

FCC & ISED CANADA CERTIFICATION TEST REPORT

for the

NA080801

FCC ID: YJ7-NA080801

IC ID: 9082A-NA080801

WLL REPORT# 18773-0801 REV 1

Prepared for:

Stanley Black & Decker, Inc.
701 East Joppa Road
Towson, Maryland 21286

Prepared By:

Washington Laboratories, Ltd. 4840 Winchester Blvd. Suite #5 Frederick, Maryland 21703

Testing Certificate AT-1448

FCC & ISED Canada Certification Test Report for the

Stanley Black & Decker, Inc.
NA08080

FCC ID: YJ7-NA080801

ISED ID: 9082A-NA080801

July 15, 2024

WLL Report# 18773-0801 Rev 1

Prepared by:

Ryan Mascaro RF Test Engineer

Reviewed by:

Steven D. Koster President

Abstract

This report has been prepared on behalf of Stanley Black & Decker, Inc. to support the attached Application for Equipment Authorization. The test report and application are submitted for a Digital Transmission System (DTS) transmitter under Part 15.247 of the FCC Rules and under Innovation Science and Economic Development (ISED) Canada RSS-247, Issue 3 (8/2023). This certification test report documents the test configuration and test results for the Stanley Black & Decker, Inc., NA080801 Bluetooth LE, limited single-modular transmitter. The information provided in this report is only applicable to device herein documented as the EUT.

Radiated testing was performed in the Free-space Anechoic Chamber Test-site (FACT) 3m chamber of Washington Laboratories, Ltd., located at: 4840 Winchester Boulevard, Suite #5., Frederick, MD 21703. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Certificate AT-1448 as an independent FCC test laboratory. The ISED Canada number for Washington Laboratories is 3035A.

The Stanley Black & Decker, Inc., NA080801, BLE Module [FCC ID: YJ7-NA080801] complies with the requirements for a Digital Transmission System (DTS) transmitter device under FCC Part 15.247 and ISED Canada RSS-247 Issue 3 (8/2023). The device is a limited single-modular transmitter.

Revision History	Revision History Description of Change	
Rev 0	Initial Release	July 15, 2024
Rev 1	Removed receiver emissions testing	August 6, 2024

Table of Contents

Abs	stract	iii
Tab	ble of Contents	iv
List	st of Tables	V
List	st of Figures	vi
1	Introduction	8
1	1.1 Compliance Statement	8
1	1.2 Test Scope	8
1	1.3 Contract Information	8
1	1.4 Test and Support Personnel	8
1	1.5 Test Location	8
2	Equipment Under Test	9
2	2.1 EUT Identification	9
2	2.2 EUT Description	
2	2.3 Test Configuration and Algorithm	10
2	2.4 Deviations to the Test Standard	
2	2.5 EUT Configuration Details	11
3	Test Results	13
3	3.1 Occupied (DTS) Bandwidth	14
3	3.2 Conducted Peak Output Power	21
3	3.3 Power Spectral Density	28
3	3.4 Conducted Band-edge	
3	3.5 Conducted Unwanted Spurious Emissions	40
3	3.6 Radiated Emissions	74
4	Test Equipment	102
5	Measurements	104
5	5.2 Measurement Uncertainty	104
5	5.3 Environmental Conditions	105

List of Tables

Table 1: Device Summary	9
Table 2: EUT System Configuration List	11
Table 3: Support Equipment	
Table 4: Cable Configuration	11
Table 5: Testing and Results Summary	13
Table 6: Occupied Bandwidth Results	14
Table 7: Conducted Output Power Results	21
Table 8: Power Spectral Density	28
Table 9: Radiated Emissions Test Data, 1Mbps (DH5) 30MHz to 1GHz	7 <i>6</i>
Table 10: Radiated Emissions Test Data, Low Channel, 1Mbps (DH5)	77
Table 11: Radiated Emissions Test Data, Center Channel, 1Mbps (DH5)	81
Table 12: Radiated Emissions Test Data, High Channel, 1Mbps (DH5)	85
Table 13: Radiated Emissions Test Data, 2Mbps (2DH5) 30MHz to 1GHz	90
Table 14: Radiated Emissions Test Data, Low Channel, 2Mbps (2DH5)	91
Table 15: Radiated Emissions Test Data, Center Channel, 2Mbps (2DH5)	95
Table 16: Radiated Emissions Test Data, High Channel, 2Mbps (2DH5)	98
Table 17: Test Equipment List	102
Table 18: Expanded Uncertainty List	105

List of Figures

Figure 1: EUT Testing Arrangement (Example Only)	
Figure 2: EUT Sample Configuration (Example Only)	12
Figure 3: Occupied Bandwidth, Low Channel, 1Mbps (DH5)	15
Figure 4: Occupied Bandwidth, Center Channel, 1Mbps (DH5)	16
Figure 5: Occupied Bandwidth, High Channel, 1Mbps (DH5)	
Figure 6: Occupied Bandwidth, Low Channel, 2Mbps (2DH5)	18
Figure 7: Occupied Bandwidth, Center Channel, 2Mbps (2DH5)	19
Figure 8: Occupied Bandwidth, High Channel, 2Mbps (2DH5)	20
Figure 9: Peak Output Power, Low Channel, 1Mbps (DH5)	22
Figure 10: Peak Output Power, Center Channel, 1Mbps (DH5)	
Figure 11: Peak Output Power, High Channel, 1Mbps (DH5)	
Figure 12: Peak Output Power, Low Channel, 2Mbps (2DH5)	25
Figure 13: Peak Output Power, Center Channel, 2Mbps (2DH5)	26
Figure 14: Peak Output Power, High Channel, 2Mbps (2DH5)	
Figure 15: Power Spectral Density, Low Channel, 1Mbps (DH5)	29
Figure 16: Power Spectral Density, Center Channel, 1Mbps (DH5)	30
Figure 17: Power Spectral Density, High Channel, 1Mbps (DH5)	
Figure 18: Power Spectral Density, Low Channel, 2Mbps (2DH5)	
Figure 19: Power Spectral Density, Center Channel, 2Mbps (2DH5)	
Figure 20: Power Spectral Density, High Channel, 2Mbps (2DH5)	
Figure 21: Low Channel Band-Edge, 1Mbps (DH5)	
Figure 22: High Channel Band-Edge, 1Mbps (DH5)	
Figure 23: Low Channel Band-Edge, 2Mbps (2DH5)	
Figure 24: High Channel Band-Edge, 2Mbps (2DH5)	
Figure 25: Low Channel 1Mbps (DH5) Conducted Spurious Plot 1	
Figure 26: Low Channel 1Mbps (DH5) Conducted Spurious Plot 2	
Figure 27: Low Channel 1Mbps (DH5) Conducted Spurious Plot 3	
Figure 28: Low Channel 1Mbps (DH5) Conducted Spurious Plot 4	
Figure 29: Low Channel 1Mbps (DH5) Conducted Spurious Plot 5	
Figure 30: Low Channel 1Mbps (DH5) Conducted Spurious Plot 6	
Figure 31: Center Channel 1Mbps (DH5) Conducted Spurious Plot 1	
Figure 32: Center Channel 1Mbps (DH5) Conducted Spurious Plot 2	
Figure 33: Center Channel 1Mbps (DH5) Conducted Spurious Plot 3	
Figure 34: Center Channel 1Mbps (DH5) Conducted Spurious Plot 4	
Figure 35: Center Channel 1Mbps (DH5) Conducted Spurious Plot 5	
Figure 36: Center Channel 1Mbps (DH5) Conducted Spurious Plot 6	
Figure 37: High Channel 1Mbps (DH5) Conducted Spurious Plot 1	
Figure 38: High Channel 1Mbps (DH5) Conducted Spurious Plot 2	
Figure 39: High Channel 1Mbps (DH5) Conducted Spurious Plot 3	
Figure 40: High Channel 1Mbps (DH5) Conducted Spurious Plot 4	
Figure 41: High Channel 1Mbps (DH5) Conducted Spurious Plot 5	
Figure 42: High Channel 1Mbps (DH5) Conducted Spurious Plot 6	58

Figure 43: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 1Plot 1	60
Figure 44: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 2	61
Figure 45: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 3	62
Figure 46: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 4	63
Figure 47: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 5	64
Figure 48: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 6	65
Figure 49: Center Channel 2Mbps (2DH5) Conducted Spurious Plot 1 of 2	
Figure 50: Center Channel 2Mbps (2DH5) Conducted Spurious Plot 2 of 2	67
Figure 51: High Channel 2Mbps (2DH5) Conducted Spurious Plot 1	
Figure 52: High Channel 2Mbps (2DH5) Conducted Spurious Plot 2	69
Figure 53: High Channel 2Mbps (2DH5) Conducted Spurious Plot 3	
Figure 54: High Channel 2Mbps (2DH5) Conducted Spurious Plot 4	71
Figure 55: High Channel 2Mbps (2DH5) Conducted Spurious Plot 5	
Figure 56: High Channel 2Mbps (2DH5) Conducted Spurious Plot 6	73
Figure 61: Radiated Emissions, Low Channel, 1Mbps, DH5, (18GHz to 26.5GHz)	79
Figure 62: Radiated Emissions, Low Channel, 1Mbps, DH5, (18GHz to 26.5GHz)	80
Figure 63: Radiated Emissions, Center Channel, 1Mbps, DH5, (18GHz to 26.5GHz)	83
Figure 64: Radiated Emissions, Center Channel, 1Mbps, DH5, (18GHz to 26.5GHz)	84
Figure 65: Radiated Emissions, High Channel, 1Mbps, DH5, (18GHz to 26.5GHz)	87
Figure 66: Radiated Emissions, High Channel, 1Mbps, DH5, (18GHz to 26.5GHz)	88
Figure 67: Radiated Emissions, Low Channel, 2Mbps, 2DH5, (18GHz to 26.5GHz)	93
Figure 68: Radiated Emissions, Low Channel, 2Mbps, 2DH5, (18GHz to 26.5GHz)	
Figure 69: Radiated Emissions, Center Channel, 2Mbps, 2DH5, (12GHz to 26.5GHz)	
Figure 70: Radiated Emissions, High Channel, 2Mbps, 2DH5, (18GHz to 26.5GHz)	
Figure 71: Radiated Emissions, High Channel, 2Mbps, 2DH5, (18GHz to 26.5GHz)	101

1 Introduction

1.1 Compliance Statement

The Stanley Black & Decker, Inc., NA080801, BLE Module [FCC ID: YJ7-NA080801] complies with the requirements for a Digital Transmission System (DTS) transmitter device under FCC Part 15.247 and ISED Canada RSS-247 Issue 3 (8/2023). The device is a limited single-modular transmitter.

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with ANSI C63.10-2020 "ANSI Procedures for Compliance Testing of Unlicensed Wireless Devices". The measurement equipment conforms to ANSI C63.2 "Specifications for Electromagnetic Noise and Field Strength Instrumentation". The modules were tested "stand alone" as required for modular testing and approval.

1.3 Contract Information

Customer: Stanley Black & Decker, Inc.

Purchase Order Number: M865624

Quotation Number: 74701

1.4 Test and Support Personnel

Washington Laboratories, LTD Ryan Mascaro

Customer Representative Kirwan Magdamo

1.5 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Frederick, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The ISED Canada OATS number for Washington Laboratories, Ltd. is 3035A. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Testing Certificate AT-1448 as an independent FCC test laboratory.

2 Equipment Under Test

2.1 EUT Identification

Table 1: Device Summary

Manufacturer:	Stanley Black & Decker, Inc.				
FCC ID:	YJ7-NA080801				
IC ID:	9082A-NA080801				
Part Number:	NA080801	NA080801			
HVIN:	NA080801				
Frequency Range:	2402 to 2480 MHz				
Peak Output Power:	1.11 dBm (1.29 mW)				
Antenna Type:	PCB meander trace, peak	gain: -6.48 dBi			
FCC Emission Designator:	716KG1D				
IC Emission Designator:	2M1G1D				
6dB Occupied Bandwidth:	716.5 kHz				
99% Occupied Bandwidth:	2.089 MHz				
Protocol:	Bluetooth Low Energy (BLE)				
Modulation and Data Rate:	GFSK (1Mbps)				
Modulation and Data Nate.	π/4DQPSK (2Mbps)				
Keying:	Automatic				
Type of Information:	Digital				
Number of Data Channels:	37				
Interface Cables:	N/A				
Power Source & Voltage:	3VDC, via coin-cell battery				
Worst-Case TX Spurious Emission:	Antenna Port Conducted	2.352GHz @ -42.22 dBm (Figure 52)			
Worst-Case TA Spurious Limssion.	Radiated Emissions	83.645MHz @ 29.44dBuV/m (Table 13)			
Software/Firmware Version:	Not Declared by Applicant				
Testing Dates:	6/17/2024 to 7/9/2024				

2.2 EUT Description

The NA080801 is DeWalt's Gen2 Bluetooth Low Energy Module (BLEM). The BLE transmitter module is designed for tracking, locating, enabling/disabling, and customizing DeWalt professional power tools via the DeWalt Site Manger App., and via DeWalt Asset Gateway. The device can operate off the internal CR2450 coin cell battery or alternately the DeWalt battery pack, when present. Please note the device being certified is a limited single-modular transmitter. The module samples were tested stand-alone as required for modular testing and approval.

2.3 Test Configuration and Algorithm

The NA080801, 5V Gen2 BLEM was provided in a variety of engineering samples that were configured for testing. The EUT samples were loaded with test-mode software/firmware to allow individual samples to dwell, hop, sweep, and/or receive only as needed for required testing. The EUT was tested in a powered on, steady state. The 2.4GHz BLE radio was exercised as necessary to meet the requirements of the testing. For conducted measurements, the BLE radio was observed through the uFl antenna port. For radiated emissions below 1GHz, the EUT was set to transmit in a hopping enabled mode, sweeping through the ISM band. For radiated emissions above 1GHz, the EUT was set to transmit at the each of the Low, Center, and High Channels. Only the worst-case emissions are provided throughout this report. Additionally, for transmit power setting, or transmit gain setting, the test-mode software was set to a value of "0". This setting was maintained for all testing.

