

d. TESTING CERT #1255.01

W66 N220 Commerce Court • Cedarburg, WI 53012 Phone: 262.375.4400 • Fax: 262.375.4248

www.lsr.com

#### TEST REPORT # 316161 LSR Job #: C-2635

<u>Compliance Testing of:</u> DeWalt Bluetooth Tag

<u>Test Date(s)</u>: 1/16/17 – 1/26/17

Prepared For: Attn: Kirwan Magdamo Sr Project Engineer Stanley Black & Decker, Inc. 701 East Joppa Rd. Towson, MD 21286 410-716-3563 Kirwan.Magdamo@sbdinc.com www.stanleyblackanddecker.com

| This Test Report is issued under the Authority of:<br>Shane Dock, EMC Engineer |                                    |  |  |
|--------------------------------------------------------------------------------|------------------------------------|--|--|
| Signature: Stane Jock                                                          | Date: 3-23-17                      |  |  |
| Test Report Reviewed by:                                                       | Project Engineer:                  |  |  |
| Adam Alger, Quality Systems Engineer                                           | Shane Dock, EMC Engineer           |  |  |
| Signature: Adum DAlge Date: 3-23-17                                            | Signature: Stane Jok Date: 3-23-17 |  |  |

This Test Report may not be reproduced, except in full, without written approval of Laird Technologies, Inc.

### TABLE OF CONTENTS

| EXHIBIT 1. INTRODUCTION                                             |              |
|---------------------------------------------------------------------|--------------|
| 1.1 - Scope                                                         |              |
| 1.2 – Normative References                                          |              |
| 1.3 -Laird Technologies, Inc. Test Lab in Review                    |              |
| 1.4 – Location of Testing                                           |              |
| 1.5 – Test Equipment Utilized                                       |              |
| EXHIBIT 2. PERFORMANCE ASSESSMENT                                   | 7            |
| 2.1 – Client Information                                            |              |
| 2.2 - Equipment Under Test (EUT) Information                        |              |
| 2.3 - Associated Antenna Description                                |              |
| 2.4 - EUT'S Technical Specifications                                |              |
| 2.5 - Product Description                                           |              |
| EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TEST    | S 10         |
| 3.1 - Climate Test Conditions                                       |              |
| 3.2 - Applicability & Summary of EMC Emission Test Results          |              |
| 3.3 - Modifications Incorporated In The EUT For Compliance Purposes |              |
| 3.4 - Deviations & Exclusions From Test Specifications              |              |
| EXHIBIT 4. CONFORMANCE SUMMARY                                      |              |
| EXHIBIT 5. UNWANTED EMISSIONS INTO THE RESTRICTED FREQUENCY BAN     | DS 12        |
| 5.1 - Test Setup                                                    |              |
| 5.2 - Test Procedure                                                |              |
| 5.3 - Test Equipment Utilized                                       |              |
| 5.4 - Test Results                                                  |              |
| 5.5 - Calculation of Radiated Emissions Limits and reported data.   |              |
| 5.6 - Data                                                          |              |
| 5.7 – Screen Captures.                                              |              |
| EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE                  |              |
| EXHIBIT 7. OCCUPIED BANDWIDTH                                       |              |
| 7.1 - Limits                                                        |              |
| 7.2 - Method of Measurements                                        |              |
| 7.3 - Test Data                                                     |              |
| 7.4 – Screen Captures                                               |              |
| EXHIBIT 8. BAND EDGE MEASUREMENTS                                   |              |
| Laird Technologies, Inc.                                            | Page 2 of 46 |

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

| 8.1 - Method of Measurements                                               | 5 |
|----------------------------------------------------------------------------|---|
| 8.2. Band Edge Screen Captures                                             | 5 |
| EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)                             | ) |
| 9.1 - Method of Measurements                                               | ) |
| 9.2 - Test Data                                                            | ) |
| EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)                        | 3 |
| 10.1 - Limits                                                              | 3 |
| 10.2 – Conducted Harmonic and Spurious RF Measurements                     | 3 |
| Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance | _ |
| v03r05 section 11                                                          |   |
| 10.3 - Test Data                                                           | 1 |
| EXHIBIT 11. POWER SPECTRAL DENSITIES: 15.247(e)                            | 7 |
| 11.1 Limits                                                                | 7 |
| 11.2 Test Data 38                                                          | 3 |
| 11.3 Screen Captures – Power Spectral Density                              | 3 |
| EXHIBIT 12. FREQUENCY STABILITY OVER VOLTAGE VARIATIONS                    | ) |
| APPENDIX A – Test Equipment List                                           | 1 |
| APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO               | 2 |
| APPENDIX C - Uncertainty Statement                                         | 3 |
| APPENDIX D – Justification for Duty Cycle Relaxation                       | 1 |

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Laird Technologies, Inc.

# **EXHIBIT 1. INTRODUCTION**

### <u> 1.1 - Scope</u>

| References:                   | FCC Part 15, Subpart C, Section 15.247<br>RSS 247                                          |  |
|-------------------------------|--------------------------------------------------------------------------------------------|--|
| Title:                        | FCC : Telecommunication – Code of Federal Regulations,<br>CFR 47, Part 15                  |  |
| Purpose of Test:              | FCC and IC Certification Authorization for Low-Power<br>License-Exempt Transmitters.       |  |
| Test Procedures:              | FCC KDB 558074 D01 DTS Measurement Guidance<br>v03r05<br>ANSI C63.10<br>RSS 247<br>RSS GEN |  |
| Environmental Classification: | Residential                                                                                |  |

#### **1.2 – Normative References**

Laird Technologies Inc.

| Publication                                              | Year | Title                                                                                                                                                                         |
|----------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC CFR Parts 0-15                                       | 2016 | Code of Federal Regulations –<br>Telecommunications                                                                                                                           |
| ANSI C63.4                                               | 2014 | American National Standard for Methods of<br>Measurement of Radio-Noise Emissions from<br>Low-Voltage Electrical and Electronic Equipment<br>in the Range of 9 kHz to 40 GHz. |
| RSS-247 Issue 2                                          | 2017 | Digital Transmission Systems (DTSs), Frequency<br>Hopping Systems (FHSs) and License-Exempt<br>Local Area Network (LE-LAN) Devices                                            |
| RSS-GEN Issue 4                                          | 2014 | General Requirements and Information for the<br>Certification of Radio Apparatus                                                                                              |
| ANSI C63.10                                              | 2013 | American National Standard for Testing<br>Unlicensed Wireless Devices                                                                                                         |
| FCC KDB 558074 D01<br>DTS Measurement<br>Guidance v03r05 | 2016 | Guidance for Performing Compliance<br>Measurements on Digital Transmission Systems<br>(DTS) Operating Under §15.247                                                           |

|                                           |                                       | 1 ugo 4 01 40     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 4 of 46

#### **<u>1.3 - Laird Technologies, Inc. Test Lab in Review</u></u>**

As an EMC Testing Laboratory, our Accreditation and Assessments are recognized through the following:



#### <u>A2LA – American Association for Laboratory Accreditation</u>

Accreditation based on ISO/IEC 17025: 2005 with Electrical (EMC) Scope of Accreditation A2LA Certificate Number: 1255.01



#### Federal Communications Commission (FCC) – USA

Listing of two 3 Meter Semi-Anechoic Chambers based on Title 47 CFR – Part 2.948 FCC Registration Number: 90756



Industry Canada

On file, 3 Meter Semi-Anechoic Chamber based on RSS-GEN – Issue 4 File Number: IC 3088A-2 On file, 3 Meter Semi-Anechoic Chamber based on RSS-GEN – Issue 4 File Number: IC 3088A-3

| Laird Technologies, Inc.                  |                                       | Page 5 of 46      |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

#### **<u>1.4 – Location of Testing</u>**

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

Laird Technologies Inc. W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at Laird Technologies, Inc.:

Semi-Anechoic Chamber

Laird Technologies, Inc.

