 Nov 11, 2022													
Ref 15	dBm		At	ten 10 c	lΒ								
#Peak Log													
10			r hi k unin			l,							
dB/				Lu alut la		 	I Manus I.I.	. 10 4 . 100 . 4. 1	Ind.I.e				
0ffst 30.5													
dB		1				1							
	di tala dalatik					2				.	. Iber kakter		d. d. u.r
LgAv				,									
	and the second				.11 [1					1. u	1.1.1.1 A	· · ·	· · ·
V1 S2													
	2.441 00					2				~ ~			0 Hz
	100 kHz				+VBW 30	0	KHZ			9.9	98 ms (5	000	pts)
Marke 1R	er Trad (1)		ype ime		Axis .713 ms			Amplit -55.51	uae dBm				
10	(1)) T	ime	2	.914 ms			-2.40	dB				

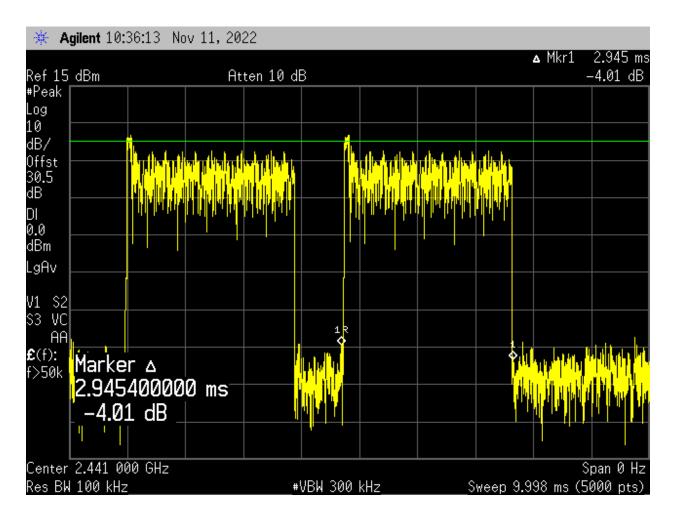


Figure 27: π/4DQPSK Transmitter 5-Second Evaluation (Hopping)

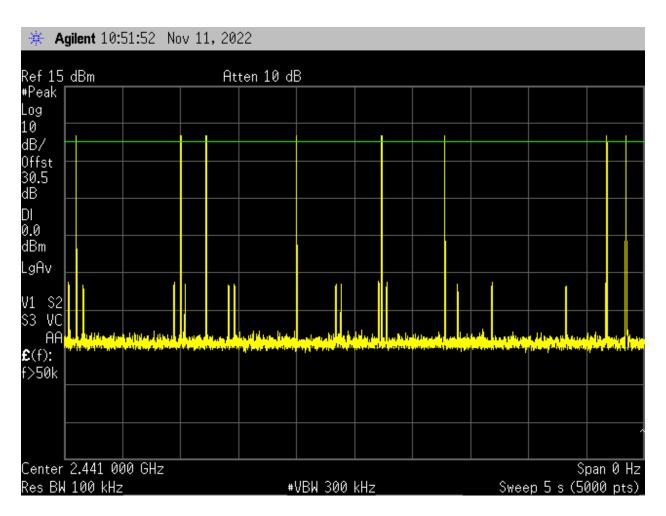

* in this case, it appears that there may only be eight full-power transmitter hops; however, after further investigation there are actually 16 individual transmitter hops in a given 5-second evaluation period. See next plot for detailed measurement.

Figure 28: $\pi/4DQPSK$ Transmitter Evaluation (Hopping) – Single Dwell Time

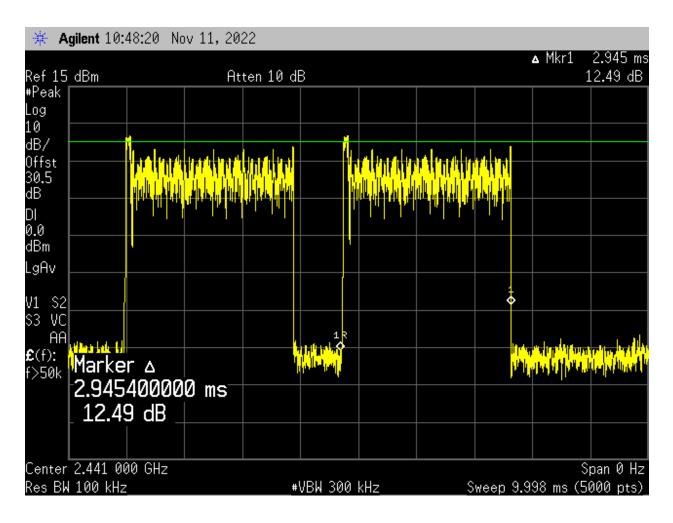


Figure 29: 8DPSK Transmitter 5-Second Evaluation (Hopping)

* in this case, it appears that there may only be eight full-power transmitter hops; however, after further investigation there are actually 16 individual transmitter hops in a given 5-second evaluation period. See next plot for detailed measurement.

Figure 30: 8DPSK Transmitter Evaluation (Hopping) – Single Dwell Time

2.5 Channel Carrier Separation

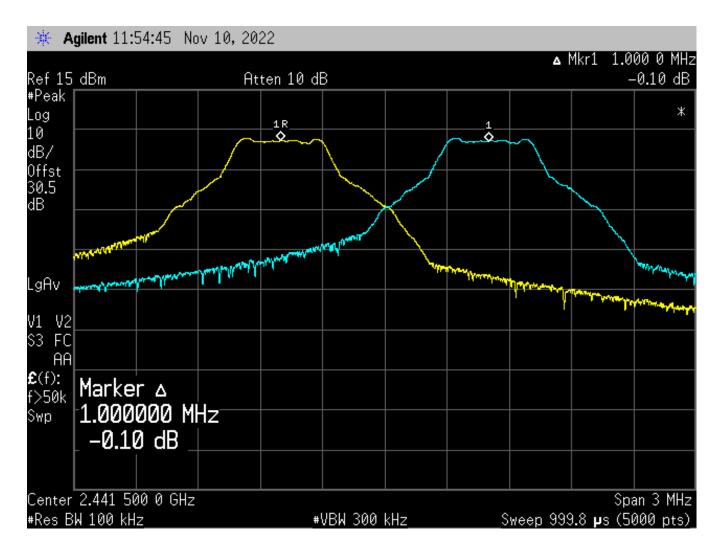
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 MHz to 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Each frequency must be used equally on the average by each transmitter.

2.5.1 Measurement Method and Results

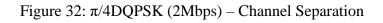
This test was performed as specified in ANSI C63.10 (2013), Section 7.8.2

The EUT was configured in a fully-modulated mode, with the hopping stopped.

The minimum separation requirement is based on two-thirds of the 20 dB bandwidth.


The EUT was evaluated at the low, center, and high channels, and a few other random channels that the transmitter employs. All of the hopping channel carriers are separated by exactly 1.0 MHz, regardless of the modulation mode.

Modulation	Mode (Data Rate)	20dB Bandwidth	Minimum Separation Requirement	EUT Carrier Separation
GFSK	GFSK DH5 (1Mbps)		574.8 kHz	1.0 MHz
π/4DQPSK	2DH5 (2Mbps)	1.19 MHz	793.3 kHz	1.0 MHz
8DPSK	3DH5 (3Mbps)	1.23 MHz	820.0 kHz	1.0 MHz


Table 6: Channel Carrier Separation – Test Results

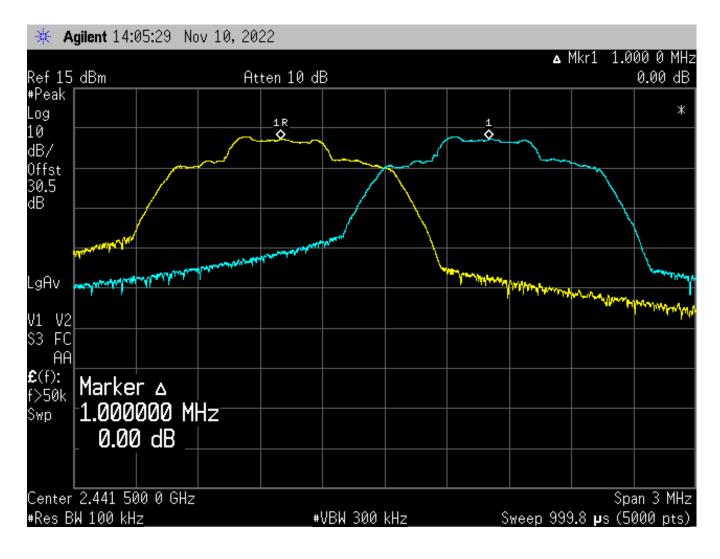
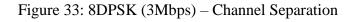
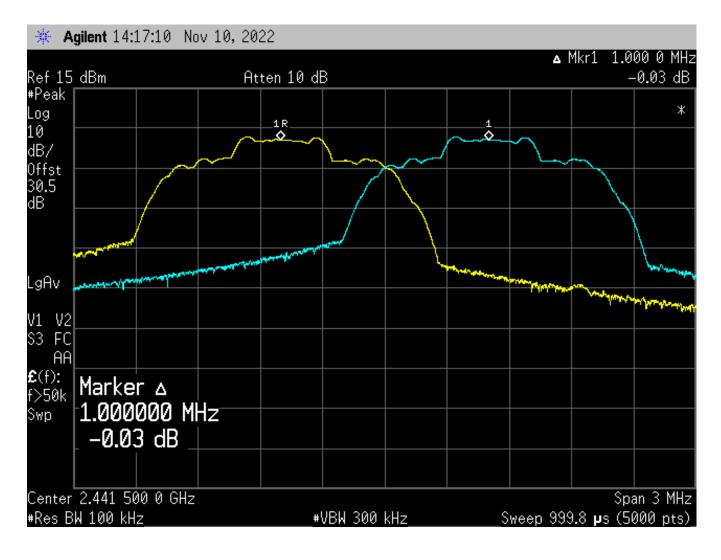


Figure 31: GFSK (1Mbps) – Channel Separation



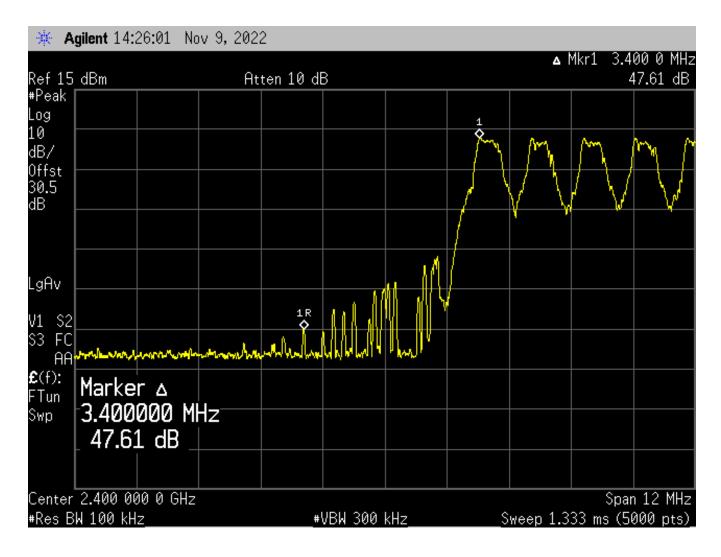


2.6 Bandedge Compliance (Antenna Port Conducted)

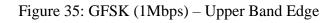
In any 100 kHz bandwidth, outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

2.6.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.1 and 7.8.6.


The EUT was configured in a fully-modulated mode, with the hopping enabled.