2.4 Deviations to the Test Standard

There were no deviations to the requirements of the standard(s).

2.5 EUT Configuration Details

The EUT was comprised of the following equipment, provided on the following page. All Modules, PCBs, etc. listed were considered as part of the EUT, as tested.

Table 2: EUT System Configuration List

Name / Description	Model Number	Part Number	Serial Number	Rev.#
NA080801 Antenna		NA080801	Antenna	rF1
NA080801 Conducted		NA080801	Conducted	rF1
NA080801 Radiated Lo		NA080801	2402	rF1
NA080801 Radiated Mid		NA080801	2440	rF1
NA080801 Radiated High		NA080801	2480	rF1
NA080801 Radiated Hopping		NA080801	Нор	rF1
NA080801 Production		NA080801	Prod	rF1

Table 3: Support Equipment

Name / Description	Manufacturer	Model Number	Calibration Data
USB to UART Cable	FTDI	TTL-232R-5V	N/A
UMCC to SMA Cable Assembly	TE Connectivity	2032439-1	N/A
T3 Driver			N/A

Table 4: Cable Configuration

Ref. ID	EUT Port Name	Cable Description	Qty.	Length (m)	Shielded	Termination Port ID
1	DTM	V+, UART TX, UART RX, GND	1	0.2	No	PC
2	RF Out	Coax with SMA connector	1	1.8	Yes	EMC Receiver

Figure 1: EUT Testing Arrangement (Example Only)

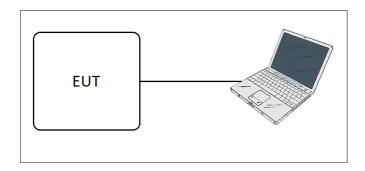
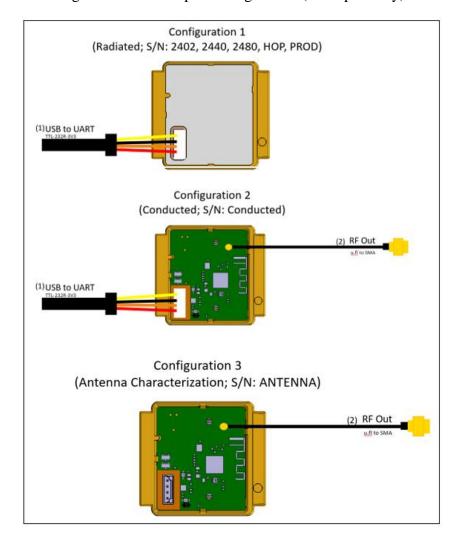



Figure 2: EUT Sample Configuration (Example Only)

3 Test Results

The table below shows the results of testing for compliance with a Digital Transmission System in accordance with FCC Part 15.247 and RSS-247 Issue 3. Full test results are shown in subsequent subsections.

Table 5: Testing and Results Summary

FCC Rule Part	IC Rule Part	Description	Result
15.247(a)(2)	RSS-247 [5.2 (a)]	Occupied Channel Bandwidth	Pass
15.247 (b)(3)	RSS-247 [5.4 (d)]	Transmit Output Power	Pass
15.247 (e)	RSS-247 [5.2 (b)]	Power Spectral Density	Pass
15.247 (d)	RSS-247 [5.5]	Out-of-Band Emissions (Band Edge @ 20dB below)	Pass
15.205 15.209	RSS-Gen [8.9/8.10]	General Field Strength Limits (Restricted Bands & RE Limits)	Pass
15.207	RSS-Gen [8.8]	AC Conducted Emissions	N/A *

^{*} the EUT is not subject to the provisions of 15.207 for powerline emissions. This device is powered by coin-cell battery, or the DC voltage will be supplied via the final host integration. The grantee will address this requirement on a case-by-case basis, through subsequent Supplier's Declaration of Conformity (SDoC) assessments, as the module is integrated into future host products.

3.1 Occupied (DTS) Bandwidth

For a DTS operating in the 2.4GHz band, FCC Rule Part 15.247(a)(2) and RSS-247, 5.2(a) require the minimum 6dB bandwidth be at least 500 kHz. The 99% BW shall also be recorded.

The transmitter occupied bandwidth was measured conducted at the antenna port, by coupling the output of the EUT transmitter to the input of a spectrum analyzer. The measurement level was corrected for any cable and attenuator losses.

3.1.1 Measurement Method

This test was performed in accordance with Clause 11.8.2, Option 2, of ANSI C63.10-2020.

3.1.2 Test Data

The EUT test data is provided below.

The EUT was configured to transmit a modulated signal, with channel hopping disabled.

Table 6: Occupied Bandwidth Results

Modulation	Mode (Data Rate)	Frequency (MHz)	6dB Bandwidth	99% Bandwidth
	DH5	2402	716.5 kHz	1.074 MHz
GFSK	(1Mbps)	2440	726.2 kHz	1.080 MHz
		2480	733.8 kHz	1.082 MHz
π/4DQPSK	20115	2402	1.147 MHz	2.083 MHz
	2DH5	2440	1.147 MHz	2.085 MHz
	(2Mbps)	2480	1.148 MHz	2.089 MHz

Figure 3: Occupied Bandwidth, Low Channel, 1Mbps (DH5)

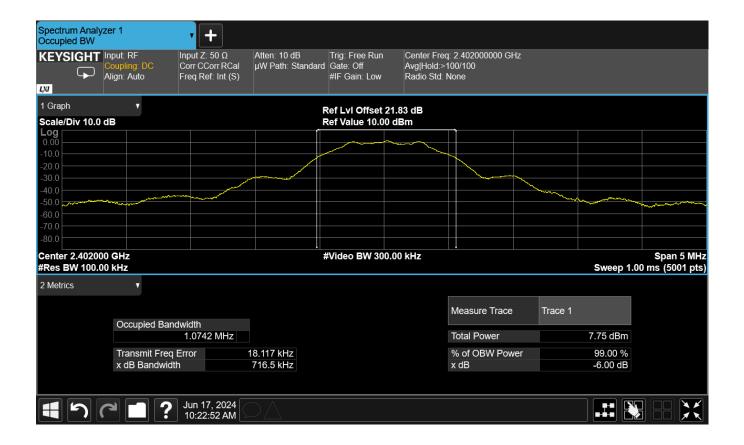


Figure 4: Occupied Bandwidth, Center Channel, 1Mbps (DH5)

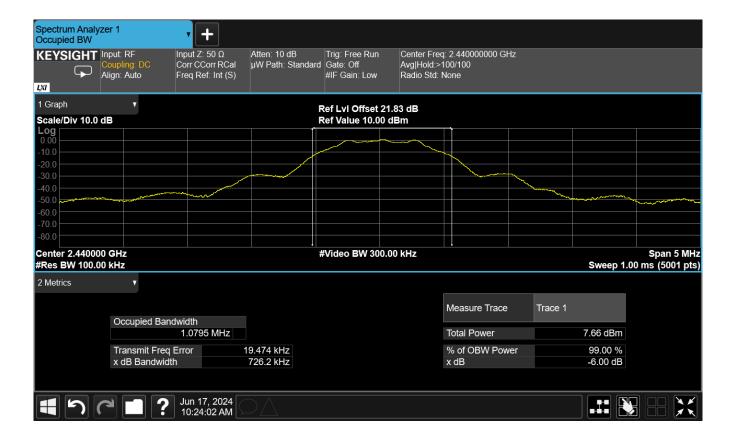


Figure 5: Occupied Bandwidth, High Channel, 1Mbps (DH5)

Figure 6: Occupied Bandwidth, Low Channel, 2Mbps (2DH5)



Figure 7: Occupied Bandwidth, Center Channel, 2Mbps (2DH5)

Figure 8: Occupied Bandwidth, High Channel, 2Mbps (2DH5)

3.2 Conducted Peak Output Power

For a DTS operating in the 2.4GHz band, FCC Rule Part 15.247(b)(3) and RSS-247, 5.4(d) require that the maximum peak conducted output power shall not exceed 30 dBm, or 1W. Additionally, the EIRP shall not exceed 36 dBm, or 4W.

The transmitter power was measured conducted at the antenna port, by coupling the output of the EUT transmitter to the input of a spectrum analyzer. The measurement level was corrected for any cable and attenuator losses.

3.2.1 Measurement Method

This test was performed in accordance with Clause 11.9.1.1 of ANSI C63.10-2020.

3.2.2 Test Data

The EUT test data is provided below.

The EUT was configured to transmit a modulated signal, with channel hopping disabled.

The EUT employs a PCB trace antenna with a peak gain of -6.48 dBi.

Table 7: Conducted Output Power Results

Modulation	Mode (Data Rate)	Frequency (MHz)	Peak Power (dBm)	EIRP (dBm)
	DH5	2402	1.11	-5.37
GFSK	(1Mbps)	2440	1.00	-5.48
		2480	0.73	-5.75
π/4DQPSK	20115	2402	1.10	-5.38
	2DH5 (2Mbps)	2440	0.98	-5.50
		2480	0.68	-5.80

Figure 9: Peak Output Power, Low Channel, 1Mbps (DH5)

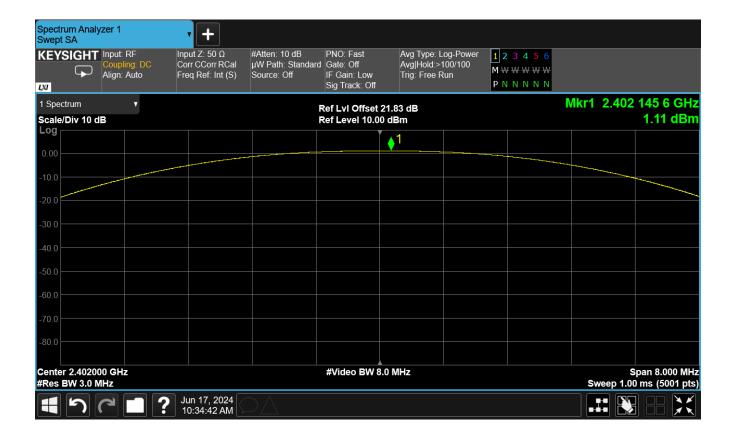


Figure 10: Peak Output Power, Center Channel, 1Mbps (DH5)

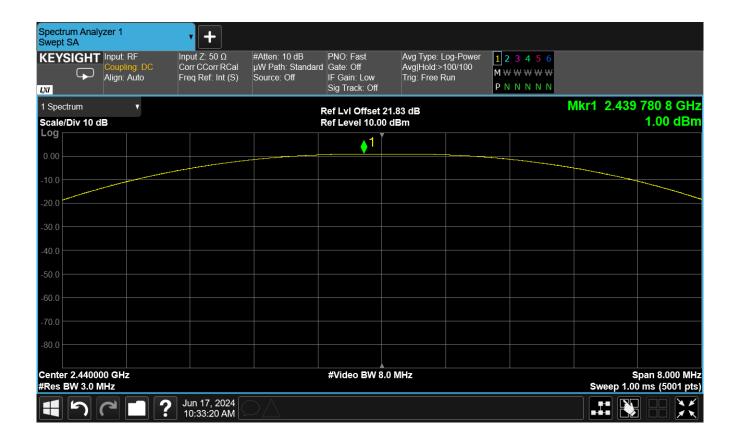


Figure 11: Peak Output Power, High Channel, 1Mbps (DH5)

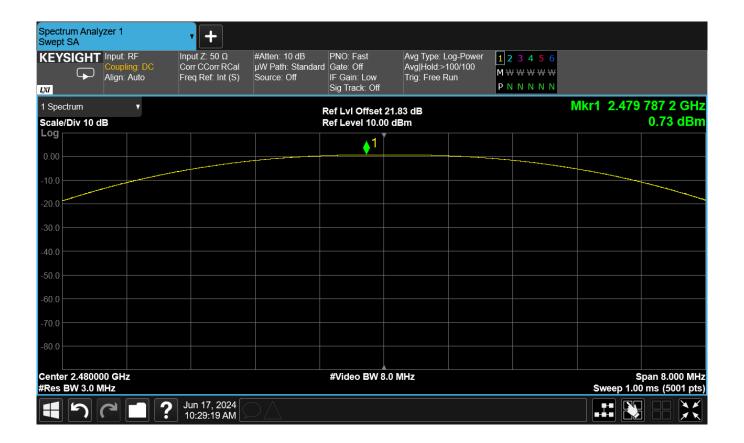


Figure 12: Peak Output Power, Low Channel, 2Mbps (2DH5)

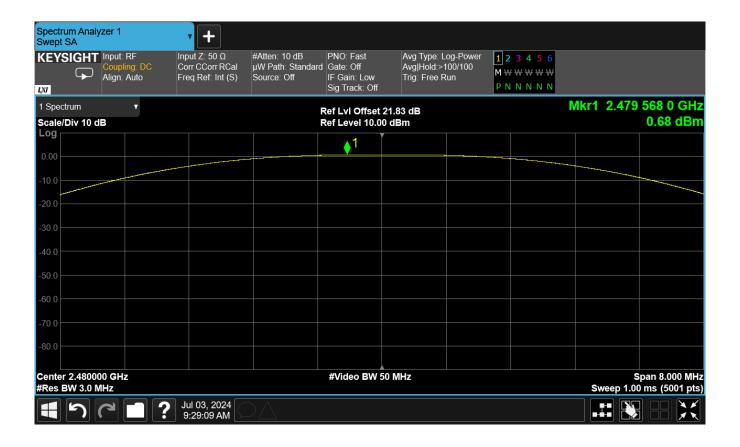


Figure 13: Peak Output Power, Center Channel, 2Mbps (2DH5)

Figure 14: Peak Output Power, High Channel, 2Mbps (2DH5)

3.3 Power Spectral Density

For a DTS operating in the 2.4GHz band, FCC Rule Part 15.247(e) and RSS-247, 5.2(b) require that the maximum peak power spectral density shall not exceed 8 dBm in any 3 kHz band.