#### <u>1.5 – Test Equipment Utilized</u>

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated by a calibration laboratory accredited to the requirements of ISO/IEC 17025, and traceable to the SI standard.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 6 of 46

### **EXHIBIT 2. PERFORMANCE ASSESSMENT**

### **2.1 – Client Information**

| Manufacturer Name: | Stanley Black and Decker             |
|--------------------|--------------------------------------|
| Address:           | 701 East Joppa Rd., Towson, MD 21286 |
|                    | 410-716-3563                         |
| Contact Name:      | Kirwan Magdamo                       |

# **<u>2.2 - Equipment Under Test (EUT) Information</u>** The following information has been supplied by the applicant.

| Product Name:  | DeWalt Bluetooth Tag        |
|----------------|-----------------------------|
| Model Number:  | Engineering FCC Test Sample |
| Serial Number: | Engineering FCC Test Sample |

#### 2.3 - Associated Antenna Description

Laird Technologies, Inc.

The antenna is a PCB-printed PIFA antenna. This antenna has a peak gain of 0 dBi.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 7 of 46

### 2.4 - EUT'S Technical Specifications

| EUT Frequency Range (in MHz)                  | 2402 – 2480 MHz                                                                             |
|-----------------------------------------------|---------------------------------------------------------------------------------------------|
| Type of Modulation                            | Gaussian Shift Frequency                                                                    |
| Transmitter Spurious (worst case) at 3 meters | 62.2 dBuV/m (Peak) at 7320 MHz (42.2<br>dBuV/m with relaxation for duty cycle<br>(Average)) |
| Frequency Tolerance %, Hz, ppm                | Better than 100 ppm                                                                         |
| Microprocessor Model # (if applicable)        | -                                                                                           |
| Antenna Information                           |                                                                                             |
| Detachable/non-detachable                     | Non-Detachable                                                                              |
| Туре                                          | PIFA                                                                                        |
| Gain                                          | 0 dBi                                                                                       |
| EUT will be operated under FCC Rule Part(s)   | Title 47 part 15.247                                                                        |
| Modular Filing                                | Yes No                                                                                      |

|                          | BLE    |
|--------------------------|--------|
| Maximum Conducted Output | 2 (7   |
| Power (dBm)              | 3.67   |
| Maximum Conducted Output | 2.33   |
| Power (mW)               | 2.33   |
| Minimum Conducted Output | 3.28   |
| Power (dBm)              | 3.28   |
| Minimum Conducted Output | 2.12   |
| Power (mW)               | 2.12   |
| 99% Bandwidth (MHz)      | 1.06   |
| 6 dB Bandwidth (kHz)     | 735.90 |

**Radio Characteristics** 

| Laird Technologies, Inc.                  |                                       | Page 8 of 46      |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

#### 2.5 - Product Description

Laird Technologies, Inc.

The Bluetooth DeWalt Tag is designed for tracking and locating professional power tools, equipment, and machines using the DeWalt Tool Connect app which is capable of connecting with mobile devices that support Bluetooth Smart technology. The features of the Tag include a sealed enclosure with an IP68 rating, an over molded push button to initiate pairing to a mobile device, a blue LED to locate which Tag is currently connected to the mobile device, and various mounting options. The Tag is powered by a 3.0V CR2450 coin cell with an expected battery life of 3 years.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 9 of 46

### **EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS**

#### 3.1 - Climate Test Conditions

| Temperature: | 70 -74° F   |
|--------------|-------------|
| Humidity:    | 30-42%      |
| Pressure:    | 728-741mmHg |

#### 3.2 - Applicability & Summary of EMC Emission Test Results

| FCC and IC<br>Paragraph                                  | Test Requirements                                                      | Compliance<br>(Yes/No) |
|----------------------------------------------------------|------------------------------------------------------------------------|------------------------|
| FCC : 15.247(b)(3) &<br>1.1310<br>IC : RSS 247 5.4 (d)   | Maximum Output Power                                                   | Yes                    |
| FCC :15.247(d)<br>IC : RSS 247 5.5                       | RF Conducted Spurious Emissions at the<br>Transmitter Antenna Terminal | Yes                    |
| FCC:15.247 (a)(2)<br>IC: RSS 247 5.2 (a)                 | 6 dB Bandwidth of a Digital Modulation System                          | Yes                    |
| FCC:15.247 (e)<br>IC: RSS 247 5.2 (b)                    | Power Spectral Density of a Digital Modulation<br>System               | Yes                    |
| FCC : 15.247(d), 15.209<br>& 15.205<br>IC : RSS-GEN 6.13 | Transmitter Radiated Emissions                                         | Yes                    |

#### <u>3.3 - Modifications Incorporated In The EUT For Compliance Purposes</u>

🛛 None

Yes (explain below)

#### 3.4 - Deviations & Exclusions From Test Specifications

🛛 None

Laird Technologies, Inc.

Yes (explain below)

| _                                         |                                       | _                 |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 10 of 46

### **EXHIBIT 4. CONFORMANCE SUMMARY**

When tested between September 2<sup>nd</sup> and October 26 of 2016, it was determined that the EUT, the Dewalt Bluetooth Tag, were compliant with the requirements of:

FCC Title 47 CFR Part 15.247 RSS 247 Issue 2

Laird Technologies, Inc.

Using the methods of ANSI C63.10-2013 and RSS GEN

Any modifications made to the EUT after the specified test date(s) will invalidate the data herein.

If some emissions measurements are seen to be within the uncertainty value, as listed in Appendix C there is a possibility that this unit may not meet the required limit specification if subsequently tested.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 11 of 46

# EXHIBIT 5. UNWANTED EMISSIONS INTO THE RESTRICTED FREQUENCY BANDS.

#### 5.1 - Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15 and ANSI C63.10-2013. The EUT was placed on a 150 cm high non-conductive pedestal (80 cm for measurements under 1 GHz), centered on a flush mounted turntable inside a 3 meter Semi-Anechoic Chamber. The EUT was operated in continuous transmit mode for final testing. The unit has the capability to operate on 3 channels, controllable via proprietary software provided by the manufacturer.

The applicable limits apply at a 3 meter distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels to comply with FCC Part 15.31(m).

#### 5.2 - Test Procedure

Laird Technologies, Inc.

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 200 MHz, and a Log Periodic Antenna was used to measure emissions from 200 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz while a standard gain horn antenna was used in the 18 GHz to 25 GHz range. The maximum radiated RF emissions between 30MHz to 25 GHz were found by raising and lowering the sense antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities. A tilt gear was utilized to keep the EUT within the cone of radiation for measurements above 1 GHz.

The EUT was positioned in 3 orthogonal orientations.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 12 of 46

#### 5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at a calibration laboratory accredited to ISO 17025, and are traceable to the SI standard. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of at least 300 kHz), and a resolution bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of at least 3 MHz). For some plots, a reduced video bandwidth was used in order to identify spurious emissions (The relevant plots are labeled as such). In these cases, the standard video bandwidth was used with the appropriate detectors for measurement.

#### 5.4 - Test Results

Laird Technologies, Inc.

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and RSS 247 for a DTS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 13 of 46

#### 5.5 - Calculation of Radiated Emissions Limits and reported data.

#### Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement ( $dB\mu V$ ) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) – amplification factor when applicable (dB).

#### Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dBµV/m).