Modulation	ulation Mode Low Channel (Data Rate) (2402 MHz)		High Channel (2480 MHz)
GFSK	DH5 (1Mbps)	47.61 dB	54.11 dB
π/4DQPSK	$\pi/4DQPSK$ 2DH5 (2Mbps)		51.46 dB
8DPSK	3DH5 (3Mbps)	49.73 dB	51.54 dB


Table 7: Bandedge Compliance – Test Results

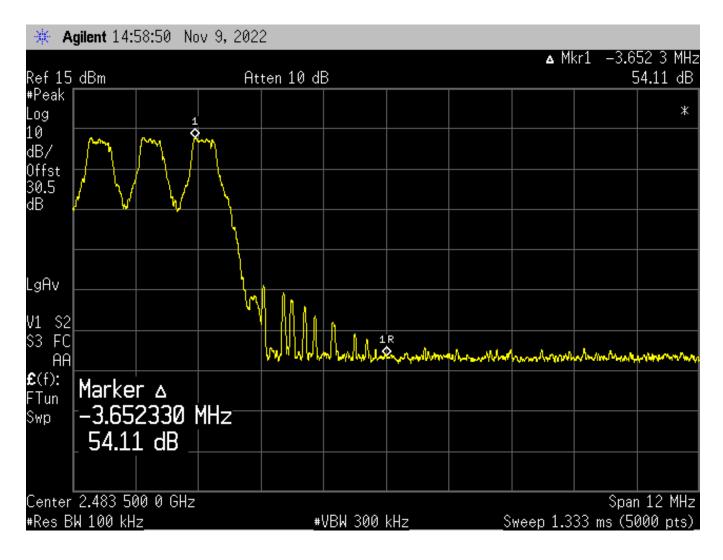
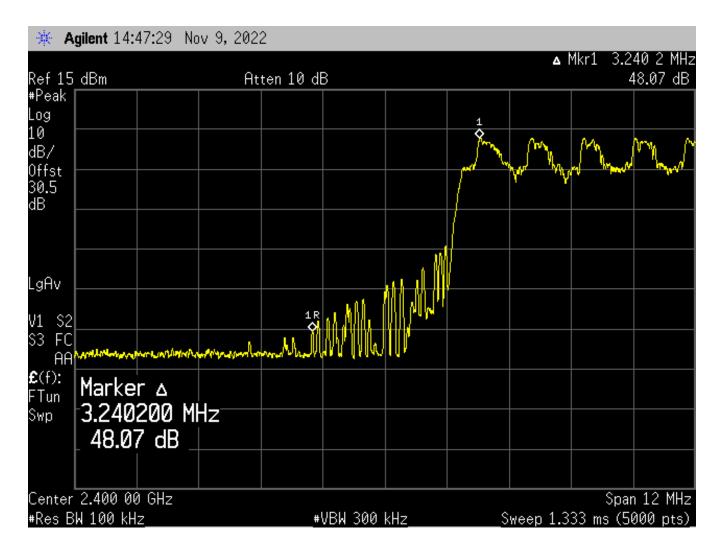


Figure 34: GFSK (1Mbps) – Lower Band Edge



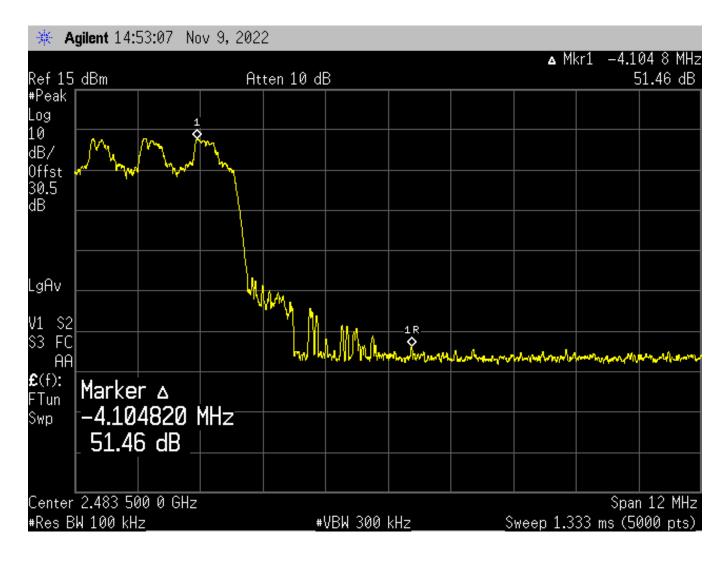


Figure 36: $\pi/4DQPSK$ (2Mbps) – Lower Band Edge

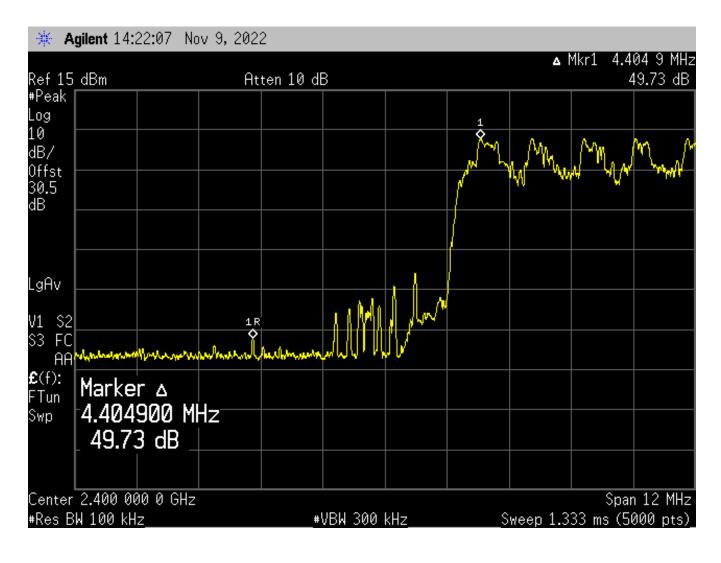


Figure 37: $\pi/4DQPSK$ (2Mbps) – Upper Band Edge

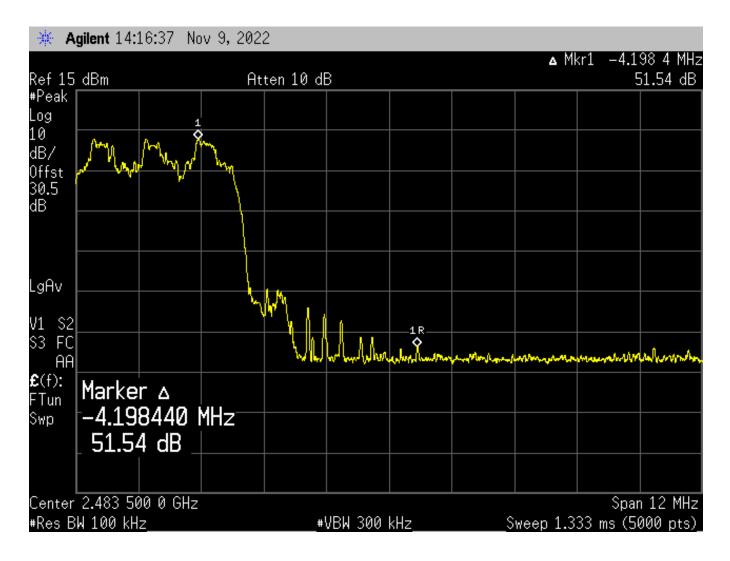


Figure 38: 8DPSK (3Mbps) – Lower Band Edge

Figure 39: 8DPSK (3Mbps) – Upper Band Edge

2.7 Conducted Spurious Emissions

In any 100 kHz bandwidth, outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

2.7.1 Measurement Method and Results

This test was performed as specified in ANSI C63.10 (2013), Section 7.8.8 and 11.11.

The EUT was configured in a fully-modulated mode, with the hopping stopped.

The amplitude of the EUT carrier frequency was measured to determine the emissions limit (20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz to 25 GHz, to include the 10th harmonic of the fundamental

The reduced testing procedures outlined in ANSI C63.10 (2013), Section 5.6.2 and 5.6.2.2 were also employed. The spurious emission test data correlating to the center channel of all three modulation modes is provided below. The worst-case mode (GFSK) was utilized to provide the spurious emission test data for the low and high channels.

The EUT complies with the requirements for spurious emissions at the antenna port.

The final test data is provided in the following plots.

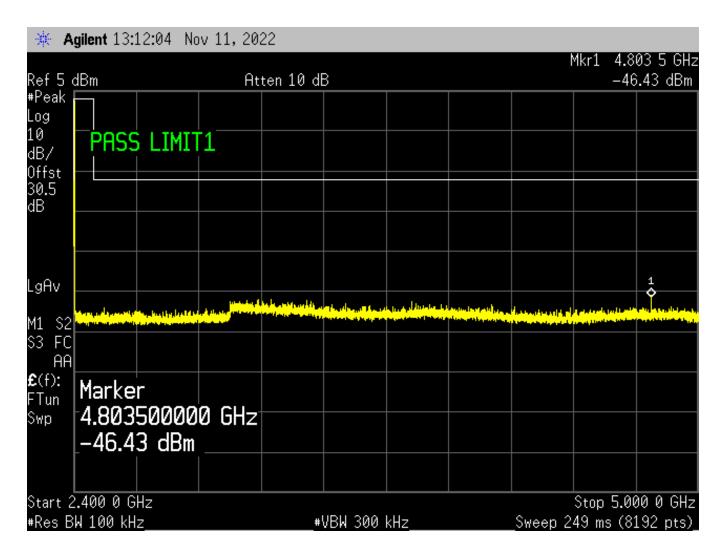


Figure 40: GFSK (1Mbps) Low Channel, Conducted Spurious - Plot 1

★ Agilent 12:51:52 Nov 11, 2022								
	tten 10 dB	Mkr1 2.402 00 GHz 2.29 dBm						
#Peak Log								
¹⁰ PASS LIMIT1								
0ffst 30.5 dB								
dB								
LgAv								
M1 S2 and a had a subject to seat the seat the seat the seat		i te në de të të në pret për pret në në përkësi të pret për bë të në të të të në të të në të të të të të të të Në përkësi të						
S3 FC								
£(f): Marker								
Swp 2.402000000 GHz 2.29 dBm								
Start 30.00 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.483 50 GHz Sweep 234.8 ms (8192 pts)						