The transmitter peak power spectral density was measured conducted at the antenna port, by coupling the output of the EUT transmitter to the input of a spectrum analyzer. The measurement level was corrected for any cable and attenuator losses.

3.3.1 Measurement Method

This test was performed in accordance with Clause 11.10.2 of ANSI C63.10-2020.

3.3.2 Test Data

The EUT test data is provided below.

The EUT was configured to transmit a modulated signal, with channel hopping disabled.

Table 8: Power Spectral Density

Modulation	Mode (Data Rate)	Frequency (MHz)	Measured PSD (dBm)	Result
GFSK	DH5 (1Mbps)	2402	0.99	Pass
		2440	0.89	Pass
		2480	0.61	Pass
π/4DQPSK	2DH5 (2Mbps)	2402	0.96	Pass
		2440	0.85	Pass
		2480	0.56	Pass

Figure 15: Power Spectral Density, Low Channel, 1Mbps (DH5)

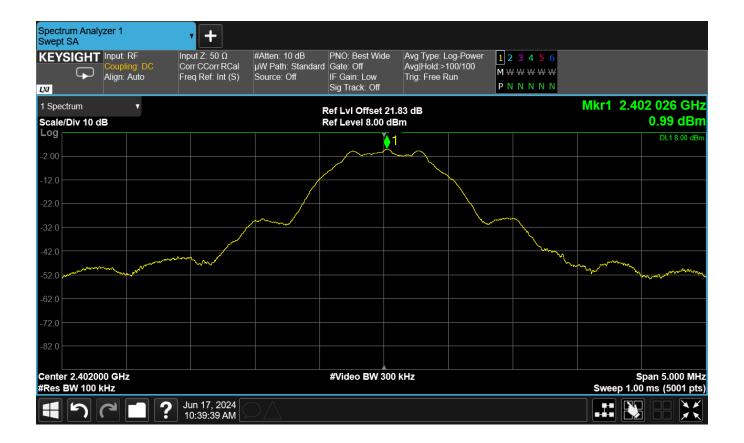


Figure 16: Power Spectral Density, Center Channel, 1Mbps (DH5)



Figure 17: Power Spectral Density, High Channel, 1Mbps (DH5)

Figure 18: Power Spectral Density, Low Channel, 2Mbps (2DH5)

Figure 19: Power Spectral Density, Center Channel, 2Mbps (2DH5)

Figure 20: Power Spectral Density, High Channel, 2Mbps (2DH5)

3.4 Conducted Band-edge

This section provides close-up band-edge plots of the low and high channel, with respect to the nearest authorized band-edge.

For a DTS operating in the 2.4GHz band, FCC Rule Part 15.247(d) and RSS-247, 5.5 require that in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the unwanted radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Band-edge measurements were made conducted at the antenna port, by coupling the output of the EUT transmitter to the input of a spectrum analyzer. The measurement level was corrected for any cable and attenuator losses.

3.4.1 Measurement Method

This test was performed in accordance with Clause 6.10 through Clause 6.10.4 of ANSI C63.10-2020.

3.4.2 Test Data

The EUT test data is provided below.

The EUT was configured to transmit a modulated signal. The EUT was evaluated in two modes, channel hopping enabled and channel hopping disabled. The hopping/sweeping function had no impact on the results of this test. The worst-case band-edge is reported below.

Figure 21: Low Channel Band-Edge, 1Mbps (DH5)

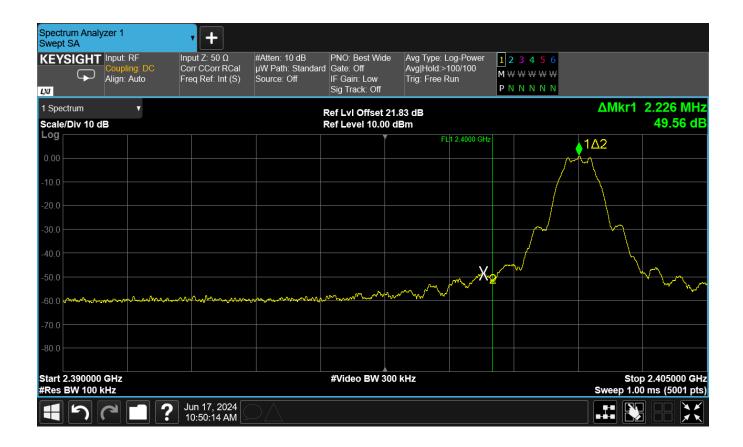


Figure 22: High Channel Band-Edge, 1Mbps (DH5)



Figure 23: Low Channel Band-Edge, 2Mbps (2DH5)

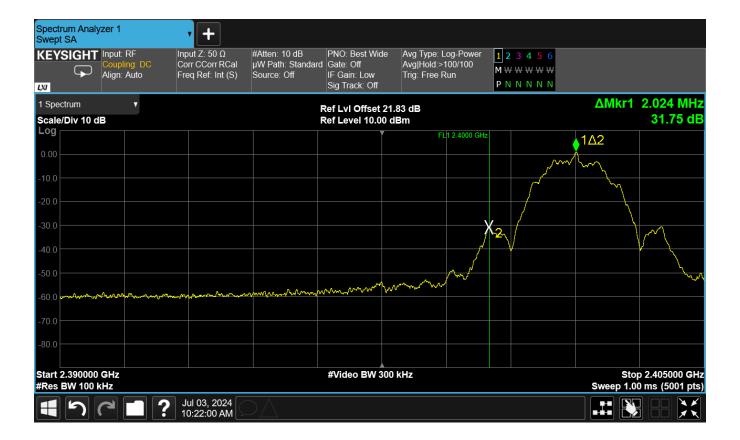
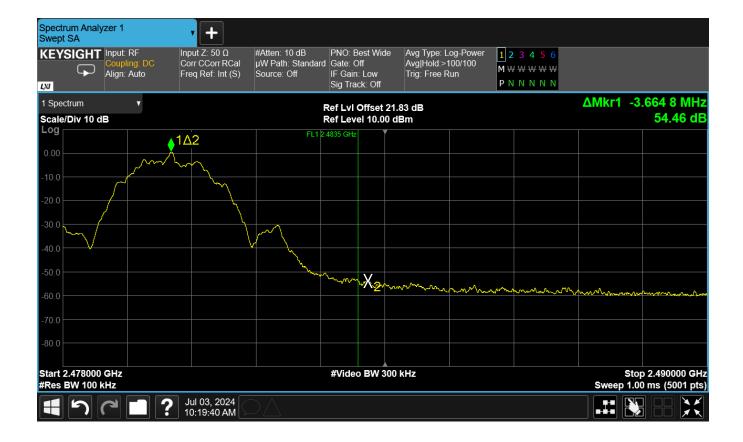



Figure 24: High Channel Band-Edge, 2Mbps (2DH5)

3.5 Conducted Unwanted Spurious Emissions

For a DTS operating in the 2.4GHz band, FCC Rule Part 15.247(d) and RSS-247, 5.5 require that in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the unwanted radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

The transmitter unwanted spurious emissions were evaluated and measured conducted at the antenna port, by coupling the output of the EUT transmitter to the input of a spectrum analyzer. The measurement level was corrected for any cable and attenuator losses.

3.5.1 Measurement Method

This test was performed in accordance with Clause 11.11 of ANSI C63.10-2020.

3.5.2 Test Data

The EUT test data for the low, center, and high channels are provided below.

The EUT was configured to transmit a modulated signal, at both 1Mbps (GFSK) and 2Mbps ($\pi/4$ DQPSK).

The worst-case conducted spurious emission is -42.22 dBm; the limit here is -20.83 dBm (see Figure 52).