As specified in 15.247 (d), radiated emissions that fall within the restricted band described in 15.205(c) for FCC must comply with the general emissions limit.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS GEN.

| Frequency<br>(MHz) | 3 m Limit<br>μV/m | 3 m Limit<br>(dBμV/m) | 1 m Limit<br>(dBµV/m) |
|--------------------|-------------------|-----------------------|-----------------------|
| 30-88              | 100               | 40.0                  | -                     |
| 88-216             | 150               | 43.5                  | -                     |
| 216-960            | 200               | 46.0                  | -                     |
| 960-40,000         | 500               | 54.0                  | 63.5                  |

Sample conversion of field strength ( $\mu$ V/m to dB $\mu$ V/m): dB $\mu$ V/m = 20 log 10 (100) = 40 dB $\mu$ V/m (from 30-88 MHz)

For this unit, a Duty Cycle relaxation was used. The duty cycle (x) of the unit is 10% Relaxation amount = 20 Log(x) = 20 Log(.10) = 20 dB.

For a sample peak measurement of 60 dBuV/m at 7300 MHz, the relaxation value is subtracted from the peak value and is compared to the average limit. Peak Value with Relaxation (dBuV/m) = Peak Value (dBuV/m) – Relaxation Value (dB) = 60 - 20 = 40 dBuV/m

Since 40 dBuV/m < 54 dBuV/m, the sample measurement would be passing.

| Laird Technologies, Inc.                  |                                       | Page 14 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

#### <u>5.6 - Data</u>

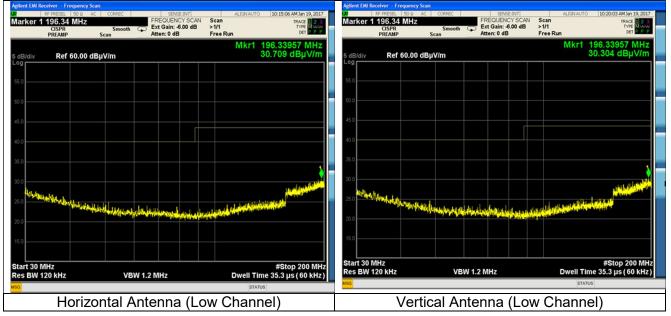
| Manufacturer:        | Star | Stanley Black and Decker       |          |                      |  |  |
|----------------------|------|--------------------------------|----------|----------------------|--|--|
| Date(s) of Test:     | 1/16 | 6/17 – 1/19/17                 |          |                      |  |  |
| Project Engineer(s): | Sha  | ne Dock                        |          |                      |  |  |
| Test Engineer(s):    | Sha  | ne Dock                        |          |                      |  |  |
| Voltage:             | 3 VI | DC (Provided by 2x AA Ba       | tteries) |                      |  |  |
| Operation Mode:      | Con  | tinuous transmit, modulate     | ed       |                      |  |  |
| Environmental        | Ten  | perature: 70-74°F              |          |                      |  |  |
| Conditions in the    | Rela | ative Humidity: 30-42%         |          |                      |  |  |
| Lab:                 |      |                                |          |                      |  |  |
| EUT Power:           |      | Single Phase 120VAC            |          | 3 Phase VAC          |  |  |
|                      | Х    | 3VDC (2 AA Batteries)          |          | Other: 3V            |  |  |
|                      | Х    | 150 cm non-conductive          |          | 10cm Spacers         |  |  |
| EUT Placement:       |      | pedestal (80 cm for <1         |          |                      |  |  |
|                      |      | GHz)                           |          |                      |  |  |
| EUT Test Location:   | x    | 3 Meter Semi-Anechoic 3/10m OA |          | 3/10m OATS           |  |  |
|                      |      | FCC Listed Chamber             |          |                      |  |  |
| Measurements:        |      | Pre-Compliance                 |          | Preliminary X Final  |  |  |
| Detectors Used:      | Х    | Peak                           | Х        | Quasi-Peak X Average |  |  |

### Measurements above 1 GHz:

Note: Emissions below were maximized between the three orientations. The worst-case emissions are reported

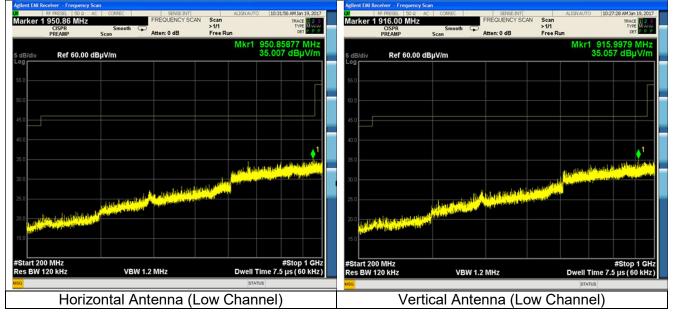
| Frequency<br>(MHz) | Orientation | Polarization | Height (cm) | Azimuth<br>(degree) | Peak<br>Reading<br>(dBµV/m) | Peak<br>Reading<br>with<br>Relaxation<br>(dBμV/m) | Peak Limit<br>(dBμV/m) | Average<br>Limit<br>(dBµV/m) | Peak<br>Margin (dB) | Average<br>Margin (dB) |
|--------------------|-------------|--------------|-------------|---------------------|-----------------------------|---------------------------------------------------|------------------------|------------------------------|---------------------|------------------------|
|                    | V           | Н            | 208         | 15.6                | 53.7                        | 33.7                                              | 74.0                   | 54.0                         | 20.3                | 20.3                   |
|                    | V           | V            | 106         | 41.5                | 59.2                        | 39.2                                              | 74.0                   | 54.0                         | 14.8                | 14.8                   |
| 7206               | Н           | Н            | 144         | 7.6                 | 58.2                        | 38.2                                              | 74.0                   | 54.0                         | 15.8                | 15.8                   |
| 7200               | Н           | V            | 247         | 88.3                | 63.0                        | 43.0                                              | 74.0                   | 54.0                         | 11.0                | 11.0                   |
|                    | F           | Н            | 180         | 58.8                | 61.5                        | 41.5                                              | 74.0                   | 54.0                         | 12.5                | 12.5                   |
|                    | F           | V            | 182         | 210.9               | 52.9                        | 32.9                                              | 74.0                   | 54.0                         | 21.1                | 21.1                   |

| Laird Technologies, Inc.                  |                                       | Page 15 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

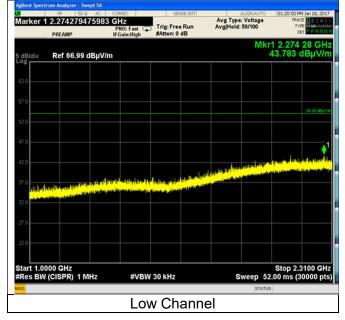

| Frequency<br>(MHz) | Orientation | Polarization | Height (cm) | Azimuth<br>(degree) | Peak<br>Reading<br>(dBµV/m) | Peak<br>Reading<br>with<br>Relaxation<br>(dBµV/m) | Peak Limit<br>(dBμV/m) | Average<br>Limit<br>(dBµV/m) | Peak<br>Margin (dB) | Average<br>Margin (dB) |
|--------------------|-------------|--------------|-------------|---------------------|-----------------------------|---------------------------------------------------|------------------------|------------------------------|---------------------|------------------------|
|                    | V           | Н            | 250         | 117.8               | 53.7                        | 33.7                                              | 74.0                   | 54.0                         | 20.3                | 20.3                   |
|                    | V           | V            | 186         | 24.4                | 56.0                        | 36.0                                              | 74.0                   | 54.0                         | 18.0                | 18.0                   |
| 4804               | Н           | Н            | 128         | 135.9               | 58.1                        | 38.1                                              | 74.0                   | 54.0                         | 15.9                | 15.9                   |
| 4004               | Н           | V            | 215         | 88.4                | 59.4                        | 39.4                                              | 74.0                   | 54.0                         | 14.6                | 14.6                   |
|                    | F           | Н            | 146         | 166.1               | 59.9                        | 39.9                                              | 74.0                   | 54.0                         | 14.1                | 14.1                   |
|                    | F           | V            | 102         | 105.5               | 50.9                        | 30.9                                              | 74.0                   | 54.0                         | 23.1                | 23.1                   |