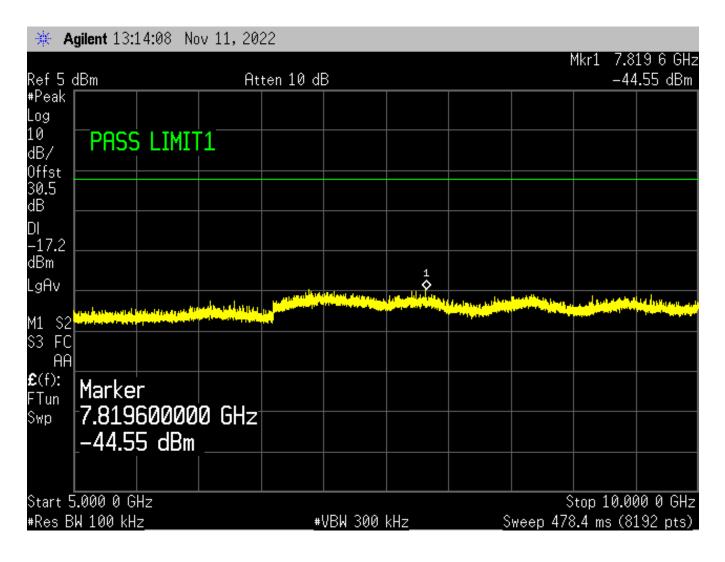


Figure 41: GFSK (1Mbps) Low Channel, Conducted Spurious - Plot 2

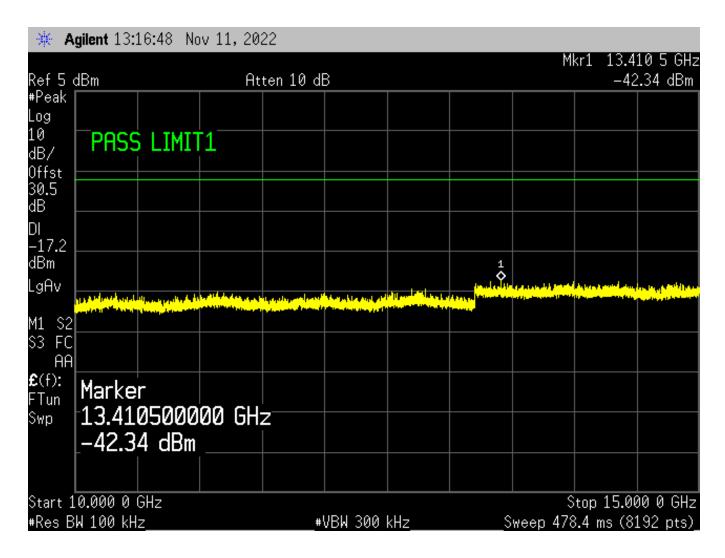


Figure 42: GFSK (1Mbps) Low Channel, Conducted Spurious - Plot 3

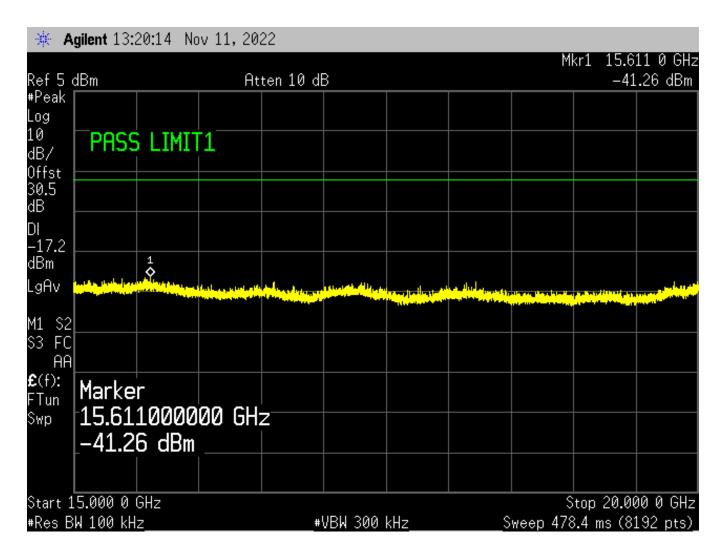


Figure 43: GFSK (1Mbps) Low Channel, Conducted Spurious - Plot 4

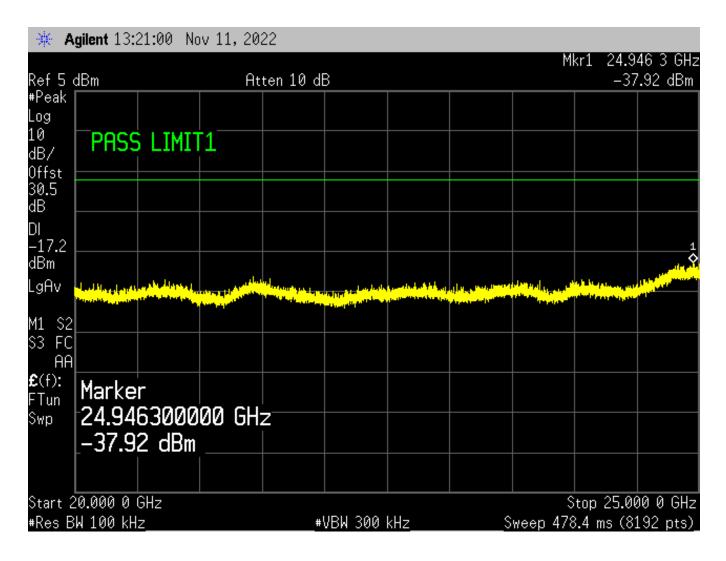


Figure 44: GFSK (1Mbps) Low Channel, Conducted Spurious - Plot 5

Figure 45: GFSK (1Mbps) Low Channel, Conducted Spurious - Plot 6

This Page Intentionally Left Blank

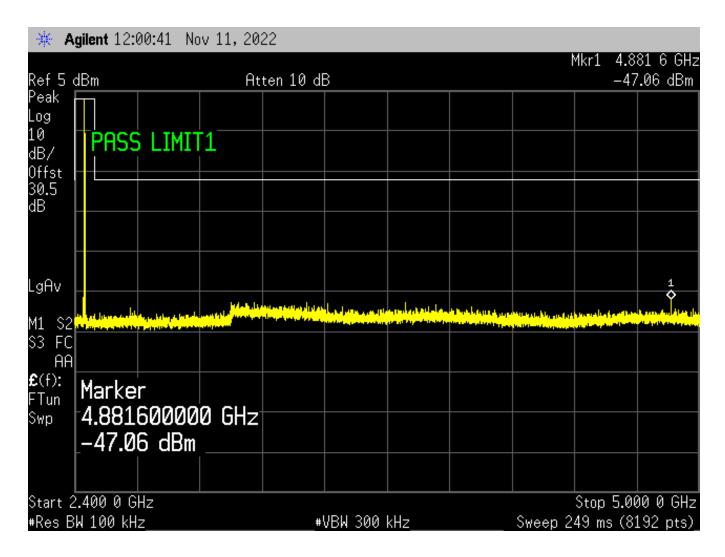


Figure 46: GFSK (1Mbps) Center Channel, Conducted Spurious - Plot 1

🔆 Agilent 11:59:32 Nov 11, 2022									
Ref 5 <	dBm	Att	ten 10 di	Mkr1 2.441 00 GH: n 10 dB 2.75 dBm					
Peak Log 10									÷
dB/ Offst	Pass Limi								
30.5 dB									
LgAv									
M1 S2 S3 FC	 A second sec second second sec				al la fication	and an air dae stalle New York and a stalle			
AA									
£(f): FTun Sum⊳	Marker 2.4410000	אמ כ⊔⊸							
Swp	2.44100000 2.75 dBm								
	80.00 MHz W 100 kHz		#	VBW 300	kHz	S			3 50 GHz 192 pts)_

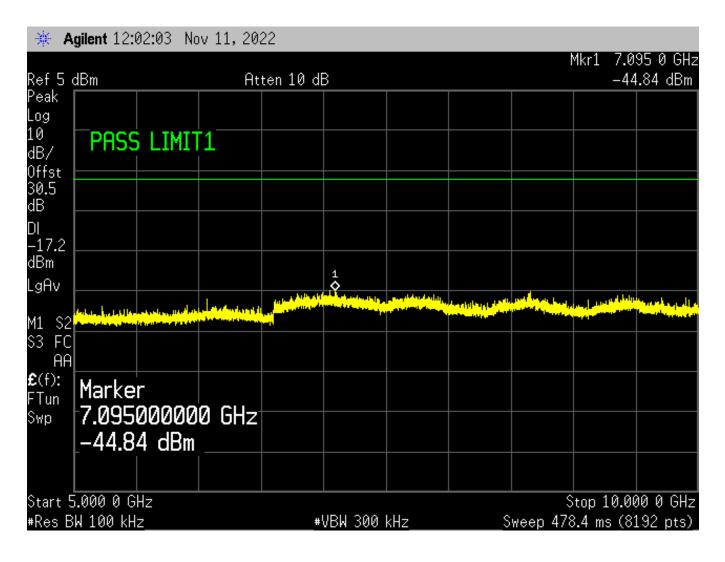


Figure 47: GFSK (1Mbps) Center Channel, Conducted Spurious - Plot 2

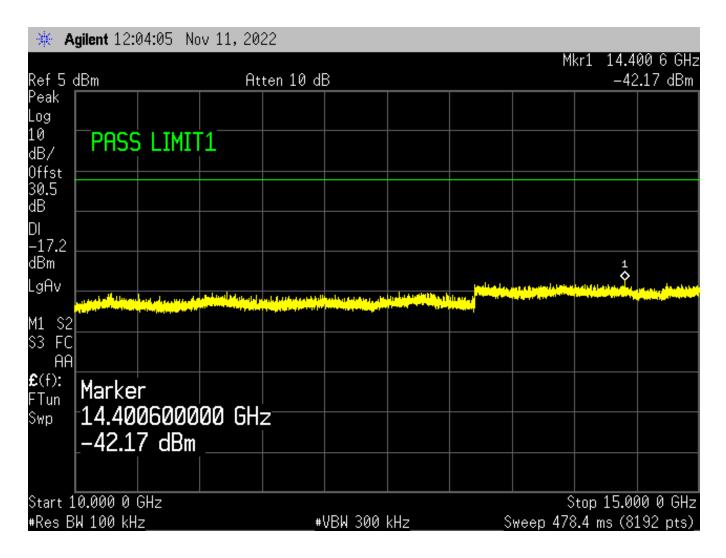


Figure 48: GFSK (1Mbps) Center Channel, Conducted Spurious - Plot 3

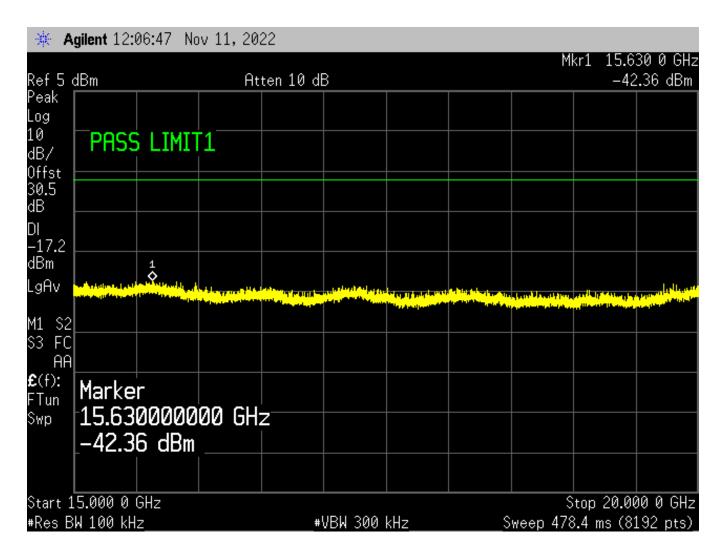


Figure 49: GFSK (1Mbps) Center Channel, Conducted Spurious - Plot 4

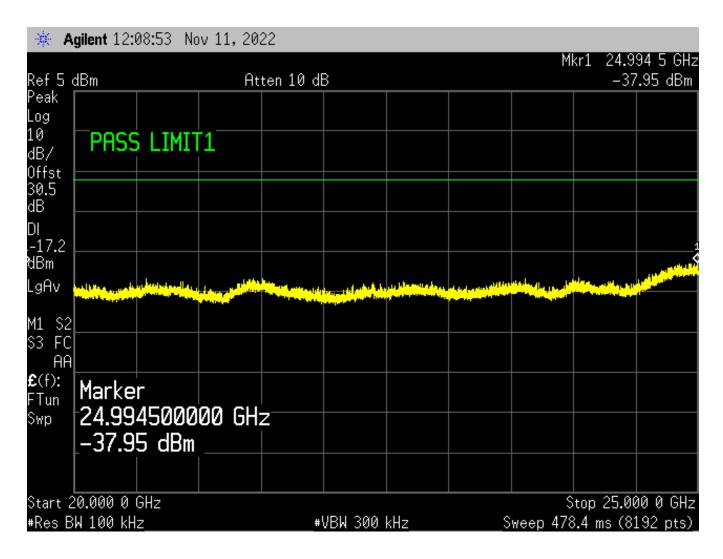


Figure 50: GFSK (1Mbps) Center Channel, Conducted Spurious - Plot 5

Figure 51: GFSK (1Mbps) Center Channel, Conducted Spurious - Plot 6

This Page Intentionally Left Blank

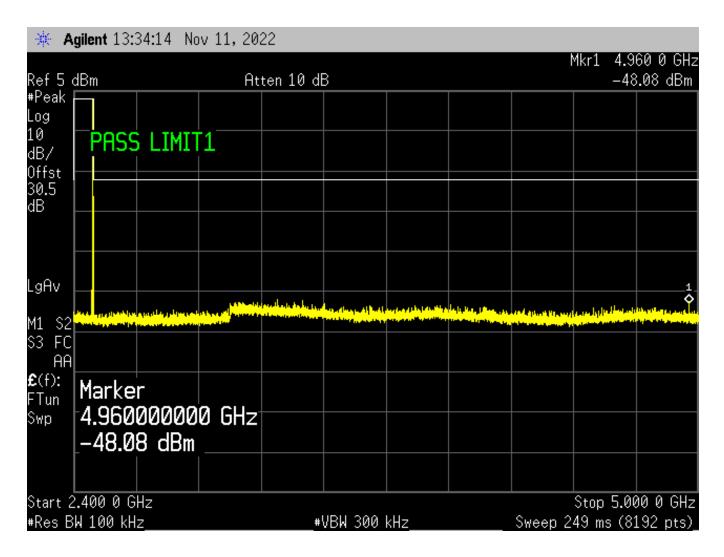
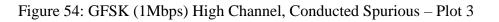


Figure 52: GFSK (1Mbps) High Channel, Conducted Spurious - Plot 1


🔆 Agilent 13:32:39 Nov 11, 2022										
Ref 5 <	dBm		At	ten 10 di	Mkr1 2.480 00 GHz n 10 dB 2.76 dBm					
⊯Peak ∟og 10	DOCC		-1							
dB/ Offst	PH55	LIMIT	±							
30.5 dB										
LgAv								. 1 . 1		n Januar anda
M1 S2 S3 FC AA	La da andra Marsh			i i galen bij i kan gepen nationale ikonen gepend			na dala ang ang ang <mark>kasalan.</mark> Manang ang ang ang ang ang ang ang ang an			and the set of a stability of
£ (f): FTun	Marke		a cu							
Swp	2.4800 2.76	dBm	и онг							
<u>.</u>										
	30.00 MHz W 100 kH:			#	VBW 300	kHz	S			3 50 GHz 192 pts)_

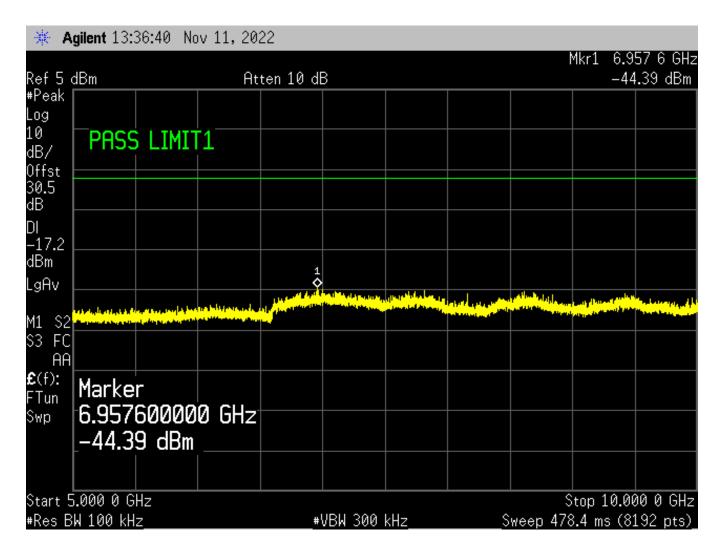
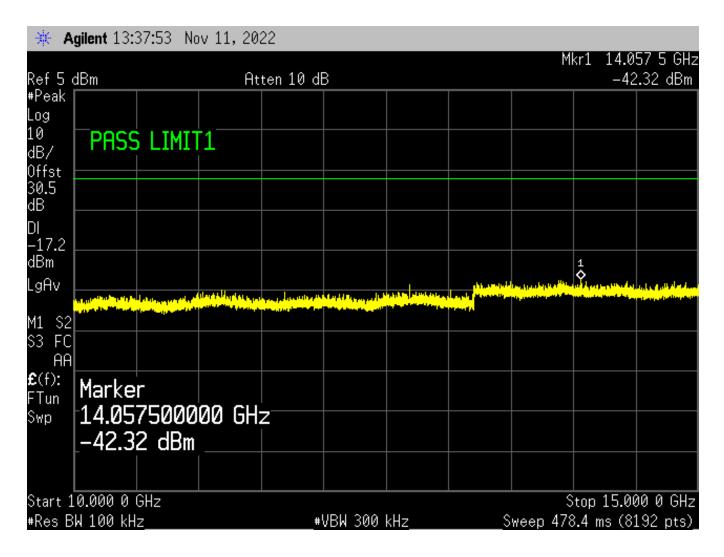