Figure 25: Low Channel 1Mbps (DH5) Conducted Spurious Plot 1

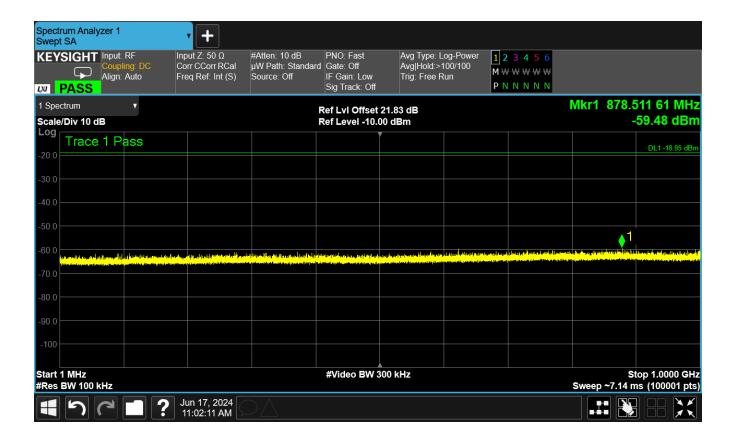


Figure 26: Low Channel 1Mbps (DH5) Conducted Spurious Plot 2

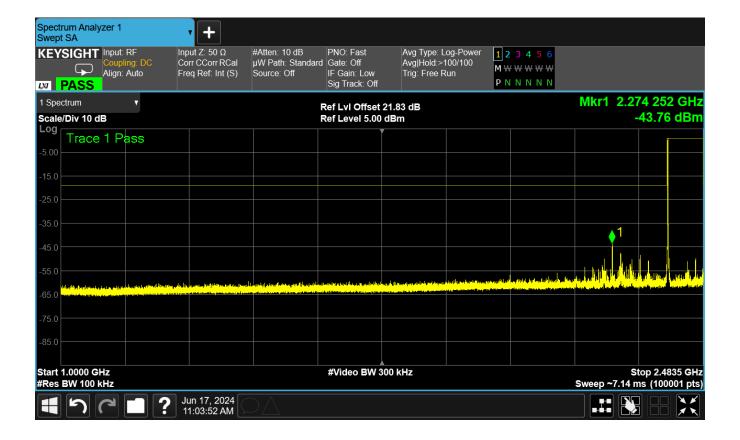


Figure 27: Low Channel 1Mbps (DH5) Conducted Spurious Plot 3

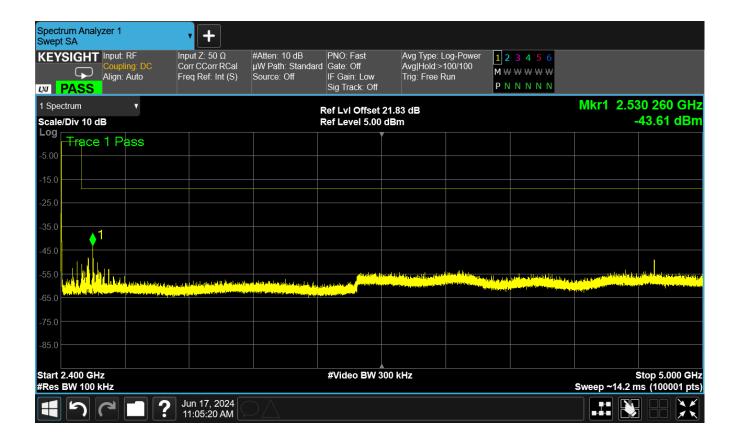


Figure 28: Low Channel 1Mbps (DH5) Conducted Spurious Plot 4

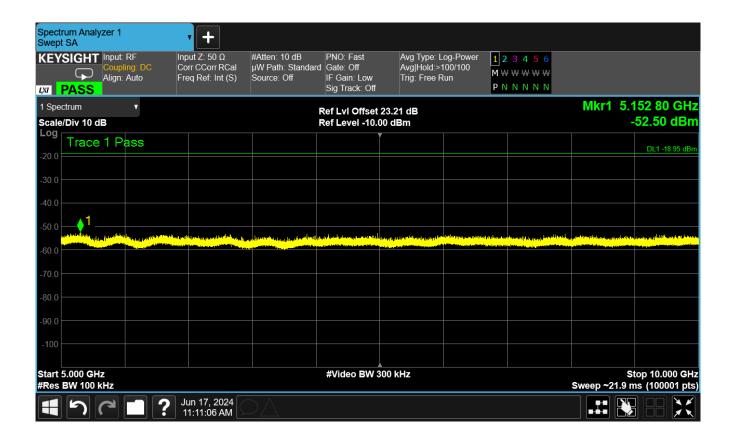


Figure 29: Low Channel 1Mbps (DH5) Conducted Spurious Plot 5

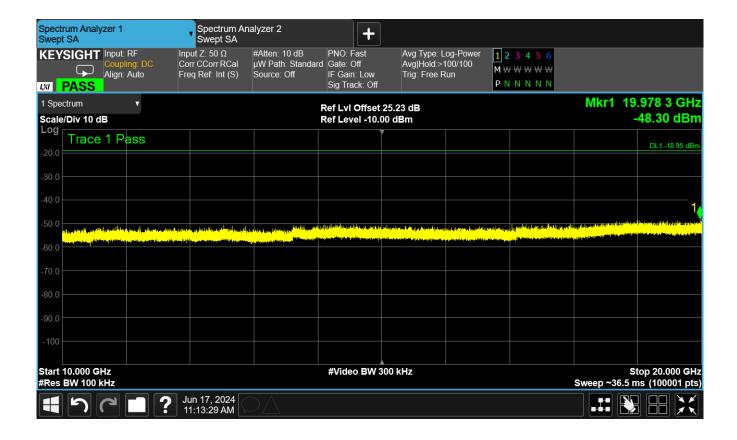


Figure 30: Low Channel 1Mbps (DH5) Conducted Spurious Plot 6

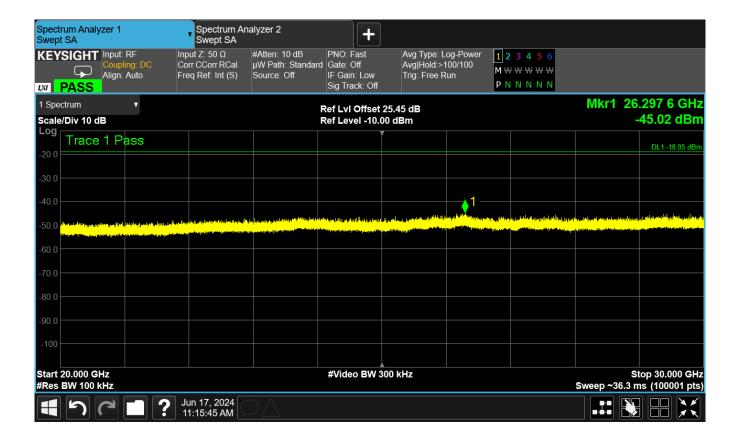


Figure 31: Center Channel 1Mbps (DH5) Conducted Spurious Plot 1

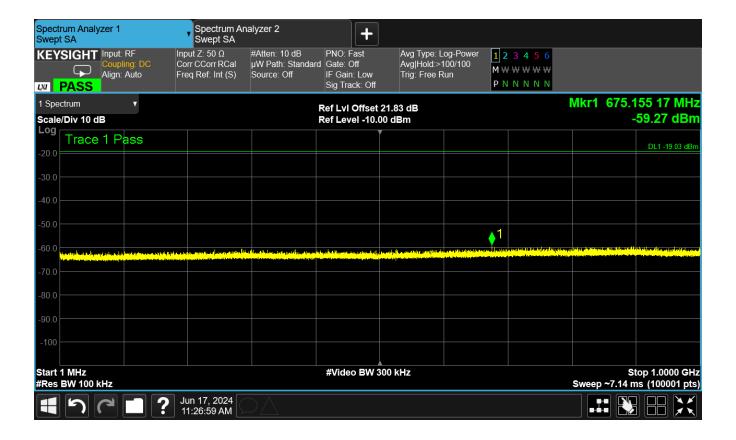


Figure 32: Center Channel 1Mbps (DH5) Conducted Spurious Plot 2

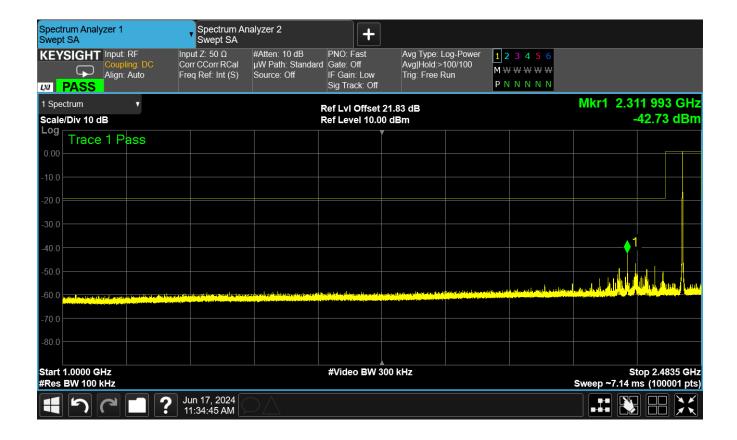


Figure 33: Center Channel 1Mbps (DH5) Conducted Spurious Plot 3

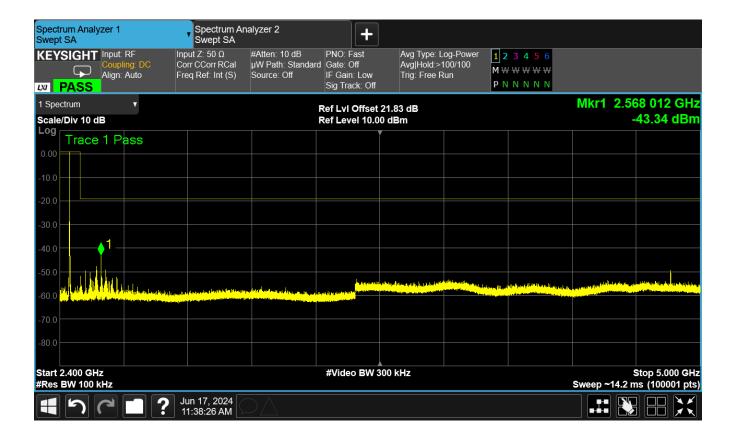


Figure 34: Center Channel 1Mbps (DH5) Conducted Spurious Plot 4

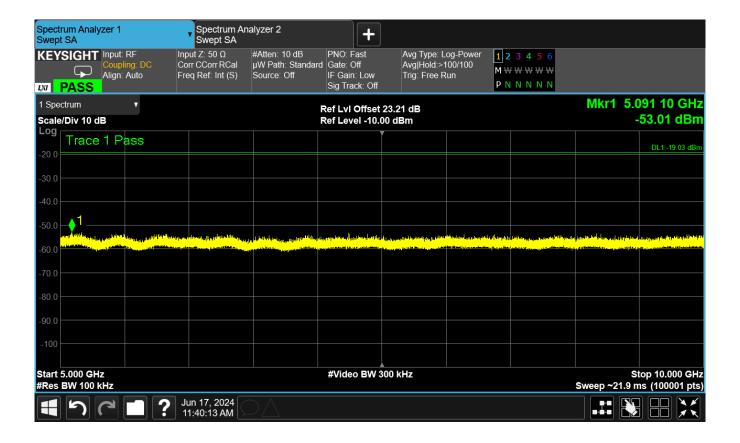


Figure 35: Center Channel 1Mbps (DH5) Conducted Spurious Plot 5

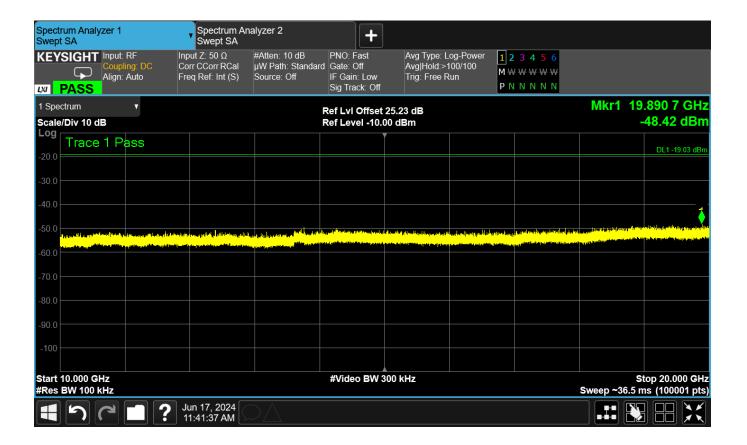


Figure 36: Center Channel 1Mbps (DH5) Conducted Spurious Plot 6

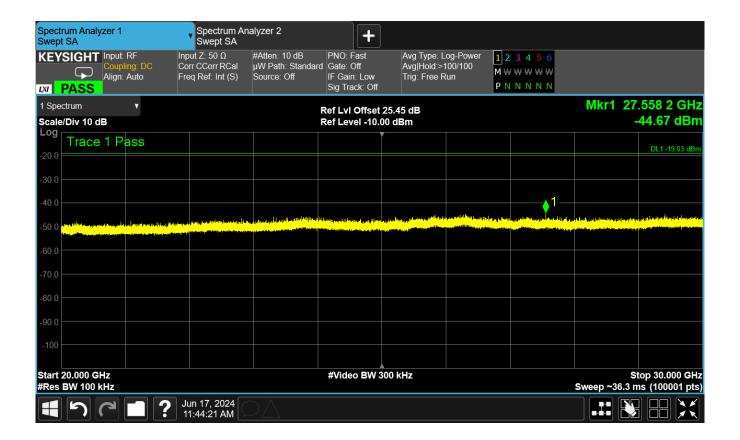


Figure 37: High Channel 1Mbps (DH5) Conducted Spurious Plot 1

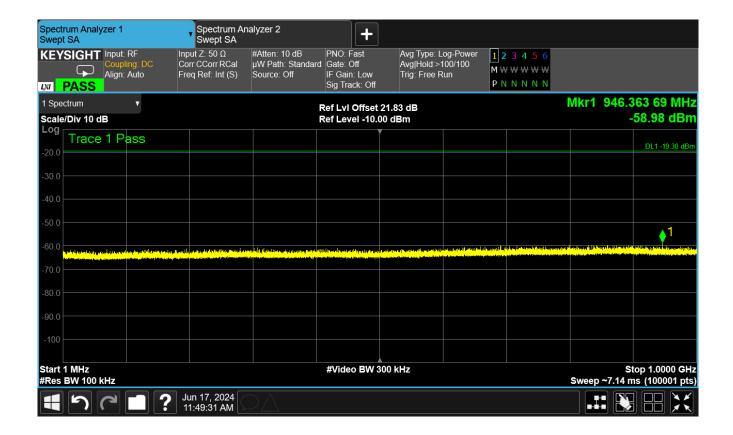


Figure 38: High Channel 1Mbps (DH5) Conducted Spurious Plot 2

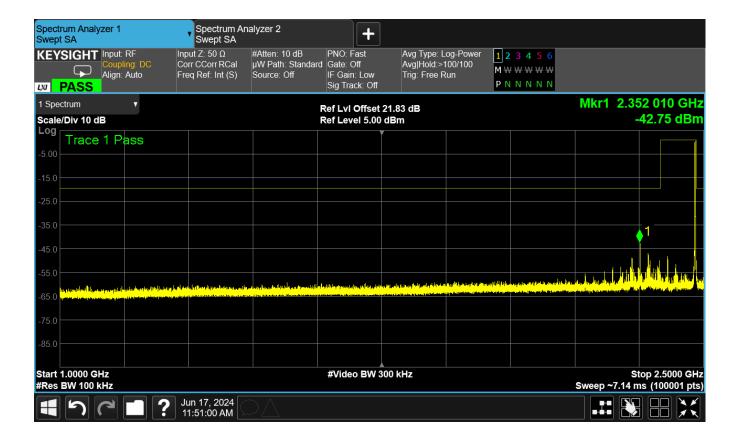


Figure 39: High Channel 1Mbps (DH5) Conducted Spurious Plot 3

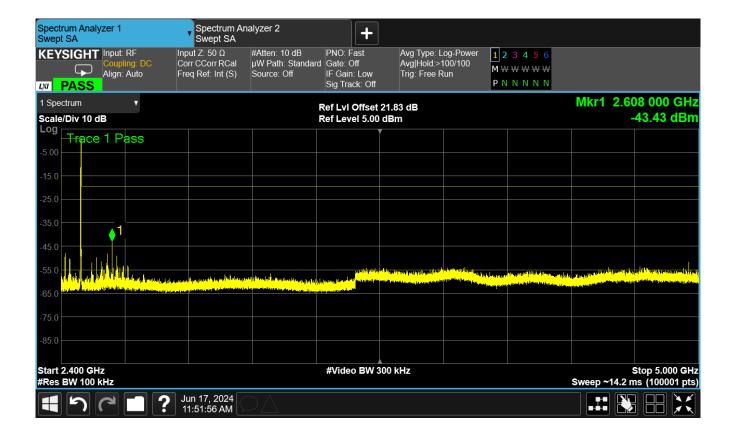


Figure 40: High Channel 1Mbps (DH5) Conducted Spurious Plot 4

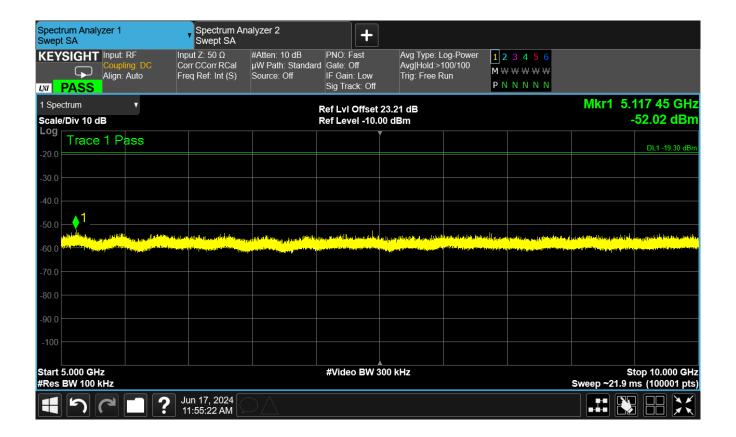


Figure 41: High Channel 1Mbps (DH5) Conducted Spurious Plot 5

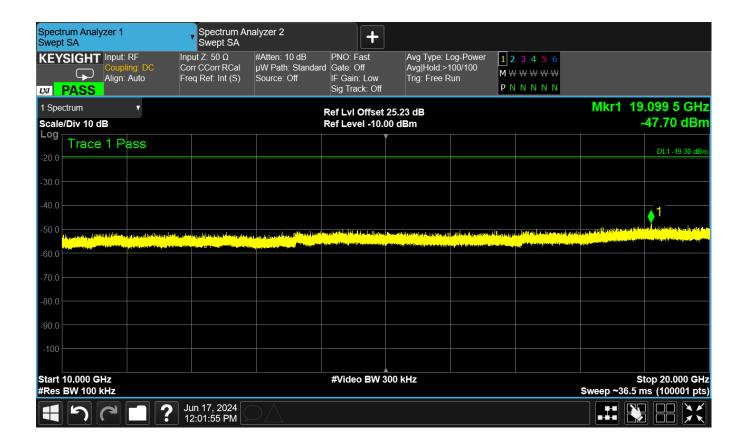
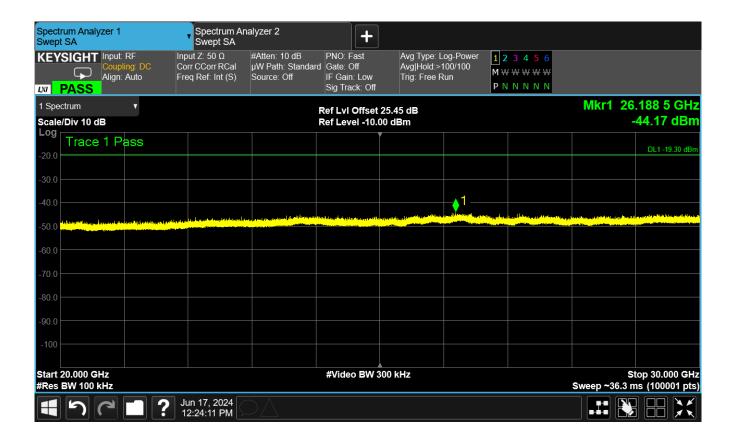