| Frequency<br>(MHz) | Orientation | Polarization | Height (cm) | Azimuth<br>(degree) | Peak<br>Reading<br>(dBµV/m) | Peak<br>Reading<br>with<br>Relaxation<br>(dBμV/m) | Peak Limit<br>(dBμV/m) | Average<br>Limit<br>(dBµV/m) | Peak<br>Margin (dB) | Average<br>Margin (dB) |
|--------------------|-------------|--------------|-------------|---------------------|-----------------------------|---------------------------------------------------|------------------------|------------------------------|---------------------|------------------------|
| 7320               | Н           | V            | 245         | 90.0                | 62.2                        | 42.2                                              | 74.0                   | 54.0                         | 11.8                | 11.8                   |
| 7440               | Н           | V            | 250         | 90.9                | 64.7                        | 44.7                                              | 74.0                   | 54.0                         | 9.3                 | 9.3                    |
| 4880               | F           | Н            | 193         | 160.0               | 61.1                        | 41.1                                              | 74.0                   | 54.0                         | 12.9                | 12.9                   |
| 4960               | F           | Н            | 158         | 161.7               | 62.6                        | 42.6                                              | 74.0                   | 54.0                         | 11.4                | 11.4                   |

| Laird Technologies, Inc.                  |                                       | Page 16 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

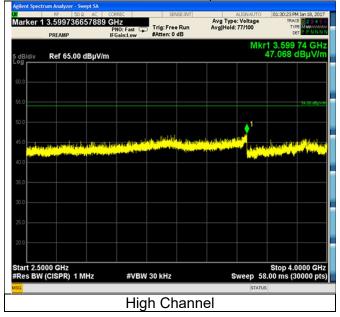

### 5.7 – Screen Captures.

The screen captures below are those using the Peak detector of the analyzer.



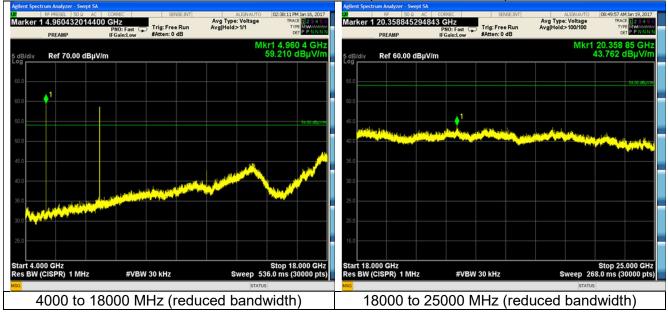

#### 30 to 200 MHz, 3m distance

#### 200 to 1000 MHz, 3m distance.




| Laird Technologies, Inc.                  |                                       | Page 17 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |




#### 1000 to 2310 MHz, 3m distance. (Reduced Bandwidth)

Note: The ranges 2310 to 2390 and 2483.5 to 2500 MHz are in section 8 of this report (Bandedges).



#### 2500 to 4000 MHz, 3m distance. (Reduced Bandwidth)

| Laird Technologies, Inc.                  |                                       | Page 18 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |



#### 4000 to 25000 MHz, 3m distance. (Reduced Bandwidth)

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Laird Technologies, Inc.

#### Page 19 of 46

## EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

AC-Mains Conducted Emissions Testing is not applicable to the unit, as the unit is powered by a battery.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Laird Technologies, Inc.

Page 20 of 46

### **EXHIBIT 7. OCCUPIED BANDWIDTH**

Test Engineer(s): Shane Dock

#### 7.1 - Limits

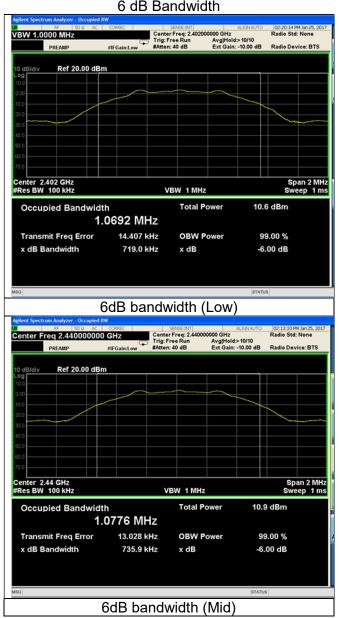
For a DTS system operating in the 2400 to 2483.5 MHz band, the minimum 6dB emission bandwidth limit is 500 kHz.

#### 7.2 - Method of Measurements

For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings thereby allowing direct measurements, without the need for any further corrections. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. A bandwidth measurement function that is built into the spectrum analyzer was used to measure the 20dB/emission bandwidth while the 6dB bandwidth was measured in accordance **FCC OET KDB 558074 section 8**.

#### 7.3 - Test Data

Laird Technologies, Inc.


| Frequency (MHz)     | 2402   | 2440   | 2480   |
|---------------------|--------|--------|--------|
| 6dB Bandwidth (kHz) | 719.00 | 735.90 | 729.20 |
|                     |        |        |        |
| Frequency (MHz)     | 2402   | 2440   | 2480   |
| 99% Bandwidth (MHz) | 1.06   | 1.06   | 1.06   |

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

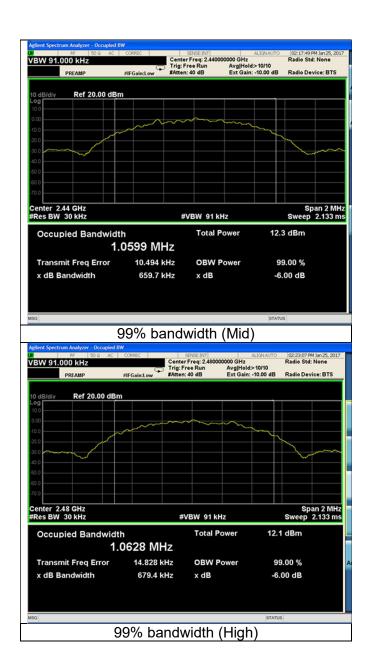
Page 21 of 46

### 7.4 – Screen Captures

Examples of bandwidth measurements:



| Laird Technologies, Inc.                  |                                       | Page 22 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |


6 dB Bandwidth

| enter Fre              | RF 50 Ω A    | C CORREC | Cente    | SENSE:INT            |       | ALIGNAUTO               | 02:22:10 P<br>Radio Std | M Jan 25, 20:<br>: None |
|------------------------|--------------|----------|----------|----------------------|-------|-------------------------|-------------------------|-------------------------|
|                        | PREAMP       | #IFGain: |          | Free Run<br>n: 40 dB |       | d>10/10<br>n: -10.00 dB | Radio Dev               | vice: BTS               |
| 0 dB/div               | Ref 20.00 d  | Bm       |          |                      |       |                         |                         |                         |
| .og                    |              |          |          |                      |       |                         |                         |                         |
| 0.00                   |              |          | <u> </u> |                      |       |                         |                         |                         |
| 10.0                   |              |          |          |                      |       |                         |                         |                         |
| 20.0                   |              |          |          |                      |       |                         |                         |                         |
| 20.0                   |              |          |          |                      |       |                         |                         | and a second            |
| 0.0                    |              |          |          |                      |       |                         |                         |                         |
| 50.0                   |              |          |          |                      |       |                         |                         |                         |
| 70.0                   |              |          |          |                      |       |                         |                         |                         |
|                        |              |          |          |                      |       |                         |                         |                         |
| Center 2.4<br>Res BW 1 |              |          | `        | /BW 1 MH             | z     |                         |                         | an 2 MH<br>eep 1 m      |
| Occupi                 | ed Bandwi    |          |          | Total                | Power | 10.                     | 9 dBm                   |                         |
|                        |              | 1.0731   | MHz      |                      |       |                         |                         |                         |
| Transmi                | t Freq Error | 15       | .927 kHz | OBW                  | Power | 9                       | 9.00 %                  |                         |
| x dB Ba                | ndwidth      | 7        | 29.2 kHz | x dB                 |       | -6                      | .00 dB                  |                         |
|                        |              |          |          |                      |       |                         |                         |                         |
|                        |              |          |          |                      |       |                         |                         |                         |
|                        |              |          |          |                      |       |                         |                         |                         |
| SG                     |              |          |          |                      |       | STATU                   | IS                      |                         |

| enter F        | req 2.4020000       |                       | SENSE:INT<br>Center Freq: 2.4020<br>Trig: Free Run | Avg Hold>10/1   | Radio Std           |           |
|----------------|---------------------|-----------------------|----------------------------------------------------|-----------------|---------------------|-----------|
|                | PREAMP              | #IFGain:Low           | #Atten: 40 dB                                      | Ext Gain: -10.0 | dB Radio Der        | vice: BTS |
|                |                     |                       |                                                    |                 |                     |           |
| 0 dB/div<br>og | Ref 20.00 dE        | <u>\$</u> m           |                                                    |                 | <u> </u>            |           |
| 0.0            |                     |                       |                                                    |                 |                     |           |
| .00            |                     |                       |                                                    |                 |                     |           |
| 0.0            |                     | - martine             |                                                    | - hours         |                     |           |
| 0.0            |                     | ~                     |                                                    |                 | March 1             |           |
| 0.0            | ~ /                 |                       |                                                    |                 |                     | m         |
|                |                     |                       |                                                    |                 | ~                   | ~         |
| 0.0            |                     |                       |                                                    |                 |                     |           |
| 0.0            |                     |                       |                                                    |                 |                     |           |
| 0.0            |                     |                       |                                                    |                 |                     |           |
|                |                     |                       |                                                    |                 |                     |           |
|                | .402 GHz            |                       | 10 (5) (1 )                                        | -               |                     | an 2 MHz  |
| Res BW         | 30 kHz              |                       | #VBW 91 kl                                         | 1Z              | Sweep               | 2.133 ms  |
|                | pied Bandwid        | ith                   | Total P                                            | ower            | 11.7 dBm            |           |
| Occu           |                     |                       |                                                    |                 |                     |           |
| Occu           | 1                   | .0562 MH              | Z                                                  |                 |                     |           |
|                | 1<br>mit Freq Error | .0562 MH<br>11.932 ki |                                                    | ower            | 99.00 %             |           |
| Transr         |                     |                       | Hz OBW P                                           | 'ower           | 99.00 %<br>-6.00 dB |           |
| Transr         | mit Freq Error      | 11.932 k              | Hz OBW P                                           | ower            |                     |           |
| Transr         | mit Freq Error      | 11.932 k              | Hz OBW P                                           | 'ower           |                     |           |
| Transr         | mit Freq Error      | 11.932 k              | Hz OBW P                                           | 'ower           |                     |           |
| Transr         | mit Freq Error      | 11.932 k              | Hz OBW P                                           | 'ower           |                     |           |

99% Bandwidth

| Laird Technologies, Inc.                  |                                       | Page 23 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |



| Laird Technologies, Inc.                  |                                       | Page 24 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

### **EXHIBIT 8. BAND EDGE MEASUREMENTS**

Test Engineer(s): Shane Dock

#### **<u>8.1 - Method of Measurements</u>**

FCC 15.247 requires a measurement of spurious emission levels at the restricted band to be compliant to the general emissions limit, in particular at the Band-Edges where the intentional radiator operates. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source.

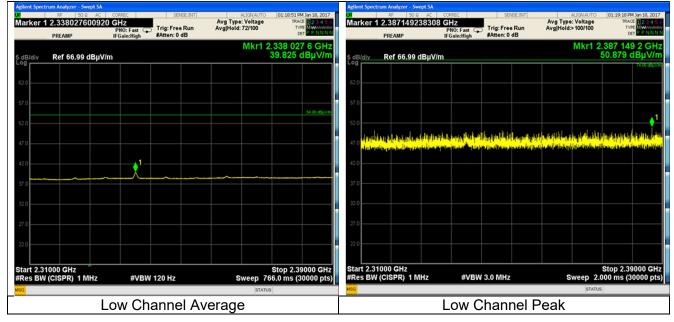
The Band-edge measurements were performed conducted (100 kHz bandwidth) and radiated. The measurement of band-edge was performed to satisfy FCC 15.247(d).

**Per FCC KDB 558074 D01 Measurement Guidance v03r05 (section 11)**, conducted measurements were performed with 100 kHz bandwidth for all emissions outside of the band of operation. For measuring radiated emissions in the restricted band, a bandwidth of 120 kHz (below 1000MHz) or 1MHz (above 1000MHz) was used in accordance with C63.4.

For both conducted and radiated measurements, correction factors and the cable loss factors were entered into the EMI Receiver database. <u>As a result, the plots taken from the EMI Receiver accounts for all applicable correction factor as well as cable loss, and can therefore be entered into the database as a corrected meter reading.</u>

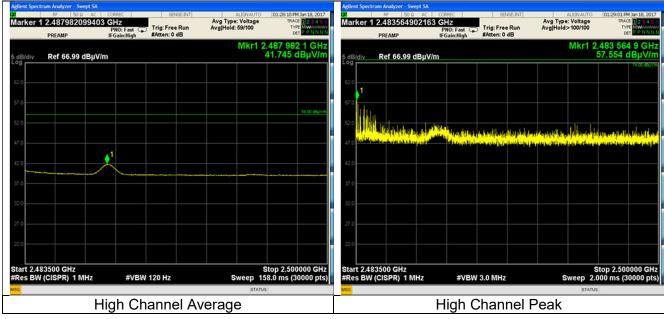
#### **<u>8.2. Band Edge Screen Captures</u>**

Laird Technologies, Inc.


The data presented below are samples selected from the various data rates and channels tested.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 25 of 46


#### Band-edge in Restricted Band

Radiated Band-edge in Restricted Band:



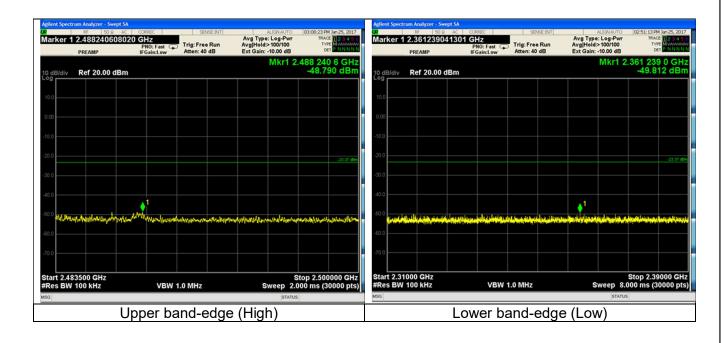


| Laird Technologies, Inc.                  |                                       | Page 26 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |



#### 2483.5 to 2500 MHz Restricted band

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |


Laird Technologies, Inc.

#### Page 27 of 46

#### **Conducted Band Edge Reference Pictures**

Laird Technologies, Inc.

Refer to Section 10 for reference levels.