Figure 53: GFSK (1Mbps) High Channel, Conducted Spurious – Plot 2



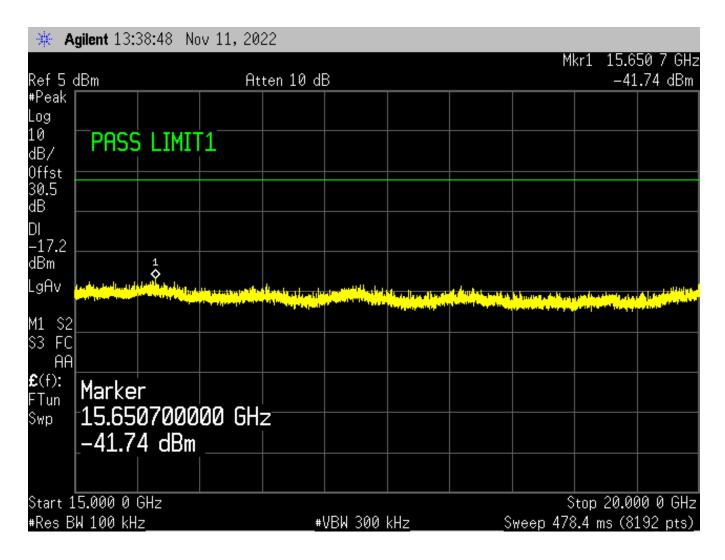


Figure 55: GFSK (1Mbps) High Channel, Conducted Spurious - Plot 4

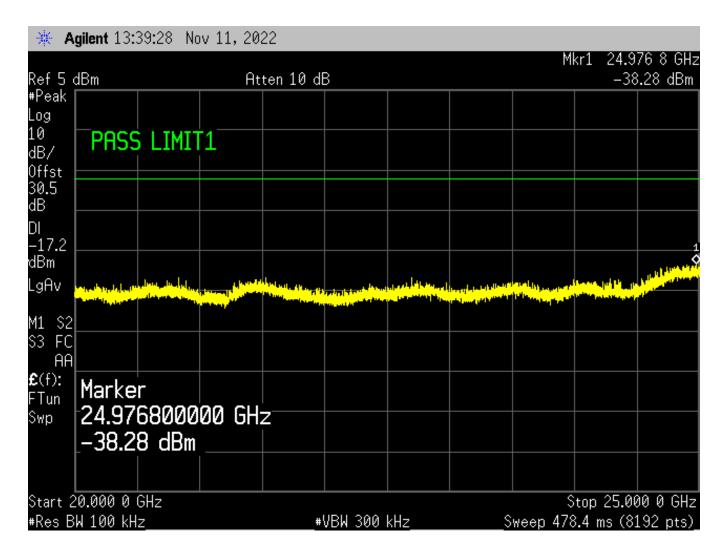


Figure 56: GFSK (1Mbps) High Channel, Conducted Spurious - Plot 5

Figure 57: GFSK (1Mbps) High Channel, Conducted Spurious - Plot 6

This Page Intentionally Left Blank

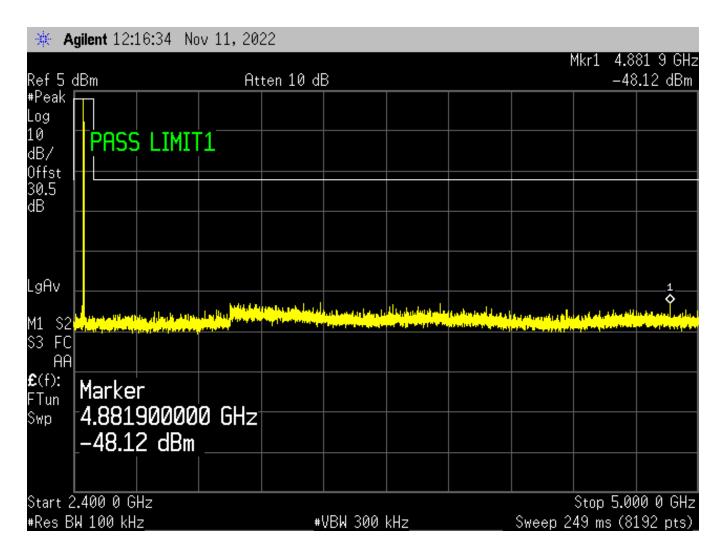


Figure 58: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 1

₩ A	gilent 12:1	4:59 No	v 11, 202	22						
Ref 5 (dBm		At	ten 10 di	3			M		1 00 GHz .78 dBm
#Peak Log										
10 dB/ Offst	PASS	LIMIT	1							
30.5 dB										
LgAv										
M1 S2	la kalén telen	edilar bertikite Lengtherenge								a line of the second
S3 FC AA										
£(f): FTun	Marker		a cu							
Swp	2.4410 2.78		ט שדע							
	80.00 MHz W 100 kHz			#	VBW 300	kHz	s		top 2.483 1.8 ms (81	

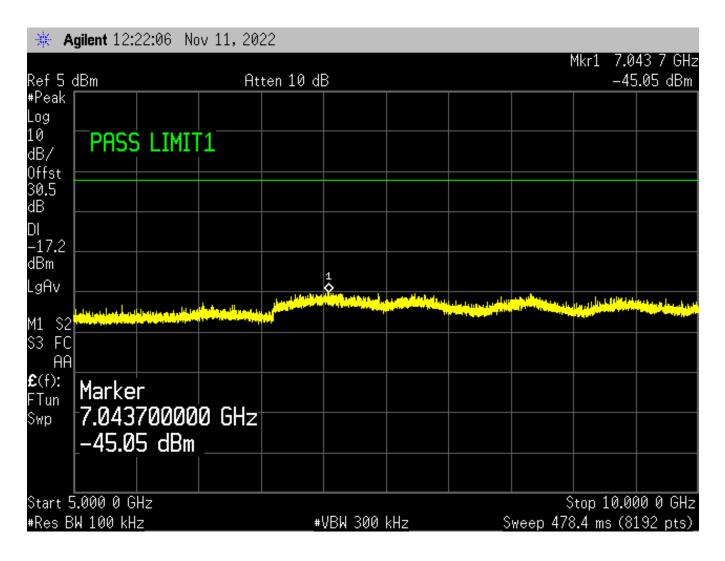


Figure 59: $\pi/4DQPSK$ (2Mbps) Center Channel, Conducted Spurious – Plot 2

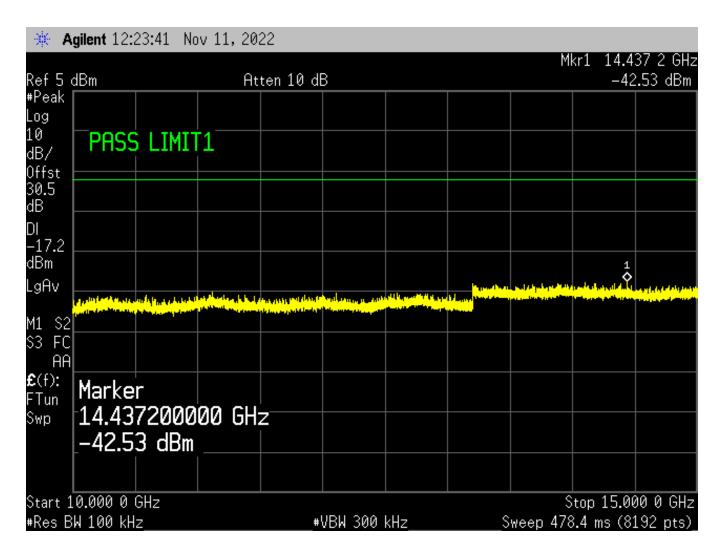


Figure 60: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 3

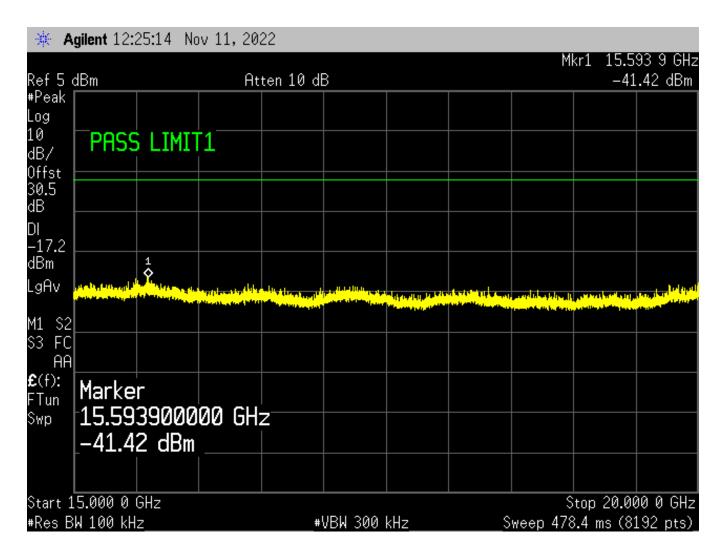


Figure 61: $\pi/4DQPSK$ (2Mbps) Center Channel, Conducted Spurious – Plot 4

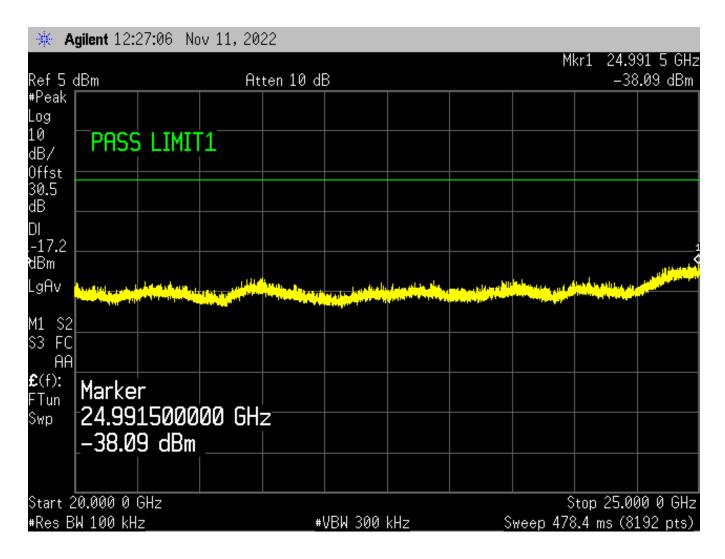


Figure 62: π/4DQPSK (2Mbps) Center Channel, Conducted Spurious – Plot 5

Figure 63: $\pi/4DQPSK$ (2Mbps) Center Channel, Conducted Spurious – Plot 6

This Page Intentionally Left Blank

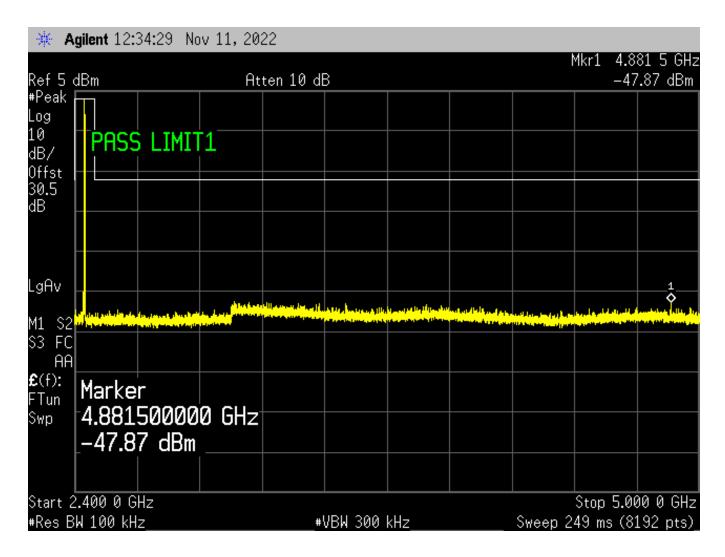


Figure 64: 8DPSK (3Mbps) Center Channel, Conducted Spurious - Plot 1

Ж А											
Ref 5 (dBm	Att	ten 10 dl	В			M		1 00 GHz 2.75 dBm		
#Peak Log 10 dB/ Offst 30.5	Pass Limi	T1									
dB											
LgAv M1 S2							lark, soulatest		l a se le la		
S3 FC AA		1 <u>- 1 - 211 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </u>									
€(f): FTun Swp	Marker 2.4410000 2.75 dBm										
	80.00 MHz W 100 kHz		#	VBW 300	kHz	S			3 50 GHz 192 pts)_		