Figure 42: High Channel 1Mbps (DH5) Conducted Spurious Plot 6

This Page Left Intentionally Blank

Figure 43: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 1

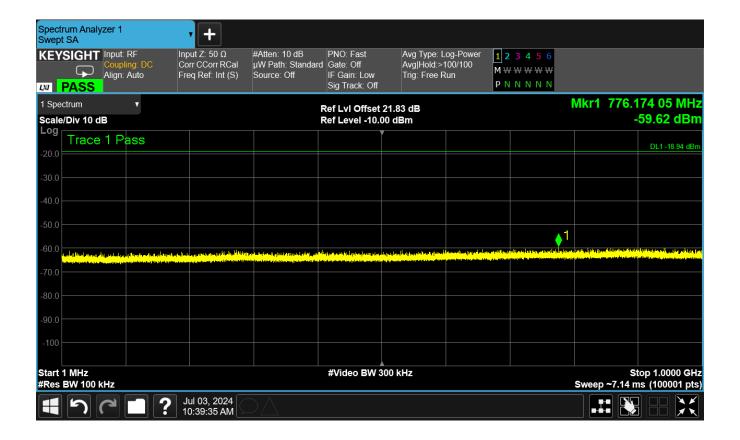


Figure 44: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 2

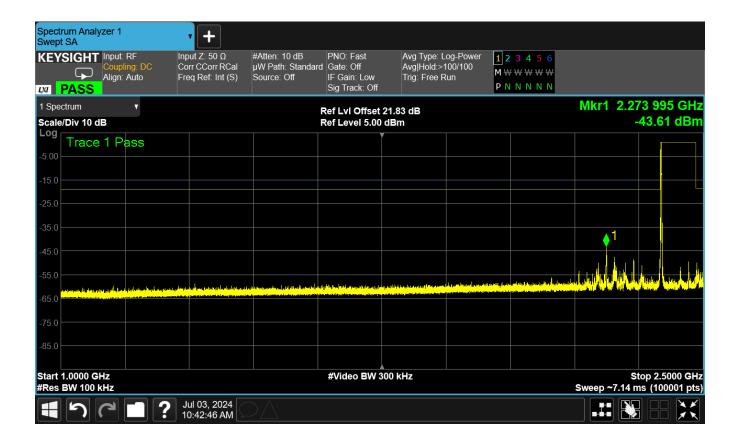


Figure 45: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 3

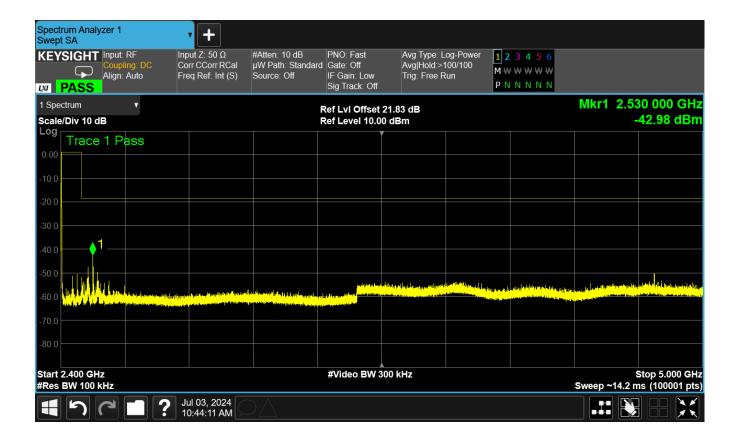


Figure 46: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 4



Figure 47: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 5

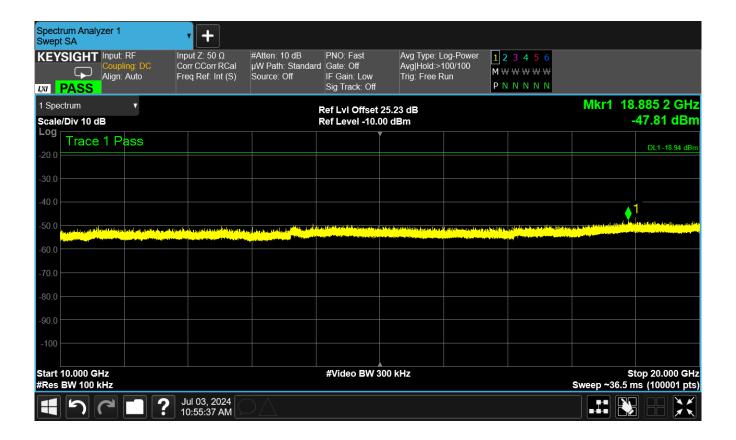


Figure 48: Low Channel 2Mbps (2DH5) Conducted Spurious Plot 6

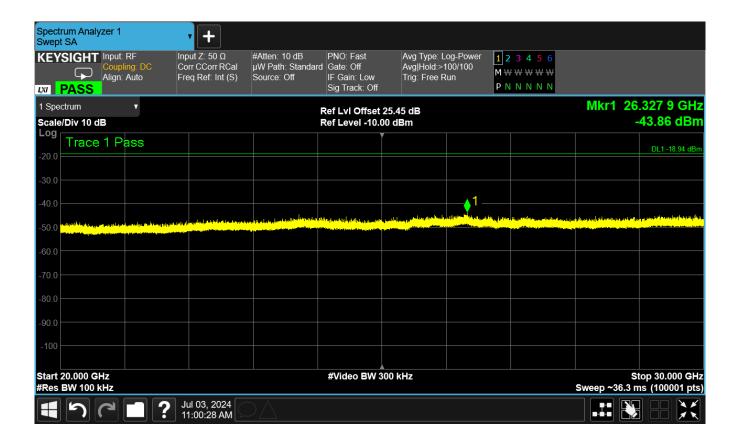


Figure 49: Center Channel 2Mbps (2DH5) Conducted Spurious Plot 1 of 2

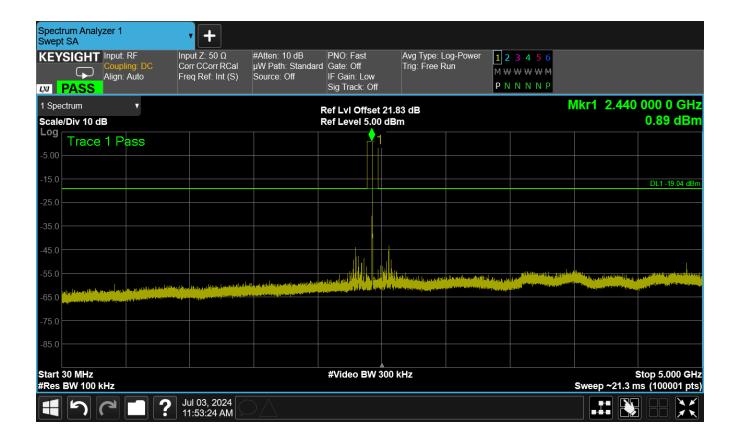


Figure 50: Center Channel 2Mbps (2DH5) Conducted Spurious Plot 2 of 2

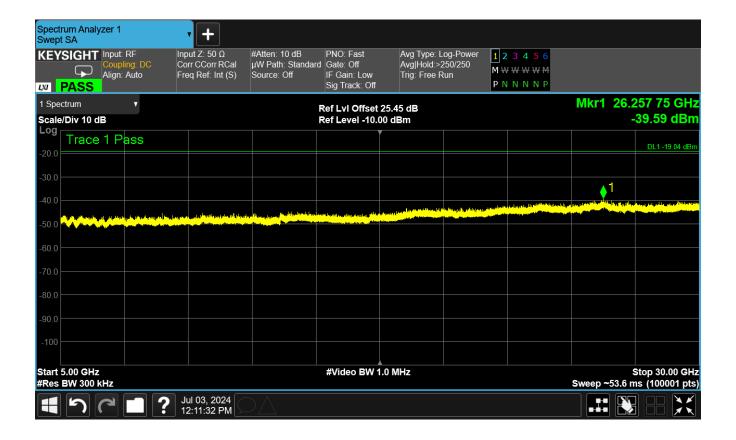


Figure 51: High Channel 2Mbps (2DH5) Conducted Spurious Plot 1

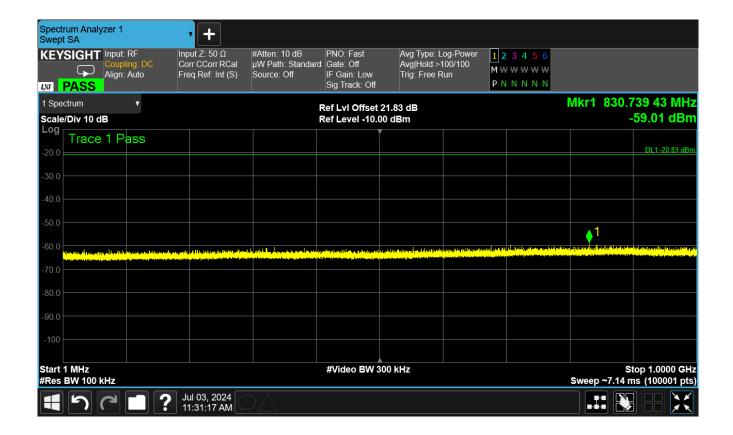


Figure 52: High Channel 2Mbps (2DH5) Conducted Spurious Plot 2

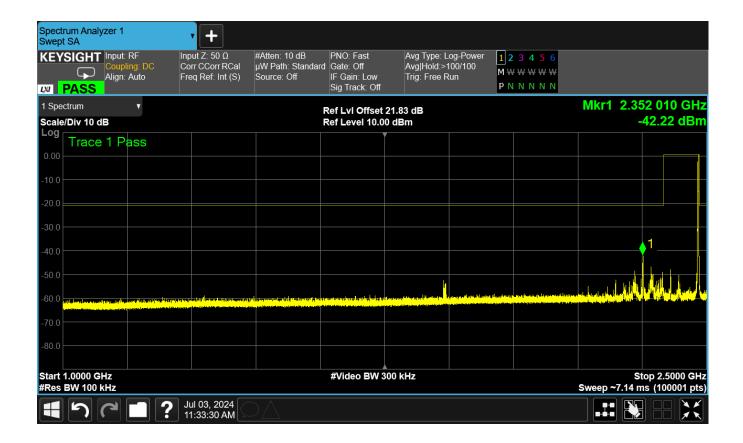


Figure 53: High Channel 2Mbps (2DH5) Conducted Spurious Plot 3

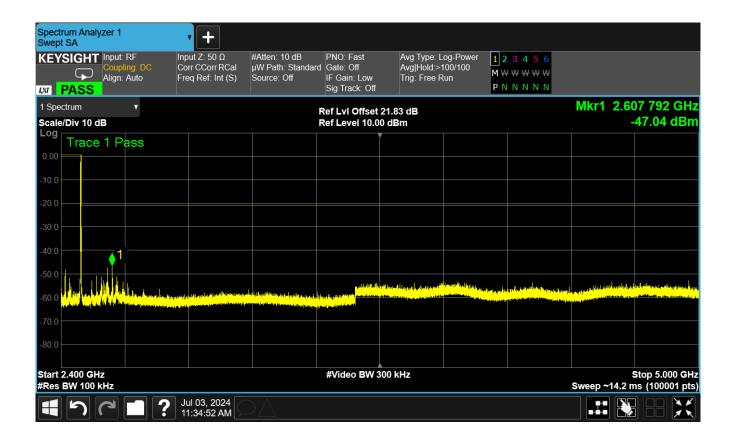


Figure 54: High Channel 2Mbps (2DH5) Conducted Spurious Plot 4

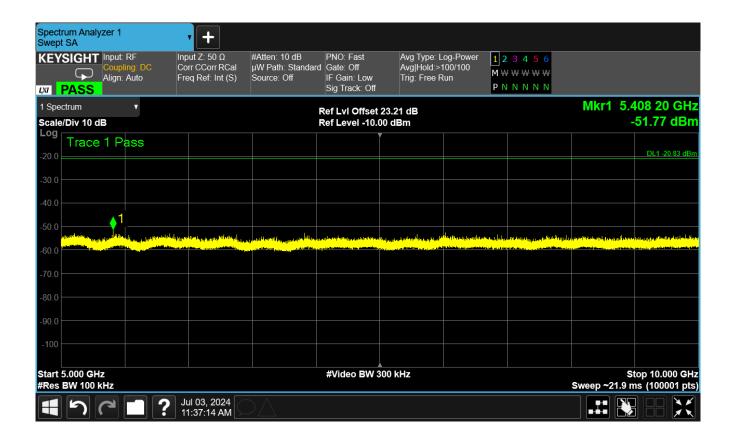


Figure 55: High Channel 2Mbps (2DH5) Conducted Spurious Plot 5

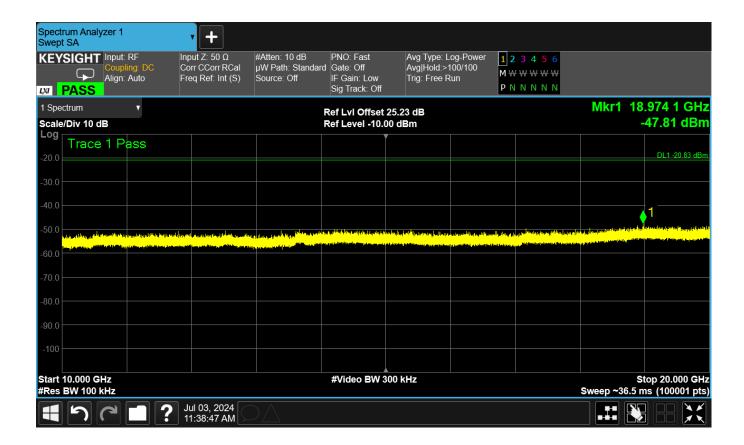
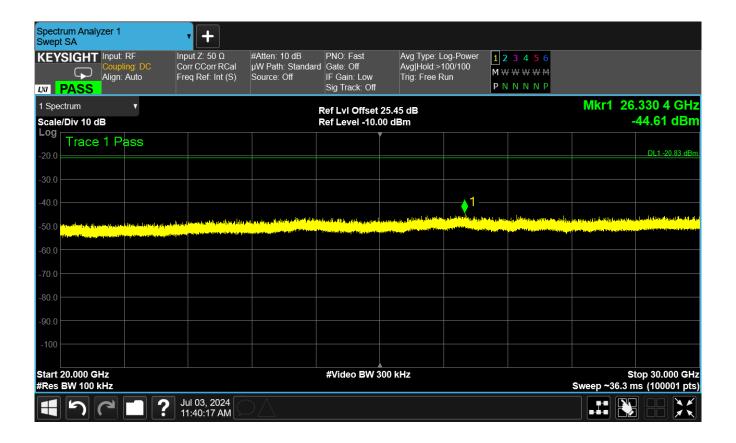