Band-edge in 100 kHz bandwidth (Conducted Band Edge)

| C ·                                       |                                       | U                 |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 28 of 46

### EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

Test Engineer(s): Shane Dock

#### 9.1 - Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings thereby allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source.

# Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r05 section 9.1.1.

Peak Conducted Output Power Limit = 1 Watt (30 dBm).

#### 9.2 - Test Data

Laird Technologies, Inc.

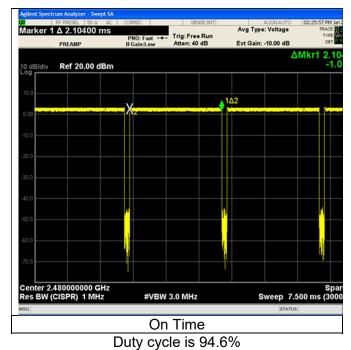
| Frequency (MHz)      | 2402 | 2440 | 2480 |
|----------------------|------|------|------|
| Conducted Pout (dBm) | 3.28 | 3.67 | 3.54 |

The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

#### Generic example of reported data at 2440 MHz:

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).


| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 29 of 46

#### 9.2.1. Maximum conducted peak power:

#### 9.2.1.1 Duty cycle:

Measurement procedure: FCC OET KDB 558074 D01 Measurement Guidance v03r05.



Screen captures:

| Laird Technologies, Inc.                  |                                       | Page 30 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

#### 9.2.1.2 Maximum conducted (peak) output power:




Low Channel



Mid Channel

| Laird Technologies, Inc.                  |                                       | Page 31 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |



High Channel

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 32 of 46

Laird Technologies, Inc.

### EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)

Test Engineer(s): Shane Dock

#### <u> 10.1 - Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### **10.2 – Conducted Harmonic and Spurious RF Measurements**

FCC Part 15.247(d) and IC RSS 247 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

# Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r05 section 11.

The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

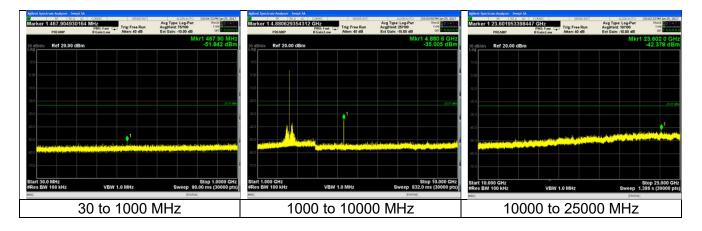
#### Generic example of reported data at 2440 MHz:

Laird Technologies, Inc.

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).

| 0                                         |                                       | C                 |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 33 of 46


#### 10.3 - Test Data

The data presented below are samples selected from the various data rates and channels tested. Display lines on captures do not represent limit lines, so refer to the fundamental picture for limits. Pictures below are samples. All emissions are more than 15 dB below the limit.



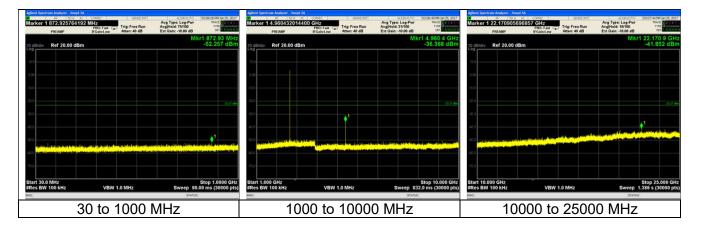
Note: Refer to PSD screenshots in Section 11.3 for limits

Example: Mid Channel. Reference Level = PSD - 20 dB = -16.49 dB



| Laird Technologies, Inc.                  |                                       | Page 34 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |




Low Channel. Reference Level = PSD - 20 dB = -16.91 dB

| Agters Spectrum Analyzer - Swept SA<br>20 25 20 20 20 20 20 20<br>Marker 1 852.005400180 MP<br>PREAMP IF |                                              | ALEXAUTO<br>Avg Type: Log-Pwr<br>Avg[Hold: 39/100<br>Ext Gain: -10.00 dB | 02-47-25 PM Jan 25, 2017<br>TRACE 2 2 2 4 4<br>TYRE<br>OFT 2014 100 |                       | rum Analyzer - Swe<br>R5 50 0<br>4.80352678<br>PREAMP                                                          | AC CORREC             | Trig: Free Run<br>Atten: 40 dB | Ave Type: L      | NAUTO 02-49-42-PM Jan 25, 20<br>-g-Pwr 19442 PM Jan 25, 20<br>0100 Type 0<br>00 dB 0et 01000 |           | Aglent Spectrum Analyz<br>Marker 1 23.853<br>PREAMP | 461782059 C |             | Avg Type: Log-Pw<br>an Avg Hold: 11/100 | TYPE MULLING                           |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|------------------|----------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------|-------------|-------------|-----------------------------------------|----------------------------------------|
| 10 dB/div Ref 10.00 dBm                                                                                  |                                              | Mki                                                                      | r1 852.01 MHz<br>-61.304 dBm                                        | 10 dB/div             | Ref 20.00 d                                                                                                    | IBm                   |                                |                  | Mkr1 4.803 5 GH<br>-35.963 dB                                                                | lz<br>m   | 10 dB/div Ref 20                                    | 0.00 dBm    |             | M                                       | kr1 23.853 5 GHz<br>-42.337 dBm        |
| 0.00                                                                                                     |                                              |                                                                          |                                                                     | 10.0                  |                                                                                                                |                       |                                |                  |                                                                                              |           | 10.0                                                |             |             |                                         |                                        |
| -10.0                                                                                                    |                                              |                                                                          |                                                                     | 0.00                  |                                                                                                                |                       |                                |                  |                                                                                              |           | 0.00                                                |             |             |                                         |                                        |
| -20.0                                                                                                    |                                              |                                                                          |                                                                     | -10.0                 |                                                                                                                |                       |                                |                  |                                                                                              |           |                                                     |             |             |                                         |                                        |
| -30.0                                                                                                    |                                              |                                                                          |                                                                     | -20.0                 |                                                                                                                |                       |                                |                  |                                                                                              |           |                                                     |             |             |                                         | -20.57 dbr                             |
| -40.0                                                                                                    |                                              |                                                                          |                                                                     | -30.0                 |                                                                                                                |                       | 1                              |                  |                                                                                              |           | 30.0                                                |             |             |                                         |                                        |
| -50 0                                                                                                    |                                              |                                                                          |                                                                     | -40.0                 |                                                                                                                |                       |                                |                  |                                                                                              |           |                                                     |             |             |                                         | 1                                      |
| 60.0                                                                                                     |                                              | and data the mo-                                                         | 1                                                                   | -50.0                 | a a sha ta a sha ta | and the second second | and and the section is to be   | -                | aliferra de la bita de a activita d                                                          |           | -50.0 <mark>4147 - 14 64 4 14 1</mark>              |             |             |                                         |                                        |
| -70.0 - Altomatic product and a state of the                                                             | Contraction of a state of a state of a state | the set of a local data of the state of all                              | in and in the statistical sectors                                   | -60.0                 |                                                                                                                |                       | يتد يتقانعا أ                  | فالمتناقية مغدته | فتنكد تفكفين والكث                                                                           |           | 60.0                                                |             |             |                                         |                                        |
| -0.05                                                                                                    |                                              |                                                                          |                                                                     | -70.0                 |                                                                                                                |                       |                                |                  |                                                                                              |           |                                                     |             |             |                                         |                                        |
| Start 30.0 MHz<br>#Res BW 100 kHz                                                                        | VBW 1.0 MHz                                  | Sween 90.0                                                               | Stop 1.0000 GHz<br>00 ms (30000 pts)                                | Start 1.00<br>#Res BW |                                                                                                                | VB                    | W 1.0 MHz                      | Św               | Stop 10.000 Gi                                                                               | tz<br>(S) | Start 10.000 GHz<br>#Res BW 100 kH                  |             | VBW 1.0 MHz | Sweer                                   | Stop 25.000 GHz<br>1.386 s (30000 pts) |
| MSG                                                                                                      |                                              | STATUS                                                                   | ter ma (autoba pra)                                                 | MSG                   |                                                                                                                |                       |                                | oint             | STATUS                                                                                       |           | MSG                                                 |             |             | STA                                     |                                        |
| 30                                                                                                       | to 1000 M                                    | MHz                                                                      |                                                                     |                       | 1(                                                                                                             | 000 to                | 000                            | 00 M⊢            | z                                                                                            |           |                                                     | 1000        | 0 to 250    | 000 MHz                                 | 2                                      |

| Laird Technologies, Inc.                  |                                       | Page 35 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |



High Channel. Reference Level = PSD – 20 dB = -16.63 dB



| Laird Technologies, Inc.                  |                                       | Page 36 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

### EXHIBIT 11. POWER SPECTRAL DENSITIES: 15.247(e)

#### **11.1 Limits**

Laird Technologies, Inc.

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

In accordance with FCC Part 15.247(e) and RSS 247, the peak power spectral density should not exceed +8 dBm in any 3 kHz band. This measurement was performed along with the conducted power output readings as described in previous sections. The peak output frequency for each representative frequency was scanned, with a narrow bandwidth, and reduced sweep, and a power density measurement was performed.

# Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r05 section 10.2.

The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

#### Generic example of reported data at 2440 MHz:

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 37 of 46

#### 11.2 Test Data

| Frequency (MHz)       | 2402   | 2440   | 2480   |
|-----------------------|--------|--------|--------|
| Conducted PSD (dBm)   | 3.09   | 3.51   | 3.37   |
| Reference Level (dBm) | -16.91 | -16.49 | -16.63 |

#### **<u>11.3 Screen Captures – Power Spectral Density</u>**



Low Channel



Mid Channel

| Page | 38 | of | 46 |
|------|----|----|----|
|------|----|----|----|

Laird Technologies, Inc.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |



High Channel

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 39 of 46

Laird Technologies, Inc.

### EXHIBIT 12. FREQUENCY STABILITY OVER VOLTAGE VARIATIONS

Test Engineer(s): Shane Dock

Laird Technologies, Inc.

The frequency stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the RF output power and frequency at the appropriate frequency markers. Power was supplied by an external bench-type DC power supply (To simulate battery power) and by a variable AC voltage supply (To simulate AC mains power). Each supply was tested separately and was varied ±15% from the nominal values. If the unit could not be changed by 15% it was instead changed to its minimum or maximum value.

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle. The stability was found to be approximately 6.99 ppm.

| Nominal Frequency | 2 55 1/    | 3.00 V     | 3.45 V     | Deviation |
|-------------------|------------|------------|------------|-----------|
| (MHz)             | 2.55 V     | 5.00 V     |            | (Hz)      |
| 2402              | 2402016830 | 2402005700 | 2402007370 | 11130     |
| 2440              | 2440007700 | 2440024100 | 2440004770 | 19330     |
| 2480              | 2480007470 | 2480015570 | 2480018700 | 11230     |

| _                                         |                                       | -                 |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 40 of 46

### <u> APPENDIX A – Test Equipment List</u>

### Laird

| D                                                | ate : 16-Jan-2017                                                                                       |            | . Test                                                      | Radiated Emis                           | 510115                                               |                                                  | Job #                                            | 0-2000                                                                                |   |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------|---|--|
|                                                  | PE_Shane Dock                                                                                           |            | Customer :                                                  | Stanley Black                           | and Decker                                           |                                                  | Quote #                                          | : 316161                                                                              |   |  |
| Asset#                                           | Description                                                                                             |            | Manufacturer                                                | Model #                                 | Serial #                                             | Cal Date                                         | Cal Due Date                                     | Equipment Status                                                                      |   |  |
| AA 960007<br>EE 960160<br>EE 960088<br>EE 960085 | Double Ridge Horn Antenna<br>0.8-21GHz LNA<br>8GHz MXE Spectrum Analyzer<br>N9038A MXE 26.5GHz Receiver |            | EVICO<br>Mini-Circuits<br>Agilent<br>Agilent                | 3115<br>ZVA-213X-S+<br>N9038A<br>N9038A | 9311-4138<br>977711030<br>MY 51210138<br>MY 51210148 | 7/22/2016<br>7/22/2016<br>2/24/2016<br>5/12/2016 | 7/22/2017<br>7/22/2017<br>2/23/2017<br>5/12/2017 | Active Calibration<br>Active Calibration<br>Active Calibration<br>Active Calibration  |   |  |
| AA 960150<br>AA 960163<br>AA 960174<br>AA 960171 | Biconical Antenna<br>Log Periodic Antenna<br>Small Horn Antenna 18-40 GHz<br>Cable - Iow Ioss 6m        |            | ETS<br>A.H. Systems, In<br>ETS-Lindgren<br>A.H. Systems, In | 3116C-PA                                | 0003-3346<br>500<br>00206880<br>386                  | 2/1/2016<br>3/18/2016<br>4/23/2016<br>3/31/2016  | 1/31/2017<br>3/18/2017<br>4/23/2017<br>3/31/2017 | Active Calibration<br>Active Calibration<br>Active Calibration<br>Active Verification |   |  |
|                                                  |                                                                                                         | Tested By: | Shame                                                       | rek                                     |                                                      | Quality Assurance                                | Muhid                                            |                                                                                       |   |  |
| echnology. Delive                                | Ped.                                                                                                    |            |                                                             |                                         |                                                      |                                                  |                                                  |                                                                                       |   |  |
| D                                                | late : 16-Jan-2017                                                                                      |            | . Test                                                      | Conducted Rac                           | dio                                                  |                                                  | Job #                                            | C-2635                                                                                | _ |  |
|                                                  | PE                                                                                                      |            | Customer :                                                  | Stanley Black                           | and Decker                                           |                                                  | Quote #                                          | 316161                                                                                |   |  |
| Asset#                                           | Description                                                                                             |            | Manufacturer                                                | Model #                                 | Serial #                                             | Cal Date                                         | Cal Due Date                                     | Equipment Status                                                                      |   |  |
| A 960143<br>E 960085                             | Phaseflex<br>N9038A MXE 26.5GHz Receiver                                                                |            | Gore<br>Agilent                                             | EKD01D01048.0<br>N9038A                 | 5546519<br>MY 51210148                               | 6/26/2015<br>5/12/2016                           | 6/25/2017<br>5/12/2017                           | Active Calibration<br>Active Calibration                                              |   |  |
|                                                  |                                                                                                         |            |                                                             |                                         |                                                      |                                                  |                                                  |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Shame In                                                    | ik                                      |                                                      | Quality Assurance                                | Muhid                                            |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Stame In                                                    | ik                                      |                                                      | Quality Assurance                                | Aufid                                            |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Shame In                                                    | iek                                     |                                                      | Quality Assurance                                | Hupid                                            |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Shame In                                                    | ik                                      |                                                      | Quality Assurance                                | thufid.                                          |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Jane In                                                     | ik                                      |                                                      | Quality Assurance                                | Hupol.                                           |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Jane In                                                     | ik                                      | _                                                    | Quality Assurance                                | Hupd.                                            |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Dane Da                                                     | ik                                      | _                                                    | Quality Assurance                                | . Auto                                           |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Sane                                                        | ik                                      |                                                      | Quality Assurance                                | Aufe                                             |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Stane In                                                    | ik                                      |                                                      | Quality Assurance                                | . Hufd                                           |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Sane In                                                     | ik                                      | _                                                    | Quality Assurance                                | . Auto                                           |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Sane                                                        | ik                                      |                                                      | Quality Assurance                                | . Muhol                                          |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Dane In                                                     | ik                                      | _                                                    | Quality Assurance                                | . Hufe                                           |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Sane                                                        | ik                                      | _                                                    | Quality Assurance                                | . Mufich                                         |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Sane In                                                     | ik                                      | _                                                    | Quality Assurance                                | . Hudd                                           |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Sane In                                                     | ik                                      | _                                                    | Quality Assurance                                | . Auto                                           |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Sane In                                                     | ik                                      | _                                                    | Quality Assurance                                | , Muhol                                          |                                                                                       |   |  |
|                                                  |                                                                                                         | Tested By: | Sane In                                                     | ik                                      |                                                      | Quality Assurance                                | . Auto                                           |                                                                                       |   |  |

| Laird Technologies, Inc.                  |                                       | Page 41 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