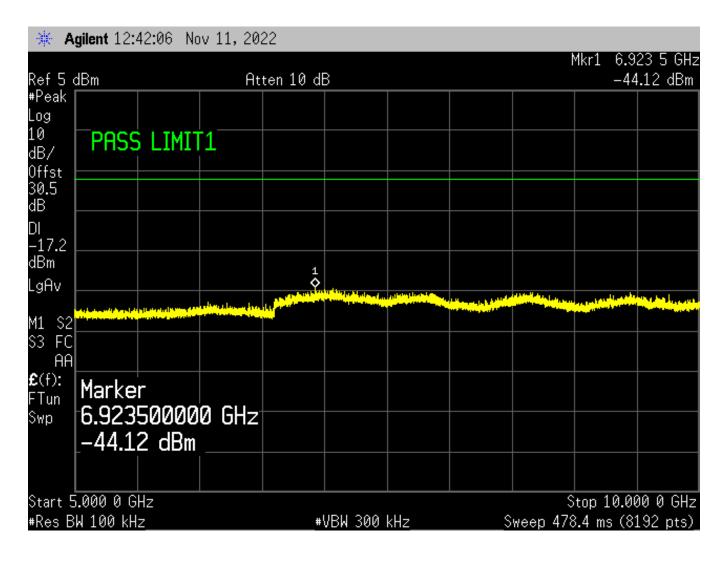


Figure 65: 8DPSK (3Mbps) Center Channel, Conducted Spurious - Plot 2

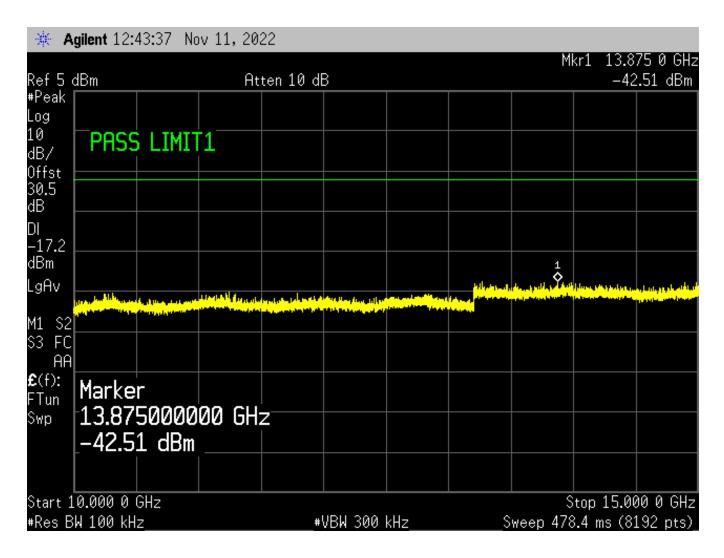


Figure 66: 8DPSK (3Mbps) Center Channel, Conducted Spurious - Plot 3

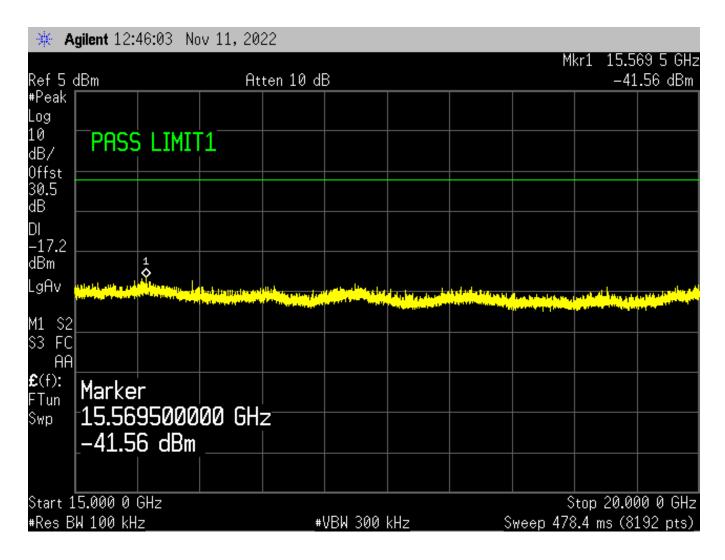


Figure 67: 8DPSK (3Mbps) Center Channel, Conducted Spurious - Plot 4

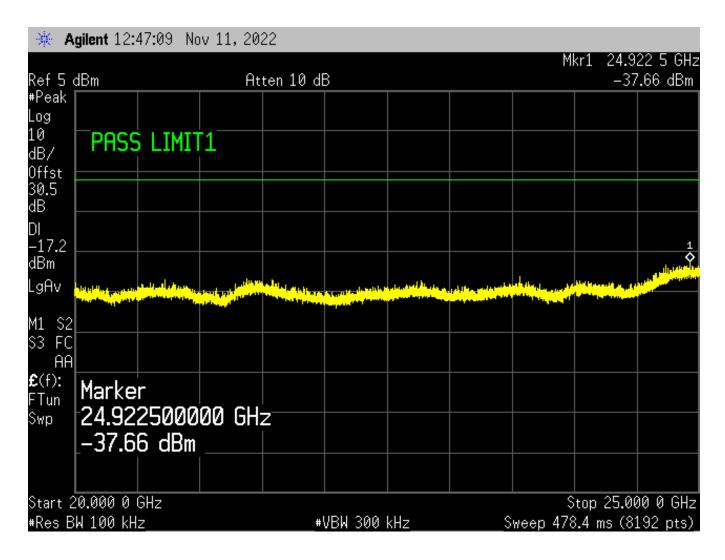


Figure 68: 8DPSK (3Mbps) Center Channel, Conducted Spurious - Plot 5

Figure 69: 8DPSK (3Mbps) Center Channel, Conducted Spurious - Plot 6

2.8 General Field Strength Requirements – Radiated Emissions

2.8.1 Requirements

Compliance Standard: FCC Part 15.205 and 15.209

FCC Compliance Limits								
Frequency Range	3m Limit							
30 – 88 MHz	100 µV/m (QP)							
88 – 216 MHz	150 µV/m (QP)							
216 – 960 MHz	200 µV/m (QP)							
> 960 MHz	1Hz 500 μ V/m (AVG) 5000 μ V/m (Pea							

2.8.2 Test Procedure Summary

The requirements of FCC Part 15, RSS-Gen, and ICES-003 call for the EUT to be placed on a 1m X 1.5m non-conductive motorized turntable at a height of 80cm for radiated testing of frequencies up to 1000 MHz, and a height of 1.5m for testing of frequencies above 1000 MHz. Please note that the radiated emissions measured during this testing, were performed at a distance of 3-meters.

An initial pre-scan of the EUT was performed to identify any emissions that exceed, or come within 6dB of, the applicable limit. This pre-scan was performed a with the employment of a spectrum analyzer peak detector function. The highest amplitude (worst-case) emissions noted during the pre-scan were selected for final compliance measurements.

The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Broadband log periodic and double-ridged horn antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The output of the antenna was connected to the input of the spectrum analyzer and the emissions in the frequency range of 30 MHz to 25 GHz were evaluated. The EUT peripherals were placed on the table in accordance with ANSI C63.4. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The detector function was set to quasi-peak for measurements below 1 GHz. The measurement bandwidth of the spectrum analyzer system was set to at least 120 kHz, with all post-detector filtering no less than 10 times the measurement bandwidth. For measurements above 1 GHz, both the peak and the average levels are recorded, using a measurement bandwidth of 1 MHz. For average measurements, a video bandwidth setting of 10 Hz was used, in the case of video averaging; otherwise, an EMI AVG detector shall be employed.

To ensure that the support laptop did not interfere with radiated measurements of frequencies above 1GHz, the applicant has completely disabled the WiFi capabilities within the computer's bios. For measurements of frequencies below 1000 MHz, the laptop and the AC/DC power supply were shielded from the test site via the use of EMF/EMI Faraday Blankets. Overall, the support laptop, and power supply, did not impact the 3m radiated emissions testing due to the shielding effectiveness of these protective materials.

2.8.3 Radiated Data Reduction and Reporting

To convert the raw spectrum analyzer radiated data into a form that can be compared with the FCC limits, it is necessary to account for various calibration factors that are supplied with the antenna(s) and other measurement equipment. These factors include the antenna factor ((AF)(in dB/m)), cable loss factors ((CF)(in dB)), and the pre-amplifier gain [if applicable] ((G)(in dB)). These correction values are algebraically added to the raw Spectrum Analyzer Voltage (in dB μ V) to obtain the corrected radiated electric field, which shall be the final corrected logarithm amplitude ((Corr. Meas.)(in dB μ V/m)). This logarithm amplitude is then compared to the FCC limit, which has been converted to a unit of log in dB μ V/m.

Example:

Spectrum Analyzer Voltage:	VdBµV (SA)
Antenna Correction Factor:	AFdB/m
Cable Correction Factor:	CFdB
Pre-Amplifier Gain (if applicable):	GdB
Electric Field:	$EdB\mu V/m = V \ dB\mu V \ (SA) + AFdB/m + CFdB \ - \ GdB$
To convert from linear units of measure:	dBuV/m = 20LOG(uV/m)
To convert FCC limits, based on D _{Measure} :	3m Limit = 10m Limit + 20LOG(10/3)

Ambient Temperature:	20 °C
Relative Humidity:	55 %

Environmental Conditions During Radiated Emissions Testing

2.8.4 Measurement Method and Results

The reduced testing procedures outlined in ANSI C63.10 (2013), Section 5.6.2 and 5.6.2.2 were employed. The radiated spurious emission test data correlating to the center channel of all three modulation modes is provided below. The worst-case mode, with regard to peak power output, (GFSK) was utilized to provide the radiated spurious emission test data for the low and high channels.

The EUT was configured in a fully-modulated mode, with the hopping stopped.

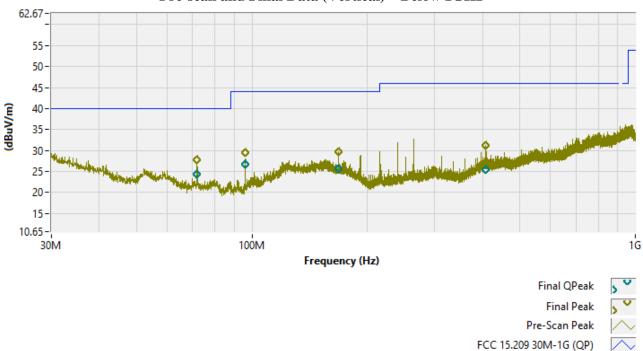
The EUT was tested while positioned in the worst-case orientation, based the three-axes orthogonal plane evaluation of the fundamental field strength at 3-meters.

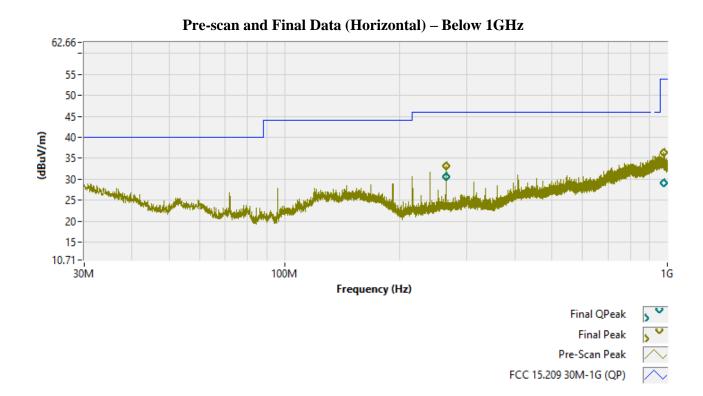
The EUT complies with the requirements this section.

There were no emissions detected in the frequency range of 18 GHz - 25 GHz.

Frequency (MHz)	Polarity H/V	SA Level (dBuV)	Corr. Factors (dB)	Corr. Level (dBuV/m)	Corr. Level (uV/m)	Detector	Comments
2441.00	V	109.6	-17.4	92.2	40725.8	Peak	X-Axis
2441.00	V	111.3	-17.4	93.9	49530.2	Peak	Y-Axis
2441.00	V	113.1	-17.4	95.7	60655.5	Peak	Z-Axis
2441.00	Н	113.9	-17.4	96.8	69003.3	Peak	X-Axis
2441.00	Н	111.0	-17.4	93.6	47793.6	Peak	Y-Axis
2441.00	Н	111.9	-17.4	94.5	52950.5	Peak	Z-Axis

Table 8: Radio Fundamental, EUT Axis Evaluation (GFSK, Center Channel)


Table 9: Radiated Emissions Test Data – 30 MHz to 1000 MHz


Frequency (MHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
71.982	Peak	27.699			270	Vert, 150
/1.902	QP	24.381	40	-15.619	270	Vert, 150
95.946	Peak	29.420			180	Vert, 130
93.940	QP	26.715	44	-17.285	180	Vert, 130
167.958	Peak	29.683			180	Vert, 120
107.938	QP	25.685	44	-18.315	180	Vert, 120
263.874	Peak	33.201			0	Horiz, 120
203.074	QP	30.526	46	-15.474	0	Horiz, 100
407.777	Peak	31.216			90	Vert, 100
407.777	QP	25.40	46	-20.600	90	Vert, 100
977.987	Peak	36.357			0	Horiz, 100
911.901	QP	29.180	54	-24.820	0	Horiz, 100

For measurements of frequencies below 1000 MHz, the EUT was tuned to the center channel (2441 MHz) and set to a fully-modulated mode using GFSK. Changing the modulation type, or carrier center frequency, had no impact on the emissions in the frequency range of 30 MHz to 1000 MHz.

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 9. (30 MHz to 1000 MHz).