Figure 56: High Channel 2Mbps (2DH5) Conducted Spurious Plot 6

3.6 Radiated Emissions

3.6.1 Requirements

Compliance Standard: FCC Part 15.247, 15.209, 15.205

Radiated Emissions, Compliance Limits					
Frequency Range	Class B Equivalent (3-meters)				
30 – 88 MHz	100 μV/m				
88 – 216 MHz	150 μV/m				
216 – 960 MHz	200 μV/m				
> 960 MHz	500 μV/m				

3.6.2 Test Procedure

The requirements of FCC Part 15 and ICES-003 call for the EUT to be placed on a 1 X 1.5 meters non-conductive motorized turntable for radiated testing on a 3-meter open air test site. The height of the table is 80cm for testing below 1GHz. The height of the table is 150cm for testing above 1GHz.

The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Biconical and log periodic broadband antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The output of the antenna was connected to the input of the spectrum analyzer and the emissions in the frequency range of 30 MHz to 26.5 GHz were measured. Both the horizontal and vertical field components were measured.

The output from the antenna was connected, via a preamplifier, to the input of the spectrum analyzer. The detector function was set to quasi-peak or peak, as appropriate. Above 1GHz average measurement are recorded. The measurement bandwidth of the spectrum analyzer system was set to at least 120 kHz, with all post-detector filtering no less than 10 times the measurement bandwidth. Frequencies above 1GHz were performed using a measurement bandwidth of 1 MHz with a video bandwidth setting of 10 Hz for the average measurement.

3.6.3 Test Results Summary

The EUT complies with the Class B Radiated Emissions requirements.

3.6.4 Radiated Data Reduction and Reporting

To convert the raw spectrum analyzer radiated data into a form that can be compared with the FCC limits, it is necessary to account for various calibration factors that are supplied with the antennas and other measurement accessories. These factors are included into the antenna factor (AF) column of the table and in the cable factor (CF) column of the table. The AF (in dB/m) and the CF (in dB) is algebraically added to the raw Spectrum Analyzer Voltage in dB μ V to obtain the Radiated Electric Field in dB μ V/m. This logarithm amplitude is converted to a linear amplitude, then compared to the FCC limit.

Example:

Spectrum Analyzer Voltage: VdBµV Antenna Correction Factor: AFdB/m Cable Correction Factor: CFdB Pre-Amplifier Gain (if applicable): GdB

Electric Field: $EdB\mu V/m = V\ dB\mu V + AFdB/m + CFdB - GdB$ To convert to linear units of measure:: $EdB\mu V/m/20$ Inv log

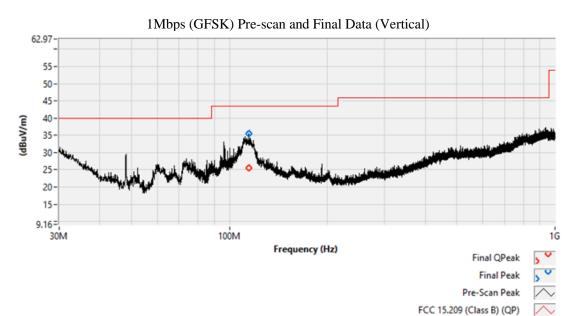
3.6.5 Test Data

The EUT is fully compliant, and the final test data, for both modes, is provided on the pages below.

There were no EUT emissions detected in the frequency range of 8 GHz to 26.5 GHz.

A complete investigation of the radiated fundamental field strength was performed. The EUT was evaluated in three orthogonal axes (x, y, z). The EUT position the produced the highest radiated power was maintained during all testing.

The EUT was configured to transmit a modulated signal as follows:


- a) for testing of 30 MHz to 1 GHz, the EUT was set to a transmitter enabled mode, the BLE transceiver was set to sweep the 2.4GHz ISM band, in an active advertising mode.
- b) for testing of 1 GHz to 26.5 GHz, the EUT was set to a transmitter enabled mode, the BLE transceiver was set to dwell on the low, center, and high channels.

Please accept the 30MHz to 1GHz data to cover the digital portion under the provisions of 15.109(a).

Table 9: Radiated Emissions Test Data, 1Mbps (DH5) 30MHz to 1GHz

Frequency (MHz)	Detector	Corr. Meas (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Table (deg)	Antenna (cm)
114540	Peak	35.428			180	Vert, 100
114.548	QP	25.618	43.5	-17.882	180	Vert, 100
955.122	Peak	37.917			180	Horiz, 100
	QP	29.126	46	-16.874	180	Horiz, 100

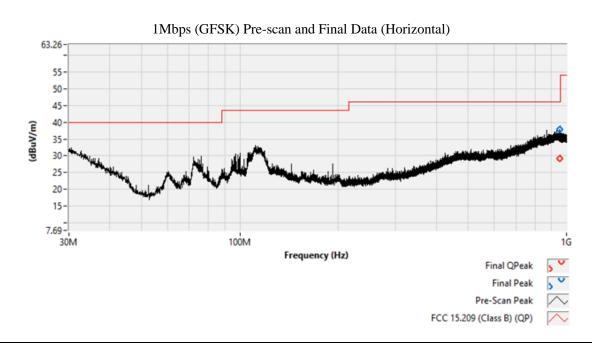
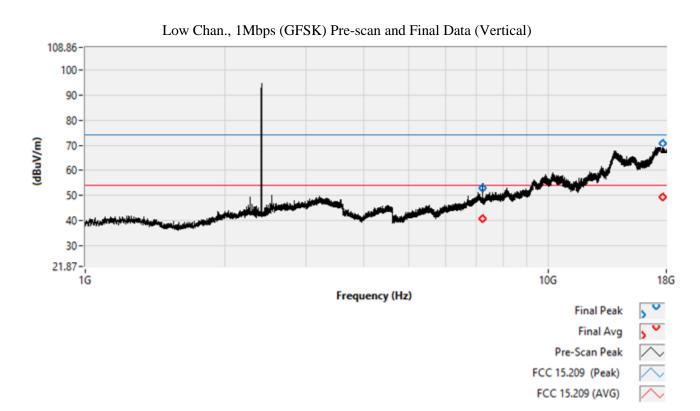


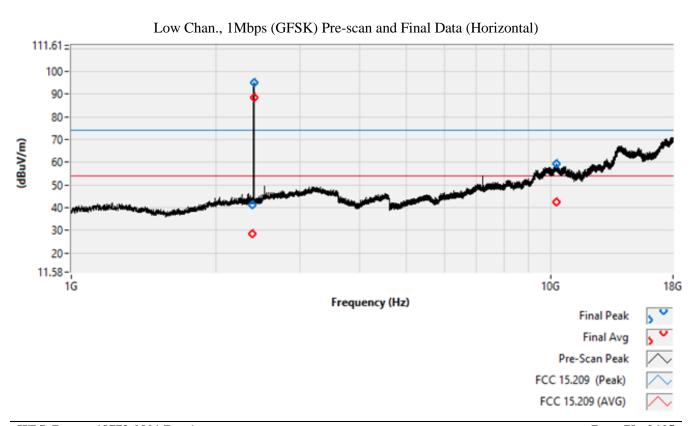
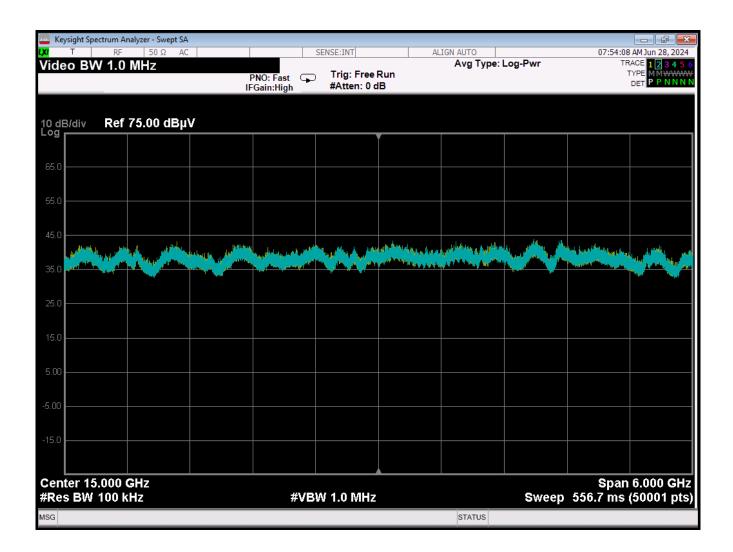
Table 10: Radiated Emissions Test Data, Low Channel, 1Mbps (DH5)

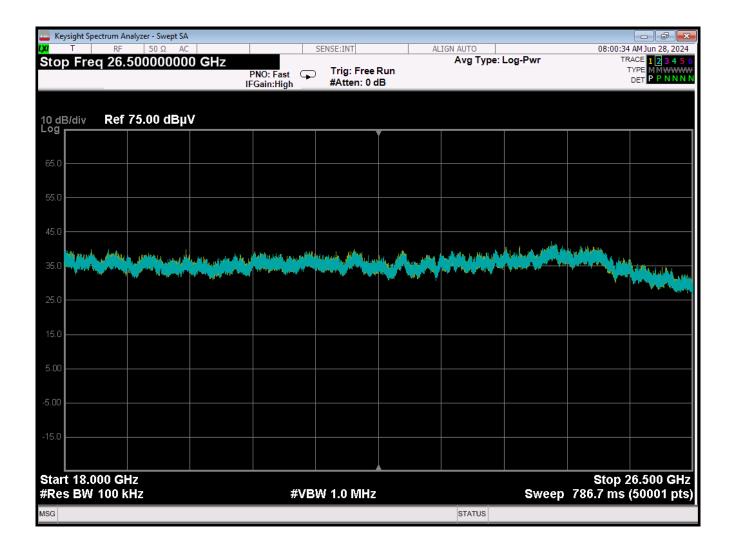

Frequency (MHz)	Detector	Corr. Meas (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
2390.0 ¹	Peak	41.655	74	-32.345	245	Vert, 160
2370.0	AVG	27.723	54	-26.277	245	Vert, 160
2402.0 ²	Peak	91.565			245	Vert, 155
2402.0	AVG	86.528			245	Vert, 155
7221.0	Peak	56.70	74	-17.30	315	Horiz, 155
7221.0	AVG	42.306	54	-11.694	315	Horiz, 155
10239.0 ³	Peak	61.653	74	-12.347	315	Horiz, 155
10239.0	AVG	48.492	54	-5.508	315	Horiz, 155
10530.0 ³	Peak	61.80	74	-12.20	245	Vert, 155
10330.0	AVG	48.561	54	-5.439	245	Vert, 155

¹ Restricted BE

² Low Chan TX

³ Ambient

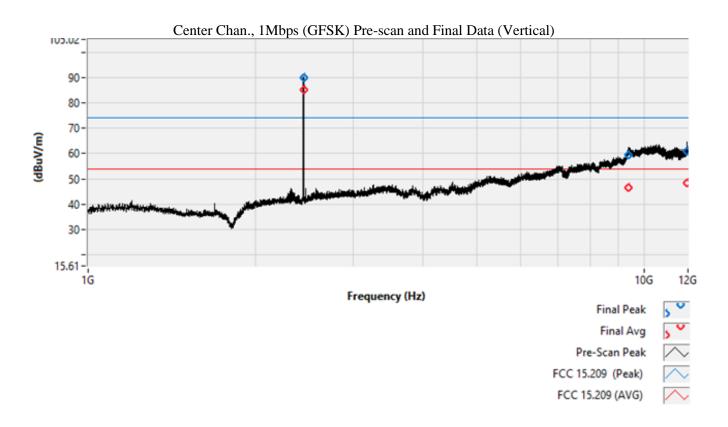




Figure 57: Radiated Emissions, Low Channel, 1Mbps, DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT Low Chan. TX On
- Trace 2 = Ambient

Figure 58: Radiated Emissions, Low Channel, 1Mbps, DH5, (18GHz to 26.5GHz)