### **APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO**

| STANDARD #                  | DATE | Am. 1 | Am. 2 |
|-----------------------------|------|-------|-------|
| ANSI C63.4                  | 2014 |       |       |
| ANSI C63.10                 | 2013 |       |       |
| FCC 47 CFR, Parts 0-15, 18, |      |       |       |
| 90, 95                      | 2016 |       |       |
| RSS GEN                     | 2014 |       |       |
| RSS 247                     | 2017 |       |       |

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |
|                                           | • • • • •                             |                   |

Laird Technologies, Inc.

#### Page 42 of 46

### **APPENDIX C - Uncertainty Statement**

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k = 2.

| Measurement Type                 | Configuration        | Uncertainty Values |
|----------------------------------|----------------------|--------------------|
| Radiated Emissions               | Biconical Antenna    | 5.0 dB             |
| Radiated Emissions               | Log Periodic Antenna | 5.3 dB             |
| Radiated Emissions               | Horn Antenna         | 4.7 dB             |
| AC Line Conducted<br>Emissions   | AMN                  | 3.4 dB             |
| Telecom Conducted<br>Emissions   | AAN                  | 4.9 dB             |
| Disturbance Power<br>(Emissions) | Absorbing Clamp      | 4.1 dB             |
| Radiated Immunity                | 3 Volts/Meter        | 2.2 dB             |
| Conducted Immunity               | CDN/EM/BCI           | 2.4/3.5/3.4 dB     |
| EFT Burst / Surge                | Peak pulse voltage   | 164 volts          |
| ESD Immunity                     | 15 kV level          | 1377 Volts         |

| Parameter                     | ETSI U.C.+/-       | U.C.+/-               |
|-------------------------------|--------------------|-----------------------|
| Radio Frequency, from F0      | 1x10 <sup>-7</sup> | 0.55x10 <sup>-7</sup> |
| Occupied Channel<br>Bandwidth | 5 %                | 2 %                   |
| RF conducted Power (PM)       | 1.5 dB             | 1.2 dB                |
| RF conducted emissions (SA)   | 3.0 dB             | 1.7 dB                |
| All emissions, radiated       | 6.0 dB             | 5.3 dB                |
| Temperature                   | 1°C                | 0.65° C               |
| Humidity                      | 5 %                | 2.9 %                 |
| Supply voltages               | 3 %                | 1 %                   |

| Laird Technologies, Inc.                  |                                       | Page 43 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

#### **<u>APPENDIX D – Justification for Duty Cycle Relaxation</u>**

#### **General Device Description:**

The DUT is a BLE (Bluetooth Low Energy or Bluetooth Smart) asset tag. This device is disposable and operates off a CR2450 coin sell battery.

The PCBA within the device is 1.25"x 1.0" in size.

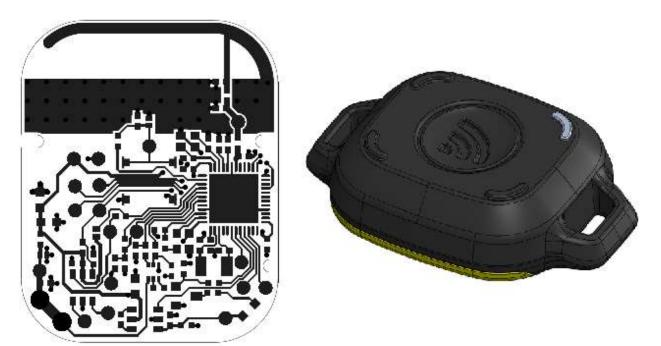



Figure 1: DUT

#### Theory of Operation:

The device spends the vast majority of its life sending out advertisement "beacons" at a two second interval never connecting to other devices such as smartphones. The total advertising beacon packet is 47bytes (376 bits) and the BLE data-rate is 1Mb/s. Each advertising beacon is 376uS long and at a 2-second rate is confined within a 100mS window. This is a duty cycle of .376%. A BLE advertisement is generally used to solicit connectivity with another complaint device. In this use case, the connectivity is inhibited. The beacon packet (ex: transmission information) is limited to:

- 1) A unique device ID used for asset tracking or identification
- 2) An indicator of battery condition
- 3) The current device temperature

While the above description comprises the main operation and use case, the device can be reimaged over-the-air (OTA). This functionality comprises a rare occurrence across the device's 3 year life span. A device would likely not be updated more than twice in its lifetime. **Even so, this OTA event with a worst-case TX rate within any window of time has a duty cycle of 10%.** BLE Characteristics:

OAD Duration: 135 Seconds (Soft Device and Application v0.5 to v0.5 using BL v7) = >100mS Connection Interval: 30ms

| Laird Technologies, Inc.                  |                                       | Page 44 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Transmit Duration with any interval: 300us Maximum Transmissions per Connection Interval: 10

#### **Duty Cycle Calculation:**

Window of observation: 100mS Number of connection intervals: 3.33r TX time per connection interval (max): 300uS x 10 = 3mS Total TX time within a 100mS window: 3.33r x 3mS = 10mS Duty Cycle: 10mS/100mS = **10%** Duty Cycle Relaxation: 20Log (.10) = 20dB

#### **Conclusions or Summary**

Laird Technologies, Inc.

The device spends its three year life with a TX duty cycle under 1% (.376%). The worst case TX duration within any time window is an over-the-air reimage which takes 135 seconds to complete. The TX duty cycle within this duration in any 100mS window is 10%.

| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
|-------------------------------------------|---------------------------------------|-------------------|
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

Page 45 of 46

#### **Exhibits:**

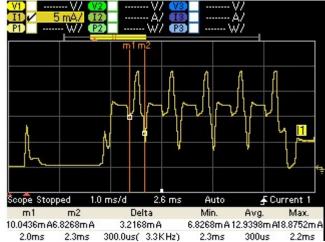



Figure 2: Single TX Event (300uS), 5 Events in the Connection Interval

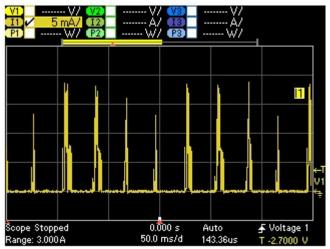



Figure 3: OTA Event in Progress

| Laird Technologies, Inc.                  |                                       | Page 46 of 46     |
|-------------------------------------------|---------------------------------------|-------------------|
| Prepared For: Stanley<br>Black and Decker | Model #: Engineering FCC Test Sample  | Report #: 316161  |
| EUT: DeWalt Bluetooth Tag                 | Serial #: Engineering FCC Test Sample | LSR Job #: C-2635 |

#### Page 46 of 46