Pre-scan and Final Data (Vertical) – Below 1GHz

This Page Intentionally Left Blank

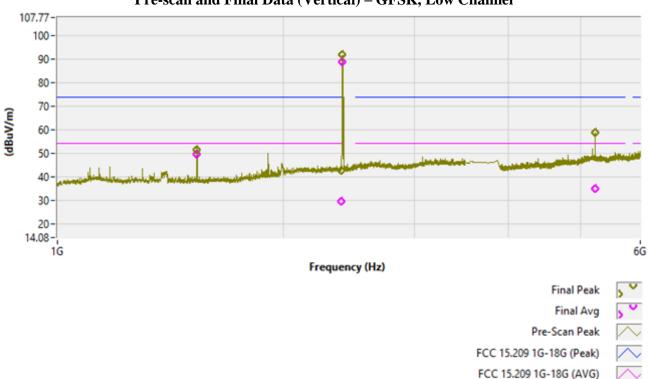
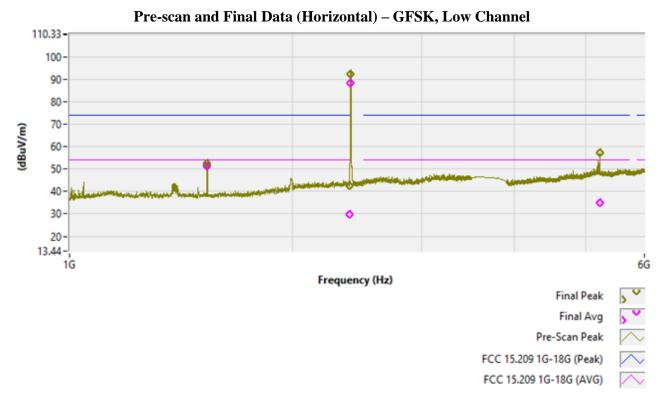


Table 10: Radiated Emissions Test Data - 1 GHz to 25 GHz (GFSK, Low Channel)


Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.535	Peak	51.580	74	-22.420	180	Vert, 150
1.333	Avg	49.637	54	-4.363	180	Vert, 150
1.535	Peak	52.542	74	-21.458	130	Horiz, 150
1.555	Avg	51.315	54	-2.685	130	Horiz, 150
2 200	Peak	42.734	74	-31.266	130	Horiz, 150
2.390	Avg	29.686	54	-24.314	130	Vert, 150
2.402	Peak	93.313			130	Horiz, 150
5 210	Peak	57.404	74	-16.596	0	Horiz, 150
5.219	Avg	34.979	54	-19.021	0	Horiz, 150
5 001	Peak	58.679	74	-15.321	0	Vert, 150
5.221	Avg	34.955	54	-19.045	0	Vert, 150
7.256	Peak	49.689	74	-24.311	0	Vert, 150
7.256	Avg	35.122	54	-18.878	0	Vert, 150
10.049	Peak	50.710	74	-23.290	0	Vert, 150
10.948	Avg	36.555	54	-17.445	0	Vert, 150

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 10. (GFSK, Low Channel).

Pre-scan and Final Data (Vertical) – GFSK, Low Channel

Figure 70: GFSK (1Mbps) Low Channel – 6 GHz to 9 GHz (Corrected Field Strength)

Agilen	t Spectru	<mark>um Anal</mark> y RE	<mark>yzer - Swept</mark> S/ 50 Ω AC			CENCETNE				04.40.00	2 DMAN
			58139198	53 GHz	PNO: Fast 🕞 FGain:Low	SENSE:INT Trig: Free l Atten: 10 c	Run	IGN AUTO Avg Type: Avg Hold:>* Ext Gain: 48	100/100	TR	3 PMNov 14, 2022 ACE 1 2 3 4 5 6 I YPE M WWWWW DET P N N N N N
10 dE Log	3/div	Ref 0 Ref 3	ffset 44 dB 70.00 dBµ	v					N	lkr1 7.25 49.6	6 81 GHz 89 dBµV
60.0											
50.0	prot P. Marster	11 and a line section	and the state of the state of the	alers of sector de la francée de la	المراجع والمراجع والمراجع المراجع		م و الانتقاد و المرافع الم	a and a sub-	ula ^{fhitull} authus, 1, ann ai	And the second	الشروان والمراجع المراجع
40.0	, en ach internet de		and a line and a star of a post of the started	ulai gʻ, maka ma'atorony sahor ministra (al part of the second				and the solution of the soluti	an an an Anna an Anna an Anna an Anna An Anna Anna	
30.0											
20.0											
10.0 0.00											
-10.0											
-20.0											
	t 6.00										9.000 GHz
#Res _{MSG}	s BW	1.0 M	Hz		#VB	W 3.0 MHz		STATUS	Sweep	5.33 ms ((40000 pts)
MSG								STATUS			

Figure 71: GFSK (1Mbps) Low Channel – 9 GHz to 18 GHz (Corrected Field Strength)

Agilent Spect	rum Analyzer - Swept SA									
LXI T	RF 50 Ω AC			SENSE:INT	AL	IGN AUTO		04:38:14	PMNov 14, 2022	
Marker 1	10.9488862210)32 GHz				Avg Type:	Avg Type: Log-Pwr TRACE 123456			
		Р	PNO: Fast 😱 Trig: Free Run					I		
		IF	Gain:Low	Atten: 10 d	IB	Ext Gain: 48	3.00 dB		DET	
	Def Offeret 46 dD						Mkr	1 10.948	886 GHz	
10 dB/div Log	Ref Offset 46 dB Ref 70.00 dBµ\	1						50.	71 dBµV	
60.0										
		▲ ¹				a a a a dada	الأربي والمستقالة والقالة	والاعتباط المرجع والتراجع	11	
50.0 🔔 👝	And the state of the second states	ALCONOMIC TO A		and the second secon	TALL A DESCRIPTION OF A				the second second	
		ALL STREET, ST	Constant and the second	And the second states	A Part of the second					
40.0										
30.0										
20.0										
20.0										
10.0										
10.0										
0.00										
0.00										
-10.0										
-10.0										
20.0										
-20.0										
Start 9.0								Stop 1	8.000 GHz	
#Res BW	1.0 MHz		#VB	W 3.0 MHz			Sweep	24.0 ms	(40000 pts)	
MSG						I STATUS				

This Page Intentionally Left Blank

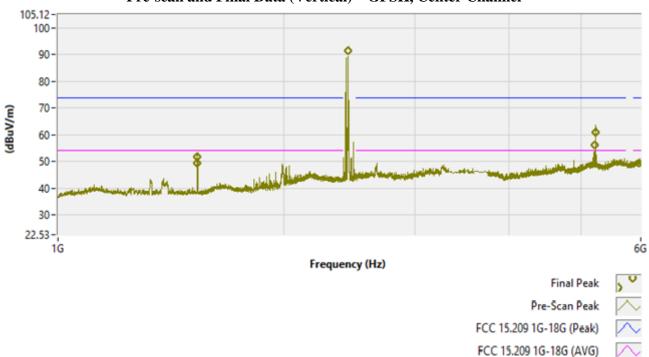
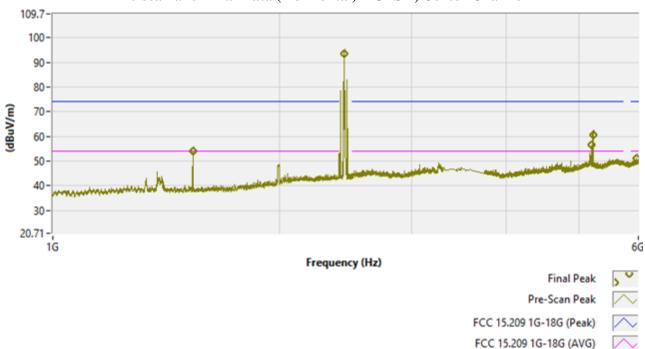


Table 11: Radiated Emissions Test Data – 1 GHz to 25 GHz (GFSK, Center Channel)


Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.535	Peak	54.022	74	-19.978	180	Horiz, 150
1.555	Avg	51.818	54	-2.182	180	Horiz, 150
1.536	Peak	53.995	74	-20.005	0	Horiz, 150
1.550	Avg	49.607	54	-4.393	0	Horiz, 150
2.441	Peak	94.830			90	Horiz, 150
5 202	Peak	56.572	74	-17.428	180	Horiz, 150
5.202	Avg	35.652	54	-18.348	180	Vert, 150
5 222	Peak	61.097	74	-12.903	300	Vert, 150
5.222	Avg	35.182	54	-18.818	190	Horiz, 150
5.050	Peak	51.141	74	-22.859	0	Horiz, 150
5.959	Avg	36.177	54	-17.823	0	Vert, 150
7 592	Peak	50.371	74	-23.629	90	Vert, 150
7.583	Avg	35.968	54	-18.032	90	Vert, 150
10.124	Peak	51.760	74	-22.240	180	Horiz, 150
10.134	Avg	37.210	54	-16.790	180	Horiz, 150

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 11. (GFSK, Center Channel).

Pre-scan and Final Data (Vertical) – GFSK, Center Channel

Pre-scan and Final Data (Horizontal) – GFSK, Center Channel

Figure 72: GFSK (1Mbps) Center Channel – 6 GHz to 9 GHz (Corrected Field Strength)

Agilen	t Spectru	<mark>um Anal</mark> RF	<mark>yzer - Swept</mark> S			SENSE:INT	01	IGN AUTO		11:45:57	7 AMNov 14, 2022
	ker 1		3964599 <i>°</i>		DNO: Fast (Tui uu Fuu a		Avg Type:	Log-Pwr	TR	
					PNO: Fast G IFGain:Low	Atten: 10 d		Ext Gain: 48	3.00 dB		DET P N N N N N
10 dE Log	3/div	Ref (Ref)ffset 44 dB 70.00 dB	١V					N	lkr1 7.58 50.3	3 96 GHz 71 dBµV
60.0											
50.0	Anj Diserten ji Seren Andre Statistika seren	n nyanyi ing Manganjan			all and an address of the second s						
40.0						a second					
30.0											
20.0											
10.0											
0.00											
-10.0											
-20.0											
	t 6.00 s BW				#V	BW 3.0 MHz			Sweep	Stop 5.33 ms	9.000 GHz (40000 pts)
MSG 🤤	VFile <	Scree	n_0000.png	> saved				STATUS			

Figure 73: GFSK (1Mbps) Center Channel – 9 GHz to 18 GHz (Corrected Field Strength)

Agilent Spectrum Analyzer - Swept SA					
LXI T RF 50Ω AC	SENSE:INT	ALIGN AUTO		11:53:17 AMNov 14, 2022	
	PNO: Fast 🖵 Trig: Fre IFGain:Low Atten: 10	Avg Type: e Run) dB Ext Gain: 4	-	TRACE 1 2 3 4 5 6 TYPE MWWWWW MWWWW MWWWWW MWWWW MWWWW MWWWW MWWWW MWWW	
Ref Offset 46 dB 10 dB/div Ref 70.00 dBµV			Mkr1 10.13 5	4 478 GHz 1.76 dBµV	
60.0					
	o sately because a second state of the second se	ten i generalita la construir plan de la construir plan de la construir de la construir de la construir de la c	Ang palahan pananan palahan di kawan palahan di kawan palahan di ka	and a state of the law of the second state of	
40.0	الماديونية عند المنظما الالتحديد بالايدي ومراقباً المادي الماديونية عند المنظمان الالتحديد بالايدي ومراقباً المادي				
30.0					
20.0					
10.0					
-10.0					
-20.0					
Start 9.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MH	z	Stop Sweep 24.0 m	o 18.000 GHz s (40000 pts)	
MSG		I STATUS			

This Page Intentionally Left Blank

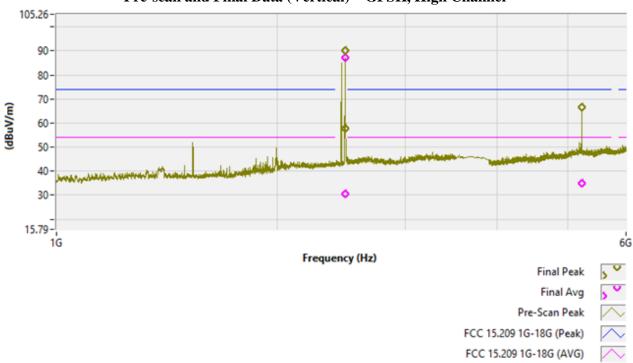
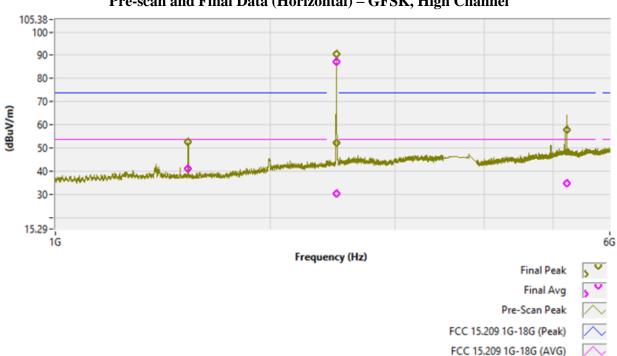


Table 12: Radiated Emissions Test Data - 1 GHz to 25 GHz (GFSK, High Channel)


Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.535	Peak	52.821	74	-21.179	150	Horiz, 150
	Avg	41.347	54	-12.653	150	Horiz, 150
2.480	Peak	91.572			150	Horiz, 150
2.4835	Peak	57.59	74	-16.410	150	Vert, 150
	Avg	30.701	54	-23.299	0	Vert, 150
5.220	Peak	57.915	74	-16.085	0	Horiz, 150
	Avg	35.053	54	-18.947	0	Horiz, 150
5.224	Peak	66.477	74	-7.523	0	Vert, 150
	Avg	35.078	54	-18.922	0	Vert, 150
7.725	Peak	49.208	74	-24.792	270	Vert, 150
	Avg	35.662	54	-18.338	270	Vert, 150
16.874	Peak	54.201	74	-19.799	270	Vert, 150
	Avg	38.115	54	-15.885	270	Vert, 150

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 12. (GFSK, High Channel).