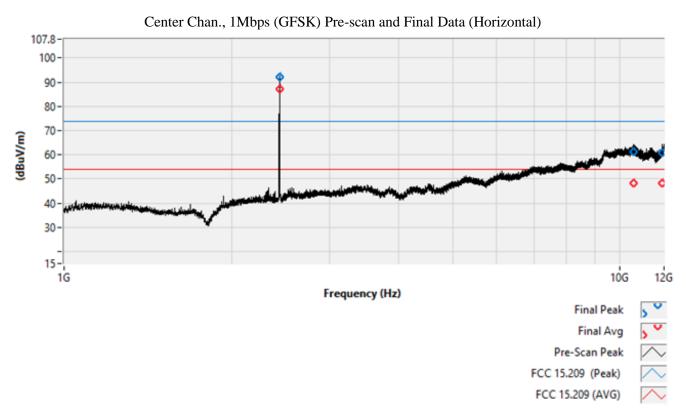
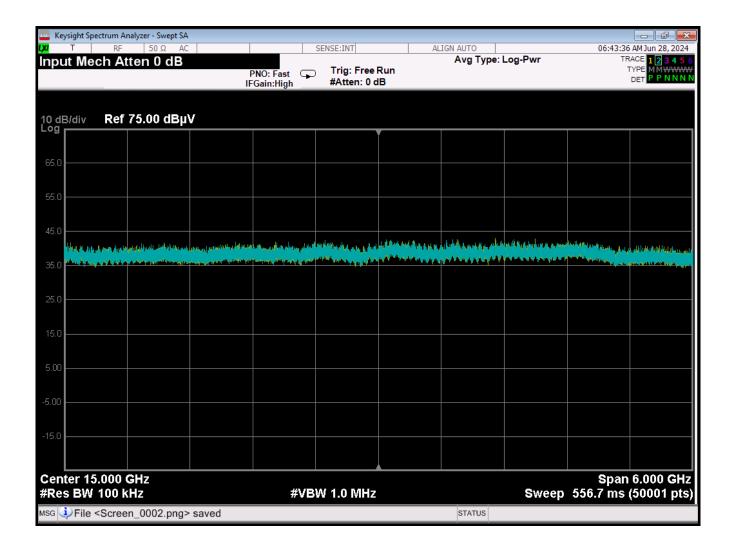
- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT Low Chan. TX On
- Trace 2 = Ambient

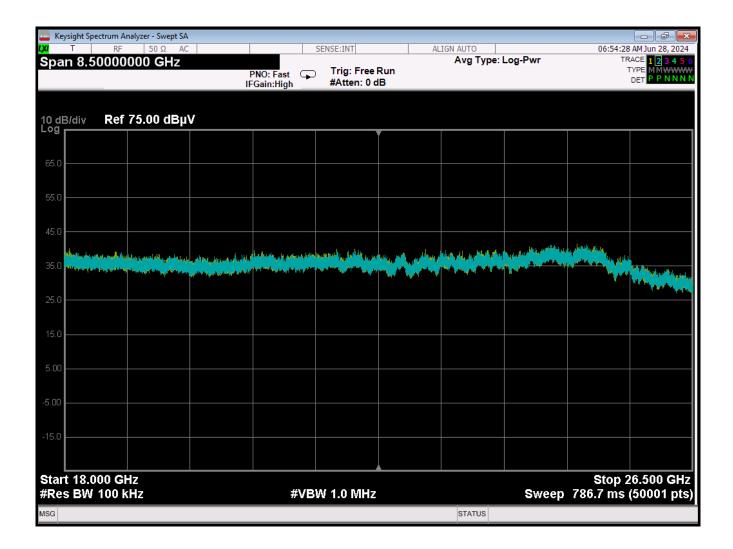

Table 11: Radiated Emissions Test Data, Center Channel, 1Mbps (DH5)

Frequency (MHz)	Detector	Corr. Meas (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
2440.0 ¹	Peak	92.286			315	Horiz, 155
2440.0	AVG	87.226			315	Horiz, 155
9370.0 ²	Peak	59.484	74	-14.516	245	Vert, 155
7370.0	AVG	46.672	54	-7.328	245	Vert, 155
10597.0 ²	Peak	61.154	74	-12.846	315	Horiz, 155
10377.0	AVG	48.071	54	-5.929	315	Horiz, 155
11905.0 ²	Peak	61.009	74	-12.991	315	Horiz, 155
11703.0	AVG	48.211	54	-5.789	315	Horiz, 155
11970.0 ²	Peak	60.97	74	-13.03	245	Vert, 155
11770.0	AVG	48.378	54	-5.622	245	Vert, 155

¹ Center Chan TX

² Ambient

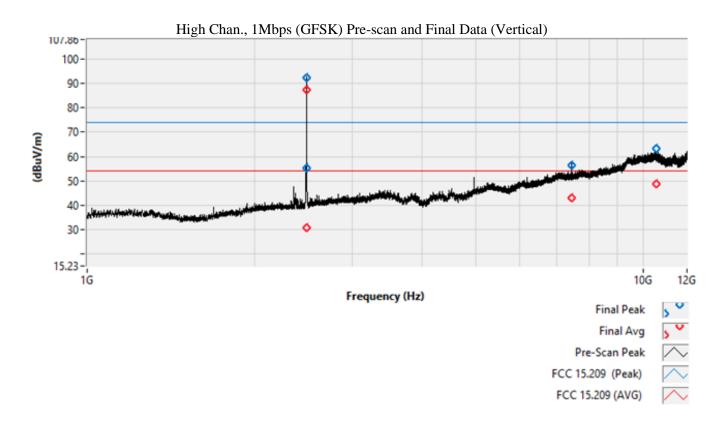

Figure 59: Radiated Emissions, Center Channel, 1Mbps, DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT Center Chan. TX On
- Trace 2 = Ambient

Figure 60: Radiated Emissions, Center Channel, 1Mbps, DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT Center Chan. TX On
- $\frac{\text{Trace 2}}{\text{Trace 2}} = \text{Ambient}$

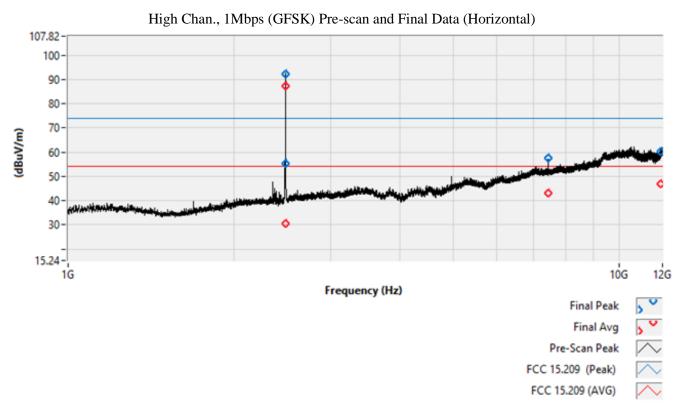
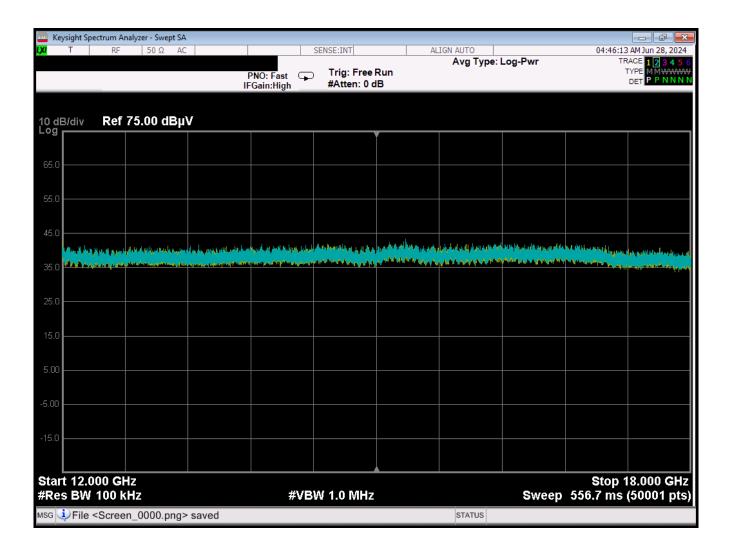
Table 12: Radiated Emissions Test Data, High Channel, 1Mbps (DH5)

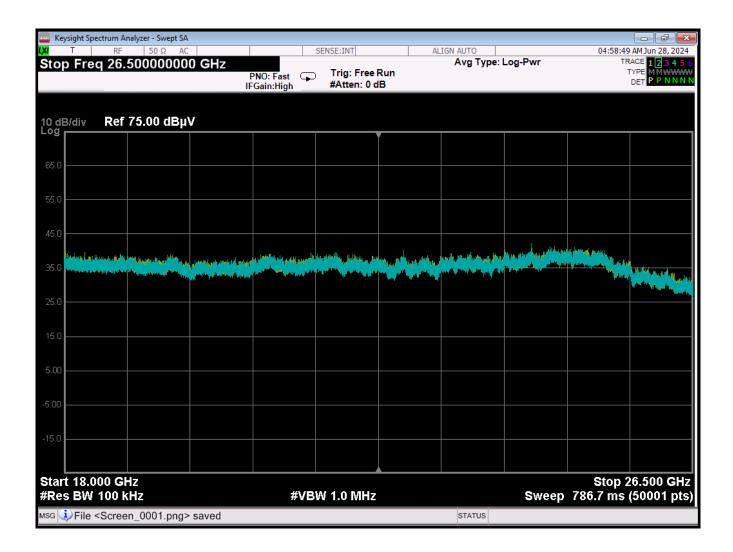

Frequency (MHz)	Detector	Corr. Meas (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
2480.0 ¹	Peak	92.378			245	Vert, 155
2400.0	AVG	87.331			245	Vert, 155
2483.5 ²	Peak	55.317	74	-18.683	245	Vert, 155
2103.3	AVG	30.669	54	-23.331	245	Vert, 155
7440.0	Peak	57.557	74	-16.443	245	Horiz, 155
7440.0	AVG	42.984	54	-11.016	245	Horiz, 155
10585.0 ³	Peak	63.258	74	-10.742	245	Vert, 155
10303.0	AVG	48.585	54	-5.415	245	Vert, 155
11926.0 ³	Peak	60.053	74	-13.947	245	Horiz, 155
11/20.0	AVG	46.884	54	-7.116	245	Horiz, 155

¹ High Chan TX

² Restricted BE

³ Ambient

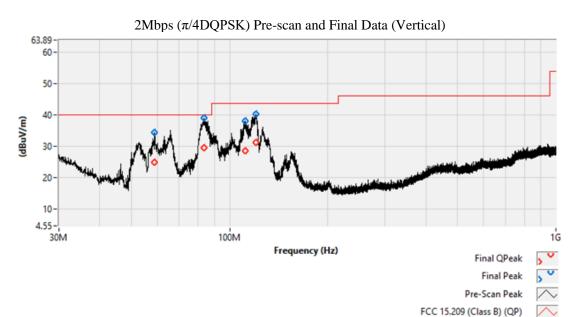




Figure 61: Radiated Emissions, High Channel, 1Mbps, DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT High Chan. TX On
- Trace 2 = Ambient

Figure 62: Radiated Emissions, High Channel, 1Mbps, DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT High Chan. TX On
- Trace 2 = Ambient



This Page Left Intentionally Blank

Table 13: Radiated Emissions Test Data, 2Mbps (2DH5) 30MHz to 1GHz

Frequency (MHz)	Detector	Corr. Meas (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Table (deg)	Antenna (cm)
92 645	Peak	38.954			180	Vert, 120
83.645	QP	29.437	40	-10.563	180	Vert, 120
120.129	Peak	40.237			0	Vert, 100
	QP	31.064	43.5	-12.436	0	Vert, 100

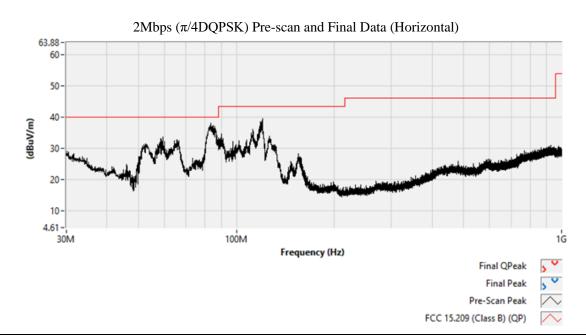
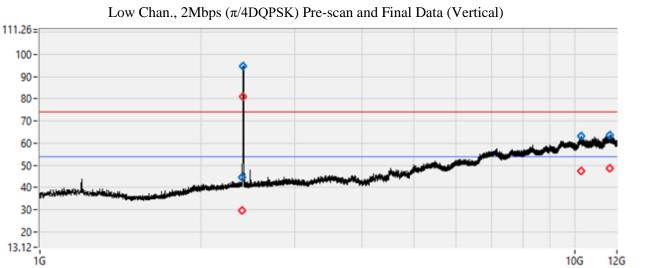
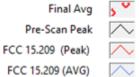


Table 14: Radiated Emissions Test Data, Low Channel, 2Mbps (2DH5)

Frequency (MHz)	Detector	Corr. Meas (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
2390.0 ¹	Peak	44.817	74	-29.183	180	Vert, 165
2370.0	AVG	29.483	54	-24.517	180	Vert, 165
2402.0 ²	Peak	94.902			180	Vert, 155
2402.0	AVG	81.123			180	Vert, 165
7824.0	Peak	57.89	74	-16.11	0	Horiz, 155
7024.0	AVG	41.718	54	-12.282	0	Horiz, 155
10278.0 ³	Peak	63.165	74	-10.835	180	Vert, 155
10276.0	AVG	47.387	54	-6.613	180	Vert, 165
11638.0 ³	Peak	63.803	74	-10.197	180	Vert, 165
11050.0	AVG	48.833	54	-5.167	180	Vert, 165