Pre-scan and Final Data (Vertical) – GFSK, High Channel

Pre-scan and Final Data (Horizontal) – GFSK, High Channel

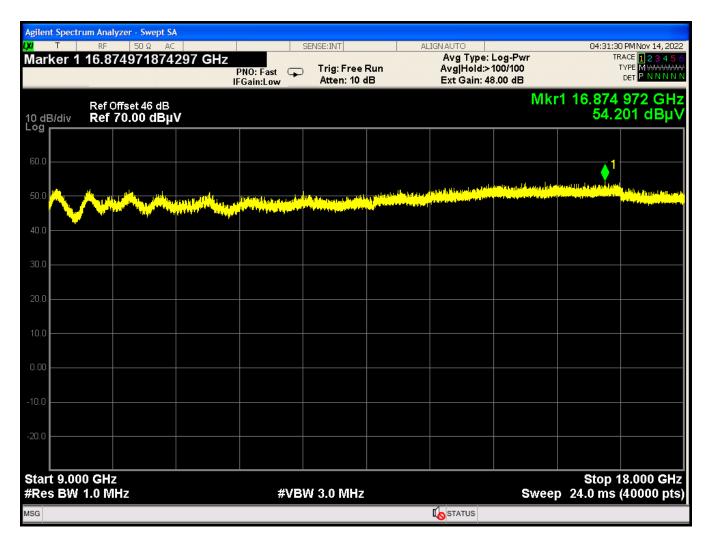
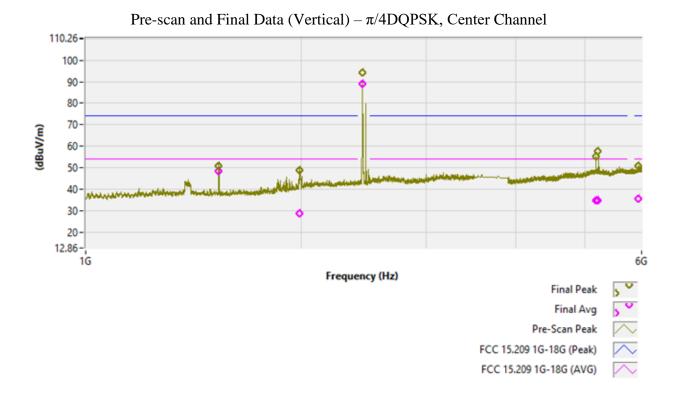


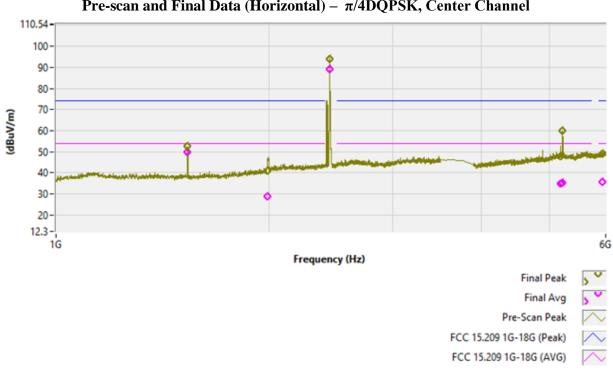
Figure 74: GFSK (1Mbps) High Channel – 6 GHz to 9 GHz (Corrected Field Strength)

Agilent Spec	trum Analyzer - Swept SA							
LXI T	RF 50Ω AC		SENSE:INT	AL	IGN AUTO) PM Nov 14, 2022
Marker	1 7.725418135453 GHz	PNO: Fast 😱 IFGain:Low	Trig: Free F Atten: 10 d	Run B	Avg Type: Avg Hold:>* Ext Gain: 48	100/100		CACE 123456 TYPE M WWWWWW DET P N N N N N
10 dB/div Log	Ref Offset 44 dB Ref 70.00 dBµV					N	/lkr1 7.72 49.2	5 42 GHz 08 dBµV
60.0								
50.0	the back out of the state of the	in <mark>leader at the trip of the surrout tiles</mark>	de dat i l		M ^{and} el International Journalist, J	ومعاورها والمتحافظ والتلافين	ling in the second second of	And Mitching to provide the state
40.0	A ne feldele koli dela serie en ante en a serie en al dela feldele koli feldele koli de ante en al dela dela fe Internet en al dela dela dela dela dela dela dela d	initia a positi a positi a bosali da forma initia de la compania de la compania de la compania de la compania d				A STATISTICS AND ADDRESS OF ADDRES		a a de la desente ser a de la del
30.0								
20.0								
10.0								
0.00								
-10.0								
-20.0								
Start 6.0 #Res BW	00 GHz / 1.0 MHz	#VB	W 3.0 MHz			Swee	Stop p 5.33 ms	9.000 GHz (40000 pts)
MSG					STATUS			

Figure 75: GFSK (1Mbps) High Channel – 9 GHz to 18 GHz (Corrected Field Strength)

This Page Intentionally Left Blank




Table 13: Radiated Emissions Test Data – 1 GHz to 25 GHz ($\pi/4DQPSK$, Center Channel)

Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.536	Peak	52.723	74	-21.277	270	Horiz, 150
1.550	Avg	49.939	54	-4.061	270	Horiz, 150
1.990	Peak	49.034	74	-24.966	180	Vert, 150
1.990	Avg	29.086	54	-24.914	180	Vert, 150
2.441	Peak	93.943			270	Horiz, 150
F 100	Peak	55.405	74	-18.595	270	Vert, 150
5.180	Avg	34.884	54	-19.116	270	Vert, 150
5.214	Peak	59.855	74	-14.145	75	Horiz, 150
5.214	Avg	35.181	54	-18.819	75	Horiz, 150
5.025	Peak	50.877	74	-23.123	0	Vert, 150
5.935	Avg	35.832	54	-18.168	0	Horiz, 150
7 504	Peak	49.868	74	-24.132	0	Vert, 150
7.584	Avg	35.162	54	-18.838	0	Vert, 150
11.267	Peak	51.732	74	-22.268	0	Vert, 150
11.267	Avg	36.999	54	-17.001	0	Vert, 150

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 13. (π /4DQPSK, Center Channel)

Pre-scan and Final Data (Horizontal) – $\pi/4DQPSK$, Center Channel

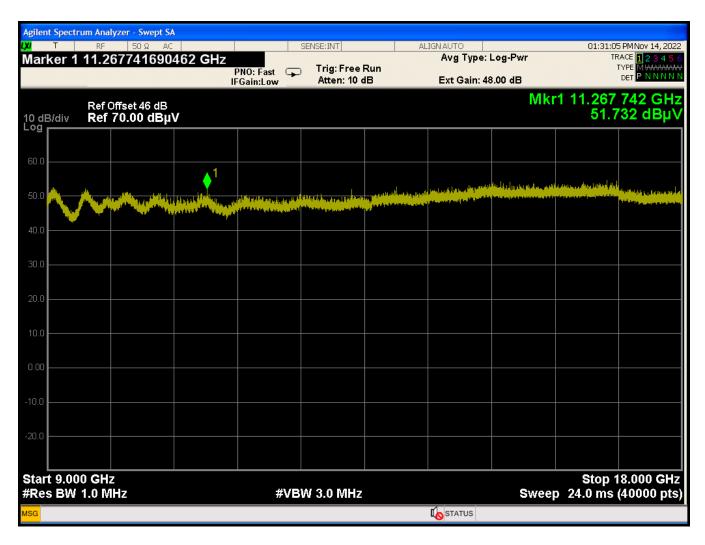


Figure 76: $\pi/4DQPSK$ (2Mbps) Center Channel – 6 GHz to 9 GHz (Corrected Field Strength)

	t Spectru	ım Analyzer -									
<mark>.xı</mark> Marl	⊤ ∣ ker 1	RF 5 7.584414	ος AC 461036	5 GHz		SENSE:INT		IGNAUTO Avg Type: I		TR	5 PMNov 14, 2022 ACE 1 2 3 4 5 6
		_			PNO: Fast 🕞 FGain:Low	D Trig: Free l Atten: 10 d		Avg Hold:>* Ext Gain: 48			
		Ref Offset	44 dB						N		4 41 GHz
10 dE Log r	3/div	Ref 70.0	0 dBµV	1						49.8	68 dBµV
Ĩ											
60.0											
50.0							♦ ¹				
					lini, karantahin di			hina antifacta databili t		hall the second second	
40.0						and the second second		a din ang sa		الاطلىمى _{يەل} ەرلەلەتەتلەقلىق.	
30.0											
20.0											
10.0											
0.00											
-10.0											
-20.0											
20.0											
Star	t 6.000									Ston	9.000 GHz
		1.0 MHz			#VE	3W 3.0 MHz			Sweep	5.33 ms	(40000 pts)
MSG								STATUS			

Figure 77: $\pi/4DQPSK$ (2Mbps) Center Channel – 9 GHz to 18 GHz (Corrected Field Strength)

This Page Intentionally Left Blank

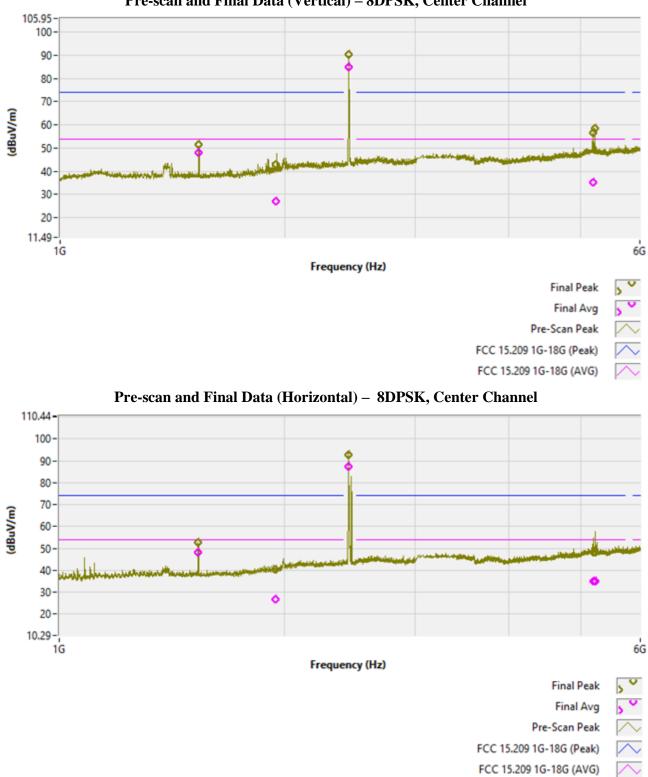


Table 14: Radiated Emissions Test Data - 1 GHz to 25 GHz (8DPSK, Center Channel)

Frequency (GHz)	Detector	Corr. Meas. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
1.536	Peak	52.724	74	-21.276	270	Horiz, 150
1.330	Avg	48.37	54	-5.63	270	Horiz, 150
1.050	Peak	42.863	74	-31.137	0	Vert, 150
1.950	Avg	27.225	54	-26.775	0	Vert, 150
2.441	Peak	93.642			270	Horiz, 150
5 107	Peak	56.578	74	-17.422	180	Vert, 150
5.187	Avg	35.04	54	-18.96	180	Vert, 150
5 001	Peak	58.622	74	-15.378	0	Vert, 150
5.221	Avg	34.997	54	-19.003	0	Horiz, 150
7 507	Peak	50.478	74	-23.522	180	Vert, 150
7.597	Avg	36.122	54	-17.878	180	Vert, 150
15 702	Peak	54.801	74	-19.199	180	Vert, 150
15.703	Avg	38.900	54	-15.100	180	Vert, 150

The plots provided on the following page, represent the 3m radiated emissions test data that correlate to the tabular data provided in Table 14. (8DPSK, Center Channel)

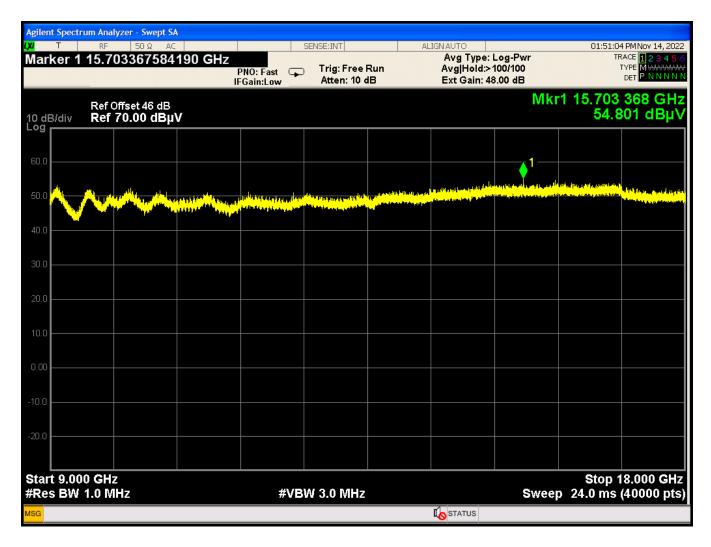


Figure 78: 8DPSK (3Mbps) Center Channel – 6 GHz to 9 GHz (Corrected Field Strength)

Agilent Spect	rum Analyzer - Swept SA	A.							
	RF 50Ω AC			SENSE:INT	AL	IGNAUTO		01:55:05	5 PM Nov 14, 2022
Marker 1	7.5971649291	23 GHz	PNO: Fast 🖵 -Gain:Low	Trig: Free I Atten: 10 d	Run	Avg Type: Avg Hold:> Ext Gain: 48	100/100	TR	ACE 123456 IYPE MWWWWW DET PNNNNN
10 dB/div Log	Ref Offset 44 dB Ref 70.00 dBµ	v					M		7 16 GHz 78 dBµV
60.0									
50.0	n feldinden fingen fingen eine eine eine seine sein		(1996), leger bland from to filme	And first the state of the		Halippen and and a state in		الطروري والتواجع والمع	And the second second second
40.0	and fail alls in the first product of the second	n fer men set det met i te deset i de	(halled, _{by see the left of the see the set of the second s}			and the state of the second	a hi ta an	, Little Berkissen under Biet	
30.0									
20.0									
10.0									
0.00									
-10.0									
-20.0									
Start 6.00 #Res BW			#VB	W 3.0 MHz			Sweep	Stop 5.33 ms	9.000 GHz (40000 pts)
MSG						STATUS			

Figure 79: 8DPSK (3Mbps) Center Channel – 9 GHz to 18 GHz (Corrected Field Strength)

2.9 AC Powerline Conducted Emissions

2.9.1 Requirements

Compliance Standard: FCC Part 15.207

FCC Compliance Limits								
Frequency Range	Class A Dig	gital Device	Class B Digital Device					
Trequency Kange	Quasi-peak	Average	Quasi-peak	Average				
0.15 – 0.5 MHz	79 dBµ∨	<u>66 dBµ</u> ₩	66 to 56 dBµV	56 to 46 dBµV				
0.5 – 5 MHz	79 dBµ∨	66 dBµV	56 dBµV	46 dBµV				
0.5 – 30 MHz	73 dBµ∨	60 dBμV	60 dBµV	50 dBµV				

2.9.2 Test Procedure

The requirements of FCC Part 15 and ICES-003 call for the EUT to be placed on an 80cm-high 1 X 1.5meter non-conductive table above a ground plane. Power to the EUT was provided through a Solar Corporation 50 Ω /50 μ H Line Impedance Stabilization Network bonded to a 3 X 2-meter ground plane. The LISN has its AC input supplied from a filtered AC power source. Power was supplied to the peripherals through a second LISN. The peripherals were placed on the table in accordance with ANSI C63.4. Power and data cables were moved about to obtain maximum emissions.