¹ Restricted BE

² Low Chan TX


³ Ambient

(dBuV/m)

Frequency (Hz)

Final Peak

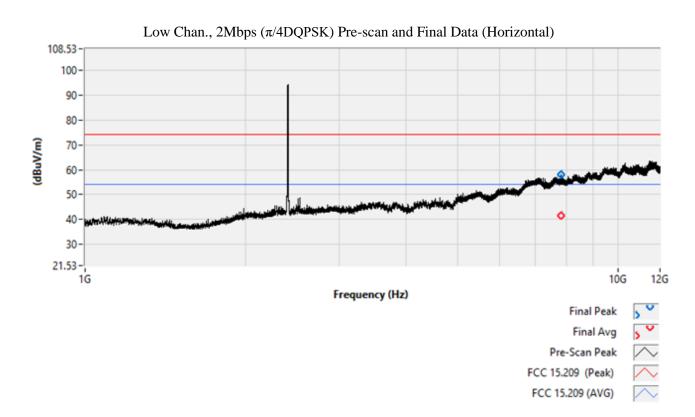
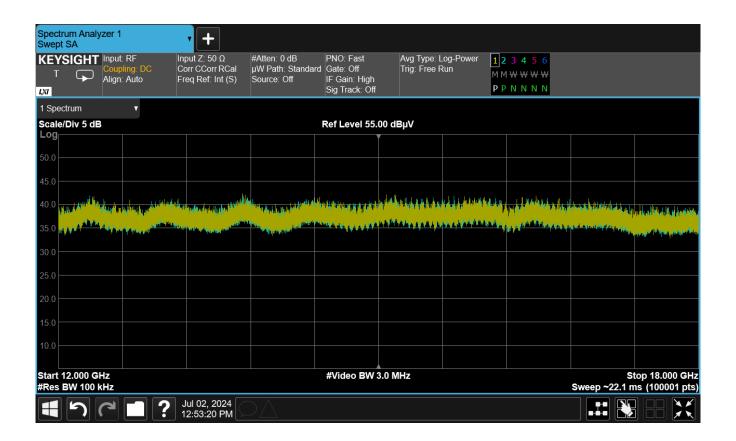
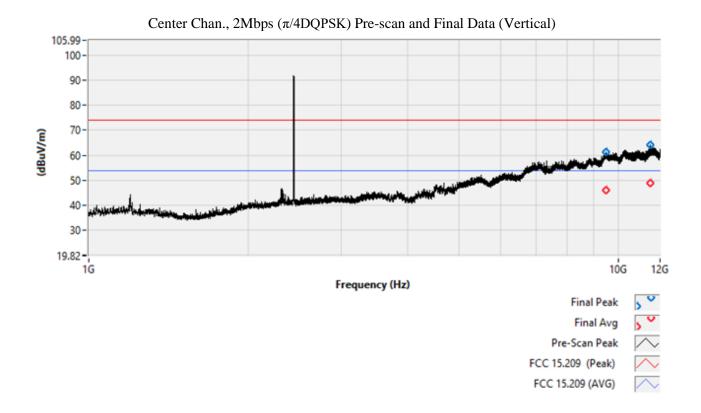



Figure 63: Radiated Emissions, Low Channel, 2Mbps, 2DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT Low Chan. TX On
- Trace 2 = Ambient

Figure 64: Radiated Emissions, Low Channel, 2Mbps, 2DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT Low Chan. TX On
- Trace 2 = Ambient


Table 15: Radiated Emissions Test Data, Center Channel, 2Mbps (2DH5)

Frequency (MHz)	Detector	Corr. Meas (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
2440.0 ¹	Peak	93.923			180	Horiz, 150
2440.0	AVG	77.9			180	Horiz, 150
7742.0	Peak	58.068	74	-15.932	200	Horiz, 150
7742.0	AVG	41.93	54	-12.07	200	Horiz, 150
9470.0 ²	Peak	61.221	74	-12.779	0	Vert, 165
7470.0	AVG	46.207	54	-7.793	0	Vert, 165
11494.0 ²	Peak	64.307	74	-9.693	0	Vert, 165
11174.0	AVG	48.762	54	-5.238	0	Vert, 165

¹ Center Chan TX

² Ambient

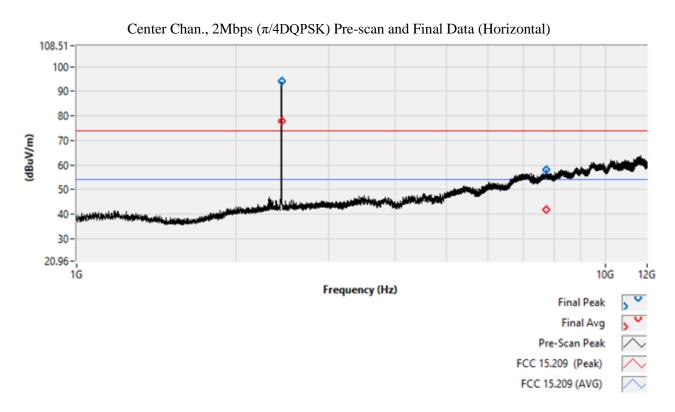
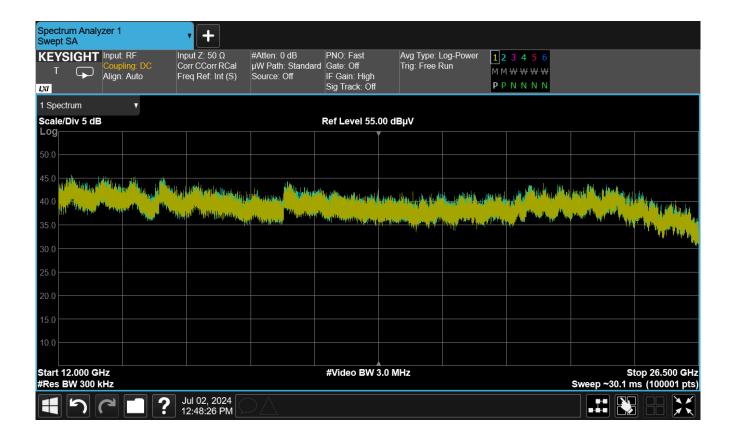
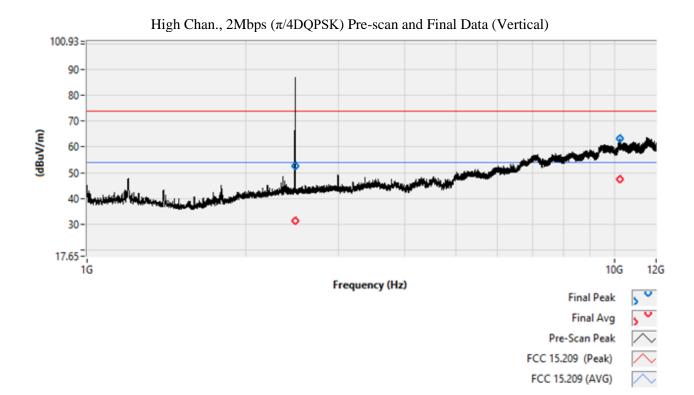



Figure 65: Radiated Emissions, Center Channel, 2Mbps, 2DH5, (12GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT Center Chan. TX On
- Trace 2 = Ambient

Table 16: Radiated Emissions Test Data, High Channel, 2Mbps (2DH5)


Frequency (MHz)	Detector	Corr. Meas (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Turn Table (deg)	Antenna (cm)
2480.0 ¹	Peak	94.294			180	Horiz, 160
2400.0	AVG	76.108			180	Horiz, 160
2483.5 ²	Peak	52.742	74	-21.258	0	Vert, 155
2403.3	AVG	31.527	54	-22.473	0	Vert, 155
7073.0	Peak	55.25	74	-18.75	180	Horiz, 160
7073.0	AVG	41.573	54	-12.427	180	Horiz, 160
10242.0 ³	Peak	63.085	74	-10.915	0	Vert, 155
10242.0	AVG	47.416	54	-6.584	0	Vert, 155
11610.0 ³	Peak	64.476	74	-9.524	180	Horiz, 160
11010.0	AVG	49.371	54	-4.629	180	Horiz, 160

¹ High Chan TX

² Restricted BE

³ Ambient

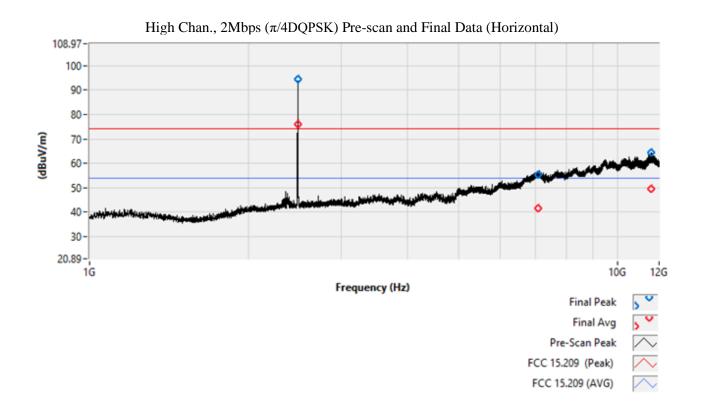
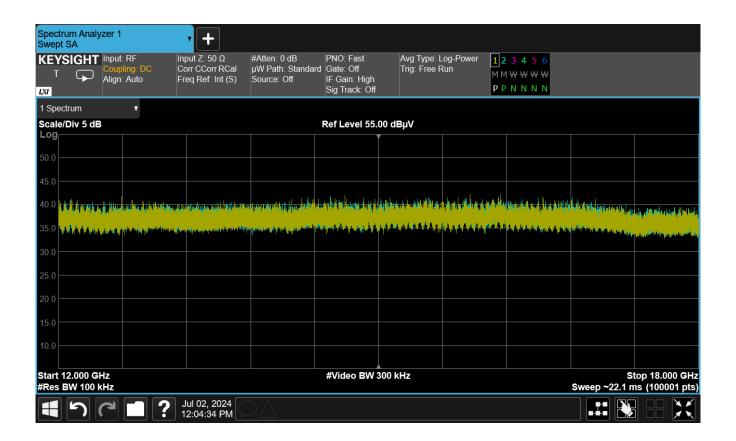




Figure 66: Radiated Emissions, High Channel, 2Mbps, 2DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT High Chan. TX On
- Trace 2 = Ambient

Figure 67: Radiated Emissions, High Channel, 2Mbps, 2DH5, (18GHz to 26.5GHz)

- EUT emissions are not detected in this frequency range.
- Trace 1 = EUT High Chan. TX On
- Trace 2 = Ambient

4 Test Equipment

The table below provides a list of the test equipment used for measurements along with the calibration information.

Table 17: Test Equipment List

Test Name:	Radiated Emissions	Testing Dates: 6/17/2024 – 7/9/2024		
Asset #	Manufacturer/Model	Description	Cal. Due	
00942	AGILENT, MXA	SPECTRUM ANALYZER	12/19/2024	
00993 1	KEYSIGHT, MXA	SPECTRUM ANALYZER	11/6/2025	
00382	SUNOL SCIENCES CORP.	ANTENNA, LOGPERIOD	6/12/2027	
00004	ARA, DRG-118/A	ANTENNA, HORN	6/7/2027	
00066	AGILENT	RF PRE-AMPLIFIER	3/29/2025	
00065	ELECTRO-METRICS	RF PRE-AMPLIFIER	3/29/2025	
00806	MINI-CIRCUITS, 3061	HF COAX CABLE, SMA	12/26/2024	
00825	CABLE ASSOCIATES, MTC10	6-METER COAX CABLE, SMA	6/14/2025	
00847	ASTROLABS, K-48TG	HF COAX CABLE, SMA	6/14/2025	
00731	NARDA, 4779-3	2W, 3DB ATTENUATOR	6/20/2025	

¹ the N9020B, MXA has the following instrument software version installed: A.33.03 (2023)

Test Equipment List, Continued

Test Name: Conducted RF Emissions		Testing Dates: 6/17/2024 – 7/9/2024		
Asset #	Manufacturer/Model	Description	Cal. Due	
00993 1	KEYSIGHT, MXA	SPECTRUM ANALYZER	11/6/2025	
00992	KEYSIGHT N5173B	EXG SIGNAL GENERATOR	11/24/2024	
00885	ULTIFLEX, UFA2108-0-360	1-METER SMA CABLE	6/25/2025	
N/A	WEINSCHEL, 3.5MM	20DB ATTENUATOR	Cal. Before Use	

¹ the N9020B, MXA has the following instrument software version installed: A.33.03 (2023)

5 Measurements

5.1.1 References

ANSI C63.2 (1/2016) Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 (1/2014) American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

ANSI C63.10 (9/2020) American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

5.2 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 (R2002) with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1. to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_c = \pm \sqrt{\frac{a^2}{div_a^2} + \frac{b^2}{div_b^2} + \frac{c^2}{div_c^2} + \dots}$$

where,

uc = standard uncertainty

a, b, c,.. = individual uncertainty elements

Diva, b, c = the individual uncertainty element divisor based on the

probability distribution

Divisor = 1.732 for rectangular distribution

Divisor = 2 for normal distribution

Divisor = 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

where,

U = expanded uncertainty

k = coverage factor

k \leq 2 for 95% coverage (ANSI/NCSL Z540-2 Annex G)

uc = standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is not used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in the table below.

Table 18: Expanded Uncertainty List

Scope	Standard(s)	Expanded Uncertainty
Conducted Emissions	CISPR11, CISPR32, CISPR14, FCC Part 15	± 2.63 dB
Radiated Emissions	CISPR11, CISPR32, CISPR14, FCC Part 15	± 4.55 dB

5.3 Environmental Conditions

Environmental Conditions During All Measurements

Ambient Temperature:	Between 19.9 and 23.9 °C
Relative Humidity:	Between 45 and 60 %