The 50 Ω output of the LISN was connected to the input of the spectrum analyzer and the emissions in the frequency range of 150 kHz to 30 MHz were measured. The detector function was set to quasi-peak, peak, or average as appropriate, and the resolution bandwidth during testing was at least 9 kHz, with all post-detector filtering no less than 10 times the resolution bandwidth. For average measurements, the post-detector filter was set to 10 Hz.

These emissions must meet the limits specified in §15.207 for quasi-peak and average measurements.

Environmental Conditions During Conducted Emissions Testing

Ambient Temperature:	16 °C
Relative Humidity:	44 %

2.9.3 Conducted Data Reduction and Reporting

The comparison between the Conducted emissions level and the FCC limit is calculated as shown in the following example:

Spectrum Analyzer Voltage:	VdBµV(raw)
LISN Correction Factor:	LISN dB
Cable Correction Factor:	CF dB
Voltage:	$VdB\mu V = V dB\mu V (raw) + LISN dB + CF dB$

2.9.4 Test Data

The EUT complies with the Class B Conducted Emissions requirements.

The Conducted Emissions test data is provided in the table below.

The EUT was coupled to the AC mains network indirectly, through the support laptop.

				NE	UTRAL /	L1				
Frequency (MHz)	Level QP (dBµV)	Level AVG (dBµV)	Cable Loss (dB)	LISN Corr (dB)	Level QP Corr (dBµV)	Level Avg Corr (dBµV)	Limit QP (dBµV)	Limit AVG (dBµV)	Margin QP (dB)	Margin AVG (dB)
0.188	42.5	27.2	9.9	0.5	53.0	37.7	64.1	54.1	-11.2	-13.5
0.249	34.9	22.6	9.9	0.4	45.3	33.0	61.8	51.8	-16.5	-18.8
0.313	30.5	17.5	9.9	0.4	40.8	27.8	59.9	49.9	-19.1	-22.1
2.116	27.6	17.0	10.1	0.3	38.0	27.4	56.0	46.0	-18.0	-18.6
6.216	22.5	13.0	10.4	0.5	33.5	24.0	60.0	50.0	-26.5	-26.0
10.603	21.0	13.3	10.6	0.7	32.3	24.6	60.0	50.0	-27.7	-25.4
	1			P	HASE / L	2				
Frequency (MHz)	Level QP (dBµV)	Level AVG (dBµV)	Cable Loss (dB)	LISN Corr (dB)	Level QP Corr (dBµV)	Level Avg Corr (dBµV)	Limit QP (dBµV)	Limit AVG (dBµV)	Margin QP (dB)	Margin AVG (dB)
0.151	41.0	23.4	9.9	0.5	51.4	33.8	65.9	55.9	-14.5	-22.1
0.191	41.2	27.8	9.9	0.4	51.5	38.1	64.0	54.0	-12.5	-15.9
0.307	32.0	21.2	9.9	0.3	42.3	31.5	60.1	50.1	-17.8	-18.6
0.509	28.2	18.0	9.9	0.3	38.4	28.2	56.0	46.0	-17.6	-17.8
1.205	28.3	19.0	9.9	0.3	38.5	29.2	56.0	46.0	-17.5	-16.8
4.030	27.0	15.0	10.3	0.4	37.7	25.7	56.0	46.0	-18.3	-20.3

Table 15: AC Power Conducted Emissions Test Data

3 Equipment Under Test

3.1 EUT Identification & Description

The Stanley Black & Decker, Inc., DCR008 is a Bluetooth speaker that operates in the 2.4 GHz band.

3.2 Test Configuration

For the purposes of testing, the DCR008 was powered by a +5VDC provided by a USB cable from the support laptop. Table 15 provides further details pertaining to the EUT.

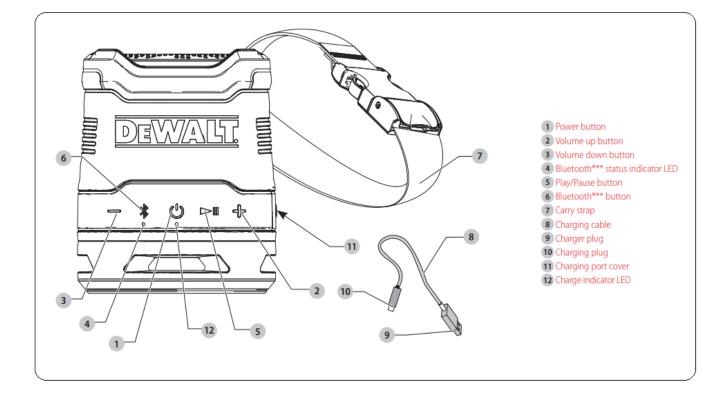


Figure 80: EUT Sample Diagram – Device Specifications

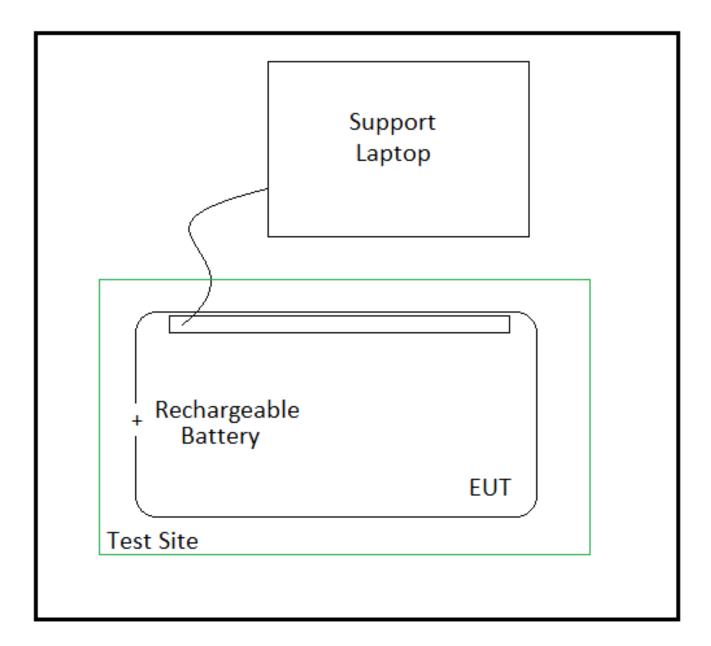


Table 16: Radio Device Summary

Manufacturer and Applicant:	Stanley Black & Decker, In	с.			
FCC ID:	YJ7DCR008				
IC ID:	9082A-DCR008				
HVIN:	DCR008				
Serial Number of Unit Tested:	See Table 16				
FCC Rule Part:	§15.247				
TX Frequency Range:	2402 MHz - 2480 MHz				
Maximum Peak Output Power:	3.96 dBm (2.5 mW)				
Modulation:	GFSK, π/4DQPSK, 8DPSK	-			
Date Rate:	1Mbps, 2Mbps, 3Mbps				
Number of Channels:	79				
FCC Emission Designator:	1M23F1D (recommended)	or TCB to correct)			
ISED Emission Designator:	1M13F1D (recommended)	or TCB to correct)			
Keying:	Automatic				
Type of Information:	BT V5.2 (A2DP, AVRCP, 1	HFP)			
Antenna Manufacturer:	Stanley Black & Decker, In	с.			
Antenna Type:	PCB Trace, "Meander Line"	" (Peak Gain: -1.5 dBi)			
Antenna Connector:	N/A				
Calculated EIRP:	2.46 dBm (based on declare	ed gain)			
Measured EIRP from F/S:	96.8dBuV/m + 20LOG(3) -	- 104.7 = 1.64 dBm EIRP			
Interface Cables:	See Table 18				
Software/Firmware:	Normal Operation, No Spec	cial Settings			
Pulsed Transmitter:	No				
Duty Cycles	Hopping Stopped 73% (72.85ms/100ms)				
Duty Cycle:	Hopping Active 74% (297.9ms/400ms)				
Power Source & Voltage:	+5VDC from USB (+4.2VDC Final to TX Module)				
ISED – RSS-102, Annex A:	+5.609 W/m ² @ 5mm				
Highest TX Spurious Emission:	24.922 GHz (Conducted) -37.66 dBm (Peak)				
Inglest IA Spurious Emission:	1.535 GHz (3m, Radiated); 51.828 dBuV/m (AVG)				

Figure 81: EUT Block Diagram – Testing Configuration

Table 17: System Configuration List

Description	Model (HVIN)	Part Number	Serial Number	Revision
Bluetooth Speaker	DCR008	WB-2833	200	N/A
Bluetooth Speaker	DCR008	WB-2833	168	N/A
Bluetooth Speaker	DCR008	WB-2833	6	N/A

Table 18: Support Equipment

Item	Model/Part Number	Serial Number
Laptop	Support Only to Fix Frequencies	N/A
N/A	N/A	N/A
N/A	N/A	N/A

Table 19: Cable Configuration

Port Identification	Connector Type	Cable Length	Shielded (Y/N)	Termination Point
Charging Port	USB-C	< 3m	No	+5DVC Source

3.3 Measurements

3.3.1 References

ANSI C63.2 (1/2016) Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 (1/2014) American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

ANSI C63.10 (6/2013) American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

3.4 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 (R2002) with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

Where:

uc	= standard uncertainty
a, b, c,	= individual uncertainty elements
Diva, b, c	= the individual uncertainty element divisor based on the probability distribution
Divisor	= 1.732 for rectangular distribution
Divisor	= 2 for normal distribution
Divisor	= 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

 $U = ku_c$

Where:

U	= expanded uncertainty
k	= coverage factor
k	\leq 2 for 95% coverage (ANSI/NCSL Z540-2 Annex G)
uc	= standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is not used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 20 below.

Table 20: Expanded Uncertainty List

Scope	Standard(s)	Expanded Uncertainty
Conducted Emissions	CISPR11, CISPR22, CISPR32, CISPR14, FCC Part 15	± 2.63 dB
Radiated Emissions	CISPR11, CISPR22, CISPR32, CISPR14, FCC Part 15	± 4.55 dB

4 Test Equipment

Table 21: Test Equipment List

Test Name:	Benchtop RF Emissions	Test Date: 11/9/2022 & 11/10/2022	
Asset #	Manufacturer/Model	Description	Cal. Due
00823	AGILENT, N9010A	EXA SPECTRUM ANALYZER	5/26/2023
00528	AGILENT, E4446A	SPECTRUM ANALYZER	3/25/2023
00897	TELEDYNE, 921-0101	SMA COAXIAL CABLE	12/21/2022

Test Name:	Radiated Emissions	Test Date: 11/11/2022 & 11/14/2022	
Asset #	Manufacturer/Model	Description	Cal. Due
00823	AGILENT, N9010A	EXA SPECTRUM ANALYZER	5/26/2023
00644	SUNOL SCIENCES CORP.	BICONALOG ANTENNA	11/14/2024
00626	ARA, DRG-118/A	HORN ANTENNA	8/20/2023
00977	JUNKOSHA, MWX322	ARMORED COAX. CABLE	1/3/2023
00806	MINI-CIRCUITS	SMA COAXIAL CABLE	5/5/2023
00834	ULTIFLEX, UFA 2108	SMA COAXIAL CABLE	12/22/2022
00276	ELECTRO-METRICS	RF PRE-AMPLIFIER	5/5/2023
00066	B&Z (HP), BZ-01002650	PRE-AMPLIFIER	5/5/2023
00742	PENN ENG., WR284	WAVEGUIDE PASS FILTER	Cal. Before Use
00281	ITC. 21A-3A1	WAVEGUIDE PASS FILTER	Cal. Before Use
00721	WEINSCHEL, DS109	TUNABLE ATTENUATOR	Cal. Before Use

Test Name:	AC Mains Conducted Emissions	Test Date: 2/6/2023	
Asset #	Manufacturer/Model	Description	Cal. Due
00823	AGILENT, N9010A	EXA SPECTRUM ANALYZER	5/26/2023
00895	HP, 11947A	TRANSIENT LIMITER	2/23/2023
00125	SOLAR, LISN	8028-50-TS-24-BNC	9/14/2023
00126	SOLAR, LISN	8028-50-TS-24-BNC	9/14/2023
00330	WLL, BNC CABLE	CE SITE 1 CABLE	5/6/2023